US9205395B2 - Encapsulation - Google Patents
Encapsulation Download PDFInfo
- Publication number
- US9205395B2 US9205395B2 US12/904,755 US90475510A US9205395B2 US 9205395 B2 US9205395 B2 US 9205395B2 US 90475510 A US90475510 A US 90475510A US 9205395 B2 US9205395 B2 US 9205395B2
- Authority
- US
- United States
- Prior art keywords
- oil
- grams
- microcapsules
- wax
- combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000005538 encapsulation Methods 0.000 title claims abstract description 9
- 239000003094 microcapsule Substances 0.000 claims abstract description 108
- 239000000463 material Substances 0.000 claims abstract description 98
- 239000012876 carrier material Substances 0.000 claims abstract description 38
- 238000003801 milling Methods 0.000 claims abstract description 14
- 239000007787 solid Substances 0.000 claims abstract description 3
- 239000004204 candelilla wax Substances 0.000 claims description 87
- 235000013868 candelilla wax Nutrition 0.000 claims description 87
- 229940073532 candelilla wax Drugs 0.000 claims description 86
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 claims description 86
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 72
- 239000003921 oil Substances 0.000 claims description 38
- 239000001993 wax Substances 0.000 claims description 38
- 239000012188 paraffin wax Substances 0.000 claims description 33
- 108010010803 Gelatin Proteins 0.000 claims description 21
- 239000008273 gelatin Substances 0.000 claims description 21
- 229920000159 gelatin Polymers 0.000 claims description 21
- 235000019322 gelatine Nutrition 0.000 claims description 21
- 235000011852 gelatine desserts Nutrition 0.000 claims description 21
- 238000000605 extraction Methods 0.000 claims description 15
- 239000000796 flavoring agent Substances 0.000 claims description 14
- 235000019634 flavors Nutrition 0.000 claims description 13
- 239000000341 volatile oil Substances 0.000 claims description 8
- 230000000975 bioactive effect Effects 0.000 claims description 7
- 230000001747 exhibiting effect Effects 0.000 claims description 6
- 239000002417 nutraceutical Substances 0.000 claims description 5
- 235000021436 nutraceutical agent Nutrition 0.000 claims description 5
- 230000009969 flowable effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 35
- 239000012530 fluid Substances 0.000 abstract description 4
- 235000019640 taste Nutrition 0.000 abstract description 4
- 230000000873 masking effect Effects 0.000 abstract description 2
- 239000010627 cedar oil Substances 0.000 description 36
- 235000019501 Lemon oil Nutrition 0.000 description 34
- 235000019502 Orange oil Nutrition 0.000 description 34
- 239000010501 lemon oil Substances 0.000 description 34
- 239000010502 orange oil Substances 0.000 description 34
- 235000019198 oils Nutrition 0.000 description 33
- 239000002775 capsule Substances 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 239000011162 core material Substances 0.000 description 26
- 238000002360 preparation method Methods 0.000 description 21
- 239000000203 mixture Substances 0.000 description 10
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 9
- 235000019477 peppermint oil Nutrition 0.000 description 9
- 235000019830 sodium polyphosphate Nutrition 0.000 description 9
- 235000005979 Citrus limon Nutrition 0.000 description 8
- 244000131522 Citrus pyriformis Species 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000010979 pH adjustment Methods 0.000 description 6
- 241001553290 Euphorbia antisyphilitica Species 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920000388 Polyphosphate Polymers 0.000 description 3
- 229920001800 Shellac Polymers 0.000 description 3
- 108060008539 Transglutaminase Proteins 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000007764 o/w emulsion Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000001205 polyphosphate Substances 0.000 description 3
- 235000011176 polyphosphates Nutrition 0.000 description 3
- 235000013874 shellac Nutrition 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 102000003601 transglutaminase Human genes 0.000 description 3
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 2
- -1 Alkyl acrylate-acrylic acid Chemical compound 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical compound NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 229930013930 alkaloid Natural products 0.000 description 2
- 150000003797 alkaloid derivatives Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000019658 bitter taste Nutrition 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000005354 coacervation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229940126601 medicinal product Drugs 0.000 description 2
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 239000004208 shellac Substances 0.000 description 2
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 2
- 229940113147 shellac Drugs 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- AZKVWQKMDGGDSV-BCMRRPTOSA-N Genipin Chemical compound COC(=O)C1=CO[C@@H](O)[C@@H]2C(CO)=CC[C@H]12 AZKVWQKMDGGDSV-BCMRRPTOSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HVUMOYIDDBPOLL-IIZJTUPISA-N [2-[(2r,3s,4r)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)[C@H]1OC[C@@H](O)[C@@H]1O HVUMOYIDDBPOLL-IIZJTUPISA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002579 anti-swelling effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- AZKVWQKMDGGDSV-UHFFFAOYSA-N genipin Natural products COC(=O)C1=COC(O)C2C(CO)=CCC12 AZKVWQKMDGGDSV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 239000010514 hydrogenated cottonseed oil Substances 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical class OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000002643 lithocholic acids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- IBIKHMZPHNKTHM-RDTXWAMCSA-N merck compound 25 Chemical compound C1C[C@@H](C(O)=O)[C@H](O)CN1C(C1=C(F)C=CC=C11)=NN1C(=O)C1=C(Cl)C=CC=C1C1CC1 IBIKHMZPHNKTHM-RDTXWAMCSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 239000006014 omega-3 oil Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229950005308 oxymethurea Drugs 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
-
- A23L1/0032—
-
- A23L1/22016—
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/70—Fixation, conservation, or encapsulation of flavouring agents
- A23L27/72—Encapsulation
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23P—SHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
- A23P10/00—Shaping or working of foodstuffs characterised by the products
- A23P10/30—Encapsulation of particles, e.g. foodstuff additives
- A23P10/35—Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5052—Proteins, e.g. albumin
- A61K9/5057—Gelatin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/10—Complex coacervation, i.e. interaction of oppositely charged particles
Definitions
- the invention is in the field of encapsulation. Certain embodiments are in the field of encapsulating methods, and other embodiments are in the field of encapsulated products.
- Microencapsulated products have long been known. Generally, a microencapsulated product includes a wall material that surrounds an encapsulated core material. Innumerable uses for microencapsulated products have been described in the art, and conventional uses include, for instance, encapsulation of color developer material in carbonless copy papers. Exemplarily teachings as to microcapsules and their method of production are found, for instance, in U.S. Pat. Nos. 4,197,346; 4,725,905; 4,299,411; 5,164,126; and other patents assigned to Appleton Papers Inc., the assignee of the present application.
- Microencapsulation technology is sometimes used in connection with food and medicinal products. Specifically, it is sometimes desired to mask the bitter tastes of ingredients that are orally administered. This is particularly true in the medicinal fields, where the bitter taste of the active agent can contribute to patient non-compliance in taking medicines.
- bitter medicinal ingredients are microencapsulated within a capsule wall. The capsule wall is intended to block the diffusion of the material out of the microcapsules.
- the microcapsule walls may lose their barrier properties when placed into contact with moisture, such as that present in the oral cavity. This is especially true when the wall is composed of gelatin, a common microcapsule wall material. If the capsule core is composed of a small molecule with a low viscosity, diffusion out of the capsule core and into the wall may occur, with equilibrium becoming established between the capsule core and the matrix.
- the taste threshold can be as low as parts-per-million, or even parts-per-billion in some cases. This threshold is detectable in the wall material, thereby making it difficult to mask taste effectively. This is especially true from small molecular bioactives in a liquid state that are intended for oral administration.
- a payload material which may be, for instance, a bitter medicament
- a carrier material are disposed within a wall material.
- the payload material and carrier material together form a combination.
- this combination is at least substantially hard at room temperature (roughly 25° C.) but at the higher temperatures of milling, the combination is sufficiently fluid to permit milling at the desired temperature.
- the carrier material may be any suitable material.
- the carrier material is candelilla wax or paraffin wax.
- the invention provides a plurality of microcapsules, each comprising a payload material and carrier material disposed within a wall material, wherein the microcapsules include a ratio of the payload material to carrier material effective for providing microcapsules exhibiting a 168-hour hexane extraction concentration of not more than 85% of the carrier-free hexane extraction concentration.
- the hexane extraction concentration is as described hereinbelow, and the carrier-free hexane extraction concentration is the hexane extraction concentration of otherwise similar microcapsules prepared in the absence of the carrier material.
- the method includes providing a combination of a payload material and carrier material, dispersing the combination into a wall material, milling to a desired droplet size, and precipitating wall material onto the droplets to form a plurality of microcapsules.
- FIGS. 1 to 3 are graphs depicting hexane-extracted concentrations of three microencapsulated flavor oils with various levels of candelilla wax carrier material.
- FIGS. 4 to 6 are graphs depicting hexane-extracted concentrations of three microencapsulated flavor oils with various levels of paraffin wax carrier material.
- microcapsules may include a payload material in combination with a carrier material, and surrounded by a wall material.
- the payload material may be any material desired to be delivered via the microencapsulated product provided herein, and may be, for instance, any bioactive, pharmaceutical, nutraceutical or other compound or composition that is susceptible of microencapsulation.
- bioactive materials include biocides, bactericides, insecticides, pesticides, fungicides, and the like.
- the payload material may be a water soluble material, an oil soluble material, a water-dispersible material, or an oil-dispersible material.
- the payload material is an oil or is an oil-soluble or oil-dispersible bioactive, pharmaceutical, or nutraceutical.
- the bioactive, pharmaceutical, or nutraceutical may be carried in a carrier oil.
- the payload material may be a volatile oil, flavor oil, or essential oil.
- the payload material is not necessarily limited to one in which a taste-masking application is desired, and the material may be any material for which a delayed release into an environment is desired.
- the microcapsules in some embodiments are useful in connection with the introduction of a fertilizer compound into soil.
- combinations of payload materials may be employed.
- the payload material is an oil such as a fragrance, a flavored oil or a material subject to degradation whose stability may be enhanced by microencapsulation.
- the payload may be selected to be a material known to be light sensitive, such as certain vitamins, or oxygen sensitive, such as omega-3 oils. It is believed that stability of such materials will be enhanced in some embodiments of the invention.
- the carrier material may be any material that is capable of forming a combination with the payload material wherein the carrier material and payload combination is at least substantially solid at room temperature but sufficiently flowable at milling temperature or higher temperature to permit milling and subsequent encapsulation within a desired wall material.
- the temperature of milling is typically in the range of 35-90° C., more typically 40-75° C., and in some embodiments 40-60° C., and in yet further embodiments, 50-60° C.
- the room temperature may be taken to be anywhere from 22 to 25° C. At 75° C.
- the carrier material may have a viscosity range of 1200 centipoise or less, 800 centipoise or less, from about 100 to 1200 centipoise, from about 100 to 800 centipoise, or even from about 800-1200 centipoise. Viscosities can be measured with a Brookfield viscometer (Model DV-II+) using spindle no. 6.
- the molecular weight of the carrier materials may be less than 3000 g/mol, in some embodiment less than 1000 g/mol, and in some embodiments less than 800 g/mol.
- the carrier material may be, for instance, a suitable candelilla or paraffin wax.
- the carrier material may include materials such as esters, fatty acid derivatives, steroid derivatives, lecithin, or sorbitan monosterate.
- Fatty acid derivatives may include stearates, hydrogenated palm oil, and hydrogenataed vegetable oil.
- Steroid derivatives may include deoxycholic, cholic, apocholic, and lithocholic acids and their salts.
- Other carrier materials may include amino acid and organometallic compounds. The above materials may be used alone or in combinations with one another, or in combination with candellila wax and/or paraffin wax.
- any suitable ratio of carrier material to payload material may be employed in the combination.
- the ratio may have, for instance, 10% or greater payload material, 20% or greater payload material, 30% or greater payload material, 40% or greater payload material, 50% or greater payload material, 60% or greater payload material, 70% or greater payload material, 80% or greater payload material, or 90% or greater payload material.
- the balance may be carrier material, or other materials may be employed.
- the selection of a ratio of payload material to carrier material may be employed in a given microencapsulation application. As is evident in the data in FIGS. 1-6 , described in more detail hereinbelow, by adjusting the ratio of payload material to carrier material in the microcapsule core, different release properties may be thereby obtained.
- a carrier material and payload material may be suitable when employed together in some ratios but not others.
- a selection is made of an appropriate ratio of carrier to payload material.
- the wall material may be any suitable material.
- the wall material may be, for instance, gelatin or any other enteric or non-enteric material.
- the microcapsules can be prepared by processes well known in the art such as from gelatin as disclosed in U.S. Pat. Nos. 2,800,457 and 3,041,289; or, in some embodiments, from urea-formaldehyde resin and/or melamine-formaldehyde resin as disclosed in U.S. Pat. Nos. 4,001,140; 4,081,376; 4,089,802, 4,100,103; 4,105,823; 4,444,699 or 4,552,811. Alkyl acrylate-acrylic acid copolymer capsules, as taught in U.S. Pat. No.
- the wall material may be polyurethane, polyurea, polyacrylate or polymethacrylate.
- Enteric materials can be used as the wall material and can include without limitation wall materials such as gelatin, cellulose acetate esters, hydroxypropyl methylcellulose esters, polymethacrylate copolymers, such as polymethacrylic acid-co-ethyl acrylate, polymethacrylic acid-co-methyl methacrylate, polyvinyl phthalate, polyvinyl acetate phthalate, shellac, and blends of the foregoing.
- the core material which is to be encapsulated is emulsified or dispersed in a suitable dispersion medium.
- This medium is preferably aqueous but involves the formation of a polymer-rich phase. Frequently, this medium is a solution of the intended capsule wall material. The solvent characteristics of the medium are changed such as to cause phase separation of the wall material.
- the wall material is thereby contained in the liquid phase, which is also dispersed in the same medium as the intended capsule core material.
- the liquid wall material phase deposits itself as a continuous coating about the dispersed droplets of the internal phase or capsule core material.
- the wall is then solidified. The process is commonly known as coacervation.
- Gelatin or gelatin-containing microcapsule wall material is well known. Phase separation processes, or coacervation processes are described in U.S. Pat. Nos. 2,800,457 and 2,800,458. Encapsulations based on polymerization of urea and formaldehyde, monomeric or low molecular weight polymers of dimethylol urea or methylated dimethylol urea, melamine and formaldehyde, methylated melamine formaldehyde, monomeric or low molecular weight polymers of methylol melamine or methylated methylol melamine, as taught in U.S. Pat. No. 4,552,811, may be employed. These materials are typically dispersed in an aqueous vehicle and the reaction is conducted in the presence of acrylic acid-alkyl acrylate copolymers.
- a method for encapsulation as provided herein may include conventional steps, and may include providing a combination of a payload material and a carrier material as heretofore described, dispensing the combination into a wall material, milling to a desired droplet sized form of plurality of droplets, and causing precipitation of the wall material onto the droplets to thereby form a plurality of microcapsules. Any suitable processing conditions may be employed.
- the microcapsules thus formed may have any suitable size. Measured as an average size, the size may range, for instance, from 1 micron to 500 microns, preferably 1 micron to 100 microns, in some embodiments 1 micron to 50 microns and in other embodiments under 10-40 microns.
- the carrier material is mixed with the payload material at a milling temperature and introduced to an 8% gelatin solution at a pH of 7-8.
- High shear agitation is provided to the aqueous mixture to achieve a droplet size of less than about 250 microns, preferably less than 100 microns, and more preferably less than 50 microns. In certain applications smaller droplet sizes may be preferable.
- the mixture is stirred at a first temperature to effect capsule wall formation. It should be readily understood by those skilled in the art that this may be accompanied by a pH shift with wall materials such as gelatin to promote the phase separation in the wall formation step, as taught in patents such as U.S. Pat. Nos. 2,800,457 and 2,800,458. For instance, the pH may be lowered to around 4-6.
- a cross-linking agent will be added. Any suitable chemical or other cross-linking material conventionally known or otherwise found to be suitable for use for cross-linking a microcapsule shell material may be employed. For a food-grade application, an enzymatic cross linking agent, such as transglutanimase, may be employed. In other embodiments, other cross-linking agents may be employed, including aldehydes such as glutaraldehyde, genipin, tannic acid, alum, or a mixture thereof.
- aldehydes such as glutaraldehyde, genipin, tannic acid, alum, or a mixture thereof.
- the resulting product will be a slurry of microcapsules, possibly including clusters of microcapsules. This product is deemed commercially useful itself. In many embodiments, it is desirable to dry these microcapsules to form substantially dry microcapsules.
- the microcapsules may be dried to any suitable moisture content, and in some cases are dried to yield a flowable powder. Any suitable drying method, such as spray-drying, may be employed.
- the payload material will be fixed within the microcapsules and will not be susceptible to rapid release. This makes the microcapsules suitable for taste-masking applications.
- the microcapsules have a hexane extraction value, as described in the following examples, of less than 2 mg/ml at 168 hours. In other embodiments, the hexane extraction value is less than 1 mg/ml at 168 hours, and in other embodiments, it is less than 0.5 mg/ml at 168 hours. These values depend upon the material employed and on the ratio of payload material to carrier material. In some embodiments, the microcapsules have a 168-hour hexane extraction concentration of not more than 85% of the carrier-free hexane extraction concentration.
- This value may be not more than 80%; not more than 75%; not more than 70%; not more than 65%; not more than 60%; not more than 55%%; not more than 50%; not more than 45%; not more than 40%; or not more than 35% of the carrier-free hexane extraction concentration. These may be at any suitable ratio of payload material to carrier material.
- the microcapsules may be coated with an outer layer.
- an anti-swelling fatty material may be employed as a coating, such as animal and vegetable oils and fats, natural vegetable and animal waxes, non natural waxes, shellacs and gum lacs.
- Typical fats and waxes include partially hydrogenated vegetable oils, hydrogenated cotton seed oils, hydrogenated palm oils, hydrogenated castor oils, paraffin wax, candelilla wax, carnauba wax, Hoechst wax, beeswax, shellac, etc.
- Such coating is believed in some embodiments to enhance the taste-masking properties of the microcapsules.
- the coating may be applied via any suitable technique. Conventional techniques include fluidized bed application, spraying, and double emulsion techniques.
- microcapsules may be used in any suitable application. In some embodiments, where a slow-release or taste-masking property is desired, microcapsules are deemed to be particularly suitable. In a taste-masked application, or other food or beverage application, a comestible product may be prepared using microcapsules as described herein in combination with another flavoring agent. Examples include beverages and medicines, such as children's oral medicines.
- Example 1A 30% Candelilla Wax
- candelilla wax from Sigma-Aldrich
- cedarwood oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- Example 1B 50% Candelilla Wax
- candelilla wax from Sigma-Aldrich
- cedarwood oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- Example 1C 70% Candelilla Wax
- Samples 1A, 1B and 1C were placed in a water bath (Cole-Parmer), and candelilla wax was slowly dissolved into cedarwood oil by raising temperature of the water bath. At 70° C., candelilla wax was completely dissolved, resulting in a clear, low viscosity solution.
- BW-407 a paraffin wax from Blended wax, Inc., Oshkosh, Wis.
- cedarwood oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- BW-407 a paraffin wax from Blended wax, Inc., Oshkosh, Wis.
- cedarwood oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- BW-407 a paraffin wax from Blended wax, Inc., Oshkosh, Wis.
- cedarwood oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- Examples 1 AC, 1D, and 1E were placed in a water bath (Cole-Parmer), and BW-407 was slowly dissolved into cedarwood oil by raising temperature of the water bath. At 60° C., BW-407 was completely dissolved, resulting in a clear, low viscosity solution.
- the vials were allowed to cool to room temperature at around 22° C. The properties of the contents in the vials were evaluated and are recorded in Table 1.
- Example 2A 30% Candelilla Wax
- Example 2B 50% Candelilla Wax
- Example 2C 70% Candelilla Wax
- Examples 2A, 2B and 2C were placed in a water bath (Cole-Parmer), and candelilla wax was slowly dissolved into orange oil by raising temperature of the water bath. At 75° C., candelilla wax was completely dissolved, resulting in a clear, low viscosity solution.
- the vials were allowed to cool to room temperature at around 22° C. The properties of the contents in the vials were evaluated and are recorded in Table 1.
- BW-407 a paraffin wax from Blended wax, Inc., Oshkosh, Wis.
- orange oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- the BW-407 wax is characterized as a white, hard, low melt point, paraffin wax having a congealing point in the range from 127-132° F./53-56° C.
- BW-407 was dispersed into 5 grams of orange oil (from Sigma-Aldrich, Saint Louis, Mo., U.S.A.) in a 20 ml vial to make up 10 grams of a combination of BW-407 and orange oil.
- BW-407 was dispersed into 3 grams of orange oil (from Sigma-Aldrich, Saint Louis, Mo., U.S.A.) in a 20 ml vial to make up 10 grams of a combination of BW-407 wax and orange oil.
- Example 3A 30% Candelilla Wax
- candelilla wax from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- lemon oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- Example 3B 50% Candelilla Wax
- Example 3C 70% Candelilla Wax
- BW-407 was dispersed into 7 grams of lemon oil (from Sigma-Aldrich, Saint Louis, Mo., U.S.A.) in a 20 ml vial to make up a 10 grams of a combination of BW-407 wax and lemon oil.
- BW-407 was dispersed into 5 grams of lemon oil (from Sigma-Aldrich, Saint Louis, Mo., U.S.A.) in a 20 ml vial to make up a 10 grams of a combination of BW-407 and lemon oil.
- BW-407 was dispersed into 3 grams of lemon oil (from Sigma-Aldrich, Saint Louis, Mo., U.S.A.) in a 20 ml vial to make up a 10 grams of a combination of BW-407 and lemon oil.
- candelilla wax from S Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- peppermint oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- Example 4A 50% Candelilla Wax
- Example 4B 70% Candelilla Wax
- microcapsules were prepared. The samples were made by blending the carrier material and the oil at a temperature of 60 to 75° C. to form a combination. A solution of 8% gelatin was prepared and the combination was dispersed into the gelatin solution. The microcapsules were milled to a size of 5 microns in a jacketed stainless reactor, and upon cooling, the gelatin material was precipitated onto the droplet surface to form a capsule wall.
- the following table indicates the products that were prepared, including the payload material, the carrier material, and the percentage of carrier in the payload/carrier combination.
- the flow properties of the carrier materials/oil combination at the listed temperatures also are indicated in the foregoing table. As seen, at 22° C. using candelilla wax, the combination was hard or non-flowing (except for peppermint oil/30% candelilla wax). At higher temperatures, the combination was sufficiently fluidic to permit milling. Certain of the experiments with BW-407 paraffin produced satisfactory microcapsules.
- Combinations such as Example E or Example G were not as hard or non-flowable as other samples at room temperature, but they were effective for providing delay and slow release as compared to a flavor oil by itself. Hardness is not the only selection criterion in certain embodiments. Gel structure and interactions between flavor oils and carrier can also contribute to delay and slow release. While not intending to be bound by any theory, in certain embodiments, depending on the end use application, delay and slow release by the carrier material may be a function of specific oil and carrier combinations.
- microcapsules were prepared according to the procedure heretofore described, the microcapsules containing in the core an essential oil or a flavor oil, and candelilla wax.
- the microcapsules contain a flavor oil selected from cedarwood oil, orange oil, or lemon oil.
- four sets of microcapsules were prepared; the microcapsules containing 0% candelilla wax, 30% candelilla wax, 50% candelilla wax and 70% candelilla wax, respectively. These examples are enumerated in Table 2.
- a carrier was not employed in the microcapsule core.
- 31.8 grams of gelatin Sigma-Aldrich, Saint Louis, Mo., U.S.A.
- 423 grams of deionized water in a jacketed reactor at 40° C. until completely dissolved.
- a sodium polyphosphate solution was prepared by dissolving 3.2 grams of sodium polyphosphate in 61 grams of deionized water.
- 15 grams of cedarwood oil from Sigma-Aldrich, Saint Louis, Mo., U.S.A. was emulsified into the gelatin solution with a four-blade mixer.
- An oil-in-water emulsion was formed with a median size of 8 ⁇ m analyzed with AccuSizerTM 780, (Particle Sizing Systems, Santa Barbara, Calif., U.S.A.). After 312 grams of deionized water was added to the reactor, the previously prepared sodium polyphosphate solution was added into the reactor. The pH was adjusted to 4.8 with 10% phosphoric acid solution. During pH adjustment and the cooling steps following the pH adjustment, a coacervate, formed from gelatin and polyphosphate, coated onto the oil droplets to form microcapsules. The capsule shells were cross linked with 8 grams of Activa TI (Ajinomoto U.S.A.) containing transglutaminase. The microcapsules suspended in water were then spray dried to obtain a free-flowing powder
- the combination was then emulsified into the gelatin solution with a four-blade mixer.
- An oil-in-water emulsion was formed with a median size of 8 ⁇ m analyzed with AccuSizerTM 780, (Particle Sizing Systems, Santa Barbara, Calif., U.S.A.).
- AccuSizerTM 780 Particle Sizing Systems, Santa Barbara, Calif., U.S.A.
- the pH was adjusted to 4.8 with 10% phosphoric acid solution.
- a coacervate formed from gelatin and polyphosphate, coated onto the oil droplets to form microcapsules.
- the capsule shells were cross linked with 8 grams of Activa TI (Ajinomoto U.S.A.) containing transglutaminase.
- the microcapsules suspended in water were then spray dried to obtain
- microcapsules were prepared in accordance with the method of Example 5A except that the capsule core contained a combination of 7.5 grams of candelilla wax and 7.5 grams of cedarwood oil.
- microcapsules were prepared in accordance with the method of Example 5A except that the capsule core contained a combination of 10.5 grams of candelilla wax and 4.5 grams of cedarwood oil.
- microcapsules were prepared in accordance with the method of Example C5 except that the capsule core contained orange oil.
- microcapsules were prepared in accordance with the method of Example 5A except that the capsule core contained a combination of 4.5 grams of candelilla wax and 10.5 grams of orange oil.
- microcapsules were prepared in accordance with the method of Example 5B except that the capsule core contained a combination of 7.5 grams of candelilla wax and 7.5 grams of orange oil.
- microcapsules were prepared in accordance with the method of Example 5C except that the capsule core contained a combination of 10.5 grams of candelilla wax and 4.5 grams of orange oil.
- microcapsules were prepared in accordance with the method of Example C5 except that the capsule core contained lemon oil.
- microcapsules were prepared in accordance with the method of Example 5A except that the capsule core contained a combination of 4.5 grams of candelilla wax and 10.5 grams of lemon oil.
- microcapsules were prepared in accordance with the method of Example 5B except that the capsule core contained a combination of 7.5 grams of candelilla wax and 7.5 grams of lemon oil.
- microcapsules were prepared in accordance with the method of Example 5C except that the capsule core contained a combination of 10.5 grams of candelilla wax and 4.5 grams of lemon oil.
- microcapsules were prepared according to the procedure heretofore described, the microcapsules containing in the core an essential oil or a flavor oil, and a paraffin wax (BW-407).
- the microcapsules contained a flavor oil selected from cedarwood oil, orange oil, or lemon oil.
- three sets of microcapsules were prepared; the microcapsules containing 0% paraffin wax, 50% paraffin wax and 70% paraffin wax, respectively. These examples are enumerated in Table 3.
- microcapsules were prepared in accordance with the method of Example C5.
- a coacervate formed from gelatin and polyphosphate, coated onto the oil droplets to form microcapsules.
- the capsule shells were cross linked with 8 grams of Activa TI (Ajinomoto U.S.A.) containing transglutaminase.
- the microcapsules suspended in water were then spray dried to obtain a free-flowing powder.
- microcapsules were prepared in accordance with the method of Example 8A except that the capsule core contained a combination of 10.5 grams of paraffin wax and 4.5 grams of cedarwood oil.
- microcapsules were prepared in accordance with the method of Example C6.
- microcapsules were prepared in accordance with the method of Example 8A except that the capsule core contained a combination of 7.5 grams of paraffin wax and 7.5 grams of orange oil.
- microcapsules were prepared in accordance with the method of Example 8B except that the capsule core contained a combination of 10.5 grams of paraffin wax and 4.5 grams of orange oil.
- microcapsules were prepared in accordance with the method of Example C7.
- microcapsules were prepared in accordance with the method of Example 8A except that the capsule core contained a combination of 7.5 grams of paraffin wax and 7.5 grams of lemon oil.
- microcapsules were prepared in accordance with the method of Example 8B except that the capsule core contained a combination of 10.5 grams of paraffin wax and 4.5 grams of lemon oil.
- Example 9A is similar to Example E; Example 9B is similar to Example F; Example 10A is similar to Example G; and Example 10B is similar to Example 3D.
- Example E described in Table 1 provides the characteristics of Example 9A; Example F corresponds to Example 9B; Example G corresponds to Example 10A; and Example 3D corresponds to Example 10B.
- Hexane was removed from the microcapsule mixture and evaluated in the spectrometer at the indicated wavelength. Using the calibration curve previously determined, the concentration of the active oil in hexane was determined and was expressed as mg/ml.
- the concentration of the exemplary volatile materials did not exceed 2 mg per ml in hexane even after 168 hours.
- concentration remained below 0.35 mg/ml even after 338 hours. This data is believed to correlate to an excellent taste masking property.
- the concentration was less than the carrier-free hexane concentration.
- the foregoing analytical methodology may be generalized to other active materials.
- Microcapsules prepared in accordance with Example 6A are added to a beverage product in an amount of 5% by weight.
- a medicinal product is prepared by adding an alkaloid medicinal ingredient to candelilla wax (candelilla wax heated to oil or liquefied state) in the ratio of 30% alkaloid/70% candelilla wax.
- microcapsules are prepared according to the heretofore described techniques, and are employed in a children's' oral medicine.
- microcapsules may be prepared in accordance with the foregoing teachings.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nutrition Science (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- General Preparation And Processing Of Foods (AREA)
- Medicinal Preparation (AREA)
- Cosmetics (AREA)
Abstract
Description
TABLE 1 |
Combination of Carrier Materials and Flavor Oils |
Gelling | Carrier Percentage In Combination |
Example | | Agents | Temperature | 30% | 50% | 70% | |
1A, 1B, 1C | Cedarwood | Candelilla | 22 | hard | hard | very | |
oil | Wax | ||||||
70 | Clear fluid | clear fluid | clear | ||||
1AC, 1D, 1E | BW407 | 22 | soft | hard/brittle | hard | ||
60 | clear/brown | clear | clear | ||||
2A, 2B, 2C | Orange Oil | Candelilla | 22 | no flow | hard | very hard | |
Wax | 75 | clear | clear | clear | |||
D, E, F | BW407 | 22 | Suspension | soft | punchable | ||
60 | clear | clear | clear | ||||
3A, 3B, 3C | Lemon Oil | Candelilla | 22 | no flow | hard | very hard | |
Wax | 75 | clear | clear | clear | |||
3AC, G, 3D | BW407 | 22 | Suspension | soft | punchable | ||
60 | clear | clear | clear | ||||
4AC, 4A, 4B | Peppermint | Candelilla | 20 | soft | hard | really hard | |
Wax | 75 | clear | clear | hazy/fines | |||
TABLE 2 |
Examples of Prepared Microcapsules with Candelilla Wax |
Percentage | ||||
Example | Oil | Candelilla | ||
C5 | Cedarwood |
0 | ||||
| Cedarwood | 30 | ||
| Cedarwood | 50 | ||
| Cedarwood | 70 | ||
| Orange | 0 | ||
| Orange | 30 | ||
| Orange | 50 | ||
| Orange | 70 | ||
| Lemon | 0 | ||
| Lemon | 30 | ||
| Lemon | 50 | ||
| Lemon | 70 | ||
TABLE 3 |
Examples of Prepared Microcapsules with BW-407 Paraffin Wax. |
Percentage BW-407 | ||||
Example | Oil | | ||
C8 | Cedarwood |
0 | ||||
| Cedarwood | 50 | ||
| Cedarwood | 70 | ||
| Orange | 0 | ||
| Orange | 50 | ||
| Orange | 70 | ||
| Lemon | 0 | ||
| Lemon | 50 | ||
| Lemon | 70 | ||
TABLE 4 |
Release of Cedarwood Oils with |
Candelilla Wax (Examples C5, 5A, 5B, and 5C) |
0% | 30% | 50% | 70% | |
T (hours) | Wax | Wax | Wax | Wax |
0.167 | 0.05 | 0.06 | 0.06 | 0.00 |
0.334 | 0.08 | 0.16 | 0.12 | 0.01 |
2 | 0.01 | 0.10 | 0.11 | 0.01 |
24 | 0.17 | 0.11 | 0.09 | 0.02 |
48 | 0.25 | 0.20 | 0.17 | 0.02 |
168 | 0.31 | 0.26 | 0.21 | 0.03 |
336 | 0.34 | 0.25 | 0.23 | 0.04 |
672 | 0.40 | 0.31 | 0.30 | |
TABLE 5 |
Release of Orange Oils with |
Candelilla Wax |
(Examples C6, 6A, 6B, and 6C) |
|
0% | 30% | 50% | 70% |
(hours) | Wax | Wax | Wax | Wax |
0.167 | 0.06 | 0.04 | 0.03 | 0.04 |
1 | 0.11 | 0.11 | 0.11 | 0.07 |
2 | 0.15 | 0.12 | 0.12 | 0.09 |
24 | 0.65 | 0.51 | 0.45 | 0.32 |
48 | 1.09 | 0.85 | 0.69 | 0.40 |
168 | 1.66 | 1.37 | 1.14 | 0.58 |
336 | 2.24 | 1.98 | 1.75 | 0.70 |
672 | 2.64 | 2.22 | 1.72 | |
TABLE 6 |
Release of Lemon Oils with |
Candelilla Wax |
(Examples C7, 7A, 7B, and 7C) |
|
0% | 30% | 50% | 70% |
(hours) | Wax | Wax | Wax | Wax |
0.167 | 0.10 | 0.07 | 0.06 | 0.03 |
1 | 0.18 | 0.13 | 0.10 | 0.06 |
2 | 0.25 | 0.20 | 0.16 | 0.07 |
24 | 0.67 | 0.53 | 0.43 | 0.36 |
48 | 1.00 | 0.77 | 0.61 | 0.46 |
168 | 1.63 | 1.18 | 0.98 | 0.63 |
336 | 1.93 | 1.31 | 1.02 | 0.63 |
672 | 2.15 | 1.37 | 1.12 | |
TABLE 7 |
Release of Cedarwood Oils with |
BW407 Wax |
(Examples C8, 8A, and 8B) |
|
0% | 50% | 70% | ||
(hours) | BW407 | BW407 | BW407 | ||
0.167 | 0.00 | 0.00 | 0.00 | ||
1 | 0.00 | 0.00 | 0.00 | ||
2 | 0.00 | 0.10 | 0.05 | ||
24 | 0.15 | 0.11 | 0.08 | ||
48 | 0.21 | 0.16 | 0.15 | ||
168 | 0.34 | 0.21 | 0.20 | ||
336 | 0.36 | 0.23 | 0.22 | ||
672 | 0.44 | 0.28 | 0.25 | ||
TABLE 8 |
Release of Orange Oils with |
BW407 Wax |
(Examples C9, 9A, and 9B) |
|
0% | 50% | 70% | ||
(hours) | BW407 | BW407 | BW407 | ||
0.167 | 0.10 | 0.09 | 0.06 | ||
1 | 0.27 | 0.27 | 0.21 | ||
2 | 0.22 | 0.19 | 0.11 | ||
24 | 0.75 | 0.60 | 0.52 | ||
48 | 1.15 | 0.80 | 0.70 | ||
168 | 2.13 | 1.29 | 1.11 | ||
336 | 2.19 | 1.68 | 1.33 | ||
672 | 3.00 | 2.72 | 1.65 | ||
TABLE 9 |
Release of Lemon Oils with BW407 Wax |
(Examples C10, 10A, and 10B) |
|
0% | 50% | 70% | ||
(hours) | BW407 | BW407 | BW407 | ||
0.167 | 0.08 | 0.06 | 0.05 | ||
1 | 0.11 | 0.07 | 0.05 | ||
2 | 0.15 | 0.11 | 0.13 | ||
24 | 0.63 | 0.27 | 0.16 | ||
48 | 0.94 | 0.34 | 0.28 | ||
168 | 1.46 | 0.55 | 0.46 | ||
336 | 1.63 | 0.63 | 0.44 | ||
672 | 1.76 | 0.84 | 0.60 | ||
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/904,755 US9205395B2 (en) | 2009-10-15 | 2010-10-14 | Encapsulation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25182209P | 2009-10-15 | 2009-10-15 | |
US12/904,755 US9205395B2 (en) | 2009-10-15 | 2010-10-14 | Encapsulation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110092605A1 US20110092605A1 (en) | 2011-04-21 |
US9205395B2 true US9205395B2 (en) | 2015-12-08 |
Family
ID=43876766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/904,755 Active 2031-10-19 US9205395B2 (en) | 2009-10-15 | 2010-10-14 | Encapsulation |
Country Status (2)
Country | Link |
---|---|
US (1) | US9205395B2 (en) |
WO (1) | WO2011046609A2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017029665A1 (en) | 2015-08-20 | 2017-02-23 | Sol-Gel Technologies Ltd. | Compositions for topical application comprising benzoyl peroxide and adapalene |
WO2019012537A1 (en) | 2017-07-12 | 2019-01-17 | Sol-Gel Technologies Ltd | Compositions comprising encapsulated tretinoin |
US10420743B2 (en) | 2017-07-12 | 2019-09-24 | Sol-Gel Technologies Ltd | Methods and compositions for the treatment of acne |
US11007501B2 (en) | 2018-03-07 | 2021-05-18 | Trucapsol Llc | Reduced permeability microcapsules |
US11344502B1 (en) * | 2018-03-29 | 2022-05-31 | Trucapsol Llc | Vitamin delivery particle |
US11465117B2 (en) | 2020-01-30 | 2022-10-11 | Trucapsol Llc | Environmentally biodegradable microcapsules |
US11542392B1 (en) | 2019-04-18 | 2023-01-03 | Trucapsol Llc | Multifunctional particle additive for enhancement of toughness and degradation in biodegradable polymers |
US11571674B1 (en) | 2019-03-28 | 2023-02-07 | Trucapsol Llc | Environmentally biodegradable microcapsules |
US11794161B1 (en) | 2018-11-21 | 2023-10-24 | Trucapsol, Llc | Reduced permeability microcapsules |
US11878280B2 (en) | 2022-04-19 | 2024-01-23 | Trucapsol Llc | Microcapsules comprising natural materials |
US11904288B1 (en) | 2023-02-13 | 2024-02-20 | Trucapsol Llc | Environmentally biodegradable microcapsules |
US11969491B1 (en) | 2023-02-22 | 2024-04-30 | Trucapsol Llc | pH triggered release particle |
US12133919B2 (en) | 2020-05-22 | 2024-11-05 | Sol-Gel Technologies Ltd. | Stabilized microcapsules, method of their preparation and uses thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103619514B (en) * | 2010-09-20 | 2016-09-28 | Spi制药公司 | Microencapsulation process and article |
US8911780B2 (en) * | 2011-02-11 | 2014-12-16 | Zx Pharma, Llc | Multiparticulate L-menthol formulations and related methods |
PT2672981T (en) | 2011-02-11 | 2018-06-21 | Zx Pharma Llc | Multiparticulate l-menthol formulations and related methods |
ES2706152T3 (en) | 2013-04-23 | 2019-03-27 | Zx Pharma Llc | Enteral composition of multiple particles coated with protein subcoat |
WO2017064704A1 (en) * | 2015-10-13 | 2017-04-20 | Botanocap Ltd. | Spoilage retardant compositions for inhibiting potato sprouting |
CN105457573B (en) * | 2015-12-28 | 2017-12-05 | 中山大学惠州研究院 | A kind of preparation method of vanillic aldehyde microcapsules microemulsion and online characterizing method |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3080293A (en) | 1960-08-02 | 1963-03-05 | Hoffmann La Roche | Process of making pleasant-tasting niacinamide beadlets |
US4411933A (en) | 1980-04-25 | 1983-10-25 | Tanabe Seiyaku Co., Ltd. | Process for preparing ethylcellulose microcapsules |
US4462982A (en) | 1981-10-05 | 1984-07-31 | Tanabe Seiyaku Co., Ltd. | Microcapsules and method of preparing same |
US4622244A (en) | 1979-09-04 | 1986-11-11 | The Washington University | Process for preparation of microcapsules |
US4663286A (en) | 1984-02-13 | 1987-05-05 | Damon Biotech, Inc. | Encapsulation of materials |
US4952402A (en) | 1984-10-30 | 1990-08-28 | Elan Corporation, P.L.C. | Controlled release powder and process for its preparation |
US5188837A (en) | 1989-11-13 | 1993-02-23 | Nova Pharmaceutical Corporation | Lipsopheres for controlled delivery of substances |
US5204029A (en) | 1989-09-25 | 1993-04-20 | Morgan Food Products, Inc. | Methods of encapsulating liquids in fatty matrices, and products thereof |
US5246603A (en) * | 1991-09-25 | 1993-09-21 | Lever Brothers Company, Division Of Conopco, Inc. | Fragrance microcapsules for fabric conditioning |
US5418010A (en) | 1990-10-05 | 1995-05-23 | Griffith Laboratories Worldwide, Inc. | Microencapsulation process |
US5498439A (en) | 1994-03-04 | 1996-03-12 | Arnhem, Inc. | Process for encapsulating the flavor with colloid gel matrix |
US5690990A (en) | 1994-03-04 | 1997-11-25 | Arnhem, Inc. | Process for encapsulating the flavor with colloid gel matrix |
US5795570A (en) | 1995-04-07 | 1998-08-18 | Emory University | Method of containing core material in microcapsules |
US6048562A (en) | 1995-06-29 | 2000-04-11 | Nestec S.A. | Encapsulation process |
US20020034550A1 (en) | 1999-10-22 | 2002-03-21 | Douglas Quong | Hydrogel microbeads having a secondary layer |
US6365385B1 (en) | 1999-03-22 | 2002-04-02 | Duke University | Methods of culturing and encapsulating pancreatic islet cells |
US20040062778A1 (en) * | 2002-09-26 | 2004-04-01 | Adi Shefer | Surface dissolution and/or bulk erosion controlled release compositions and devices |
US6818296B1 (en) | 1999-07-02 | 2004-11-16 | Cognis Iberia S.L. | Microcapsules |
US6932984B1 (en) | 1999-11-17 | 2005-08-23 | Tagra Biotechnologies Ltd. | Method of microencapsulation |
US6974592B2 (en) | 2002-04-11 | 2005-12-13 | Ocean Nutrition Canada Limited | Encapsulated agglomeration of microcapsules and method for the preparation thereof |
US20060240094A1 (en) | 2003-07-31 | 2006-10-26 | Yuzo Asano | Masticatable capsule and process for producing the same |
US20070141211A1 (en) | 2005-12-16 | 2007-06-21 | Solae, Llc | Encapsulated Phospholipid-Stabilized Oxidizable Material |
WO2008017962A2 (en) * | 2006-06-05 | 2008-02-14 | Ocean Nutrition Canada Ltd. | Microcapsules with improved shells |
US7435715B2 (en) | 2003-08-01 | 2008-10-14 | The Procter & Gamble Company | Microcapsules |
US20080277812A1 (en) | 2007-05-08 | 2008-11-13 | Givaudan Sa | Wax Encapsulation |
US7491687B2 (en) | 2003-11-20 | 2009-02-17 | International Flavors & Fragrances Inc. | Encapsulated materials |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US688296A (en) * | 1901-07-12 | 1901-12-10 | Philip C Donner | Machine for cutting fur. |
-
2010
- 2010-10-14 WO PCT/US2010/002747 patent/WO2011046609A2/en active Application Filing
- 2010-10-14 US US12/904,755 patent/US9205395B2/en active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3080293A (en) | 1960-08-02 | 1963-03-05 | Hoffmann La Roche | Process of making pleasant-tasting niacinamide beadlets |
US4622244A (en) | 1979-09-04 | 1986-11-11 | The Washington University | Process for preparation of microcapsules |
US4411933A (en) | 1980-04-25 | 1983-10-25 | Tanabe Seiyaku Co., Ltd. | Process for preparing ethylcellulose microcapsules |
US4462982A (en) | 1981-10-05 | 1984-07-31 | Tanabe Seiyaku Co., Ltd. | Microcapsules and method of preparing same |
US4663286A (en) | 1984-02-13 | 1987-05-05 | Damon Biotech, Inc. | Encapsulation of materials |
US4952402A (en) | 1984-10-30 | 1990-08-28 | Elan Corporation, P.L.C. | Controlled release powder and process for its preparation |
US5204029A (en) | 1989-09-25 | 1993-04-20 | Morgan Food Products, Inc. | Methods of encapsulating liquids in fatty matrices, and products thereof |
US5188837A (en) | 1989-11-13 | 1993-02-23 | Nova Pharmaceutical Corporation | Lipsopheres for controlled delivery of substances |
US5418010A (en) | 1990-10-05 | 1995-05-23 | Griffith Laboratories Worldwide, Inc. | Microencapsulation process |
US5246603A (en) * | 1991-09-25 | 1993-09-21 | Lever Brothers Company, Division Of Conopco, Inc. | Fragrance microcapsules for fabric conditioning |
US5498439A (en) | 1994-03-04 | 1996-03-12 | Arnhem, Inc. | Process for encapsulating the flavor with colloid gel matrix |
US5690990A (en) | 1994-03-04 | 1997-11-25 | Arnhem, Inc. | Process for encapsulating the flavor with colloid gel matrix |
US5795570A (en) | 1995-04-07 | 1998-08-18 | Emory University | Method of containing core material in microcapsules |
US6048562A (en) | 1995-06-29 | 2000-04-11 | Nestec S.A. | Encapsulation process |
US6365385B1 (en) | 1999-03-22 | 2002-04-02 | Duke University | Methods of culturing and encapsulating pancreatic islet cells |
US6818296B1 (en) | 1999-07-02 | 2004-11-16 | Cognis Iberia S.L. | Microcapsules |
US20020034550A1 (en) | 1999-10-22 | 2002-03-21 | Douglas Quong | Hydrogel microbeads having a secondary layer |
US6932984B1 (en) | 1999-11-17 | 2005-08-23 | Tagra Biotechnologies Ltd. | Method of microencapsulation |
US6974592B2 (en) | 2002-04-11 | 2005-12-13 | Ocean Nutrition Canada Limited | Encapsulated agglomeration of microcapsules and method for the preparation thereof |
US20040062778A1 (en) * | 2002-09-26 | 2004-04-01 | Adi Shefer | Surface dissolution and/or bulk erosion controlled release compositions and devices |
US20060240094A1 (en) | 2003-07-31 | 2006-10-26 | Yuzo Asano | Masticatable capsule and process for producing the same |
US7435715B2 (en) | 2003-08-01 | 2008-10-14 | The Procter & Gamble Company | Microcapsules |
US7491687B2 (en) | 2003-11-20 | 2009-02-17 | International Flavors & Fragrances Inc. | Encapsulated materials |
US20070141211A1 (en) | 2005-12-16 | 2007-06-21 | Solae, Llc | Encapsulated Phospholipid-Stabilized Oxidizable Material |
WO2008017962A2 (en) * | 2006-06-05 | 2008-02-14 | Ocean Nutrition Canada Ltd. | Microcapsules with improved shells |
US20080277812A1 (en) | 2007-05-08 | 2008-11-13 | Givaudan Sa | Wax Encapsulation |
Non-Patent Citations (2)
Title |
---|
International Search Report for European Application PCT/US2010/002747 dated Oct. 14, 2012. |
Neutraceuticals: Designer Foods III Garlic, Soy, and Licorice, Ed. Paul A. Lachance, Ph.D., FACN, 1997, Food & Nutrition Press, Inc., p. 344. * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017029665A1 (en) | 2015-08-20 | 2017-02-23 | Sol-Gel Technologies Ltd. | Compositions for topical application comprising benzoyl peroxide and adapalene |
WO2019012537A1 (en) | 2017-07-12 | 2019-01-17 | Sol-Gel Technologies Ltd | Compositions comprising encapsulated tretinoin |
US10420743B2 (en) | 2017-07-12 | 2019-09-24 | Sol-Gel Technologies Ltd | Methods and compositions for the treatment of acne |
US10702493B2 (en) | 2017-07-12 | 2020-07-07 | Sol-Gel Technologies Ltd. | Methods and compositions for the treatment of acne |
US11007501B2 (en) | 2018-03-07 | 2021-05-18 | Trucapsol Llc | Reduced permeability microcapsules |
US11344502B1 (en) * | 2018-03-29 | 2022-05-31 | Trucapsol Llc | Vitamin delivery particle |
US11794161B1 (en) | 2018-11-21 | 2023-10-24 | Trucapsol, Llc | Reduced permeability microcapsules |
US11571674B1 (en) | 2019-03-28 | 2023-02-07 | Trucapsol Llc | Environmentally biodegradable microcapsules |
US11542392B1 (en) | 2019-04-18 | 2023-01-03 | Trucapsol Llc | Multifunctional particle additive for enhancement of toughness and degradation in biodegradable polymers |
US11547978B2 (en) | 2020-01-30 | 2023-01-10 | Trucapsol Llc | Environmentally biodegradable microcapsules |
US11484857B2 (en) | 2020-01-30 | 2022-11-01 | Trucapsol Llc | Environmentally biodegradable microcapsules |
US11465117B2 (en) | 2020-01-30 | 2022-10-11 | Trucapsol Llc | Environmentally biodegradable microcapsules |
US12133919B2 (en) | 2020-05-22 | 2024-11-05 | Sol-Gel Technologies Ltd. | Stabilized microcapsules, method of their preparation and uses thereof |
US11878280B2 (en) | 2022-04-19 | 2024-01-23 | Trucapsol Llc | Microcapsules comprising natural materials |
US11904288B1 (en) | 2023-02-13 | 2024-02-20 | Trucapsol Llc | Environmentally biodegradable microcapsules |
US11969491B1 (en) | 2023-02-22 | 2024-04-30 | Trucapsol Llc | pH triggered release particle |
Also Published As
Publication number | Publication date |
---|---|
WO2011046609A3 (en) | 2011-08-18 |
US20110092605A1 (en) | 2011-04-21 |
WO2011046609A2 (en) | 2011-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9205395B2 (en) | Encapsulation | |
US20230330032A1 (en) | Microencapsulation process and product | |
Ozdemir et al. | Microencapsulation of basil essential oil: Utilization of gum arabic/whey protein isolate/maltodextrin combinations for encapsulation efficiency and in vitro release | |
US6544646B2 (en) | Zero order release and temperature-controlled microcapsules and process for the preparation thereof | |
JP3509105B2 (en) | Process for the preparation of microcapsules coated with an active substance with a polymer and in particular novel microcapsules obtained by this method | |
EP1443968B1 (en) | Edible film | |
AU2002324321B2 (en) | Stable coated microcapsules | |
AU734530B2 (en) | Free-flowing dried particles | |
Wieland-Berghausen et al. | Comparison of microencapsulation techniques for the water-soluble drugs nitenpyram and clomipramine HCl | |
US20080277812A1 (en) | Wax Encapsulation | |
KR20130029401A (en) | Capsule comprising active ingredient | |
EP2768582B1 (en) | Granules comprising an active substance | |
MXPA06012623A (en) | Improved pullulan capsules. | |
WO1996001103A1 (en) | Multiple encapsulation of oleophilic substances | |
JP2000510488A (en) | Improved dosing unit | |
Mohammed et al. | Influence of different combinations of wall materials on encapsulation of Nigella sativa oil by spray dryer | |
JP4637993B2 (en) | Microcapsule and manufacturing method thereof | |
US9700544B2 (en) | Oral rapamycin nanoparticle preparations | |
JPH08173080A (en) | Perfume preparation and its production | |
CN111803405A (en) | Microcapsule for essence and medicine amorphous and preparation method thereof | |
JP2506048B2 (en) | Capsule-containing bath agent composition | |
Harshitha et al. | A Cutting-Edge Method for Regulated Drug Delivery-Microencapsulation | |
EP3233060B1 (en) | Controlled release of active substances | |
MOHAMAD et al. | Characterisation of Encapsulation Citronella Oil with Gelatin-Chitosan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLETON PAPERS INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YAN, NIANXI;REEL/FRAME:025141/0570 Effective date: 20101014 |
|
AS | Assignment |
Owner name: APPVION, INC., WISCONSIN Free format text: CHANGE OF NAME;ASSIGNOR:APPLETON PAPERS INC.;REEL/FRAME:030641/0381 Effective date: 20130509 |
|
AS | Assignment |
Owner name: JEFFERIES FINANCE LLC, AS ADMINISTRATIVE AGENT, NE Free format text: SECURITY AGREEMENT;ASSIGNORS:APPVION, INC.;PAPERWEIGHT DEVELOPMENT CORP.;REEL/FRAME:030740/0153 Effective date: 20130628 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, MINNESOTA Free format text: SECOND LIEN PATENT COLLATERAL AGREEMENT;ASSIGNORS:APPVION, INC.;PAPERWEIGHT DEVELOPMENT CORP.;REEL/FRAME:031689/0593 Effective date: 20131119 |
|
AS | Assignment |
Owner name: APPLETON PAPERS INC., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION;REEL/FRAME:031690/0774 Effective date: 20131119 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: RISE ACQUISITION, LLC, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:APPVION, INC.;REEL/FRAME:036246/0945 Effective date: 20150803 Owner name: APPVION, INC., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:036249/0419 Effective date: 20150803 Owner name: PAPERWEIGHT DEVELOPMENT CORP., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:036249/0419 Effective date: 20150803 Owner name: APPVION, INC., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC, AS ADMINISTRATIVE AGENT;REEL/FRAME:036250/0466 Effective date: 20150803 Owner name: PAPERWEIGHT DEVELOPMENT CORP., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC, AS ADMINISTRATIVE AGENT;REEL/FRAME:036250/0466 Effective date: 20150803 Owner name: APPVION, INC., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC, AS ADMINISTRATIVE AGENT;REEL/FRAME:036251/0893 Effective date: 20150803 Owner name: PAPERWEIGHT DEVELOPMENT CORP., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC, AS ADMINISTRATIVE AGENT;REEL/FRAME:036251/0893 Effective date: 20150803 |
|
AS | Assignment |
Owner name: ENCAPSYS, LLC, MARYLAND Free format text: CHANGE OF NAME;ASSIGNOR:RISE ACQUISTION, LLC;REEL/FRAME:036303/0617 Effective date: 20150803 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, IL Free format text: SECURITY INTEREST;ASSIGNOR:ENCAPSYS, LLC;REEL/FRAME:036275/0792 Effective date: 20150803 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS ADMINIS Free format text: SECURITY INTEREST;ASSIGNOR:ENCAPSYS, LLC;REEL/FRAME:036437/0821 Effective date: 20150803 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: ENCAPSYS, LLC, MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:041144/0570 Effective date: 20161221 |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS FIRST LIEN COLLATERAL AGENT, NEW YORK Free format text: FIRST LIEN SECURITY AGREEMENT;ASSIGNORS:ENCAPSYS, LLC;IPS STRUCTURAL ADHESIVES, INC.;IPS CORPORATION;AND OTHERS;REEL/FRAME:044444/0905 Effective date: 20171107 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS SECOND LIEN COLLATERAL AGENT, NEW YORK Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:ENCAPSYS, LLC;IPS STRUCTURAL ADHESIVES, INC.;IPS CORPORATION;AND OTHERS;REEL/FRAME:044444/0932 Effective date: 20171107 Owner name: ENCAPSYS, LLC, WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:044123/0160 Effective date: 20171107 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS SECOND Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:ENCAPSYS, LLC;IPS STRUCTURAL ADHESIVES, INC.;IPS CORPORATION;AND OTHERS;REEL/FRAME:044444/0932 Effective date: 20171107 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS FIRST Free format text: FIRST LIEN SECURITY AGREEMENT;ASSIGNORS:ENCAPSYS, LLC;IPS STRUCTURAL ADHESIVES, INC.;IPS CORPORATION;AND OTHERS;REEL/FRAME:044444/0905 Effective date: 20171107 |
|
AS | Assignment |
Owner name: APPVION, INC., WISCONSIN Free format text: RELEASE OF SECOND LIEN PATENT COLLATERAL AGREEMENT;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:046377/0179 Effective date: 20180613 Owner name: PAPERWEIGHT DEVELOPMENT CORP., WISCONSIN Free format text: RELEASE OF SECOND LIEN PATENT COLLATERAL AGREEMENT;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:046377/0179 Effective date: 20180613 Owner name: PAPERWEIGHT DEVELOPMENT CORP., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC, AS ADMINISTRATIVE AGENT;REEL/FRAME:046392/0438 Effective date: 20180613 Owner name: APPVION, INC., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC, AS ADMINISTRATIVE AGENT;REEL/FRAME:046392/0438 Effective date: 20180613 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: IPS STRUCTURAL ADHESIVES, INC., CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:049891/0807 Effective date: 20190628 Owner name: WATERTITE PRODUCTS, INC., CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:049891/0807 Effective date: 20190628 Owner name: IPS CORPORATION, CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:049891/0807 Effective date: 20190628 Owner name: WELD-ON ADHESIVES, INC., CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:049891/0807 Effective date: 20190628 Owner name: ENCAPSYS, LLC, WISCONSIN Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:049891/0807 Effective date: 20190628 Owner name: IPS ADHESIVES LLC, CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:049891/0807 Effective date: 20190628 |
|
AS | Assignment |
Owner name: IPS CORPORATION, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBER PREVIOUSLY RECORDED AT REEL: 49891 FRAME: 807. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:050003/0400 Effective date: 20190628 Owner name: ENCAPSYS, LLC, WISCONSIN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBER PREVIOUSLY RECORDED AT REEL: 49891 FRAME: 807. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:050003/0400 Effective date: 20190628 Owner name: WELD-ON ADHESIVES, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBER PREVIOUSLY RECORDED AT REEL: 49891 FRAME: 807. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:050003/0400 Effective date: 20190628 Owner name: WATERTITE PRODUCTS, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBER PREVIOUSLY RECORDED AT REEL: 49891 FRAME: 807. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:050003/0400 Effective date: 20190628 Owner name: IPS ADHESIVES LLC, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBER PREVIOUSLY RECORDED AT REEL: 49891 FRAME: 807. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:050003/0400 Effective date: 20190628 Owner name: IPS STRUCTURAL ADHESIVES, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBER PREVIOUSLY RECORDED AT REEL: 49891 FRAME: 807. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT;REEL/FRAME:050003/0400 Effective date: 20190628 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS FIRST Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER SERIAL NUMBER PREVIOUSLY RECORDED AT REEL: 44444 FRAME: 0905. ASSIGNOR(S) HEREBY CONFIRMS THE FIRST LIEN SECURITY AGREEMENT;ASSIGNORS:ENCAPSYS, LLC;IPS STRUCTURAL ADHESIVES, INC.;IPS CORPORATION;AND OTHERS;REEL/FRAME:050021/0307 Effective date: 20171107 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS SECOND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER SERIAL NUMBER PREVIOUSLY RECORDED AT REEL: 44444 FRAME: 0932. ASSIGNOR(S) HEREBY CONFIRMS THE SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:ENCAPSYS, LLC;IPS STRUCTURAL ADHESIVES, INC.;IPS CORPORATION;AND OTHERS;REEL/FRAME:050021/0359 Effective date: 20171107 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS SECOND LIEN COLLATERAL AGENT, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER SERIAL NUMBER PREVIOUSLY RECORDED AT REEL: 44444 FRAME: 0932. ASSIGNOR(S) HEREBY CONFIRMS THE SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:ENCAPSYS, LLC;IPS STRUCTURAL ADHESIVES, INC.;IPS CORPORATION;AND OTHERS;REEL/FRAME:050021/0359 Effective date: 20171107 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS FIRST LIEN COLLATERAL AGENT, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER SERIAL NUMBER PREVIOUSLY RECORDED AT REEL: 44444 FRAME: 0905. ASSIGNOR(S) HEREBY CONFIRMS THE FIRST LIEN SECURITY AGREEMENT;ASSIGNORS:ENCAPSYS, LLC;IPS STRUCTURAL ADHESIVES, INC.;IPS CORPORATION;AND OTHERS;REEL/FRAME:050021/0307 Effective date: 20171107 |
|
AS | Assignment |
Owner name: IPS ADHESIVES LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:057750/0945 Effective date: 20211001 Owner name: WELD-ON ADHESIVES, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:057750/0945 Effective date: 20211001 Owner name: WATERTITE PRODUCTS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:057750/0945 Effective date: 20211001 Owner name: IPS CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:057750/0945 Effective date: 20211001 Owner name: IPS STRUCTURAL ADHESIVES, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:057750/0945 Effective date: 20211001 Owner name: ENCAPSYS, LLC, WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:057750/0945 Effective date: 20211001 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |