[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US8961474B2 - Syringe - Google Patents

Syringe Download PDF

Info

Publication number
US8961474B2
US8961474B2 US12/968,576 US96857610A US8961474B2 US 8961474 B2 US8961474 B2 US 8961474B2 US 96857610 A US96857610 A US 96857610A US 8961474 B2 US8961474 B2 US 8961474B2
Authority
US
United States
Prior art keywords
plunger
syringe
chamber
fluid chamber
tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/968,576
Other versions
US20110166531A1 (en
Inventor
Dimitrios Stroumpoulis
Christopher S. Mudd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan Inc filed Critical Allergan Inc
Priority to US12/968,576 priority Critical patent/US8961474B2/en
Assigned to ALLERGAN, INC. reassignment ALLERGAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUDD, CHRISTOPHER S., STROUMPOULIS, DIMITRIOS
Publication of US20110166531A1 publication Critical patent/US20110166531A1/en
Priority to US14/617,783 priority patent/US9750884B2/en
Application granted granted Critical
Publication of US8961474B2 publication Critical patent/US8961474B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31501Means for blocking or restricting the movement of the rod or piston
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31596Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms comprising means for injection of two or more media, e.g. by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/19Syringes having more than one chamber, e.g. including a manifold coupling two parallelly aligned syringes through separate channels to a common discharge assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31578Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod
    • A61M5/3158Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod performed by axially moving actuator operated by user, e.g. an injection button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31501Means for blocking or restricting the movement of the rod or piston
    • A61M2005/31508Means for blocking or restricting the movement of the rod or piston provided on the piston-rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31596Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms comprising means for injection of two or more media, e.g. by mixing
    • A61M2005/31598Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms comprising means for injection of two or more media, e.g. by mixing having multiple telescopically sliding coaxial pistons encompassing volumes for components to be mixed

Definitions

  • a number of medical applications require the injection of significant amounts of material.
  • one such application is the injection of dermal fillers to correct facial wrinkles or folds.
  • a possibly significant quantity of dermal filler material is injected under the skin using a syringe.
  • the material injected may have a higher viscosity than the substances typically injected by syringe.
  • some dermal fillers may include gels, such as a gel made of hyaluronic acid.
  • Traditional syringes and the plunger rods used with such syringes present a number of problems when used for such applications.
  • syringes In order to accommodate significant volumes of material, such syringes must typically have either a large length or cross-sectional area. Syringes with larger cross-sectional areas are often not practical, however, because the extrusion force required when operating a syringe increases with the cross-sectional area, this may be particularly problematic when injecting viscous fluids. Increasing the length of a traditional syringe, however, may significantly increase the overall length of the device, as a longer plunger may also need to be used, which may reduce the user's comfort and control during use. Accordingly, example embodiments provide improved syringe and plunger devices which may address a number of the shortcomings of traditional devices.
  • Example embodiments described herein provide a syringe, which may include a syringe body with a fluid chamber, the syringe body having a distal end and a proximal end, with an extrusion opening at the proximal end; a dividing wall disposed within the fluid chamber, defining a first fluid chamber and a second fluid chamber, the first fluid chamber and the second fluid chamber in communication with the extrusion opening; a first plunger disposed in a distal end of the first chamber, the first plunger including a first locking mechanism configured to prevent the first plunger from sliding away from the proximal end of the syringe body, when the first plunger is in a first initial position and the second plunger is being depressed; and a second plunger disposed in a distal end of the second chamber, the second plunger including a second locking mechanism configured to prevent the second plunger from sliding away from the proximal end of the syringe body when the second plunger is in a second initial position
  • the first locking mechanism may include a first locking wing formed at a proximal end of the first plunger; and a first groove formed in the distal end of the first fluid chamber; where the first locking wing may be positioned to engage in the first groove when the first plunger is in the first initial position.
  • Some example embodiments may also include a third locking mechanism configured to prevent the first plunger from sliding away from the proximal end of the syringe body, when the first plunger is in a first final position and the second plunger is being depressed; and a fourth locking mechanism configured to prevent the second plunger from sliding away from the proximal end of the syringe body, when the second plunger is in a second final position and the first plunger is being depressed.
  • a third locking mechanism configured to prevent the first plunger from sliding away from the proximal end of the syringe body, when the first plunger is in a first final position and the second plunger is being depressed
  • a fourth locking mechanism configured to prevent the second plunger from sliding away from the proximal end of the syringe body, when the second plunger is in a second final position and the first plunger is being depressed.
  • the third locking mechanism may include a third locking wing formed at a distal end of the first plunger; and a third groove formed in a distal end of the first fluid chamber; where the third locking wing may be positioned to engage in the third groove when the first plunger is in the first final position.
  • the first groove may be the third groove. In other example embodiments the first groove may be distinct from the third groove. In still other example embodiments, the first locking wing may be a directional locking wing or the third locking wing may be a directional locking wing.
  • first fluid chamber and the second fluid chamber may have a semi-circular cross-section. In other example embodiments, the first fluid chamber and the second fluid chamber may have a rectangular cross-section.
  • a syringe which may include a syringe body with a fluid chamber, the syringe body having a distal end and a proximal end, with an extrusion opening at the proximal end; an outer plunger disposed in the distal end of the fluid chamber, the outer plunger having a bore running from a distal end to a proximal end; and an inner plunger slidably disposed in the bore.
  • Some example embodiments may also include a first locking mechanism configured to prevent the inner plunger from sliding relative to the syringe body when the inner plunger is in an initial position and the outer plunger is being depressed.
  • Some example embodiments may also include a first slot in the outer plunger, extending a portion of the length of the outer plunger from the distal end to the proximal end; where the first slot may be configured to allow the outer plunger to slide relative to the inner plunger and the syringe body when the first locking mechanism is engaged.
  • the locking mechanism may include a first locking arm disposed on the inner plunger near a proximal end of the inner plunger; and a first groove disposed within the syringe body near the distal end of the syringe body; where the first locking arm may be configured to engage in the first groove, when the inner plunger is in the initial position, passing through the first slot.
  • Some example embodiments may also include a second locking mechanism, configured to prevent the outer plunger from sliding relative to the syringe body when the outer plunger is in a final position and the inner plunger is being depressed.
  • the second locking mechanism may include a first locking tab disposed on the outer plunger near the distal end of the outer plunger; and a second groove disposed within the syringe body near the distal end of the syringe body; where the first locking tab may be configured to engage in the second groove, when the outer plunger is in the final position.
  • the first groove may be the second groove.
  • the inner plunger and the outer plunger may have circular cross-sections.
  • Some example embodiments may also include an outer plunger tip attached to the outer plunger; and an inner plunger tip attached to the inner plunger; where the inner plunger tip may be shaped to fit within a hole passing through the outer plunger tip.
  • the outer plunger tip may have a ring shape; and the inner plunger tip may have a disk shape.
  • FIG. 1 illustrates an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIG. 2 illustrates an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIGS. 3A-3C illustrate transparent views of an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIG. 4 illustrates a cross-sectional view of a dual-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIG. 5 illustrates a detailed view of an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIG. 6 illustrates a disassembled view of an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIGS. 7A-7C illustrate an example single-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIGS. 8A-8C illustrate an example single-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIGS. 9A-9C illustrate an example single-chamber/dual-plunger syringe in accordance with an example embodiment.
  • FIG. 10 illustrates a disassembled view of an example single-chamber/dual-plunger syringe in accordance with an example embodiment.
  • Example embodiments of the invention generally relate to a new syringe system designed to dispense large volumes of fluid, while minimizing the force of extrusion and length of the device. Such example embodiments may, for example, be used in the administration of gels that can have cosmetic or medical applications.
  • Example embodiments provide a syringe device reduces the extrusion force required, e.g., to extrude highly viscous fluid through a fine needle, while maintaining the same fill volume.
  • This force must be applied to a cross-sectional area in the entrance of the needle to maintain a constant flow rate Q.
  • the corresponding force on a cross-sectional area in the syringe can be calculated by assuming zero pressure drop in the syringe and equating the pressure in the entrance of the needle with the pressure in the syringe:
  • the only parameter that is left to control the extrusion force is the syringe cross-sectional area. Minimizing that parameter can reduce the force required to extrude a viscous solution through a fine needle. However, there is a limit on how much this area can be reduced, which is primarily determined by the fill volume of the syringe. As the syringe diameter decreases, the length of the syringe has to increase to accommodate the fixed volume of fluid. Increasing the length of the syringe, however, can result in practical issues, e.g. reduced functionality, ergonomics considerations, and less control over the needle that can not only cause physician discomfort, but ultimately affect the patient's safety.
  • Example embodiments may resolve these problems by, for example, providing dual/multi-chamber and/or dual/multi-plunger devices designed to reduce the force required to extrude a fluid through a fine needle while maintaining the same fill volume and length as a conventional syringe.
  • such an effect is achieved by splitting a single syringe chamber into two or more chambers of equal or different cross-sectional areas and attaching one plunger to each chamber. The fluid is then extruded by applying force to the first plunger until it moves all the way through the first chamber and locks in the end position and then by applying force to the second plunger and so on until all the fluid is dispensed.
  • all chambers merge into a single needle at the end of the device proximal to the point of injection (the terms proximal and distal, as used herein, are to be understood in relation to the point of injection during use).
  • a single chamber may be provided with a dual/multi-plunger set-up, achieving a similar reduction in extrusion force.
  • the example device may have a syringe body 101 and a plurality of plungers 102 , 103 .
  • the syringe body 101 may be shaped substantially like a conventional syringe.
  • the syringe body 101 may be cylindrical, may have a proximal end, which may include an opening for extruding the injectable material contained in the syringe, and may also include an attachment point for attaching a needle 104 , e.g. a luer, or may have an integrated needle 104 .
  • the syringe body 101 may also include finger grips 105 , which may be used like the finger grips of a convention syringe, allowing a user to apply pressure to the plunger rods 102 , 103 .
  • the syringe chamber may be divided into multiple chambers by a dividing wall.
  • the depicted syringe body 101 may be divided into two chambers, where each chamber may have a half-cylinder shape, though other shapes are also usable, e.g., chambers with the shape of a rectangle or other polygon, or of an oval, may also be used.
  • the dividing wall may extend the length of the syringe 101 up to the point at which it meets the needle opening, or syringe luer, etc.
  • a plunger 102 , 103 shaped to match the chambers, may be inserted into to the distal end of each chamber.
  • Such plungers may be shaped generally in the form of a rod, and may have a plunger tip at a proximal end and a thumb grip at a distal end.
  • FIG. 1 illustrates both plungers 102 , 103 in their initial positions. That is, neither plunger 102 , 103 has been pushed into the syringe body 101 at this point.
  • FIG. 2 illustrates the final position of the device once all the material has been extruded. To use the device, a force may be applied to the first plunger 102 until all material in the first chamber is extruded and the plunger is locked in the final position. Force may then be applied to the second plunger 103 until all the material in the second chamber is extruded through the same needle 104 and the plunger 103 is locked in the final position.
  • FIGS. 3A-3C illustrate an example embodiment in use in more detail.
  • the dividing wall 301 , and the two chambers 302 , 303 may be seen in the transparent view.
  • both plungers 102 , 103 are fully extended out of the distal end of the syringe body 101 .
  • a user may then apply a force to one of the plungers 102 , 103 , e.g. plunger 103 , such as shown in FIG. 3B .
  • material is extruded from the needle 104 .
  • the user may then begin pushing the second plunger 102 , and may push that plunger 102 into the syringe body 101 until the syringe body 101 has been emptied, as shown in FIG. 3C .
  • a number of locking devices may be provided. Such locking devices may be necessary to the operation of the syringe device because, during use, the force exerted on each plunger 102 , 103 may result in a force tending to push the other plunger 102 , 103 out of the syringe body 101 . These forces may be understood with reference to FIG. 4 .
  • both chambers 302 , 303 of the syringe use the same needle 104 , the two chambers 302 , 303 are not fully separated, but, rather, are in communication at the proximal end of the syringe.
  • pressure applied to the material in the first chamber 303 is also experienced in the second chamber 302 .
  • Locking mechanisms may therefore be provided to keep the plungers 102 , 103 in place when experiencing such forces.
  • a force A is being applied to the lower plunger 103 by a user.
  • the fluid in the lower chamber 303 exerts a force B to the needle 104 , which in turn causes fluid 401 to be extruded through the needle 104 , as intended.
  • the fluid also applies force D to the upper plunger 102 . If the upper plunger 102 were free to slide, it could be pushed out of the syringe body 101 . Therefore, a locking mechanism may be supplied to prevent the unused plunger from moving.
  • the locking mechanism may take any appropriate form.
  • a tab 402 may be provided on the plunger rod 102 , 103 , near the distal end of the plunger rod 102 , 103 .
  • two tabs 402 may be located on the plunger rods 102 , 103 , opposite from one another.
  • Such tabs 402 may be made of any material, and may be an integral part of the plunger rod 102 , 103 or may be attached to the plunger rod 102 , 103 .
  • slots 403 may be provided in the body of the syringe 101 , corresponding to the position of the tab or tabs 403 , when the plungers 102 , 103 are in their initial position.
  • a slot 403 may be provided in the inner surface of the chamber 302 , 303 in which the plunger 102 , 103 is inserted, near the distal end of the chamber. In the initial state, the tab 403 may be engaged in the slot 403 , and may prevent the plunger 102 , 103 from sliding out of the syringe body 101 .
  • a tab and slot lock may again be used.
  • the tab may be located on the syringe body while the slot is formed in the plunger rod.
  • a tab may again be provided on either element, while another tab or ridge is provided on the corresponding element.
  • a tab may be provided on the plunger rod, and a second tab may be provided on the syringe. In such a case, the initial position of the plunger rod tab would be closer to the proximal end of the syringe than the tab or ridge on the syringe body.
  • the locking mechanism may be structured to be directional.
  • a tab and slot lock may be provided in which both the tab and the slot are triangular, or wedge shaped.
  • a tab formed on the plunger rod may have a triangular cross-section, where the tab joins the plunger rod at an acute angle closer to the proximal end, while the tab joins the plunger rod at a right angle further from the proximal end. Using such a locking mechanism, less force may be needed to push the plunger towards the needle than is required to push the plunger away from the needle when the lock is engaged.
  • Such locking mechanisms may be provided for both plungers 102 , 103 , for just one plunger, or for any number of plungers in example embodiments employing more than two plungers. In addition, similar locking mechanisms may be provided for locking plungers in their final position.
  • a second tab 501 may be provided on a plunger rod 102 , 103 located closer to the distal end.
  • a tab 501 may be shaped to engage with the same slot 403 used, to engage a tab 402 locking the plunger 102 , 103 in an initial position.
  • a different slot may be used.
  • any locking mechanism may be employed.
  • a slot may be provided on the plunger rod 102 , 103 while a tab is provided on the syringe body 101 .
  • FIG. 5 one of the two plungers 102 has been pushed entirely into the syringe 101 .
  • two locking tabs 501 disposed on either side of the plunger rod 102 have engaged in locking slots 403 in the syringe body 101 .
  • the plunger rod 102 will resist further sliding.
  • the other plunger rod 103 has similar locking tabs 501 . If the second plunger 103 is pushed slightly further the locking tabs 501 will enter the syringe body 101 , align with slots 403 provided in its chamber 303 , and, therefore, lock the plunger 103 in its final position as well. At that point all of the material in both chambers 302 , 303 may have been extruded.
  • FIG. 6 Components of a dual half-cylinder embodiment are shown in FIG. 6 . Illustrated are a dual half-cylinder chamber syringe 101 , one of two half-cylinder shaped plunger rods 102 , and one of two semi-circular plunger tips 601 . As discussed above, the plunger rod 102 may have a number of locking wings or tabs. For instance, the illustrated plunger rod 102 has a first locking wing 402 near the proximal end, which locks the plunger 102 in its initial position, and another locking wing 501 near the distal end, which locks the plunger rod 102 in its final position.
  • Such example devices may allow for an approximately 50% reduction in extrusion force, as compared to a standard syringe of single-chamber/single-plunger design with the equivalent volume, outer diameter, and length. If necessary, a further reduction in extrusion force can be accomplished by dividing the single chamber into more than two chambers and adding an additional number of corresponding plungers.
  • FIG. 7 Another example embodiment is illustrated in FIG. 7 .
  • the example embodiment again provides a syringe body 701 and two or more plungers 702 , 703 .
  • a syringe 701 with a traditional fluid chamber is used, undivided by a dividing wall.
  • two plungers 702 , 703 are provided, in the example, an outer 702 and an inner plunger 703 .
  • the inner 703 and the outer 702 plungers may be integrated so that they can slide along their common axis, but this motion may be limited between two extreme points.
  • Such plungers 702 , 703 may again be essentially in the form of a rod, and may have a plunger tip and a thumb grip.
  • plungers 702 , 703 may also have any cross-sectional shape.
  • the plungers 702 , 703 are illustrated in the figures with a circular cross-section; however, they may also be elliptical, or have the shape of a rectangle or other polygon.
  • the example embodiment may again be used by pushing one plunger 702 , 703 at a time into the syringe body 701 , e.g., the outer plunger 702 may be pressed into the syringe body 701 and then the inner plunger 703 may be likewise pressed into the syringe 701 . It is noted that, as in the previous example, exerting a force on the outer plunger 702 may tend to push the inner plunger 703 of the syringe. Accordingly, example embodiments may provide for locking mechanisms to prevent such movement.
  • one or more slots 704 may be provided in the outer plunger rod 702 , in the example two slots 704 are provided opposite each other.
  • the slots 704 may extend from a point near the distal end of the plunger shaft, to a point near the proximal end.
  • one or more locking arms 705 may be provided on the inner plunger rod 703 . Again, two locking arms 705 are provided in the illustrated example.
  • a locking groove 706 may be provided in the syringe body 701 which is configured to engage the locking arms 705 , when the inner plunger 703 is in the initial position. In order to do so, the locking arms 705 may pass through the slots 704 in the outer plunger rod 702 .
  • the plunger rods 702 , 703 may be free to slide relative to each other. It is also noted that, because it is not possible to use the inner plunger 703 first, in the example embodiment, the inner plunger 703 need not be supplied with a locking mechanism preventing movement from its final position. However, in other embodiments such a mechanism may be supplied.
  • the outer plunger 702 may also be provided with a locking mechanism.
  • the outer plunger rod 702 may include one or more locking arms 707 , positioned near the distal end of the plunger rod 702 .
  • it may be equipped with two locking arms 707 , e.g., at a 90° angle to the locking arms 705 of the inner plunger 703 .
  • These locking arms 707 may engage with the same locking groove 706 formed in the syringe 701 , or in another groove.
  • some embodiments may provide locking arms, or other mechanisms, for that purpose.
  • FIGS. 7A-9C illustrate the use of such an example embodiment.
  • the plungers 702 , 703 are in their initial position, as described. From this position a user may apply a force to the outer plunger rod 702 , pushing it into the syringe body 701 and extruding material from the needle 708 . Force may be applied to the outer plunger 702 until it slides all the way to the other end of the syringe chamber and locks into its final position through the two locking arms 707 , in the position shown in FIGS. 8A-8C .
  • the inner plunger 703 may have been held in place by its two locking arms 705 , as the outer plunger rod 702 was pressed into the syringe 701 , resisting the force exerted by the fluid in the chamber.
  • the outer plunger slots 704 allow for the inner plunger locking arms 705 to engage the syringe groove 706 while the outer plunger moves 702 .
  • FIG. 10 illustrates example components of such example embodiments, in detail.
  • the figure illustrates a single cylindrical chamber syringe 701 , an outer plunger 702 with two slots 704 and two locking arms 707 , an outer plunger tip 1001 , an inner plunger 703 with two locking arms 705 , and an inner plunger tip 1002 .
  • the outer plunger 702 fits into the syringe 701
  • the inner plunger 703 fits into the outer plunger 702 .
  • the plunger tips 1001 , 1002 nest similarly.
  • the outer plunger tip 1001 may be shaped in the form of a ring
  • inner plunger tip 1002 may be shaped in the form of a disk, able to fit within the outer plunger tip 1001 .
  • Such example embodiments may also allow for an approximately 50% reduction in extrusion force, as compared to a standard syringe of single-chamber/single-plunger design with the equivalent volume, outer diameter, and length.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A syringe is disclosed. The syringe may include a syringe body with a fluid chamber, the syringe body having a distal end and a proximal end, with an extrusion opening at the proximal end; a dividing wall disposed within the fluid chamber, defining a first fluid chamber and a second fluid chamber, the first fluid chamber and the second fluid chamber in communication with the extrusion opening; a first plunger disposed in a distal end of the first chamber, the first plunger including a first locking mechanism configured to prevent the first plunger from sliding away from the proximal end of the syringe body, when the first plunger is in a first initial position and the second plunger is being depressed; and a second plunger disposed in a distal end of the second chamber, the second plunger including a second locking mechanism configured to prevent the second plunger from sliding away from the proximal end of the syringe body when the second plunger is in a second initial position and the first plunger is being depressed.

Description

RELATED APPLICATION
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/292,370, filed on Jan. 5, 2010, the entire disclosure of which is hereby incorporated by reference herein.
BACKGROUND
A number of medical applications require the injection of significant amounts of material. For example, one such application is the injection of dermal fillers to correct facial wrinkles or folds. In such a procedure, a possibly significant quantity of dermal filler material is injected under the skin using a syringe. In addition, the material injected may have a higher viscosity than the substances typically injected by syringe. For example, some dermal fillers may include gels, such as a gel made of hyaluronic acid. Traditional syringes and the plunger rods used with such syringes present a number of problems when used for such applications. For instance, in order to accommodate significant volumes of material, such syringes must typically have either a large length or cross-sectional area. Syringes with larger cross-sectional areas are often not practical, however, because the extrusion force required when operating a syringe increases with the cross-sectional area, this may be particularly problematic when injecting viscous fluids. Increasing the length of a traditional syringe, however, may significantly increase the overall length of the device, as a longer plunger may also need to be used, which may reduce the user's comfort and control during use. Accordingly, example embodiments provide improved syringe and plunger devices which may address a number of the shortcomings of traditional devices.
SUMMARY
Example embodiments described herein provide a syringe, which may include a syringe body with a fluid chamber, the syringe body having a distal end and a proximal end, with an extrusion opening at the proximal end; a dividing wall disposed within the fluid chamber, defining a first fluid chamber and a second fluid chamber, the first fluid chamber and the second fluid chamber in communication with the extrusion opening; a first plunger disposed in a distal end of the first chamber, the first plunger including a first locking mechanism configured to prevent the first plunger from sliding away from the proximal end of the syringe body, when the first plunger is in a first initial position and the second plunger is being depressed; and a second plunger disposed in a distal end of the second chamber, the second plunger including a second locking mechanism configured to prevent the second plunger from sliding away from the proximal end of the syringe body when the second plunger is in a second initial position and the first plunger is being depressed.
In some example embodiments, the first locking mechanism may include a first locking wing formed at a proximal end of the first plunger; and a first groove formed in the distal end of the first fluid chamber; where the first locking wing may be positioned to engage in the first groove when the first plunger is in the first initial position.
Some example embodiments may also include a third locking mechanism configured to prevent the first plunger from sliding away from the proximal end of the syringe body, when the first plunger is in a first final position and the second plunger is being depressed; and a fourth locking mechanism configured to prevent the second plunger from sliding away from the proximal end of the syringe body, when the second plunger is in a second final position and the first plunger is being depressed.
In some example embodiments, the third locking mechanism may include a third locking wing formed at a distal end of the first plunger; and a third groove formed in a distal end of the first fluid chamber; where the third locking wing may be positioned to engage in the third groove when the first plunger is in the first final position.
In some example embodiments, the first groove may be the third groove. In other example embodiments the first groove may be distinct from the third groove. In still other example embodiments, the first locking wing may be a directional locking wing or the third locking wing may be a directional locking wing.
In some example embodiments, the first fluid chamber and the second fluid chamber may have a semi-circular cross-section. In other example embodiments, the first fluid chamber and the second fluid chamber may have a rectangular cross-section.
Other example embodiments may provide a syringe, which may include a syringe body with a fluid chamber, the syringe body having a distal end and a proximal end, with an extrusion opening at the proximal end; an outer plunger disposed in the distal end of the fluid chamber, the outer plunger having a bore running from a distal end to a proximal end; and an inner plunger slidably disposed in the bore.
Some example embodiments may also include a first locking mechanism configured to prevent the inner plunger from sliding relative to the syringe body when the inner plunger is in an initial position and the outer plunger is being depressed.
Some example embodiments may also include a first slot in the outer plunger, extending a portion of the length of the outer plunger from the distal end to the proximal end; where the first slot may be configured to allow the outer plunger to slide relative to the inner plunger and the syringe body when the first locking mechanism is engaged.
In some example embodiments, the locking mechanism may include a first locking arm disposed on the inner plunger near a proximal end of the inner plunger; and a first groove disposed within the syringe body near the distal end of the syringe body; where the first locking arm may be configured to engage in the first groove, when the inner plunger is in the initial position, passing through the first slot.
Some example embodiments may also include a second locking mechanism, configured to prevent the outer plunger from sliding relative to the syringe body when the outer plunger is in a final position and the inner plunger is being depressed.
In some example embodiments, the second locking mechanism may include a first locking tab disposed on the outer plunger near the distal end of the outer plunger; and a second groove disposed within the syringe body near the distal end of the syringe body; where the first locking tab may be configured to engage in the second groove, when the outer plunger is in the final position.
In some example embodiments, the first groove may be the second groove. In other example embodiments, the inner plunger and the outer plunger may have circular cross-sections. Some example embodiments may also include an outer plunger tip attached to the outer plunger; and an inner plunger tip attached to the inner plunger; where the inner plunger tip may be shaped to fit within a hole passing through the outer plunger tip.
In some example embodiments, the outer plunger tip may have a ring shape; and the inner plunger tip may have a disk shape.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be more readily understood from a detailed description of example embodiments taken in conjunction with the following figures:
FIG. 1 illustrates an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
FIG. 2 illustrates an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
FIGS. 3A-3C illustrate transparent views of an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
FIG. 4 illustrates a cross-sectional view of a dual-chamber/dual-plunger syringe in accordance with an example embodiment.
FIG. 5 illustrates a detailed view of an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
FIG. 6 illustrates a disassembled view of an example dual-chamber/dual-plunger syringe in accordance with an example embodiment.
FIGS. 7A-7C illustrate an example single-chamber/dual-plunger syringe in accordance with an example embodiment.
FIGS. 8A-8C illustrate an example single-chamber/dual-plunger syringe in accordance with an example embodiment.
FIGS. 9A-9C illustrate an example single-chamber/dual-plunger syringe in accordance with an example embodiment.
FIG. 10 illustrates a disassembled view of an example single-chamber/dual-plunger syringe in accordance with an example embodiment.
DETAILED DESCRIPTION
Example embodiments of the invention generally relate to a new syringe system designed to dispense large volumes of fluid, while minimizing the force of extrusion and length of the device. Such example embodiments may, for example, be used in the administration of gels that can have cosmetic or medical applications.
Most current syringes are designed to dispense low viscosity fluids through a fine needle with minimum extrusion force. Higher viscosity fluids (e.g. dermal fillers) can also be dispensed with the current design, however at a considerably higher extrusion force. This can result in injection fatigue, as physicians are often required to perform numerous injections on a daily basis. In some other instances, high extrusion force can result in needle disengagement and possibly patient injury. Example embodiments, however, provide a syringe device reduces the extrusion force required, e.g., to extrude highly viscous fluid through a fine needle, while maintaining the same fill volume.
As an initial matter, the extrusion force required to maintain a constant flow of a Newtonian fluid through a tube with a constant circular cross-section is governed by the Hagen-Poiseuille equation:
F = A · Δ P = π r 2 · 8 μ LQ π r 4 = 8 μ LQ r 2 ,
    • where:
    • ΔP is the pressure drop required to maintain a constant volumetric flow rate Q,
    • μ is the dynamic viscosity,
    • L is the length of the tube, and
    • r is the radius of the tube.
This general equation can be applied to a needle of length Ln and radius rn
F n = 8 μ L n Q r n 2
This force must be applied to a cross-sectional area in the entrance of the needle to maintain a constant flow rate Q. The corresponding force on a cross-sectional area in the syringe can be calculated by assuming zero pressure drop in the syringe and equating the pressure in the entrance of the needle with the pressure in the syringe:
F s = F n A s A n = 8 μ L n QA s π r n 4
    • where:
    • As is the cross-sectional area of the syringe, and
    • An is the cross-sectional area of the needle.
This is a simplified equation that assumes that the bottleneck of the process is the needle (where the majority of the extrusion energy is lost) and neglects entrance losses as the flow transitions from the syringe to the needle as well as losses in the syringe. According to this equation the extrusion force for a given flow rate Q is proportional to the length of the needle Ln, the viscosity of the fluid μ, and the cross sectional area of the syringe As, and inversely proportional to the 4th power of the needle radius rn.
For a given fluid, needle, and flowrate, the only parameter that is left to control the extrusion force is the syringe cross-sectional area. Minimizing that parameter can reduce the force required to extrude a viscous solution through a fine needle. However, there is a limit on how much this area can be reduced, which is primarily determined by the fill volume of the syringe. As the syringe diameter decreases, the length of the syringe has to increase to accommodate the fixed volume of fluid. Increasing the length of the syringe, however, can result in practical issues, e.g. reduced functionality, ergonomics considerations, and less control over the needle that can not only cause physician discomfort, but ultimately affect the patient's safety.
Example embodiments may resolve these problems by, for example, providing dual/multi-chamber and/or dual/multi-plunger devices designed to reduce the force required to extrude a fluid through a fine needle while maintaining the same fill volume and length as a conventional syringe. In some example embodiments, such an effect is achieved by splitting a single syringe chamber into two or more chambers of equal or different cross-sectional areas and attaching one plunger to each chamber. The fluid is then extruded by applying force to the first plunger until it moves all the way through the first chamber and locks in the end position and then by applying force to the second plunger and so on until all the fluid is dispensed. In such example embodiments, all chambers merge into a single needle at the end of the device proximal to the point of injection (the terms proximal and distal, as used herein, are to be understood in relation to the point of injection during use). In other example embodiments, a single chamber may be provided with a dual/multi-plunger set-up, achieving a similar reduction in extrusion force.
An example syringe and plunger device in accordance with an embodiment is shown in FIG. 1. As illustrated, the example device may have a syringe body 101 and a plurality of plungers 102, 103. The syringe body 101 may be shaped substantially like a conventional syringe. For instance, the syringe body 101 may be cylindrical, may have a proximal end, which may include an opening for extruding the injectable material contained in the syringe, and may also include an attachment point for attaching a needle 104, e.g. a luer, or may have an integrated needle 104. In addition, the syringe body 101 may also include finger grips 105, which may be used like the finger grips of a convention syringe, allowing a user to apply pressure to the plunger rods 102, 103.
In example embodiments, the syringe chamber may be divided into multiple chambers by a dividing wall. For example, the depicted syringe body 101 may be divided into two chambers, where each chamber may have a half-cylinder shape, though other shapes are also usable, e.g., chambers with the shape of a rectangle or other polygon, or of an oval, may also be used. The dividing wall may extend the length of the syringe 101 up to the point at which it meets the needle opening, or syringe luer, etc. In such embodiments, a plunger 102, 103, shaped to match the chambers, may be inserted into to the distal end of each chamber. Such plungers may be shaped generally in the form of a rod, and may have a plunger tip at a proximal end and a thumb grip at a distal end.
It is noted that FIG. 1 illustrates both plungers 102, 103 in their initial positions. That is, neither plunger 102, 103 has been pushed into the syringe body 101 at this point. FIG. 2 illustrates the final position of the device once all the material has been extruded. To use the device, a force may be applied to the first plunger 102 until all material in the first chamber is extruded and the plunger is locked in the final position. Force may then be applied to the second plunger 103 until all the material in the second chamber is extruded through the same needle 104 and the plunger 103 is locked in the final position.
FIGS. 3A-3C illustrate an example embodiment in use in more detail. As an initial matter, the dividing wall 301, and the two chambers 302, 303 may be seen in the transparent view. In the initial state (FIG. 3A) both plungers 102, 103 are fully extended out of the distal end of the syringe body 101. A user may then apply a force to one of the plungers 102, 103, e.g. plunger 103, such as shown in FIG. 3B. As the user pushes the first plunger 103 towards the proximal end of the syringe body 101, material is extruded from the needle 104. Once the first plunger 103 has been pushed its entire length, the user may then begin pushing the second plunger 102, and may push that plunger 102 into the syringe body 101 until the syringe body 101 has been emptied, as shown in FIG. 3C.
In order to facilitate this process, a number of locking devices may be provided. Such locking devices may be necessary to the operation of the syringe device because, during use, the force exerted on each plunger 102, 103 may result in a force tending to push the other plunger 102, 103 out of the syringe body 101. These forces may be understood with reference to FIG. 4.
First, it is noted that, because, in some embodiments, both chambers 302, 303 of the syringe use the same needle 104, the two chambers 302, 303 are not fully separated, but, rather, are in communication at the proximal end of the syringe. Thus pressure applied to the material in the first chamber 303 is also experienced in the second chamber 302. Locking mechanisms may therefore be provided to keep the plungers 102, 103 in place when experiencing such forces.
For instance, as shown in FIG. 4, a force A is being applied to the lower plunger 103 by a user. As a result, the fluid in the lower chamber 303 exerts a force B to the needle 104, which in turn causes fluid 401 to be extruded through the needle 104, as intended. However, because the two chambers 302, 303 are in communication, the fluid also applies force D to the upper plunger 102. If the upper plunger 102 were free to slide, it could be pushed out of the syringe body 101. Therefore, a locking mechanism may be supplied to prevent the unused plunger from moving.
The locking mechanism may take any appropriate form. For instance, a tab 402, or multiple tabs, may be provided on the plunger rod 102, 103, near the distal end of the plunger rod 102, 103. For example, as illustrated in the drawings, two tabs 402 may be located on the plunger rods 102, 103, opposite from one another. Such tabs 402 may be made of any material, and may be an integral part of the plunger rod 102, 103 or may be attached to the plunger rod 102, 103. In addition, slots 403 may be provided in the body of the syringe 101, corresponding to the position of the tab or tabs 403, when the plungers 102, 103 are in their initial position. For instance, a slot 403 may be provided in the inner surface of the chamber 302, 303 in which the plunger 102, 103 is inserted, near the distal end of the chamber. In the initial state, the tab 403 may be engaged in the slot 403, and may prevent the plunger 102, 103 from sliding out of the syringe body 101.
In some example embodiments, other locking mechanisms may be employed. For example, a tab and slot lock may again be used. However, the tab may be located on the syringe body while the slot is formed in the plunger rod. Alternatively, a tab may again be provided on either element, while another tab or ridge is provided on the corresponding element. For instance, a tab may be provided on the plunger rod, and a second tab may be provided on the syringe. In such a case, the initial position of the plunger rod tab would be closer to the proximal end of the syringe than the tab or ridge on the syringe body.
In addition, the locking mechanism may be structured to be directional. For example, a tab and slot lock may be provided in which both the tab and the slot are triangular, or wedge shaped. For example, a tab formed on the plunger rod may have a triangular cross-section, where the tab joins the plunger rod at an acute angle closer to the proximal end, while the tab joins the plunger rod at a right angle further from the proximal end. Using such a locking mechanism, less force may be needed to push the plunger towards the needle than is required to push the plunger away from the needle when the lock is engaged.
Such locking mechanisms may be provided for both plungers 102, 103, for just one plunger, or for any number of plungers in example embodiments employing more than two plungers. In addition, similar locking mechanisms may be provided for locking plungers in their final position.
For instance, a second tab 501, illustrated in FIG. 5, may be provided on a plunger rod 102, 103 located closer to the distal end. Such a tab 501 may be shaped to engage with the same slot 403 used, to engage a tab 402 locking the plunger 102, 103 in an initial position. Alternatively, a different slot may be used. Again, any locking mechanism may be employed. For instance, as above, a slot may be provided on the plunger rod 102, 103 while a tab is provided on the syringe body 101.
In FIG. 5, one of the two plungers 102 has been pushed entirely into the syringe 101. In this position, two locking tabs 501 disposed on either side of the plunger rod 102 have engaged in locking slots 403 in the syringe body 101. In this state, the plunger rod 102 will resist further sliding. As can be seen, the other plunger rod 103 has similar locking tabs 501. If the second plunger 103 is pushed slightly further the locking tabs 501 will enter the syringe body 101, align with slots 403 provided in its chamber 303, and, therefore, lock the plunger 103 in its final position as well. At that point all of the material in both chambers 302, 303 may have been extruded.
Components of a dual half-cylinder embodiment are shown in FIG. 6. Illustrated are a dual half-cylinder chamber syringe 101, one of two half-cylinder shaped plunger rods 102, and one of two semi-circular plunger tips 601. As discussed above, the plunger rod 102 may have a number of locking wings or tabs. For instance, the illustrated plunger rod 102 has a first locking wing 402 near the proximal end, which locks the plunger 102 in its initial position, and another locking wing 501 near the distal end, which locks the plunger rod 102 in its final position.
Such example devices may allow for an approximately 50% reduction in extrusion force, as compared to a standard syringe of single-chamber/single-plunger design with the equivalent volume, outer diameter, and length. If necessary, a further reduction in extrusion force can be accomplished by dividing the single chamber into more than two chambers and adding an additional number of corresponding plungers.
Another example embodiment is illustrated in FIG. 7. The example embodiment again provides a syringe body 701 and two or more plungers 702, 703. In the example embodiment, a syringe 701 with a traditional fluid chamber is used, undivided by a dividing wall. Again two plungers 702, 703 are provided, in the example, an outer 702 and an inner plunger 703. The inner 703 and the outer 702 plungers may be integrated so that they can slide along their common axis, but this motion may be limited between two extreme points. Such plungers 702, 703 may again be essentially in the form of a rod, and may have a plunger tip and a thumb grip. In addition, such plungers 702, 703 may also have any cross-sectional shape. For instance, the plungers 702, 703 are illustrated in the figures with a circular cross-section; however, they may also be elliptical, or have the shape of a rectangle or other polygon.
The example embodiment may again be used by pushing one plunger 702, 703 at a time into the syringe body 701, e.g., the outer plunger 702 may be pressed into the syringe body 701 and then the inner plunger 703 may be likewise pressed into the syringe 701. It is noted that, as in the previous example, exerting a force on the outer plunger 702 may tend to push the inner plunger 703 of the syringe. Accordingly, example embodiments may provide for locking mechanisms to prevent such movement.
As shown in the figure, one or more slots 704 may be provided in the outer plunger rod 702, in the example two slots 704 are provided opposite each other. The slots 704 may extend from a point near the distal end of the plunger shaft, to a point near the proximal end. In addition, one or more locking arms 705 may be provided on the inner plunger rod 703. Again, two locking arms 705 are provided in the illustrated example. A locking groove 706 may be provided in the syringe body 701 which is configured to engage the locking arms 705, when the inner plunger 703 is in the initial position. In order to do so, the locking arms 705 may pass through the slots 704 in the outer plunger rod 702. It is noted that, because the slots 704 may extend along the length of the outer plunger rod 702, the plunger rods 702, 703 may be free to slide relative to each other. It is also noted that, because it is not possible to use the inner plunger 703 first, in the example embodiment, the inner plunger 703 need not be supplied with a locking mechanism preventing movement from its final position. However, in other embodiments such a mechanism may be supplied.
Also as noted above, force exerted on the inner plunger 703 will tend to force the outer plunger 702 out of the syringe 701 as well. Accordingly, the outer plunger 702 may also be provided with a locking mechanism. For example, the outer plunger rod 702 may include one or more locking arms 707, positioned near the distal end of the plunger rod 702. For instance, it may be equipped with two locking arms 707, e.g., at a 90° angle to the locking arms 705 of the inner plunger 703. These locking arms 707 may engage with the same locking groove 706 formed in the syringe 701, or in another groove. Again, as the outer plunger 702 must be used first in the initial configuration, there may be no need to lock it in its initial position. However, some embodiments may provide locking arms, or other mechanisms, for that purpose.
FIGS. 7A-9C illustrate the use of such an example embodiment. In FIGS. 7A-7C, the plungers 702, 703 are in their initial position, as described. From this position a user may apply a force to the outer plunger rod 702, pushing it into the syringe body 701 and extruding material from the needle 708. Force may be applied to the outer plunger 702 until it slides all the way to the other end of the syringe chamber and locks into its final position through the two locking arms 707, in the position shown in FIGS. 8A-8C. The inner plunger 703 may have been held in place by its two locking arms 705, as the outer plunger rod 702 was pressed into the syringe 701, resisting the force exerted by the fluid in the chamber. The outer plunger slots 704 allow for the inner plunger locking arms 705 to engage the syringe groove 706 while the outer plunger moves 702.
Once the outer plunger 702 locks into its final position, force may be applied to the inner plunger 703 until the remaining material is extruded. Once the inner plunger 703 is pushed all the way into the syringe body 701, all of the material in the syringe will have been extruded, and the device will be in its final position, shown in FIG. 9A-9C.
FIG. 10 illustrates example components of such example embodiments, in detail. The figure illustrates a single cylindrical chamber syringe 701, an outer plunger 702 with two slots 704 and two locking arms 707, an outer plunger tip 1001, an inner plunger 703 with two locking arms 705, and an inner plunger tip 1002. As explained above, when assembled, the outer plunger 702 fits into the syringe 701, while the inner plunger 703 fits into the outer plunger 702. The plunger tips 1001, 1002 nest similarly. For example, the outer plunger tip 1001 may be shaped in the form of a ring, while inner plunger tip 1002 may be shaped in the form of a disk, able to fit within the outer plunger tip 1001.
Such example embodiments may also allow for an approximately 50% reduction in extrusion force, as compared to a standard syringe of single-chamber/single-plunger design with the equivalent volume, outer diameter, and length.
In the preceding specification, the present invention has been described with reference to specific example embodiments thereof. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the present invention. The description and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims (6)

We claim:
1. A syringe, comprising:
a syringe body with a fluid chamber;
a dividing wall disposed within the fluid chamber, defining a first fluid chamber and a second fluid chamber, the first fluid chamber and the second fluid chamber in communication with the extrusion opening;
the first chamber and the second chamber containing a dermal filler gel;
a first plunger disposed in the first chamber and slidable between an initial position and a final position; and
a second plunger disposed in the second chamber and slidable between an initial position and a final position, the second plunger including a locking mechanism configured to prevent the second plunger from being pushed out of the syringe body when the first plunger is being depressed from its initial position to its final position during dispensing of the dermal filler gel from the first chamber and out of the extrusion opening;
wherein the first plunger includes a locking mechanism configured to prevent the first plunger from sliding away from its final position, when the second plunger is being depressed from its first position to its second position during dispensing of the dermal filler gel from the second chamber and out of the extrusion opening.
2. The syringe of claim 1, wherein the locking mechanism of the first plunger comprises:
a tab on the first plunger; and
a groove formed in the first fluid chamber;
wherein the tab is positioned to engage in the groove when the first plunger is in its final position.
3. The syringe of claim 1, wherein the locking mechanism of the second plunger comprises:
a tab on the second plunger; and
a groove formed in the second fluid chamber;
wherein the tab is positioned to engage in the groove when the second plunger is in its initial position.
4. A dermal filler syringe, comprising:
a syringe body with a fluid chamber;
a dividing wall disposed within the fluid chamber, defining a first fluid chamber and a second fluid chamber, the first fluid chamber and the second fluid chamber in communication with the extrusion opening;
both of the first chamber and the second chamber containing a dermal filler gel;
a first plunger disposed in the first chamber and slidable between an initial fully extended position and a final fully inserted position; and
a second plunger disposed in the second chamber and slidable between an initial fully extended position and a final fully inserted position;
the second plunger including a locking mechanism configured to prevent the second plunger from being pushed out of the syringe body when the first plunger is being depressed from its initial fully extended position to its final fully inserted position during dispensing of the dermal filler gel from the first chamber and out of the extrusion opening; and
the first plunger including a locking mechanism configured to prevent the first plunger from sliding away from its final fully inserted position when the second plunger is being depressed from its first fully extended position to its second fully inserted position during dispensing of the dermal filler gel from the second chamber and out of the extrusion opening.
5. The dermal filler syringe of claim 4, wherein the locking mechanism of the first plunger comprises:
a tab on the first plunger; and
a groove formed in the first fluid chamber;
wherein the tab is positioned to engage in the groove when the first plunger is in its final fully inserted position.
6. The dermal filler syringe of claim 4, wherein the locking mechanism of the second plunger comprises:
a tab on the second plunger; and
a groove formed in the second fluid chamber;
wherein the tab is positioned to engage in the groove when the second plunger is in its initial fully extended position.
US12/968,576 2010-01-05 2010-12-15 Syringe Active 2032-03-09 US8961474B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/968,576 US8961474B2 (en) 2010-01-05 2010-12-15 Syringe
US14/617,783 US9750884B2 (en) 2010-01-05 2015-02-09 Syringe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29237010P 2010-01-05 2010-01-05
US12/968,576 US8961474B2 (en) 2010-01-05 2010-12-15 Syringe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/617,783 Division US9750884B2 (en) 2010-01-05 2015-02-09 Syringe

Publications (2)

Publication Number Publication Date
US20110166531A1 US20110166531A1 (en) 2011-07-07
US8961474B2 true US8961474B2 (en) 2015-02-24

Family

ID=43734307

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/968,576 Active 2032-03-09 US8961474B2 (en) 2010-01-05 2010-12-15 Syringe
US14/617,783 Active 2031-06-17 US9750884B2 (en) 2010-01-05 2015-02-09 Syringe

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/617,783 Active 2031-06-17 US9750884B2 (en) 2010-01-05 2015-02-09 Syringe

Country Status (5)

Country Link
US (2) US8961474B2 (en)
EP (1) EP2521579A1 (en)
AU (1) AU2010340024A1 (en)
CA (1) CA2786366A1 (en)
WO (1) WO2011084504A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202186A1 (en) 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
CN106214321B (en) 2010-10-15 2018-08-28 科尼尔赛德生物医学公司 Device for entering eyes
WO2013163033A1 (en) * 2012-04-23 2013-10-31 Siemens Healthcare Diagnostics Inc. Multi-chamber pump apparatus, systems, and methods
CN102727956B (en) * 2012-07-28 2013-07-17 陆培华 Pre-transfusion vascular indwelling unblocking syringe flushing and sealing device
CN102836473B (en) * 2012-09-12 2014-06-11 陆培华 Single-tube prefilled washpipe tube sealing device
MX2015005839A (en) 2012-11-08 2015-12-17 Clearside Biomedical Inc Methods and devices for the treatment of ocular diseases in human subjects.
BR112015027762A2 (en) 2013-05-03 2017-08-29 Clearside Biomedical Inc APPLIANCE AND METHODS FOR OCULAR INJECTION
WO2014197317A1 (en) 2013-06-03 2014-12-11 Clearside Biomedical, Inc. Apparatus and methods for drug delivery using multiple reservoirs
US20150056718A1 (en) * 2013-08-23 2015-02-26 Sylvia Maria Cuttino Dual syringe
PT107175A (en) * 2013-09-19 2015-03-19 Escola Superior De Enfermagem De Coimbra SYRINGE
US9353811B2 (en) 2013-11-13 2016-05-31 Akebono Brake Industry Co., Ltd Electric park brake for a multiple piston caliper
JP2017524419A (en) * 2014-06-20 2017-08-31 クリアサイド バイオメディカル,インコーポレイテッド Variable diameter cannula and method for controlling insertion depth for drug delivery
EP3160540A4 (en) * 2014-06-27 2018-03-14 Bayer Healthcare LLC Inline patency check device
US9919111B2 (en) 2014-06-30 2018-03-20 Elwha Llc Active lubrication of penetrating devices
US9919112B2 (en) 2014-06-30 2018-03-20 Elwha Llc Active lubrication of penetrating devices
US20150374915A1 (en) * 2014-06-30 2015-12-31 Elwha Llc Active Lubrication of Penetrating Devices
CN104225727B (en) * 2014-10-16 2017-10-27 杭州美中疾病基因研究院有限公司 A kind of integrated Y-type three way type injector for medical purpose
US9700680B2 (en) * 2015-03-31 2017-07-11 Medtrick Inc. Medical devices and methods for creating bubbles
CN105534710B (en) * 2016-01-26 2018-04-06 安徽智博新材料科技有限公司 The method of solution for skin test dispenser and preparing solution for skin test
EP3413851B1 (en) 2016-02-10 2023-09-27 Clearside Biomedical, Inc. Packaging
CN105582601A (en) * 2016-03-26 2016-05-18 黄敬远 Multifunctional combined double-tube syringe
EP3452165A1 (en) 2016-05-02 2019-03-13 Clearside Biomedical, Inc. Systems and methods for ocular drug delivery
WO2018031913A1 (en) 2016-08-12 2018-02-15 Clearside Biomedical, Inc. Devices and methods for adjusting the insertion depth of a needle for medicament delivery
CN106267539A (en) * 2016-11-07 2017-01-04 郑州游爱网络技术有限公司 A kind of gynaecopathia fixed point administrator
US12090294B2 (en) 2017-05-02 2024-09-17 Georgia Tech Research Corporation Targeted drug delivery methods using a microneedle
SA118390710B1 (en) * 2018-07-11 2019-12-02 عبدالرحمن عبدالله السحيباني عبدالعزيز Syringe for One-Handed Injection and Aspiration
CN112315655A (en) * 2018-11-06 2021-02-05 张琦 Anti-misoperation internal-pumping external-injection type tympanic membrane puncture and intratympanic injection medical device
CN109350834B (en) * 2018-12-20 2021-03-05 杜静 Obstetrical canal anesthesia and inflammation diminishing dual-purpose device for obstetrics and gynecology department
US11339842B2 (en) 2019-03-26 2022-05-24 Akebono Brake Industry Co., Ltd. Brake system with torque distributing assembly
CN110917448A (en) * 2019-12-09 2020-03-27 宁波迪创医疗科技有限公司 Injection system capable of monitoring effectiveness of needle insertion
EP3868420A1 (en) * 2020-02-19 2021-08-25 Ivoclar Vivadent AG Dosing container for dosing viscous material components
WO2023249866A1 (en) * 2022-06-24 2023-12-28 Becton, Dickinson And Company Multi-chamber syringe with multiple plungers for sequential delivery of fluids and methods of use

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753536A (en) 1987-03-09 1988-06-28 Spehar Edward R Dispensing mixer for the storage and mixing of separate materials
US4813433A (en) * 1988-04-11 1989-03-21 Downey John M Syringe for withdrawing blood
WO1994022507A2 (en) 1993-04-02 1994-10-13 Eli Lilly And Company Manifold medication injection apparatus and method
US5445614A (en) * 1993-10-20 1995-08-29 Habley Medical Technology Corporation Pharmaceutical storage and mixing syringe
EP1093826A1 (en) 1999-10-18 2001-04-25 Terumo Kabushiki Kaisha Pre-filled syringe
WO2005095225A1 (en) 2004-04-01 2005-10-13 5 Mix Limited Dispenser for two components and method for dispensing first and second components
US20070073267A1 (en) 2005-09-27 2007-03-29 Mile Creek Capital, Llc Low-loss multi-lumen injection apparatus
US20090101670A1 (en) 2007-10-22 2009-04-23 The Fountainhead Group, Inc. Mixing applicator
US20090131886A1 (en) 2007-11-16 2009-05-21 Liu Y King Steerable vertebroplasty system
US20090287161A1 (en) * 2008-05-15 2009-11-19 Allergan, Inc Metered, multiple dose/aliquot syringe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749084A (en) * 1971-05-03 1973-07-31 A Cucchiara Sequentially dispensing syringe with multiple needle assembly
CA1231016A (en) * 1983-01-23 1988-01-05 Amir Porat Syringe

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753536A (en) 1987-03-09 1988-06-28 Spehar Edward R Dispensing mixer for the storage and mixing of separate materials
US4813433A (en) * 1988-04-11 1989-03-21 Downey John M Syringe for withdrawing blood
WO1994022507A2 (en) 1993-04-02 1994-10-13 Eli Lilly And Company Manifold medication injection apparatus and method
US5445614A (en) * 1993-10-20 1995-08-29 Habley Medical Technology Corporation Pharmaceutical storage and mixing syringe
EP1093826A1 (en) 1999-10-18 2001-04-25 Terumo Kabushiki Kaisha Pre-filled syringe
WO2005095225A1 (en) 2004-04-01 2005-10-13 5 Mix Limited Dispenser for two components and method for dispensing first and second components
US20070073267A1 (en) 2005-09-27 2007-03-29 Mile Creek Capital, Llc Low-loss multi-lumen injection apparatus
US20090101670A1 (en) 2007-10-22 2009-04-23 The Fountainhead Group, Inc. Mixing applicator
US20090131886A1 (en) 2007-11-16 2009-05-21 Liu Y King Steerable vertebroplasty system
US20090287161A1 (en) * 2008-05-15 2009-11-19 Allergan, Inc Metered, multiple dose/aliquot syringe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
http://www.drugs.com/pro/lupron-depot.html, Revised Feb. 2011, Abbott Laboratories.

Also Published As

Publication number Publication date
US20110166531A1 (en) 2011-07-07
WO2011084504A1 (en) 2011-07-14
AU2010340024A1 (en) 2012-07-26
US9750884B2 (en) 2017-09-05
CA2786366A1 (en) 2011-07-14
US20150151052A1 (en) 2015-06-04
EP2521579A1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US9750884B2 (en) Syringe
US9220843B2 (en) Extendable plunger rod for medical syringe
EP2560713B1 (en) Syringe dispenser, stand and application plate for said syringe dispenser and method for its use
US7976510B2 (en) Syringe with adjustable two piece plunger rod
US8220507B2 (en) Dispenser and method for storing and dispensing sterile product
US8529517B2 (en) Autoflush syringe
EP2432528B1 (en) Steroid delivery system
US20080132852A1 (en) Dosage device
US20120029471A1 (en) Two chamber syringe with locking mechanism
US8409150B2 (en) Ampoule with a seal in two compression states
US20120330245A1 (en) Slotted syringe
KR20210131356A (en) A valve stopper for a medical injection device and a medical injection device for dispensing at least one composition
US9265890B2 (en) Syringe piston with finned sealing cover
RU2727575C2 (en) Proportioning device with low radial sealing forces during storage
US20120165754A1 (en) Syringe piston with fin-shaped circumferential sealing element
CN115335099A (en) Plunger rod and syringe comprising the same
KR20230065273A (en) Plungers and finger grips for syringe assemblies, manufacturing methods thereof, syringe assemblies, kits and uses thereof
IL263707B1 (en) Controlled volume dropper
EP4454684A1 (en) Pfas-free syringe plunger stopper with curved inter-rib region
EP3860688B1 (en) Syringe for reconstituting and injecting a pharmaceutical solution

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLERGAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STROUMPOULIS, DIMITRIOS;MUDD, CHRISTOPHER S.;REEL/FRAME:025626/0908

Effective date: 20110112

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8