[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US8922057B2 - System for multiple energy storage and management and method of making same - Google Patents

System for multiple energy storage and management and method of making same Download PDF

Info

Publication number
US8922057B2
US8922057B2 US13/224,669 US201113224669A US8922057B2 US 8922057 B2 US8922057 B2 US 8922057B2 US 201113224669 A US201113224669 A US 201113224669A US 8922057 B2 US8922057 B2 US 8922057B2
Authority
US
United States
Prior art keywords
energy storage
storage system
energy
boost converter
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/224,669
Other versions
US20110316345A1 (en
Inventor
Robert Dean King
Gary Raymond Kilinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US13/224,669 priority Critical patent/US8922057B2/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KILINSKI, GARY RAYMOND, KING, ROBERT DEAN
Priority to US13/283,931 priority patent/US8829719B2/en
Priority to US13/283,983 priority patent/US8916993B2/en
Priority to US13/283,829 priority patent/US9000614B2/en
Publication of US20110316345A1 publication Critical patent/US20110316345A1/en
Priority to US14/562,042 priority patent/US9809128B2/en
Application granted granted Critical
Publication of US8922057B2 publication Critical patent/US8922057B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • B60L11/1861
    • B60L11/005
    • B60L11/1803
    • B60L11/1816
    • B60L11/1868
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • Y02T10/642
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7005
    • Y02T10/7022
    • Y02T10/7044
    • Y02T10/7066
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • Y02T10/7088
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7225
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • Y02T90/121
    • Y02T90/127
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Embodiments of the invention relate generally to drive systems, and more specifically to battery powered drive systems such as those used in battery-powered electric vehicles or hybrid vehicles.
  • Electric vehicles and hybrid electric vehicles have become increasingly popular. These vehicles are typically powered by one or more batteries, either alone or in combination with an internal combustion engine. In electric vehicles, the one or more batteries power the entire drive system, thereby eliminating the need for an internal combustion engine.
  • Hybrid electric vehicles include an internal combustion engine to supplement the battery power, which greatly increases the fuel efficiency of the vehicle.
  • the electric and hybrid electric propulsion systems in these vehicles use large batteries, ultracapacitors, flywheels, or a combination of these elements so as to provide sufficient energy to power the electric motor. While generally effective, the size and weight of the elements reduced the overall efficiency of the propulsion system and presented challenges for integration into the vehicles themselves.
  • a bi-directional boost converter may be used to decouple the energy storage unit voltage from a direct current (DC) link voltage, wherein the DC link is coupled to the electric motor.
  • the bi-directional boost converter acts to increase, or “boost”, the voltage provided from the energy storage unit to the DC link to meet the power demands of the electric motor.
  • the ratio of the DC link voltage to the energy storage unit voltage is typically greater than 2:1. The bi-directional boost converter enables such an increase in voltage supplied to the DC link without the need for an increase in the size of the energy storage unit or units.
  • the bi-directional boost converter successfully allows for an increased supply of voltage to the DC link without a corresponding increase in size of the energy storage unit(s), the efficiency of the bi-directional boost converter degrades during certain operating modes.
  • the ratio of DC link voltage to battery voltage is often greater than 2.5:1.
  • the level of electrical current to which the components of the boost converter are subjected is very high, and therefore there is a subsequent need for proper thermal design to dissipate heat in the power electronic components of the boost converter. This thermal cycling stress on the components of the bi-directional boost converter may reduce reliability as well as overall system efficiency.
  • regenerative braking enables power at potentially relatively high voltage generated by the electric motor to be cycled back through the bi-directional boost converter for storage in the energy storage unit(s).
  • high losses within the bi-directional boost converter call for proper heat dissipation in the electrical components.
  • the regeneration power provided to the energy storage unit is often limited by the charge acceptance of the energy storage unit itself, which further reduces the efficiency of the system.
  • Embodiments of the invention provide a propulsion system, the propulsion system comprising an electric drive, a direct current (DC) link electrically coupled to the electric drive, and a first energy storage system electrically coupled to the electric drive, the first energy storage system comprising at least a high specific-power energy storage device.
  • the propulsion system further includes a second energy storage system, wherein a first terminal of the second energy storage system is electrically coupled to the electric drive through the DC link and a second terminal of the second energy storage system is coupled in series with a terminal of the high specific-power energy storage device.
  • a multi-channel bi-directional boost converter is coupled to the first energy storage system and to the second energy storage system, wherein the series connection between the terminal of the high specific-power energy storage device and the second terminal of the second energy storage system bypasses the multi-channel bi-directional boost converter.
  • a method of assembling a control system comprising coupling an ultracapacitor with an energy battery to form a first energy storage system, coupling a second energy storage system to an electric drive through a direct current (DC) link, and coupling a multi-channel bi-directional boost converter to each of the first energy storage system and second energy storage system.
  • the method further comprises connecting a terminal of the ultracapacitor in series with a terminal of the second energy storage system such that the connection between the terminal of the ultracapacitor and the terminal of the second energy storage system bypasses the multi-channel bi-directional boost converter.
  • an energy storage arrangement for an electrically powered system comprising a first energy storage system comprising at least an ultracapacitor and a multi-channel bi-directional boost converter coupled to the first energy storage system on a low-voltage side of the multi-channel bi-directional boost converter.
  • the arrangement further comprises a second energy storage system coupled to the multi-channel bi-directional boost converter on a high-voltage side the multi-channel bi-directional boost converter, wherein the second energy storage system is further coupled in series with the ultracapacitor such that the series connection between the second energy storage system and the ultracapacitor bypasses the multi-channel bi-directional boost converter.
  • FIG. 1 schematically illustrates a propulsion system according to an embodiment of the invention.
  • FIG. 2 schematically illustrates another embodiment of the propulsion system.
  • FIG. 3 schematically illustrates another embodiment of the propulsion system.
  • a system is shown to include an electric drive, a first energy storage system comprising at least a high specific-power energy storage device, such as an ultracapacitor, and a second energy storage system electrically coupled to the electric drive through a direct current (DC) link.
  • Both the first energy storage system and the second energy storage system are electrically coupled to a multi-channel bi-directional boost converter.
  • the positive terminal of the high specific-power energy storage device is also coupled to the negative terminal of the second energy storage system to bypass the multi-channel bi-directional boost converter.
  • Propulsion system 100 includes, in part, a first energy storage system comprising an energy battery 102 and a high specific-power energy storage device 104 .
  • Propulsion system 100 also includes a multi-channel bi-directional boost converter 106 .
  • High specific-power energy storage device 104 may be, for example, an ultracapacitor.
  • an ultracapacitor represents a capacitor comprising multiple capacitor cells coupled to one another, where the capacitor cells may each have a capacitance that is greater than 500 Farads.
  • the term energy battery used herein describes a high specific energy battery or high energy density battery demonstrated to achieve an energy density on the order of 100 W-hr/kg or greater (e.g., a Li-ion, sodium-metal halide, sodium nickel chloride, sodium-sulfur, or zinc-air battery).
  • Energy battery 102 and high specific-power energy storage device 104 are coupled together on a low-voltage side 202 of multi-channel bi-directional boost converter 106 , wherein a negative terminal 204 of energy battery 102 and a negative terminal 206 of high specific-power energy storage device 104 are coupled to a bus 108 , while a positive terminal 208 of energy battery 102 is coupled to a bus 110 , which is a positive bus that connects through an inductor to one channel of multi-channel bi-directional boost converter 106 on the low-voltage side 202 of multi-channel bi-directional boost converter 106 .
  • a positive terminal 210 of high specific-power energy storage device 104 is coupled to a bus 220 , which is coupled through an inductor on the low-voltage side 202 at a second channel (b) of multi-channel bi-directional boost converter 106 .
  • System 100 further includes a second energy storage system, which comprises an energy storage device 112 , and an AC traction drive 212 , which includes a DC-AC inverter 114 and an AC motor 116 coupled to a high-voltage side 214 of multi-channel bi-directional boost converter 106 .
  • Energy storage device 112 may be, for example, a battery having a high specific-power rating. Alternatively, energy storage device 112 may also be an ultracapacitor.
  • AC traction drive 212 in an alternative embodiment, may be replaced by a DC traction drive (not shown) by replacing inverter 114 with a DC chopper (not shown) and by replacing AC motor 116 with a DC motor (not shown).
  • Energy storage device 112 is coupled with multi-channel bi-directional boost converter 106 via a positive DC link 118 .
  • DC-AC inverter 114 is also coupled to positive DC link 118 and a negative DC link 120 , through which DC-AC inverter 114 receives a DC voltage and then supplies an alternating current to AC motor 116 .
  • Negative DC link 120 typically has the same potential as bus 108 on low-voltage side 202 of multi-channel bi-directional boost converter 106 .
  • multi-channel bi-directional boost converter 106 acts to boost the voltage provided by low-voltage side 202 of system 100 to high-voltage side 214 of system 100 , as well as to regulate the voltage and provide over-current protection to energy battery 102 , high specific-power energy storage device 104 , and energy storage device 112 .
  • energy storage device 112 (or the combination of energy storage device 112 and high specific-power energy storage device 104 ) is generally capable of providing sufficient voltage to power the AC motor 116 such that a vehicle may be operated at a relatively slow speed, the voltage provided to the AC motor 116 during periods of increased acceleration may need to be supplemented.
  • energy from energy battery 102 on low-voltage side 202 of multi-channel bi-directional boost converter 106 is utilized to provide the voltage necessary for increased acceleration of the vehicle.
  • Energy from energy battery 102 is used when the State of Charge (SOC) of high specific-power energy storage device 104 is depleted below some predetermined minimum value, typically a value below the voltage of battery 102 .
  • SOC State of Charge
  • a unidirectional coupling device 122 conducts such that the multi-channel bi-directional boost converter 106 extracts energy primarily from energy battery 102 using two channels of the multi-channel bi-directional boost converter 106 , thereby allowing approximately twice the rated power compared to a single channel of the multi-channel bi-directional boost converter 106 .
  • Unidirectional coupling device 122 is shown to be a diode in the embodiment of FIG. 1 , but it is to be understood that unidirectional conducting apparatus 122 could be implemented using other known components and circuit techniques. Such a configuration acts to facilitate increasing the operation speed of the vehicle, particularly when the available energy of high specific-power energy storage device 104 is depleted or near a predetermined voltage limit.
  • energy battery 102 voltage can be boosted to the high side DC links 118 and 120 via low side (channel “a”) of multi-channel bi-directional boost converter 106 through positive bus 110 .
  • the voltage provided by energy battery 102 through positive bus 110 and/or high specific-power energy storage device 104 through a positive bus 220 is “boosted,” or increased, via the multi-channel bi-directional boost converter 106 by a boost ratio typically greater than 2:1.
  • the voltage and power needed to accelerate AC motor 116 may be provided due to the voltage-boosting capabilities of multi-channel bi-directional boost converter 106 .
  • energy from the energy battery 102 may be utilized to charge one or both of high specific-power energy storage device 104 and energy storage device 112 simultaneously via multi-channel bi-directional boost converter 106 .
  • multi-channel bi-directional boost converter 106 While the operation of multi-channel bi-directional boost converter 106 may be sufficient under normal operating conditions (e.g., low acceleration and/or deceleration), the efficiency of multi-channel bi-directional boost converters such as multi-channel bi-directional boost converter 106 may degrade during high acceleration or deceleration of the vehicle. That is, as there is an increase in the ratio of voltage required to sufficiently power an AC motor versus voltage available on the respective low voltage sides of the multi-channel bi-directional boost converter, a multi-channel bi-directional boost converter may experience increased electrical loss, leading to thermal cycling stresses due to an increase in electrical current through components of the multi-channel bi-directional boost converter.
  • FIG. 1 addresses this issue to greatly improve the efficiency of system 100 , especially during operation at relatively high power, high speed vehicle acceleration and deceleration.
  • the positive terminal 210 of high specific-power energy storage device 104 is coupled in series with the negative terminal 216 of energy storage system 112 via a link 124 .
  • Link 124 bypasses one channel of multi-channel bi-directional boost converter 106 to enable the voltage outputs of high specific-power energy storage device 104 and energy storage device 112 to be summed, thereby utilizing the high specific-power characteristics of high specific-power energy storage device 104 and energy storage device 112 .
  • the combined voltage of these two energy storage devices can be used to provide sufficient voltage and power to AC motor 116 without incurring losses related to passing current through multi-channel bi-directional boost converter 106 .
  • coupling high specific-power energy storage device 104 and second energy storage device 112 in series enables fewer battery cells to be used as compared to conventional traction battery systems having one or more traction batteries directly coupled to a DC link of an inverter or load, thereby reducing cost, weight, balancing, and reliability issues.
  • high specific-power energy storage device 104 and energy storage device 112 also provides for greater efficiency for energy capture during regenerative braking events. Unlike energy battery 102 , both high specific-power energy storage device 104 and energy storage device 112 are operable at a low SOC and are capable of rapid high power electrical charge acceptance. As such, these energy storage devices are capable of accepting much of the regenerative power from the high voltage regenerated energy generated by AC motor 116 during overhauling loads such as vehicle deceleration.
  • regenerative energy can be efficiently stored in high specific-power energy storage device 104 and energy storage device 112 , again without incurring the losses associated with the limitations of multi-channel bi-directional boost converter 106 , as link 124 enables the bypass of multi-channel bi-directional boost converter 106 .
  • the energy stored in high specific-power energy storage device 104 and energy storage device 112 can then be used for subsequent accelerations, which again improves the overall efficiency of the entire propulsion system 100 .
  • Multi-channel bi-directional boost converter 106 is operable as an Energy Management System (EMS) to adaptively control these energy levels based on parameters such as vehicle speed, AC traction drive torque demand, AC traction drive speed, and various electrical characteristics of the energy storage units, such as SOC, voltage levels, state of health, and temperature.
  • EMS Energy Management System
  • multi-channel bi-directional boost converter 106 to independently control the amount of energy supplied by high specific-power energy storage device 104 and/or energy battery 102 during typical vehicle acceleration.
  • multi-channel bi-directional boost converter 106 operates to control the amount of regenerated energy provided to energy storage device 112 , high specific-power energy storage device 104 , and/or energy battery 102 to maximize the overall charge acceptance of the system. Such dynamic control greatly improves the overall efficiency of system 100 .
  • FIG. 2 illustrates another embodiment of the invention.
  • Propulsion system 200 shown in FIG. 2 includes components similar to components shown in system 100 of FIG. 1 , and thus numbers used to indicate components in FIG. 1 will also be used to indicate similar components in FIG. 2 .
  • system 200 includes the components of system 100 , along with additional components such as a plurality of voltage sensors 126 , a current sensor 128 , a pre-charge circuit 132 , and a Vehicle System Control (VSC) 134 .
  • Pre-charge circuit 132 acts to provide an initial pre-charge to a DC link filter capacitor 218 associated with DC-AC Inverter 114 , plus other filter and energy storage capacitors associated with the EMS during vehicle start-up.
  • VCS 134 which receives operator inputs such as start-up, acceleration, and deceleration, and controls the operation of system 200 accordingly.
  • energy battery 102 , high specific-power energy storage device 104 , multi-channel bi-directional boost converter 106 , and energy storage device 112 of system 200 may be operated similarly to that described above with respect to system 100 .
  • energy battery 102 may be removed from the first energy storage system, thereby making high specific-power energy storage device 104 the only energy storage device on low-voltage side 202 of system 200 .
  • Such a configuration would primarily be used in hybrid-electric drive-train configurations, wherein a heat engine (not shown) could supplement the energy provided via the first energy storage system and the second energy storage system.
  • FIG. 3 illustrates yet another embodiment of the invention.
  • Propulsion system 300 shown in FIG. 3 includes components similar to components shown in systems 100 and 200 of FIGS. 1 and 2 , and thus numbers used to indicate components in FIGS. 1 and 2 will also be used to indicate similar components in FIG. 3 .
  • system 300 includes an auxiliary power unit 302 on low-voltage side 202 of multi-channel bi-directional boost converter 106 .
  • Auxiliary power unit 302 comprises a heat engine 136 , an alternator 138 , and a rectifier 140 .
  • Auxiliary power unit 302 of system 300 also includes a plug-in electrical system comprising an AC plug 142 , an isolation transformer 144 , a Ground Fault Current Interrupter (GFI) 146 , and a rectifier 148 .
  • the output of rectifier 140 is coupled to bus 222 such that energy produced by heat engine 136 and alternator 138 may supplement the energy provided by high specific-power energy storage device 104 , and/or energy battery 102 .
  • energy battery 102 , high specific-power energy storage device 104 , and energy storage device 112 selectively may be recharged using energy provided via heat engine 136 , alternator 138 , and rectifier 140 . Control of the current, voltage, and power is controlled during recharge operation via VSC 134 and the EMS.
  • AC plug 142 may be coupled to an external electrical power source (i.e., the utility grid) to supply energy through rectifier 148 to the energy storage devices 102 , 104 , 112 in system 300 .
  • the output 304 of rectifier 148 is coupled through an inductor to a separate channel (e.g., channel “c”) of multi-channel bi-directional boost converter 106 such that voltage, current, and power from the external electrical power source is controlled and is capable of being provided to any of energy battery 102 , high specific-power energy storage device 104 , and energy storage device 112 in system 300 .
  • channel “c” separate channel
  • a contactor 130 acts to prevent enablement of DC-AC inverter 114 during charging of energy battery 102 , high specific-power energy storage device 104 , and energy storage device 112 when the system is plugged into an electric utility interface via AC plug 142 . While contactor 130 is shown between energy storage device 112 and DC-AC inverter 114 , contactor 130 may be located elsewhere in system 300 , including each phase on AC motor 116 . Accordingly, when incorporated into a vehicle, system 300 shown in FIG. 3 is not only capable of energy recharge via heat engine 136 while under operation, but can also be recharged when the vehicle is not in use.
  • system 300 illustrated in FIG. 3 is shown without a unidirectional coupling device (e.g., a diode) between energy battery 102 and high specific-power energy storage device 104 .
  • a unidirectional coupling device e.g., a diode
  • high specific-power energy storage device 104 may be discharged to a value substantially lower than the voltage of energy battery 102 . In this way, the efficiency of system 300 during operation of AC motor 116 at low speed and low power is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

A propulsion system comprising an electric drive, a DC link electrically coupled to the electric drive, and a first energy storage system electrically coupled to the electric drive, the first energy storage system comprising at least a high specific-power energy storage device is shown. The propulsion system further includes a second energy storage system, wherein a first terminal of the second energy storage system is electrically coupled to the electric drive through the DC link and a second terminal of the second energy storage system is coupled in series with a terminal of the high specific-power energy storage device. A multi-channel bi-directional boost converter is coupled to the first energy storage system and to the second energy storage system, wherein the connection between the terminal of the high specific-power energy storage device and the second terminal of the second energy storage system bypasses the multi-channel bi-directional boost converter.

Description

The present application is a continuation of and claims priority to U.S. patent application Ser. No. 12/539,056 filed Aug. 11, 2009, the disclosure of which is incorporated herein.
BACKGROUND
Embodiments of the invention relate generally to drive systems, and more specifically to battery powered drive systems such as those used in battery-powered electric vehicles or hybrid vehicles.
Recently, electric vehicles and hybrid electric vehicles have become increasingly popular. These vehicles are typically powered by one or more batteries, either alone or in combination with an internal combustion engine. In electric vehicles, the one or more batteries power the entire drive system, thereby eliminating the need for an internal combustion engine. Hybrid electric vehicles, on the other hand, include an internal combustion engine to supplement the battery power, which greatly increases the fuel efficiency of the vehicle.
Traditionally, the electric and hybrid electric propulsion systems in these vehicles use large batteries, ultracapacitors, flywheels, or a combination of these elements so as to provide sufficient energy to power the electric motor. While generally effective, the size and weight of the elements reduced the overall efficiency of the propulsion system and presented challenges for integration into the vehicles themselves.
Another challenge related to conventional electric propulsion systems is that the nominal voltage of the energy storage units (i.e., batteries and/or ultracapacitors) set the overall system voltage. Thus, the energy available to power the electric motor was limited to the energy available in the energy storage units themselves. Such a configuration limits the overall reliability and efficiency of the electric propulsion system, as the voltage demands of the electric motor were often far greater than the energy storage unit voltage. To combat this issue, a bi-directional boost converter may be used to decouple the energy storage unit voltage from a direct current (DC) link voltage, wherein the DC link is coupled to the electric motor. The bi-directional boost converter acts to increase, or “boost”, the voltage provided from the energy storage unit to the DC link to meet the power demands of the electric motor. In fact, the ratio of the DC link voltage to the energy storage unit voltage is typically greater than 2:1. The bi-directional boost converter enables such an increase in voltage supplied to the DC link without the need for an increase in the size of the energy storage unit or units.
While the bi-directional boost converter successfully allows for an increased supply of voltage to the DC link without a corresponding increase in size of the energy storage unit(s), the efficiency of the bi-directional boost converter degrades during certain operating modes. In particular, during high-speed and high-power acceleration and deceleration of the vehicle, the ratio of DC link voltage to battery voltage is often greater than 2.5:1. Under these operating modes, the level of electrical current to which the components of the boost converter are subjected is very high, and therefore there is a subsequent need for proper thermal design to dissipate heat in the power electronic components of the boost converter. This thermal cycling stress on the components of the bi-directional boost converter may reduce reliability as well as overall system efficiency.
Furthermore, during high-speed and high-power deceleration, a concept known as “regenerative braking” enables power at potentially relatively high voltage generated by the electric motor to be cycled back through the bi-directional boost converter for storage in the energy storage unit(s). However, at high DC link voltage to battery voltage ratios, high losses within the bi-directional boost converter call for proper heat dissipation in the electrical components. Also, the regeneration power provided to the energy storage unit is often limited by the charge acceptance of the energy storage unit itself, which further reduces the efficiency of the system.
Therefore, it is desirable to provide an electric and/or hybrid electric propulsion system having greater overall system efficiency along with an increased level of energy capture during high-power regenerative braking
BRIEF DESCRIPTION OF THE INVENTION
Embodiments of the invention provide a propulsion system, the propulsion system comprising an electric drive, a direct current (DC) link electrically coupled to the electric drive, and a first energy storage system electrically coupled to the electric drive, the first energy storage system comprising at least a high specific-power energy storage device. The propulsion system further includes a second energy storage system, wherein a first terminal of the second energy storage system is electrically coupled to the electric drive through the DC link and a second terminal of the second energy storage system is coupled in series with a terminal of the high specific-power energy storage device. A multi-channel bi-directional boost converter is coupled to the first energy storage system and to the second energy storage system, wherein the series connection between the terminal of the high specific-power energy storage device and the second terminal of the second energy storage system bypasses the multi-channel bi-directional boost converter.
In accordance with another aspect of the invention, a method of assembling a control system is shown, the method comprising coupling an ultracapacitor with an energy battery to form a first energy storage system, coupling a second energy storage system to an electric drive through a direct current (DC) link, and coupling a multi-channel bi-directional boost converter to each of the first energy storage system and second energy storage system. The method further comprises connecting a terminal of the ultracapacitor in series with a terminal of the second energy storage system such that the connection between the terminal of the ultracapacitor and the terminal of the second energy storage system bypasses the multi-channel bi-directional boost converter.
In accordance with another aspect of the invention, an energy storage arrangement for an electrically powered system is shown, the arrangement comprising a first energy storage system comprising at least an ultracapacitor and a multi-channel bi-directional boost converter coupled to the first energy storage system on a low-voltage side of the multi-channel bi-directional boost converter. The arrangement further comprises a second energy storage system coupled to the multi-channel bi-directional boost converter on a high-voltage side the multi-channel bi-directional boost converter, wherein the second energy storage system is further coupled in series with the ultracapacitor such that the series connection between the second energy storage system and the ultracapacitor bypasses the multi-channel bi-directional boost converter.
Various other features and advantages will be made apparent from the following detailed description and the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings illustrate preferred embodiments presently contemplated for carrying out the invention.
In the drawings:
FIG. 1 schematically illustrates a propulsion system according to an embodiment of the invention.
FIG. 2 schematically illustrates another embodiment of the propulsion system.
FIG. 3 schematically illustrates another embodiment of the propulsion system.
DETAILED DESCRIPTION
A system is shown to include an electric drive, a first energy storage system comprising at least a high specific-power energy storage device, such as an ultracapacitor, and a second energy storage system electrically coupled to the electric drive through a direct current (DC) link. Both the first energy storage system and the second energy storage system are electrically coupled to a multi-channel bi-directional boost converter. Furthermore, the positive terminal of the high specific-power energy storage device is also coupled to the negative terminal of the second energy storage system to bypass the multi-channel bi-directional boost converter. Such a connection between the high specific-power energy storage device and the second energy storage device enables a high voltage level to be provided to the electric drive during acceleration, as well as an increased capability for energy capture in the first energy storage system during regenerative braking events.
Referring to FIG. 1, a propulsion system 100 according to an embodiment of the invention is shown. Propulsion system 100 includes, in part, a first energy storage system comprising an energy battery 102 and a high specific-power energy storage device 104. Propulsion system 100 also includes a multi-channel bi-directional boost converter 106. High specific-power energy storage device 104 may be, for example, an ultracapacitor. In this case, an ultracapacitor represents a capacitor comprising multiple capacitor cells coupled to one another, where the capacitor cells may each have a capacitance that is greater than 500 Farads. The term energy battery used herein describes a high specific energy battery or high energy density battery demonstrated to achieve an energy density on the order of 100 W-hr/kg or greater (e.g., a Li-ion, sodium-metal halide, sodium nickel chloride, sodium-sulfur, or zinc-air battery). Energy battery 102 and high specific-power energy storage device 104 are coupled together on a low-voltage side 202 of multi-channel bi-directional boost converter 106, wherein a negative terminal 204 of energy battery 102 and a negative terminal 206 of high specific-power energy storage device 104 are coupled to a bus 108, while a positive terminal 208 of energy battery 102 is coupled to a bus 110, which is a positive bus that connects through an inductor to one channel of multi-channel bi-directional boost converter 106 on the low-voltage side 202 of multi-channel bi-directional boost converter 106. A positive terminal 210 of high specific-power energy storage device 104 is coupled to a bus 220, which is coupled through an inductor on the low-voltage side 202 at a second channel (b) of multi-channel bi-directional boost converter 106.
System 100 further includes a second energy storage system, which comprises an energy storage device 112, and an AC traction drive 212, which includes a DC-AC inverter 114 and an AC motor 116 coupled to a high-voltage side 214 of multi-channel bi-directional boost converter 106. Energy storage device 112 may be, for example, a battery having a high specific-power rating. Alternatively, energy storage device 112 may also be an ultracapacitor. AC traction drive 212, in an alternative embodiment, may be replaced by a DC traction drive (not shown) by replacing inverter 114 with a DC chopper (not shown) and by replacing AC motor 116 with a DC motor (not shown). Energy storage device 112 is coupled with multi-channel bi-directional boost converter 106 via a positive DC link 118. DC-AC inverter 114 is also coupled to positive DC link 118 and a negative DC link 120, through which DC-AC inverter 114 receives a DC voltage and then supplies an alternating current to AC motor 116. Negative DC link 120 typically has the same potential as bus 108 on low-voltage side 202 of multi-channel bi-directional boost converter 106.
During typical operation, multi-channel bi-directional boost converter 106 acts to boost the voltage provided by low-voltage side 202 of system 100 to high-voltage side 214 of system 100, as well as to regulate the voltage and provide over-current protection to energy battery 102, high specific-power energy storage device 104, and energy storage device 112. While energy storage device 112 (or the combination of energy storage device 112 and high specific-power energy storage device 104) is generally capable of providing sufficient voltage to power the AC motor 116 such that a vehicle may be operated at a relatively slow speed, the voltage provided to the AC motor 116 during periods of increased acceleration may need to be supplemented. In such instances, energy from energy battery 102 on low-voltage side 202 of multi-channel bi-directional boost converter 106 is utilized to provide the voltage necessary for increased acceleration of the vehicle. Energy from energy battery 102 is used when the State of Charge (SOC) of high specific-power energy storage device 104 is depleted below some predetermined minimum value, typically a value below the voltage of battery 102. When the SOC of high specific-power energy storage device 104 reaches this predetermined minimum value, a unidirectional coupling device 122 conducts such that the multi-channel bi-directional boost converter 106 extracts energy primarily from energy battery 102 using two channels of the multi-channel bi-directional boost converter 106, thereby allowing approximately twice the rated power compared to a single channel of the multi-channel bi-directional boost converter 106. Unidirectional coupling device 122 is shown to be a diode in the embodiment of FIG. 1, but it is to be understood that unidirectional conducting apparatus 122 could be implemented using other known components and circuit techniques. Such a configuration acts to facilitate increasing the operation speed of the vehicle, particularly when the available energy of high specific-power energy storage device 104 is depleted or near a predetermined voltage limit.
In the event high specific-power energy storage device 104 is at a relatively low SOC, or low voltage, energy battery 102 voltage can be boosted to the high side DC links 118 and 120 via low side (channel “a”) of multi-channel bi-directional boost converter 106 through positive bus 110. The voltage provided by energy battery 102 through positive bus 110 and/or high specific-power energy storage device 104 through a positive bus 220 is “boosted,” or increased, via the multi-channel bi-directional boost converter 106 by a boost ratio typically greater than 2:1. In this way, even with the output capabilities of energy battery 102 and/or high specific-power energy storage device 104, the voltage and power needed to accelerate AC motor 116 may be provided due to the voltage-boosting capabilities of multi-channel bi-directional boost converter 106. In addition, energy from the energy battery 102 may be utilized to charge one or both of high specific-power energy storage device 104 and energy storage device 112 simultaneously via multi-channel bi-directional boost converter 106.
While the operation of multi-channel bi-directional boost converter 106 may be sufficient under normal operating conditions (e.g., low acceleration and/or deceleration), the efficiency of multi-channel bi-directional boost converters such as multi-channel bi-directional boost converter 106 may degrade during high acceleration or deceleration of the vehicle. That is, as there is an increase in the ratio of voltage required to sufficiently power an AC motor versus voltage available on the respective low voltage sides of the multi-channel bi-directional boost converter, a multi-channel bi-directional boost converter may experience increased electrical loss, leading to thermal cycling stresses due to an increase in electrical current through components of the multi-channel bi-directional boost converter. These increased currents may lower the efficiency of the bi-directional boost converter, which require proper thermal design and hardware to dissipate the heat from these losses in the power electronic components. However, the embodiment shown in FIG. 1 addresses this issue to greatly improve the efficiency of system 100, especially during operation at relatively high power, high speed vehicle acceleration and deceleration.
Specifically, the positive terminal 210 of high specific-power energy storage device 104 is coupled in series with the negative terminal 216 of energy storage system 112 via a link 124. Link 124 bypasses one channel of multi-channel bi-directional boost converter 106 to enable the voltage outputs of high specific-power energy storage device 104 and energy storage device 112 to be summed, thereby utilizing the high specific-power characteristics of high specific-power energy storage device 104 and energy storage device 112. During motoring events such as pulsed loads, steady state loads, vehicle cruise, and vehicle acceleration, the combined voltage of these two energy storage devices can be used to provide sufficient voltage and power to AC motor 116 without incurring losses related to passing current through multi-channel bi-directional boost converter 106. Additionally, coupling high specific-power energy storage device 104 and second energy storage device 112 in series enables fewer battery cells to be used as compared to conventional traction battery systems having one or more traction batteries directly coupled to a DC link of an inverter or load, thereby reducing cost, weight, balancing, and reliability issues.
In addition to providing increased power capabilities for acceleration of the motor, the series connection of high specific-power energy storage device 104 and energy storage device 112 also provides for greater efficiency for energy capture during regenerative braking events. Unlike energy battery 102, both high specific-power energy storage device 104 and energy storage device 112 are operable at a low SOC and are capable of rapid high power electrical charge acceptance. As such, these energy storage devices are capable of accepting much of the regenerative power from the high voltage regenerated energy generated by AC motor 116 during overhauling loads such as vehicle deceleration. During such regenerative braking events, regenerative energy can be efficiently stored in high specific-power energy storage device 104 and energy storage device 112, again without incurring the losses associated with the limitations of multi-channel bi-directional boost converter 106, as link 124 enables the bypass of multi-channel bi-directional boost converter 106. The energy stored in high specific-power energy storage device 104 and energy storage device 112 can then be used for subsequent accelerations, which again improves the overall efficiency of the entire propulsion system 100.
Yet another advantage to the exemplary embodiment of FIG. 1 is the ability to dynamically control the energy levels provided to and from the energy storage devices. Multi-channel bi-directional boost converter 106 is operable as an Energy Management System (EMS) to adaptively control these energy levels based on parameters such as vehicle speed, AC traction drive torque demand, AC traction drive speed, and various electrical characteristics of the energy storage units, such as SOC, voltage levels, state of health, and temperature. For example, such dynamic control enables multi-channel bi-directional boost converter 106 to independently control the amount of energy supplied by high specific-power energy storage device 104 and/or energy battery 102 during typical vehicle acceleration. Likewise, during deceleration, multi-channel bi-directional boost converter 106 operates to control the amount of regenerated energy provided to energy storage device 112, high specific-power energy storage device 104, and/or energy battery 102 to maximize the overall charge acceptance of the system. Such dynamic control greatly improves the overall efficiency of system 100.
FIG. 2 illustrates another embodiment of the invention. Propulsion system 200 shown in FIG. 2 includes components similar to components shown in system 100 of FIG. 1, and thus numbers used to indicate components in FIG. 1 will also be used to indicate similar components in FIG. 2. As shown, system 200 includes the components of system 100, along with additional components such as a plurality of voltage sensors 126, a current sensor 128, a pre-charge circuit 132, and a Vehicle System Control (VSC) 134. Pre-charge circuit 132 acts to provide an initial pre-charge to a DC link filter capacitor 218 associated with DC-AC Inverter 114, plus other filter and energy storage capacitors associated with the EMS during vehicle start-up. Commands for such a vehicle start-up come from VCS 134, which receives operator inputs such as start-up, acceleration, and deceleration, and controls the operation of system 200 accordingly. It is to be understood that energy battery 102, high specific-power energy storage device 104, multi-channel bi-directional boost converter 106, and energy storage device 112 of system 200 may be operated similarly to that described above with respect to system 100. Alternatively, energy battery 102 may be removed from the first energy storage system, thereby making high specific-power energy storage device 104 the only energy storage device on low-voltage side 202 of system 200. Such a configuration would primarily be used in hybrid-electric drive-train configurations, wherein a heat engine (not shown) could supplement the energy provided via the first energy storage system and the second energy storage system.
FIG. 3 illustrates yet another embodiment of the invention. Propulsion system 300 shown in FIG. 3 includes components similar to components shown in systems 100 and 200 of FIGS. 1 and 2, and thus numbers used to indicate components in FIGS. 1 and 2 will also be used to indicate similar components in FIG. 3. As shown, system 300 includes an auxiliary power unit 302 on low-voltage side 202 of multi-channel bi-directional boost converter 106. Auxiliary power unit 302 comprises a heat engine 136, an alternator 138, and a rectifier 140. Auxiliary power unit 302 of system 300 also includes a plug-in electrical system comprising an AC plug 142, an isolation transformer 144, a Ground Fault Current Interrupter (GFI) 146, and a rectifier 148. The output of rectifier 140 is coupled to bus 222 such that energy produced by heat engine 136 and alternator 138 may supplement the energy provided by high specific-power energy storage device 104, and/or energy battery 102. Furthermore, when heat engine 136 is operating, energy battery 102, high specific-power energy storage device 104, and energy storage device 112 selectively may be recharged using energy provided via heat engine 136, alternator 138, and rectifier 140. Control of the current, voltage, and power is controlled during recharge operation via VSC 134 and the EMS.
Alternatively, when energy battery 102, high specific-power energy storage device 104, and energy storage device 112 are not being used to operate motor 116, AC plug 142 may be coupled to an external electrical power source (i.e., the utility grid) to supply energy through rectifier 148 to the energy storage devices 102, 104, 112 in system 300. The output 304 of rectifier 148 is coupled through an inductor to a separate channel (e.g., channel “c”) of multi-channel bi-directional boost converter 106 such that voltage, current, and power from the external electrical power source is controlled and is capable of being provided to any of energy battery 102, high specific-power energy storage device 104, and energy storage device 112 in system 300. In FIG. 3, a contactor 130 acts to prevent enablement of DC-AC inverter 114 during charging of energy battery 102, high specific-power energy storage device 104, and energy storage device 112 when the system is plugged into an electric utility interface via AC plug 142. While contactor 130 is shown between energy storage device 112 and DC-AC inverter 114, contactor 130 may be located elsewhere in system 300, including each phase on AC motor 116. Accordingly, when incorporated into a vehicle, system 300 shown in FIG. 3 is not only capable of energy recharge via heat engine 136 while under operation, but can also be recharged when the vehicle is not in use.
Unlike systems 100 and 200 respectively shown in FIGS. 1 and 2, system 300 illustrated in FIG. 3 is shown without a unidirectional coupling device (e.g., a diode) between energy battery 102 and high specific-power energy storage device 104. Without such a unidirectional coupling device, high specific-power energy storage device 104 may be discharged to a value substantially lower than the voltage of energy battery 102. In this way, the efficiency of system 300 during operation of AC motor 116 at low speed and low power is greatly improved.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims (24)

What is claimed is:
1. A propulsion system comprising:
an electric drive;
a direct current (DC) link electrically coupled to the electric drive;
a first energy storage system electrically coupled to the electric drive;
a second energy storage system, wherein a first terminal of the second energy storage system is electrically coupled to the electric drive through the DC link and a second terminal of the second energy storage system is coupled in series with a terminal of the first energy storage system; and
a bi-directional boost converter coupled to the first energy storage system and to the second energy storage system, wherein the series connection between the terminal of the first energy storage system and the second terminal of the second energy storage system bypasses the bi-directional boost converter.
2. The propulsion system of claim 1 wherein the second energy storage system comprises a power battery.
3. The propulsion system of claim 1 wherein the second energy storage system comprises an ultracapacitor.
4. The propulsion system of claim 1 wherein the first energy storage system comprising at least a high specific-power energy storage device and the high specific-power energy storage device and the second energy storage system are configured to receive regenerative energy during regenerative braking events associated with overhauling loads including vehicle deceleration.
5. The propulsion system of claim 4 wherein the bi-directional boost converter is configured to control an amount of regenerative energy transferred to the high specific-power energy storage device of the first energy storage system and the second energy storage system during the regenerative braking events as a function of at least one of a vehicle speed, a state-of-charge of the high specific-power energy storage device, a state-of-charge of a power battery, an electric drive torque demand, and an electric drive speed.
6. The propulsion system of claim 1 wherein the first energy storage system and the second energy storage system are configured to supply energy during motoring events associated with at least one of pulsed loads, steady state loads, vehicle cruise, and vehicle acceleration.
7. The propulsion system of claim 6 wherein the bi-directional boost converter is configured to control an amount of energy transferred to the first energy storage system and the second energy storage system during the motoring events as a function of at least one of a vehicle speed, a state-of-charge of the first energy storage system, a state-of-charge of the power battery, an electric drive torque demand, and an electric drive speed.
8. The propulsion system of claim 1 wherein the first energy storage system comprises an ultracapacitor.
9. The propulsion system of claim 1 wherein the first energy storage system further comprises a pre-charge circuit configured to partially charge at least one of a high specific-power energy storage device, the second energy storage system, filter capacitors, and energy storage capacitors.
10. The propulsion system of claim 1 wherein the first energy storage device further comprises an energy battery coupled to a high specific-power energy storage device.
11. The propulsion system of claim 10 further comprising a unidirectional coupling device coupled in series between the energy battery and the high specific-power energy storage device.
12. The propulsion system of claim 1 further comprising an auxiliary power unit coupled to at least one of the first energy storage system and the second energy storage system.
13. The propulsion system of claim 12 wherein the auxiliary power unit comprises a plug-in electrical interface and a heat engine comprising an alternator.
14. The propulsion system of claim 13 wherein the first energy storage system and the second energy storage system are capable of being recharged via the plug-in electrical interface.
15. The propulsion system of claim 14 wherein the plug-in electrical interface is coupled to a channel of the bi-directional boost converter.
16. A method of assembling a control system comprising:
coupling an ultracapacitor with an energy battery to form a first energy storage system;
coupling a second energy storage system to an electric drive through a direct current (DC) link;
coupling a bi-directional boost converter to each of the first energy storage system and second energy storage system; and
connecting a terminal of the ultracapacitor in series with a terminal of the second energy storage system such that the connection between the terminal of the ultracapacitor and the terminal of the second energy storage system bypasses the bi-directional boost converter.
17. The method of claim 16 further comprising coupling a pre-charge circuit to the ultracapacitor configured to at least partially recharge at least one of the ultracapacitor and a filter capacitor.
18. The method of claim 16 further comprising coupling an auxiliary energy unit to at least one of the first energy storage system and the second energy storage system.
19. The method of claim 18 wherein the coupling of an auxiliary energy unit comprises coupling at least one of a plug-in electrical interface and a heat engine comprising an alternator to the at least one of the first energy storage system and the second energy storage system.
20. An energy storage arrangement for an electrically powered system, the arrangement comprising:
a first energy storage system comprising at least an ultracapacitor;
a bi-directional boost converter coupled to the first energy storage system on a low-voltage side of the bi-directional boost converter; and
a second energy storage system coupled to the bi-directional boost converter on a high-voltage side of the bi-directional boost converter, wherein the second energy storage system is further coupled in series with the ultracapacitor such that the series connection between the second energy storage system and the ultracapacitor bypasses the bi-directional boost converter.
21. The energy storage arrangement of claim 20 further comprising a direct current (DC) link and an alternating current (AC) traction drive on the high-voltage side of the bi-directional boost converter, wherein the bi-directional boost converter and the second energy storage system are coupled to the AC traction drive through a DC link.
22. The energy storage arrangement of claim 20 wherein the first energy storage system further comprises an energy battery coupled to the ultracapacitor.
23. The energy storage arrangement of claim 22 further comprising an auxiliary power unit coupled to at least the ultracapacitor and the energy battery.
24. The energy storage arrangement of claim 23 wherein the auxiliary power unit comprises a plug-in electrical interface and a heat engine comprising an alternator.
US13/224,669 2009-08-11 2011-09-02 System for multiple energy storage and management and method of making same Active 2031-06-13 US8922057B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/224,669 US8922057B2 (en) 2009-08-11 2011-09-02 System for multiple energy storage and management and method of making same
US13/283,931 US8829719B2 (en) 2009-08-11 2011-10-28 System for multiple energy storage and management and method of making same
US13/283,983 US8916993B2 (en) 2009-08-11 2011-10-28 System for multiple energy storage and management and method of making same
US13/283,829 US9000614B2 (en) 2009-08-11 2011-10-28 System for multiple energy storage and management and method of making same
US14/562,042 US9809128B2 (en) 2009-08-11 2014-12-05 System for multiple energy storage and management and method of making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/539,056 US8026638B2 (en) 2009-08-11 2009-08-11 System for multiple energy storage and management and method of making same
US13/224,669 US8922057B2 (en) 2009-08-11 2011-09-02 System for multiple energy storage and management and method of making same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/536,056 Continuation US8163028B2 (en) 2007-01-10 2009-08-05 Knee joint prosthesis system and method for implantation
US12/539,056 Continuation US8026638B2 (en) 2009-08-11 2009-08-11 System for multiple energy storage and management and method of making same

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/283,983 Continuation-In-Part US8916993B2 (en) 2009-08-11 2011-10-28 System for multiple energy storage and management and method of making same
US13/283,829 Continuation-In-Part US9000614B2 (en) 2009-08-11 2011-10-28 System for multiple energy storage and management and method of making same
US13/283,931 Continuation-In-Part US8829719B2 (en) 2009-08-11 2011-10-28 System for multiple energy storage and management and method of making same

Publications (2)

Publication Number Publication Date
US20110316345A1 US20110316345A1 (en) 2011-12-29
US8922057B2 true US8922057B2 (en) 2014-12-30

Family

ID=43301945

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/539,056 Active 2030-03-25 US8026638B2 (en) 2009-08-11 2009-08-11 System for multiple energy storage and management and method of making same
US13/224,669 Active 2031-06-13 US8922057B2 (en) 2009-08-11 2011-09-02 System for multiple energy storage and management and method of making same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/539,056 Active 2030-03-25 US8026638B2 (en) 2009-08-11 2009-08-11 System for multiple energy storage and management and method of making same

Country Status (4)

Country Link
US (2) US8026638B2 (en)
EP (1) EP2284037B1 (en)
JP (1) JP5674379B2 (en)
CN (1) CN101992678B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895983B2 (en) 2013-10-11 2018-02-20 General Electric Company Propulsion system and method for driving a vehicle
US10272788B2 (en) 2015-08-28 2019-04-30 General Electric Company Hybrid system with multiple energy storage devices

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916993B2 (en) 2009-08-11 2014-12-23 General Electric Company System for multiple energy storage and management and method of making same
IT1396298B1 (en) * 2009-10-06 2012-11-16 Bottero Spa MACHINE FOR WORKING / HANDLING GLASS SHEETS.
US8299738B2 (en) * 2009-11-20 2012-10-30 Hamilton Sundstrand Corporation Multi-tasking power processor for a vehicle electric system
US20120056600A1 (en) * 2010-09-03 2012-03-08 Nevin Donald M Capacitor vehicle having high speed charging ability and method of operating a capacitor vehicle
TWI433427B (en) * 2010-11-25 2014-04-01 Ind Tech Res Inst Battery power system
KR101243909B1 (en) * 2010-12-16 2013-03-14 삼성에스디아이 주식회사 System for energy storage and control method thereof
US8761978B2 (en) * 2011-03-23 2014-06-24 General Electric Company System for supplying propulsion energy from an auxiliary drive and method of making same
CN102244391A (en) * 2011-07-12 2011-11-16 华北电力大学 Energy storage grid-connected circuit based on lithium batteries and super capacitor and control method thereof
US8963365B2 (en) * 2011-08-12 2015-02-24 General Electric Company System and method for optimizing energy storage device cycle life
DE102011110639A1 (en) * 2011-08-18 2013-02-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Power supply control device for supplying electrical power to rail vehicle, has control unit controlling supply of energy from different sources of energy in response to characteristics of sources and by request for operation of vehicle
US9073438B2 (en) 2011-10-28 2015-07-07 General Electric Company System for selectively coupling an energy source to a load and method of making same
US8981727B2 (en) * 2012-05-21 2015-03-17 General Electric Company Method and apparatus for charging multiple energy storage devices
US9174525B2 (en) 2013-02-25 2015-11-03 Fairfield Manufacturing Company, Inc. Hybrid electric vehicle
CN103144526A (en) * 2013-03-01 2013-06-12 中国第一汽车股份有限公司 Hybrid power vehicle using composite power supply power system
DE102013206296A1 (en) * 2013-04-10 2014-10-16 Robert Bosch Gmbh Method for operating a power supply unit for a motor vehicle electrical system
JP6183465B2 (en) * 2013-10-25 2017-08-23 日立化成株式会社 Power storage system
CN104660045B (en) * 2013-11-25 2018-06-12 南京博兰得电子科技有限公司 Electrical energy changer with energy storage management
US9834098B2 (en) 2014-01-30 2017-12-05 General Electric Company Vehicle propulsion system with multi-channel DC bus and method of manufacturing same
US9108633B1 (en) * 2014-03-13 2015-08-18 GM Global Technology Operations LLC Hybrid powertrain and method of controlling same
US20160082844A1 (en) * 2014-09-23 2016-03-24 General Electric Company Methods and systems for multiple source energy storage, management, and control
DE102015203003A1 (en) * 2015-02-19 2016-08-25 Robert Bosch Gmbh Battery storage system with different cell types
WO2017051299A1 (en) * 2015-09-25 2017-03-30 Hemant Karamchand Rohera A power generating system and method for a vehicle
JP6240649B2 (en) * 2015-11-28 2017-11-29 本田技研工業株式会社 Power supply system
US9931944B2 (en) * 2016-03-22 2018-04-03 Ford Global Technologies, Llc Variable voltage convert system with reduced bypass diode conduction
CN107521354B (en) * 2016-06-22 2020-06-16 华为技术有限公司 Driving system and driving method of electric automobile
IT201600112523A1 (en) * 2016-11-08 2018-05-08 Magneti Marelli Spa "Energy management apparatus supplied to a low voltage system of a motor vehicle comprising an energy recovery stage and relative process"
JP2019122201A (en) * 2018-01-10 2019-07-22 本田技研工業株式会社 Electric vehicle
CN108705935A (en) * 2018-05-23 2018-10-26 精进电动科技股份有限公司 Control the device and electric vehicle of the generated output of the range extender system of electric vehicle
CN110994993B (en) * 2019-12-30 2021-01-29 施耐德电气(中国)有限公司 Multichannel bidirectional buck-boost circuit
KR20230019741A (en) * 2021-08-02 2023-02-09 주식회사 엘지에너지솔루션 Apparatus for controlling battery, method of the same and system for controling battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373195A (en) 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
US5710699A (en) 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US20040100149A1 (en) 2002-11-22 2004-05-27 Jih-Sheng Lai Topologies for multiple energy sources
US7049792B2 (en) 1998-11-12 2006-05-23 General Electric Company Method and apparatus for a hybrid battery configuration for use in an electric or hybrid electric motive power system
US20060125319A1 (en) 2004-12-15 2006-06-15 King Robert D System and method for providing power control of an energy storage system
US20070158118A1 (en) 2006-01-09 2007-07-12 General Electric Company Vehicle propulsion system
US20070164693A1 (en) 2006-01-18 2007-07-19 Robert Dean King Vehicle propulsion system
US20080113268A1 (en) 2006-10-23 2008-05-15 Buiel Edward R Recombinant Hybrid Energy Storage Device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612572B2 (en) * 1996-09-10 2005-01-19 中国電力株式会社 Motor drive power supply
JP3950262B2 (en) * 1999-06-08 2007-07-25 中国電力株式会社 Motor drive power converter
US6323608B1 (en) * 2000-08-31 2001-11-27 Honda Giken Kogyo Kabushiki Kaisha Dual voltage battery for a motor vehicle
JP2004116296A (en) * 2002-09-24 2004-04-15 Honda Motor Co Ltd Power supply device for vehicle
CN100444495C (en) * 2003-01-24 2008-12-17 三菱电机株式会社 Battery power circuit
JP2007236064A (en) * 2006-02-28 2007-09-13 Daikin Ind Ltd Energy storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373195A (en) 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
US5710699A (en) 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US7049792B2 (en) 1998-11-12 2006-05-23 General Electric Company Method and apparatus for a hybrid battery configuration for use in an electric or hybrid electric motive power system
US20040100149A1 (en) 2002-11-22 2004-05-27 Jih-Sheng Lai Topologies for multiple energy sources
US20060125319A1 (en) 2004-12-15 2006-06-15 King Robert D System and method for providing power control of an energy storage system
US20070158118A1 (en) 2006-01-09 2007-07-12 General Electric Company Vehicle propulsion system
US20070164693A1 (en) 2006-01-18 2007-07-19 Robert Dean King Vehicle propulsion system
US20080113268A1 (en) 2006-10-23 2008-05-15 Buiel Edward R Recombinant Hybrid Energy Storage Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895983B2 (en) 2013-10-11 2018-02-20 General Electric Company Propulsion system and method for driving a vehicle
US10272788B2 (en) 2015-08-28 2019-04-30 General Electric Company Hybrid system with multiple energy storage devices

Also Published As

Publication number Publication date
JP5674379B2 (en) 2015-02-25
US20110316345A1 (en) 2011-12-29
EP2284037B1 (en) 2023-10-11
EP2284037A2 (en) 2011-02-16
US8026638B2 (en) 2011-09-27
CN101992678A (en) 2011-03-30
JP2011041461A (en) 2011-02-24
US20110037320A1 (en) 2011-02-17
EP2284037A3 (en) 2017-03-01
CN101992678B (en) 2014-07-30

Similar Documents

Publication Publication Date Title
US8922057B2 (en) System for multiple energy storage and management and method of making same
US9809128B2 (en) System for multiple energy storage and management and method of making same
US9000614B2 (en) System for multiple energy storage and management and method of making same
US8120290B2 (en) Energy management system to improve efficiency of electric and hybrid drive trains
US8829719B2 (en) System for multiple energy storage and management and method of making same
JP7051758B2 (en) Devices and methods for charging electric vehicles
EP1976721B1 (en) Vehicle propulsion system
KR101202572B1 (en) System and method for providing power control of an energy storage system
EP1810861B1 (en) Vehicle propulsion system
US9013168B2 (en) System for transferring energy from an energy source and method of making same
CA2916815C (en) Bi-directional dc-dc power converter for a vehicle system
JP2009508763A (en) Plug-in hybrid propulsion power electronics equipment with high-speed energy storage device and control method and apparatus
JP6527785B2 (en) Drive device and transportation equipment
JP2016106511A (en) Electric vehicle
CN118003885A (en) Vehicle-mounted power supply device and electric vehicle
WO2018190020A1 (en) Combined power storage system

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KING, ROBERT DEAN;KILINSKI, GARY RAYMOND;REEL/FRAME:026851/0130

Effective date: 20090811

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8