US8079222B2 - Thermoelectric cooler controller - Google Patents
Thermoelectric cooler controller Download PDFInfo
- Publication number
- US8079222B2 US8079222B2 US12/024,041 US2404108A US8079222B2 US 8079222 B2 US8079222 B2 US 8079222B2 US 2404108 A US2404108 A US 2404108A US 8079222 B2 US8079222 B2 US 8079222B2
- Authority
- US
- United States
- Prior art keywords
- tec
- voltage
- converter
- volts
- dac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 claims abstract description 14
- 230000004044 response Effects 0.000 claims description 3
- 238000009529 body temperature measurement Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
- F25B21/02—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/021—Control thereof
- F25B2321/0212—Control thereof of electric power, current or voltage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/16—Sensors measuring the temperature of products
Definitions
- Subject matter disclosed herein relates to a circuit to adjust or modify a thermoelectric cooler.
- a Thermo-Electric Cooler may be found in many applications that employ precision temperature adjustment, including optical transceivers, for example.
- the small size of the TEC may allow thermal adjustment of individual components, such as fiber optic laser diodes, precision voltage references, or any other temperature-sensitive device.
- Temperature-sensitive components may be integrated with a TEC and a temperature monitor into a single thermally-engineered module, in some situations.
- a TEC tends to have low efficiency or uses relatively high power, typically operating at high current.
- SFP small form-factor pluggable
- XFP XFP
- Proposal SFF-8472 Rev 10.3, released Dec. 1, 2007 (available at ftp://ftp.seagate.com/sff), for example, describes an enhanced functions monitoring interface for optical transceivers, which allows real time access to an SFP/XFP module to monitor its temperature, among other parameters. Performance or stability of optical receivers may relate, at least in part, to temperature, so monitoring or an ability to adjust temperature may be beneficial. Moreover, recent industry specifications, such as those briefly described above, may call for monitoring or adjusting temperature efficiently within the confines of a transceiver module.
- FIG. 1 is a circuit diagram showing a particular configuration of a thermoelectric cooler (TEC) circuit and a thermistor circuit.
- TEC thermoelectric cooler
- FIG. 2 is a graph showing a relationship between temperature and drive current for a particular TEC.
- FIG. 3 is a perspective diagram of a transceiver module incorporating a temperature-controlling apparatus, according to an embodiment.
- FIG. 4 is a schematic showing a sample configuration of a transceiver including a microcontroller, according to an embodiment.
- FIG. 5A is a schematic diagram of a sample voltage converter, according to an embodiment.
- FIG. 5B is a schematic diagram of a sample voltage converter, according to another embodiment.
- FIG. 6 is a schematic showing a pin-out of the sample voltage converter of FIGS. 5A and 5B , according to an embodiment.
- FIG. 7 is a schematic showing a configuration of a TEC system, according to an embodiment.
- FIG. 8 is a schematic showing a sample configuration of a TEC drive circuit, according to an embodiment.
- thermoelectric cooler may be used to adjust or substantially maintain temperatures of transceiver components, such as a laser diode or avalanche photodiode (APD), for example.
- a laser diode emission wavelength and APD gain may both be related to temperature, so an ability to adjust transceiver temperature may be desired.
- a TEC may be placed in thermal contact to adjust a component's temperature.
- a thermistor or other temperature sensor may also be placed in thermal contact to detect the component's temperature.
- a temperature sensor may send temperature information to a controller, such as a microcontroller or microprocessor, for example, where the temperature information may be compared with a reference temperature, generating an error signal, or TEC offset.
- a TEC offset may be generated, for example, by averaging a number of temperature measurements made over a period of time.
- a TEC offset may also be used by the microcontroller to produce a TEC drive current to vary the amount of heating or cooling by the TEC as appropriate to adjust or substantially maintain a component temperature.
- An amount of heating or cooling performed by a TEC may relate to current, and may, as an idealized example provided merely to aid comprehension, relate approximately linearly to the current.
- claimed subject matter is not limited in scope to this idealized model. Again, this is intended as an example simply for the purpose of aiding comprehension. Nonetheless, at relatively small drive currents, a useful relationship to TEC behavior may not hold. Relatively small TEC drive currents may occur if, for example, a TEC is heating or cooling by a relatively small amount. For example, if a TEC is switched from a heater to a cooler its drive current may cross through zero as it switches polarity.
- TEC operating voltage be as low as possible to reduce power loss.
- power loss in a TEC may relate to operating voltage, which, accordingly, should be reduced.
- a microcontroller may adjust an amount of power that may be delivered to a TEC to adjust a component temperature.
- a microcontroller is mentioned in the Specification as an example, a processor, such as a microprocessor, or any device that can carry out mathematical or logical operations, for example, and perhaps include a memory, may be used.
- a TEC results in heating or cooling a component, measured component temperature may be monitored.
- the microcontroller, or similar device may perform operations, as will be explained in detail below, to adjust TEC drive current or operating voltage so that the TEC approximately attains or maintains a desired component temperature. For example, a difference between a desired component temperature and a measured component temperature may result in a TEC offset calculated by a microcontroller. Such a TEC offset may be considered if performing adjustments to TEC drive current or operating voltage.
- a microcontroller may be used in a process to adjust TEC operating voltage while considering component temperature.
- a microcontroller may be used in a process of driving TEC operating voltage to about zero volts, thus reducing power delivered to the TEC at low TEC drive currents. While performing this process, the microcontroller may consider a computed TEC offset, as will be explained below.
- a microcontroller may operate a plurality of voltage converters to generate a TEC drive current.
- a voltage converter generally converts a first voltage level to a second voltage level.
- a DC-DC converter is an example of a voltage converter.
- At least one of the voltage converters may have an output voltage capable of being driven to about zero volts.
- the voltage converters may be comprised of field effect transistors (FET's).
- FET's may have a relatively low turn-on, or threshold voltage Vth.
- Such an FET may provide a high-efficiency voltage converter, though such high efficiency is not necessary.
- embodiments are possible that may not employ a FET that provides such efficiency.
- FIG. 1 is a schematic showing a configuration 90 of a TEC circuit embodiment 100 combined with a thermistor circuit embodiment 110 .
- a TEC 150 may include a side 145 in thermal contact with a temperature-adjusting component 160 and another side 155 being in contact with a heat sink/source 170 , for example.
- this configuration is only an example, and any side of a TEC may be in contact with a component, such as 160 , which may be cooled or heated.
- power supply 120 may generate electrical current or voltage sufficient to appropriately heat or cool side 145 relative to side 155 , or vise versa. Power supply 120 may be adjusted by a microcontroller 180 .
- a temperature of component 160 may be measured by a thermistor 130 that is in thermal contact with the component.
- Thermistor 130 may generate a voltage at its terminals, which may be connected or coupled to sensor circuitry 190 to generate a measurement signal that may be fed to microcontroller 180 . Completing a feedback control loop, microcontroller 180 may then adjust the power delivered by power supply 120 to modify TEC temperature as desired.
- FIG. 2 is a model graph showing a relationship between temperature and drive current for a particular idealized TEC. It is noted, again, that this example is provided merely for purposes of explanation and that claimed subject matter is not limited in scope to a TEC, for example, having this particular relationship. Satisfactory performance from embodiments within the scope of claimed subject matter will be realized in situations where this relationship may not apply. However, continuing with this example, the X-axis indicates drive current and the Y-axis indicates temperature of a hot side of the TEC. As indicated in the theoretical plot in FIG. 2 , below a turn-on drive current I on , temperature may be relatively constant for varying drive current, as indicated in regime 210 .
- temperature may change with drive current, as indicated in regime 220 .
- a TEC operates with relative low efficiency in regime 210 since increasing current does not produce a relative increase in the TEC temperature.
- a TEC maybe consuming power in regime 210 , it is not producing a corresponding temperature increase on a relative basis.
- reducing TEC operating voltage may reduce TEC power consumption.
- a relatively low-current such as, for example, during a transient phase if the TEC switches polarity to heat instead of cool a device, or vise versa.
- FIG. 3 is a perspective diagram of transceiver module embodiment 300 incorporating a temperature apparatus embodiment 310 .
- a host board embodiment 320 may comprise a printed circuit board to which a cage assembly 360 and connector 370 may be mounted.
- a heat sink 350 may be thermally coupled to cage assembly 360 .
- a bezel 380 may be coupled to a front edge of host board 320 for securing host board 320 to a rack (not shown), for example.
- Temperature-adjusting apparatus 310 may be used to adjust temperature of components within transceiver module 300 .
- components such as avalanche photodiodes or laser diodes have output signals that may be sensitive to temperature, so an ability to adjust temperature may be beneficial.
- host board 320 may receive transceiver module 300 as a plug-in. Both host board 320 or transceiver module 300 may meet electrical, management, and mechanical specifications of an SFP/XFP module, for example. Module 300 , conforming to industry specifications, may be subject to specific thermal constraints. Module 300 may comprise a small form-factor pluggable (SFP) module, or an XFP module, for example. It may be desirable that the temperature-adjusting apparatus 310 operate with a relatively high efficiency, for example: power may involve careful budgeting among components, among which may include a TEC, comprising module 300 , for example. Of course, this is merely one example, and claimed subject matter is not limited in this respect.
- SFP small form-factor pluggable
- XFP XFP module
- FIG. 4 shows various transceiver components that may be included in a transceiver module, according to an embodiment.
- an XFP module 400 may incorporate a receiver 415 to amplify or process a signal of a detector 410 , and a transmitter driver 425 to drive a light source 420 .
- Detector 410 may include a positive-intrinsic-negative (PiN) photodiode or an avalanche photodiode (APD), for example.
- Light source 420 may include a light emitting diode (LED) or a laser diode (LD), for example.
- Receiver 415 or driver 425 may be coupled to a microcontroller 430 .
- Microcontroller 430 may adjust functions of receiver 415 or driver 425 and may also include temperature adjustment functions.
- receiver 415 and transmitter driver 425 may include their own temperature adjustment functions 405 , which may include a TEC circuit or a temperature sensor circuit such as those described for the embodiment of FIG. 1 , for example.
- FIG. 5A An embodiment of a voltage converter, which may be used in a microcontroller, such as microcontroller 430 in FIG. 4 , for example, is shown in FIG. 5A .
- an input voltage Vin may be applied at input port or terminal 510
- an output voltage Vout is produced at output 520 by a voltage converter 515 .
- Such a voltage converter 515 may include a high efficiency phase-width modulated (PWM) synchronous buck regulator, for example.
- PWM phase-width modulated
- voltage converter 515 may have, for example, greater than 95% efficiency, wherein efficiency is defined as the amount of useful output power divided by the amount of power consumed by voltage converter 515 .
- efficiency is defined as the amount of useful output power divided by the amount of power consumed by voltage converter 515 .
- this is merely one example, and claimed subject matter is not limited in this respect. Many other levels of efficiency are possible and are included within the scope of claimed subject matter.
- Vout may be affected by a resistor divider network 530 that may comprise resistors R 1 and R 2 .
- a divided voltage Vdiv may be applied to a feedback input port or terminal Fb, as in FIG. 5A .
- resistor divider network 530 may be grounded at terminus 540 .
- FIG. 6 shows a possible pin-out or a partial view of components of a voltage converter embodiment 615 , which may include voltage converter embodiment 515 in FIG. 5A .
- Vin may provide power to the voltage converter output terminal or to a bias supply.
- An enable pin En may provide a logic level signal to the output terminal, wherein the voltage converter may have an off-state with a supply current of approximately zero.
- Input terminals Sync_in and Sync_out may provide an ability to change the switching frequency or to interconnect multiple voltage converters.
- a bias input signal may supply an internal biasing voltage to voltage converter 615 , for example.
- a feedback input terminal Fb may provide a path to modify the output signal of voltage converter 615 .
- Internal voltage divider 630 may couple the feedback input terminal Fb to the voltage converter output terminal and may be used to adjust the desired output voltage.
- Feedback input terminal Fb may couple internally to an error amplifier 640 that may compare the voltage level at feedback input terminal Fb to an internal 0.5 volt reference voltage 620 , for example, and may adjust output voltage to substantially maintain regulation.
- error amplifier 640 may compare the voltage level at feedback input terminal Fb to an internal 0.5 volt reference voltage 620 , for example, and may adjust output voltage to substantially maintain regulation.
- Vout Vref [R 1 +R 2 ]/R 2 , such a relationship may imply that Vout may be as small as Vref which, with the circuit configuration in the present particular example, is 0.5 volts. Vout may reach this value if R 2 is large, or open, for example, which may lead to a voltage applied to feedback terminal Fb approximately equal to Vout.
- this is merely one example, and claimed subject matter is not limited in this respect.
- FIG. 5B may include a circuit similar to that shown in FIG. 5A , except that resistor divider network 530 may be terminated at a voltage source V x 545 instead of ground.
- the presence of V x 545 may result in such a voltage level applied to feedback terminal Fb as to allow Vout to approach approximately zero.
- V x 545 may make such an applied voltage possible by at least partially offsetting the portion of Vout that is applied to the feedback terminal Fb. Without such an offset, as in FIG. 5A , a voltage level applied to feedback terminal Fb may not be able to reach values that would allow Vout to approach zero, regardless of R 1 or R 2 values.
- a voltage level less than approximately 0.5 volts may be realized.
- a voltage level less than approximately 0.1 volts may be realized. Therefore, claimed subject matter is not limited in scope to a particular voltage level.
- V x may be replaced by a digital to analog converter (DAC), for example, so that digital signals applied to the DAC affecting its output signal may adjust a voltage level applied to the feedback terminal Fb.
- DAC digital to analog converter
- an offset may be at least partially generated by a lookup table for temperature. Vout may change with temperature. In response to such a change, an offset may be adjusted to at least partially compensate for a temperature change. A lower offset may lead to a higher Vout, and a higher offset may lead to a lower Vout, for example.
- FIG. 7 shows a configuration of a temperature-adjusting apparatus 700 to adjust temperature of a component 740 , according to an embodiment.
- TEC embodiment 750 thermally coupled to component 740 , may heat or cool the component based, at least in part, on voltage level at an output terminal of a voltage converter 710 .
- Temperature of component 740 may be measured by a thermistor embodiment 730 , which may result in a TEC offset calculated by a microcontroller embodiment 735 , for example.
- Such a TEC offset may be applied to a digital to analog converter (DAC) 720 to produce an analog signal, such as a voltage, resulting from the TEC offset.
- DAC digital to analog converter
- the analog signal may be applied to a feedback input terminal 715 of voltage converter 710 so that the superposition of the respective signals produces a voltage level at output terminal 718 of voltage converter 710 .
- the voltage level at output terminal 718 may include a voltage range down to about zero volts.
- this relatively low output voltage level may be applied to TEC 750 if it is operated at a relatively low drive current, as discussed above, to reduce TEC power inefficiency, for example.
- this is merely one example, and claimed subject matter is not limited in this respect.
- FIG. 8 shows a configuration of a TEC drive circuit 800 , according to an embodiment.
- a first voltage converter embodiment 815 may apply a first voltage level to a terminal of TEC 850 and a second voltage converter 818 may apply a second voltage level to another terminal of TEC 850 , for example.
- first and second voltage converters 815 and 818 may include an output signal Vo to drive a respective terminal of TEC 850 .
- Output signal Vo may also be applied to a resistor divider network that may include resistors R 1 , R 2 and R 3 , R 4 , respectively, for example.
- a divided voltage V div at nodes between the resistors may be applied to a feedback input terminal, Fb, for example.
- the voltage level at output terminal Vo may at least partially be determined by a voltage at feedback input terminal, Fb.
- a relationship between the voltage levels at output terminal Vo and feedback input terminal Fb may be understood from the block diagram of voltage converter 615 , shown in FIG. 6 , which may represent first and second voltage converters 815 and 818 , for example.
- a digital to analog converter (DAC) 820 may produce output voltages at terminals OUTA and OUTB in response to digital signals produced by microcontroller 830 . Such output voltages may combine into a superposition with respective voltages at output terminals of voltage converters 815 and 818 to produce voltages at feedback input terminal Fb of first and second voltage converters 815 and 818 , for example. Voltages at feedback terminals Fb at least partially offset by a DAC may allow voltage converters 815 and 818 to produce output voltage levels applied to input terminals of TEC 850 of about zero volts, for example. Such a relatively low output voltage applied to TEC 850 operating at a relatively low drive current may reduce TEC power inefficiency, as discussed above.
- relatively low output voltage includes voltage levels less than approximately 0.5 volts, though, as mentioned above, relatively low output voltage may also include less than approximately 0.1 volts, or approximately zero volts in other embodiments. In any case, claimed subject matter is not limited in scope to these particular values.
- Values for resistors R 1 , R 2 , R 3 , and R 4 may be selected by considering desired voltage ranges to be applied to TEC 850 , for example. Accordingly, a digital signal applied to DAC 820 by microcontroller 830 may, at least in part, relate to the voltage level at output terminals Vo applied to TEC 850 . Such a voltage applied to TEC 850 may fall within a voltage range mentioned above, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/024,041 US8079222B2 (en) | 2008-01-31 | 2008-01-31 | Thermoelectric cooler controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/024,041 US8079222B2 (en) | 2008-01-31 | 2008-01-31 | Thermoelectric cooler controller |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090195980A1 US20090195980A1 (en) | 2009-08-06 |
US8079222B2 true US8079222B2 (en) | 2011-12-20 |
Family
ID=40931468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/024,041 Active 2030-03-23 US8079222B2 (en) | 2008-01-31 | 2008-01-31 | Thermoelectric cooler controller |
Country Status (1)
Country | Link |
---|---|
US (1) | US8079222B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100290184A1 (en) * | 2009-05-18 | 2010-11-18 | Fujitsu Limited | Temperature control apparatus, information processing apparatus and method for temperature control |
CN104534772A (en) * | 2015-01-06 | 2015-04-22 | 青岛海尔股份有限公司 | Semiconductor refrigerator |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011002424B4 (en) * | 2011-01-04 | 2013-03-14 | Robert Bosch Gmbh | Method for starting diagnosis of a heat storage material |
CN103703327B (en) * | 2011-07-25 | 2016-03-16 | 豪威株式会社 | Electronic light/temp controller, use the cooler of this electronic light/temp controller, use the heater of this electronic light/temp controller and its control method |
CN103281132B (en) * | 2013-05-24 | 2016-09-07 | 青岛海信宽带多媒体技术有限公司 | The optical module being applied in wide temperature range and operating temperature control method thereof |
GB2540344A (en) * | 2015-07-06 | 2017-01-18 | Evontix Ltd | Control system |
CN105161974B (en) * | 2015-09-25 | 2018-06-12 | 华中科技大学 | A kind of semiconductor pulse laser thermoelectricity ladder cooling means |
US11248996B2 (en) | 2017-12-04 | 2022-02-15 | Montana Instruments Corporation | Analytical instruments, methods, and components |
EP3779331B1 (en) * | 2018-03-30 | 2023-12-27 | Koki Holdings Co., Ltd. | Transportable cold storage container |
US10746948B1 (en) * | 2019-09-18 | 2020-08-18 | Moxa Inc. | Cooling and heating structure for fiber optic transceiver |
US11956924B1 (en) | 2020-08-10 | 2024-04-09 | Montana Instruments Corporation | Quantum processing circuitry cooling systems and methods |
GB2601172A (en) * | 2020-11-20 | 2022-05-25 | Toshiba Kk | An optical module, a system, a sending unit, a receiving unit, and a quantum communication system |
US12119738B2 (en) * | 2021-01-26 | 2024-10-15 | Analog Devices International Unlimited Company | TEC controller clamp circuit |
CN118299920B (en) * | 2024-05-31 | 2024-07-30 | 杭州芯正微电子有限公司 | TEC drive circuit controlled by digital domain |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5483800A (en) * | 1993-06-25 | 1996-01-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Augmented thermal bus |
US6098408A (en) * | 1998-11-11 | 2000-08-08 | Advanced Micro Devices | System for controlling reflection reticle temperature in microlithography |
US6205790B1 (en) * | 1999-05-28 | 2001-03-27 | Lucent Technologies Inc. | Efficient thermoelectric controller |
US6584128B2 (en) * | 2001-01-05 | 2003-06-24 | Scientific-Atlanta, Inc. | Thermoelectric cooler driver utilizing unipolar pulse width modulated synchronous rectifiers |
-
2008
- 2008-01-31 US US12/024,041 patent/US8079222B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5483800A (en) * | 1993-06-25 | 1996-01-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Augmented thermal bus |
US6098408A (en) * | 1998-11-11 | 2000-08-08 | Advanced Micro Devices | System for controlling reflection reticle temperature in microlithography |
US6205790B1 (en) * | 1999-05-28 | 2001-03-27 | Lucent Technologies Inc. | Efficient thermoelectric controller |
US6584128B2 (en) * | 2001-01-05 | 2003-06-24 | Scientific-Atlanta, Inc. | Thermoelectric cooler driver utilizing unipolar pulse width modulated synchronous rectifiers |
Non-Patent Citations (7)
Title |
---|
"Agilent HFBR-57M5AP Digital Diagnostic Small Form Pluggable Transceiver for Fibre Channel 2.125, 1.0625GBd and .25 GBd Ethernet" Data Sheet, Agilent Technologies, http://literature.agilent.com/litweb/pdf/5988-8406EN.pdf, Aug. 18, 2003, 19 pages. |
"DWDM SFP Daughter Board" Document No. A500-1002, May 3, 2007, 1 page. |
"Smallest TEC Power Drivers for Optical Modules" Maxim Integrated Products, Inc., 2002, 19 pages. |
HFBR-0534 Evaluation Kit, Product Brief, Avago Technologies, http://www.avagotech.com/assets/downloadDocument.do?id=2124, Feb. 23, 2007, 3 pages. |
MIC2202, "High Efficiency 2MHz Synchronous Buck Converter 1muF Stable PWM Regulator" Micrel, Inc., May 2004, 18 pages. |
MIC2202, "High Efficiency 2MHz Synchronous Buck Converter 1μF Stable PWM Regulator" Micrel, Inc., May 2004, 18 pages. |
Transceivers, Applied Optoelectronics, Inc., http://www.ao-inc.com/products/transceivers-SFP.php, 2000-2005, 3 pages. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100290184A1 (en) * | 2009-05-18 | 2010-11-18 | Fujitsu Limited | Temperature control apparatus, information processing apparatus and method for temperature control |
CN104534772A (en) * | 2015-01-06 | 2015-04-22 | 青岛海尔股份有限公司 | Semiconductor refrigerator |
Also Published As
Publication number | Publication date |
---|---|
US20090195980A1 (en) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8079222B2 (en) | Thermoelectric cooler controller | |
US8903254B2 (en) | Low power consumption, long range, pluggable transceiver, circuits and devices therefor, and method(s) of using the same | |
JP4341708B2 (en) | Semiconductor laser driving device, semiconductor laser driving method, optical transmission device, optical wiring module, and electronic apparatus | |
US8989598B2 (en) | Power-saving driver circuit for providing a bias current or driving a current-driven load | |
CN102749684B (en) | Laser transceiving device, manufacturing method thereof and method for improving temperature operation range thereof | |
WO2018119637A1 (en) | Method and device for controlling wavelength of light emitting assembly | |
US8345721B2 (en) | Method for driving optical transmitter | |
US8723445B2 (en) | Light power compensation device, light power compensation circuit, and detecting module | |
US9653878B2 (en) | Circuit, optical module, methods and optical communication system for dual rate power point compensation | |
US8571079B1 (en) | Average-power control loops and methods through laser supply voltage closed-loop control | |
JP3320900B2 (en) | Automatic temperature control circuit for laser diode and electric / optical signal conversion unit using the same | |
US9431792B2 (en) | Method and apparatus for active voltage regulation in optical modules | |
US20030227694A1 (en) | Laser diode module, laser diode device and optical transmitter incorporating the same | |
US7844187B2 (en) | Optical communications circuit current management | |
JPH0936810A (en) | Optical signal transmitter | |
US9258063B1 (en) | Optical transmitter having multiple optical sources and a method to activate the same | |
US20060262818A1 (en) | Microcontroller based thermoelectric cooler controller | |
JP2019049695A (en) | Electron absorption bias circuit for an electron absorption modulator | |
WO2003065524A1 (en) | Laser diode control semiconductor integrated circuit, optical transmission module, and optical output setting method | |
JP2003031891A (en) | Optical transmission module and optical transmitter | |
JPH01166578A (en) | Led driving circuit with temperature control function | |
US5425040A (en) | Switching regulator control for a laser diode | |
JP2008009226A (en) | Optical transmission module | |
WO2020065822A1 (en) | Light transmission module | |
Sun et al. | Automatic color temperature control circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED OPTOELECTRONICS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIH, YUYUN;REEL/FRAME:020452/0822 Effective date: 20080131 |
|
AS | Assignment |
Owner name: EAST WEST BANK, SUCCESSOR IN INTEREST TO UNITED CO Free format text: SECURITY AGREEMENT;ASSIGNOR:APPLIED OPTOELECTRONICS, INC.;REEL/FRAME:024332/0828 Effective date: 20070906 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: EAST WEST BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:APPLIED OPTOELECTRONICS, INC.;REEL/FRAME:036047/0293 Effective date: 20150630 |
|
AS | Assignment |
Owner name: BRANCH BANKING AND TRUST COMPANY, TEXAS Free format text: SECURITY INTEREST;ASSIGNOR:APPLIED OPTOELECTRONICS, INC.;REEL/FRAME:044061/0812 Effective date: 20170928 |
|
AS | Assignment |
Owner name: APPLIED OPTOELECTRONICS INC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EAST WEST BANK, SUCCESSOR IN INTEREST TO UNITED COMMERCIAL BANK;REEL/FRAME:043800/0480 Effective date: 20171005 Owner name: APPLIED OPTOELECTRONICS INC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EAST WEST BANK;REEL/FRAME:044207/0573 Effective date: 20171005 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: APPLIED OPTOELECTRONICS, INC., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRUIST BANK (FORMERLY KNOWN AS BRANCH BANKING AND TRUST COMPANY));REEL/FRAME:061952/0344 Effective date: 20221116 |
|
AS | Assignment |
Owner name: CIT NORTHBRIDGE CREDIT LLC, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:APPLIED OPTOELECTRONICS, INC.;REEL/FRAME:062003/0523 Effective date: 20221116 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: APPLIED OPTOELECTRONICS, INC., TEXAS Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CIT NORTHBRIDGE CREDIT LLC;REEL/FRAME:065630/0906 Effective date: 20231117 |