US7524702B2 - Conductor substrate, semiconductor device and production method thereof - Google Patents
Conductor substrate, semiconductor device and production method thereof Download PDFInfo
- Publication number
- US7524702B2 US7524702B2 US11/607,994 US60799406A US7524702B2 US 7524702 B2 US7524702 B2 US 7524702B2 US 60799406 A US60799406 A US 60799406A US 7524702 B2 US7524702 B2 US 7524702B2
- Authority
- US
- United States
- Prior art keywords
- conductor substrate
- layer
- producing
- hydroxide
- substrate according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 162
- 239000004020 conductor Substances 0.000 title claims abstract description 157
- 239000004065 semiconductor Substances 0.000 title claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 title abstract description 12
- 239000010410 layer Substances 0.000 claims abstract description 181
- 238000000034 method Methods 0.000 claims abstract description 132
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 123
- 239000005751 Copper oxide Substances 0.000 claims abstract description 73
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 73
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 54
- 229920005989 resin Polymers 0.000 claims abstract description 54
- 239000011347 resin Substances 0.000 claims abstract description 54
- 239000010949 copper Substances 0.000 claims abstract description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052802 copper Inorganic materials 0.000 claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims abstract description 16
- 238000004381 surface treatment Methods 0.000 claims abstract description 15
- 239000002344 surface layer Substances 0.000 claims abstract description 8
- 229960004643 cupric oxide Drugs 0.000 claims description 97
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 61
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 35
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims description 35
- 238000007789 sealing Methods 0.000 claims description 32
- 238000002048 anodisation reaction Methods 0.000 claims description 31
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 claims description 28
- 239000007800 oxidant agent Substances 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 15
- 229940112669 cuprous oxide Drugs 0.000 claims description 15
- 239000003822 epoxy resin Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 229920000647 polyepoxide Polymers 0.000 claims description 14
- AEJIMXVJZFYIHN-UHFFFAOYSA-N copper;dihydrate Chemical compound O.O.[Cu] AEJIMXVJZFYIHN-UHFFFAOYSA-N 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 6
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical group OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- KIEOKOFEPABQKJ-UHFFFAOYSA-N sodium dichromate Chemical compound [Na+].[Na+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KIEOKOFEPABQKJ-UHFFFAOYSA-N 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 description 36
- 230000003647 oxidation Effects 0.000 description 35
- 239000012744 reinforcing agent Substances 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 17
- 229910000679 solder Inorganic materials 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 238000007747 plating Methods 0.000 description 8
- 239000003513 alkali Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 5
- 238000005211 surface analysis Methods 0.000 description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229960002218 sodium chlorite Drugs 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 235000019801 trisodium phosphate Nutrition 0.000 description 2
- 229910002555 FeNi Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/52—Treatment of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49579—Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
- H01L23/49586—Insulating layers on lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/50—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/485—Material
- H01L2224/48505—Material at the bonding interface
- H01L2224/48599—Principal constituent of the connecting portion of the wire connector being Gold (Au)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/485—Material
- H01L2224/48505—Material at the bonding interface
- H01L2224/48699—Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01011—Sodium [Na]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01018—Argon [Ar]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01077—Iridium [Ir]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01084—Polonium [Po]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01088—Radium [Ra]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/20—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
- H05K3/202—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/385—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by conversion of the surface of the metal, e.g. by oxidation, whether or not followed by reaction or removal of the converted layer
Definitions
- the present invention relates to a conductor substrate and a method of producing the same. More specifically, the invention relates to a conductor substrate useful for the production of a resin-sealed semiconductor device in which, after a semiconductor element is mounted, a portion mounting the element is sealed or covered with an insulating resin, and a method of producing the same. The invention is further concerned with a semiconductor device equipped with the above conductor substrate and a method of producing the same.
- semiconductor devices comprising a semiconductor element such as an IC chip or an LSI chip mounted on a substrate, and one of them is a resin-sealed semiconductor device in which a semiconductor element is mounted, and a portion mounting the semiconductor element is sealed with an insulating resin.
- the resin-sealed semiconductor device has a semiconductor element mounted on a conductor substrate such as a lead frame, along with necessary electric connection, and is often called a “semiconductor package”.
- the semiconductor packages are generally stored by the manufacturers after they are manufactured, and are offered to end users, depending upon their demand. Then, the end users mount the semiconductor packages on the substrates such as wiring boards by, for example, reflowing a solder to complete the final electronic equipment.
- the lead-free solder has a melting point higher than that of the conventional solders (the conventional solders have a melting point of about 200° C., while the lead-free solder has a melting point of about 240 to 260° C.). Inevitably, therefore, the solder reflowing step must be conducted at a high temperature. As the packaging temperature increases, however, a larger stress is exerted on the semiconductor device, developing defects such as cracks in increased amounts.
- the lead frame 101 illustrated is a press-molded article of copper or a copper alloy, and comprises a chip-mounting portion 102 , an internal lead portion 103 , an external lead portion 104 , and a wire-bonding portion 105 .
- Silver layer 102 a and 105 a are plated on the upper surfaces of the chip-mounting portion 102 and of the wire-bonding portion 105 . Further, a circuit chip 106 is mounted on the chip-mounting portion 102 . The circuit chip 106 and the wire-bonding portion 105 are connected together through a wire 107 . Further, the lead frame 101 as a whole is sealed with a sealing resin 108 . In order to improve the adhesion between the lead frame 101 and the sealing resin 108 relying upon the anchoring effect, a black oxide layer (cupric oxide CuO layer) 109 is formed on the limited portions where the silver layers 102 a and 105 a have not been plated. The black oxide layer 109 is formed upon anodization of the lead frame 101 in an organic alkali solution.
- the illustrated lead frame 113 is made of copper or a copper alloy, and has a cuprous oxide (Cu 2 O) layer 114 , a cupric oxide (CuO) layer 112 and a molding resin layer 115 formed thereon in this order.
- the cuprous oxide layer 114 can be formed by forming the cupric oxide layer 112 by immersing the lead frame 113 in an alkali bath so as to be blackened and, then, heating the lead frame 113 at a high temperature in an oxidizing atmosphere.
- an object of the present invention to provide a conductor substrate that is capable of sufficiently withstanding the stress due to vaporization and expansion of the moisture and that ensures intimately adhesion of the sealing resin to the conductor substrate or, in other words, to provide a conductor substrate useful for the production of semiconductor devices that can be stably stored for an extended period of time while maintaining excellent adhesion.
- the present invention resides in a conductor substrate for mounting a semiconductor element, at least a portion thereof mounting the semiconductor element being sealed with an insulating resin, wherein an uppermost surface layer of the conductor substrate comprises copper or an alloy thereof, and the conductor substrate is partly or entirely covered with a layer of copper oxide containing a hydroxide formed upon surface treatment of the conductor substrate.
- the present invention resides in a method of producing a conductor substrate for mounting a semiconductor element, followed by sealing at least a portion of the conductor substrate mounting the semiconductor element with an insulating resin, comprising the step of treating a surface of the conductor substrate, an uppermost surface layer of which is formed of copper or an alloy thereof, to partly or entirely cover the surface of the conductor substrate with a layer of copper oxide containing a hydroxide.
- the present invention resides in a semiconductor device in which at least one semiconductor element is mounted on a predetermined position of a conductor substrate of the invention, and is sealed with an insulating resin, and a method of producing a semiconductor device which comprises the step of forming a layer of hydroxide-containing copper oxide on a conductor substrate by a method of the invention, followed by mounting a semiconductor element on a predetermined portion of the conductor substrate, electrically connecting the semiconductor element with the conductor substrate, and sealing at least a portion mounting the semiconductor element with an insulating resin.
- the present invention resides in an electronic equipment comprising the semiconductor device of the invention mounted on a mounting substrate, and a method of producing the same.
- the present invention it becomes possible to produce a conductor substrate and a semiconductor device of the invention requiring neither high temperatures nor the treating step that lasts for an extended period of time.
- No need of using the treating apparatus that must withstand high temperatures is effective in improving the production line and in reducing the production cost and, further, overcoming problems involved in the high-temperature treatment, such as a change in the composition due to the self-decomposition or vaporization of the solution used, difficulty in controlling the temperature of the solution used and troubles involved in maintaining stable treatment.
- the step of treatment according to the invention can be conducted at a temperature of about 50 to 80° C. by using the existing apparatus requiring easy maintenance concerning the composition and temperature of the solution, making it possible to improve the quality of the conductor substrate and of the semiconductor device and to stably conduct the treatment.
- FIG. 1 is a sectional view illustrating a prior art resin-sealed semiconductor device
- FIG. 2 is a sectional view illustrating a portion of another prior art resin-sealed semiconductor device
- FIG. 3 is a sectional view illustrating a preferred embodiment of a resin-sealed semiconductor device according to the present invention
- FIG. 4 is a graph illustrating variations in the layer constitution of when copper oxide layers are formed by different methods inclusive of the method of the present invention
- FIGS. 5A to 5C are sectional views illustrating, in sequence, the steps for forming a hydroxide-containing copper oxide layer according to the method of the present invention.
- FIG. 6 is a sectional view schematically illustrating a mechanism of bonding the hydroxide-containing copper oxide layer and an epoxy resin together in the semiconductor device of the present invention
- FIG. 7 is a sectional view schematically illustrating a mechanism of bonding the hydroxide-containing copper oxide layer and the epoxy resin together in a conventional semiconductor device
- FIG. 8 is a graph illustrating variations in the adhesion strength of the sealing resin of when copper oxide layers are formed by different methods inclusive of the method of the present invention.
- FIG. 9 is a diagram illustrating the surface state of an untreated copper alloy with regard to a photograph taken by using a scanning electron microscope (SEM, ⁇ 10,000) and a surface analysis obtained by using an atomic force microscope (AFM, ⁇ 10,000);
- SEM scanning electron microscope
- AFM atomic force microscope
- FIG. 10 is a diagram illustrating the surface state of the copper alloy after black oxide treatment for 10 seconds with regard to a photograph taken by using a scanning electron microscope (SEM, ⁇ 10,000) and a surface analysis obtained by using an atomic force microscope (AFM, ⁇ 10,000);
- SEM scanning electron microscope
- AFM atomic force microscope
- FIG. 11 is a diagram illustrating the surface state of the copper alloy after black oxide treatment in the presence of an oxidation reinforcing agent according to the present invention with regard to a photograph taken by using a scanning electron microscope (SEM, ⁇ 10,000) and a surface analysis obtained by using an atomic force microscope (AFM, ⁇ 10,000);
- SEM scanning electron microscope
- AFM atomic force microscope
- FIG. 12 is a diagram illustrating the surface state of the copper alloy after anodization treatment according to the present invention with regard to a photograph taken by using a scanning electron microscope (SEM, ⁇ 10,000) and a surface analysis obtained by using an atomic force microscope (AFM, ⁇ 10,000);
- SEM scanning electron microscope
- AFM atomic force microscope
- FIG. 13 is a diagram illustrating the surface state of the copper alloy after black oxide treatment for 240 seconds with regard to a photograph taken by using a scanning electron microscope (SEM, ⁇ 10,000) and a surface analysis obtained by using an atomic force microscope (AFM, ⁇ 10,000);
- SEM scanning electron microscope
- AFM atomic force microscope
- FIG. 14 is a sectional view illustrating, in sequence, a mechanism of forming a segregated layer due to the added elements when the untreated copper alloy is heat-treated;
- FIG. 15 is a sectional view illustrating, in sequence, a mechanism in which no segregated layer is formed by the added elements when the copper alloy oxidized according to the method of the present invention is heat-treated;
- FIG. 16 is a graph illustrating the results of when the untreated copper alloy is analyzed by AES in the direction of depth
- FIG. 17 is a graph illustrating the results of when the copper alloy obtained after anodization treatment for 10 seconds according to the present invention is analyzed by AES in the direction of depth;
- FIG. 18 is a graph illustrating the results of when the copper alloy obtained after black oxide treatment for 10 seconds in the presence of an oxidation reinforcing agent according to the present invention is analyzed by AES in the direction of depth;
- FIG. 19 is a graph illustrating the results of when the copper alloy obtained after black oxide treatment for 10 seconds is analyzed by AES in the direction of depth;
- FIG. 20 is a graph illustrating the results of when the untreated copper alloy obtained after plating with silver is qualitatively analyzed by AES for its silver-plated surface;
- FIG. 21 is a graph illustrating the results of when the untreated copper alloy obtained after plating with silver followed by anodizing for 10 seconds according to the present invention is qualitatively analyzed by AES for its silver-plated surface;
- FIG. 22 is a graph illustrating the results of when the untreated copper alloy obtained after plating with silver, followed by black oxide treatment for 10 seconds in the presence of an oxidation reinforcing agent according to the present invention is qualitatively analyzed by AES for its silver-plated surface;
- FIG. 23 is a graph illustrating the results of when the untreated copper alloy obtained after plating with silver, followed by black oxide treatment for 240 seconds is qualitatively analyzed by AES for its silver-plated surface;
- FIG. 24 is a perspective view schematically illustrating a method of black oxide treatment in the presence of an oxidation reinforcing agent according to the present invention.
- FIG. 25 is a perspective view schematically illustrating a method of anodization in a black oxide treatment solution according to the present invention.
- FIG. 26 is a graph summarizing the results of Fourier transform infrared ray spectroscopy (FT-IR) of different copper oxide layers.
- FT-IR Fourier transform infrared ray spectroscopy
- the invention resides in a conductor substrate, a resin-sealed semiconductor device and their production methods as well as an electronic equipment comprising the semiconductor device of the invention packaged therein and a method of production of the same.
- the present invention resides in a conductor substrate comprising a semiconductor element mounted thereon, at least a portion thereof mounting the semiconductor element being sealed with an insulating resin.
- the conductor substrate of the invention can be embodied in a variety of embodiments within the scope of the invention. The invention will now be described with reference to FIG. 3 that illustrates a semiconductor device using the conductor substrate of the invention.
- a semiconductor device 10 is provided with a lead frame 1 , which is called a “conductor substrate” in the present invention.
- the semiconductor device is provided with a heat-dissipating plate of which the outermost layer is formed of copper or an alloy thereof, then, the heat-dissipating plate may be regarded to be a conductor substrate of the present invention.
- the conductor substrate is described by reference to the lead frame. However, any other member may be regarded to be the conductor substrate.
- the conductor substrate is constituted from a metal member of which the outermost layer is formed of copper or an alloy thereof by taking the heat-dissipating property into consideration. That is, the conductor substrate may be substantially made of copper or an alloy thereof, or may be substantially made of a non-copper metal with the proviso that the outermost layer is at least formed of copper or an alloy thereof. In the latter case, the non-copper metal may be, for example, an FeNi alloy. Further, in this case, copper or an alloy thereof may be applied to form the outermost layer by plating or by any other film-forming method.
- the conductor substrate is usually provided in the form of a thin plate, and is worked into a lead frame or any other shape by press working, etching, etc.
- the conductor substrate of the invention it is essential that at least a portion of the conductor substrate is covered with a layer of copper oxide containing a hydroxide.
- the conductor substrate (lead frame) 1 is covered with a layer 2 of hydroxide-containing copper oxide over its substantial portions, i.e., except for a portion having a silver-plated layer 3 thereon for connection to external units.
- the adhesion of the sealing resin to the lead frame is improved.
- the layer 2 of the hydroxide-containing copper oxide can be formed through a surface treatment of the conductor substrate of which at least the outermost surface layer is formed of copper or an alloy thereof, at a small layer thickness by using a simple method at a low temperature within a short period of time.
- the surface treatment for forming the hydroxide-containing copper oxide layer is based on the specific or forced oxidation of the conductor substrate, and is preferably accomplished by either one of the following two methods or, as required, by a combination of the two methods.
- the surface treatment usually employs only the blackening treatment solution which is particularly called herein, “black oxide treatment solution”.
- an oxidizing agent (called, particularly, “oxidation reinforcing agent” in the present invention) having excellent self-reducing force is added to the black oxide treatment solution and, then, the conductor substrate is immersed in the oxidizing agent-containing black oxide treatment solution.
- blackening or “black oxide treatment” is intended to mean a conversion treatment for chemically forming an oxide layer on a surface of copper or an alloy thereof.
- the conductor substrate is immersed in the black oxide treatment solution and is anodized in the solution.
- either one of these surface treatment methods can be carried out at temperatures lower than that of the conventional blackening method (immersion method) and within a shortened period of time to complete the treatment.
- the surface treatment step can be usually conducted at a temperature of as relatively low as about 50 to 80° C. and is completed within a shortened period of time of about 1 to 20 seconds. This is because, according to the discovery by the present inventors, in the case of the present invention, a thin layer of the hydroxide-containing copper oxide is sufficient for obtaining a large degree of adhesion strength, and also the oxidation reaction proceeds quickly.
- the oxidation treatment is conducted after the silver layer is plated on the conductor substrate for, for example, wire bonding without contaminating the plated silver layer. Therefore, the conductor substrate and the conductor substrate plated with silver can be subjected to an oxidation treatment in the form of a hoop or a sheet by an in-line process, suppressing the cost yet greatly improving the productivity as compared to the oxidation treatment by immersion as represented by the conventional blackening method.
- the plated layers for wire bonding are not limited to the silver-plated layers only but may be, for example, palladium-plated layers or any plated layers.
- a semiconductor element 5 is mounted on the lead frame 1 at a predetermined position. Though not illustrated, any bonding medium such as an adhesive sheet, die-bonding material, etc. is usually used for bonding the lead frame 1 and the semiconductor element 5 together.
- the semiconductor element 5 is, for example, an IC chip or an LSI chip. In the illustrated embodiment, one semiconductor element 5 is mounted, however, as required, two or more semiconductor elements may be mounted. In place of the semiconductor element or in combination with the semiconductor element, there may be mounted any active element or passive element. Namely, in the practice of the invention, there is no particular limitation on the kind of the semiconductor element to be mounted.
- the semiconductor element 5 has its external connection terminals (not shown) connected to the silver-plated layers 3 of the lead frame 1 via bonding wires 8 .
- the bonding wires 8 are fine wires made of, for example, gold (Au) or aluminum (Al). What is important here is that when the copper oxide layer is formed by the conventional blackening method, the silver-plated layer 3 , too, is oxidized making it difficult to bond, for example, Au wires 8 to the silver-plated layer 3 . Contrary to this, according to the present invention, the copper oxide layer is quickly formed upon the surface treatment. Therefore, the silver-plated layer 3 is not undesirably oxidized and, hence, the wire bonding method is conducted by using Au wires without any problem. As required, further, a flip-chip (FC) method may be used instead of the illustrated wire-bonding method.
- FC flip-chip
- substantially the whole portion (functioning portion of the semiconductor device) inclusive of a portion mounting the semiconductor element 3 is filled or sealed with an insulating resin 9 , and both ends of the lead frame 1 or the external lead portions only are exposed.
- the sealing resin 9 works to protect the semiconductor device 10 from the external moisture or shocks and encompasses any insulating resin so far as it does not adversely affect the effects of the invention.
- a resin containing a hydroxyl group in the molecules is used as an insulating resin to effectively produce a hydrogen bonding force between the hydroxide-containing copper oxide layer (underlying layer) and the resin.
- a suitable sealing resin examples include an epoxy resin, a polyimide resin, a phenol resin and a vinyl chloride resin.
- the epoxy resin is useful for the practice of the invention, since it produces a strong hydrogen bonding force between the epoxy resin and the hydrogen-containing copper oxide layer formed on the surface of the conductor substrate, preventing the occurrence of defects such as cracks and the peeling of resin.
- the thin copper oxide layer can be formed within a shortened period of time either by using the black oxide treatment solution to which the oxidation reinforcing agent is added or by using the black oxide treatment solution and the anodization in combination.
- FIG. 4 is attached to explain these layer formation methods, and shows a graph plotting the thicknesses of the copper oxide layer, i.e., a cuprous oxide (Cu 2 O) layer and a cupric oxide (CuO) layer formed by using an untreated copper alloy relying upon different methods:
- the layer thickness was measured in accordance with a cathode reduction method.
- the treatment must be conducted for about 4 minutes to obtain a layer thickness of about 0.6 ⁇ m which is necessary for improving the adhesion and, besides, the treating temperature of about 100° C. is necessary.
- the satisfactory layer thickness is in the range of about 0.1 to 0.15 ⁇ m, and the treating time is about 10 seconds in a low-temperature region of about 70° C. Further, with the method of the present invention, even when the treating time is shortened, the adhesion is improved and the oxide layer (Cu 2 O layer) is obtained.
- the oxide layer obtained has a thickness of about 0.02 to 0.05 ⁇ m, and exhibits an improved resin adhesion as explained later with reference to FIG. 8 despite the thickness is smaller than the Cu 2 O layer of a thickness of 0.05 ⁇ m that is obtained in the conventional blackening method for 10 seconds.
- FIGS. 5A to 5C are sectional views illustrating, in sequence, the steps of forming a hydroxide-containing copper oxide layer according to the method of the invention.
- a conductor substrate 1 of copper or an alloy thereof is prepared and is then subjected to an oxidation treatment. Note, however, in a single alkali bath usually used as a base for the conventional blackening solution that since Cu can be dissolved in the form of CuO 2 2 ⁇ , the oxidation treatment cannot be attained.
- an oxidation reinforcing agent having excellent self-reducing force such as sodium permanganate is added to the black oxide treatment solution (alkali bath, specifically, alkali bath containing a strong alkaline compound and an oxidizing agent as main components), or alternatively, the black oxide treatment solution (alkali bath) is used in combination with the anodization to carry out the oxidation treatment at low temperatures. Further, since the treatment is conducted at low temperatures, CuO 2 2 ⁇ produced upon dissolution can precipitate as cupric hydroxide Cu(OH) 2 .
- the reaction rate of the reaction (1) is greater than that of the reaction (2).
- a composite oxide layer which is a target layer of the invention, i.e., a three-layered structure comprising the cuprous oxide Cu 2 O layer 21 , a cupric oxide CuO layer 22 and the cupric hydroxide Cu(OH) 2 layer 23 .
- CuO 2 2 ⁇ formed upon dissolution of copper undergoes the following reaction with water molecules: CuO 2 2 ⁇ +2H 2 O ⁇ Cu(OH) 2 +2OH ⁇ to form Cu(OH) 2 .
- the resulting Cu(OH) 2 is precipitated on the underlying cupric oxide layer 22 as shown.
- the reaction rate of the reaction (1) is greater than that of the reaction (2).
- a composite oxide layer which is a target layer of the invention, i.e., a three-layered structure comprising the cuprous oxide Cu 2 O layer 21 , the cupric oxide CuO layer 22 and the cupric hydroxide Cu(OH) 2 layer 23 .
- CuO 2 2 ⁇ formed upon dissolution of copper undergoes the following reaction with H + generated upon anodization: CuO 2 2 ⁇ +2H + ⁇ Cu(OH) 2 to form Cu(OH) 2 .
- the resulting Cu(OH) 2 is precipitated on the underlying cupric oxide layer 22 as shown.
- the hydroxide-containing copper oxide layer is formed by using a treatment apparatus schematically illustrated in, for example, FIGS. 24 and 25 .
- FIG. 24 illustrates a treatment apparatus for carrying out the black oxide treatment in the presence of an oxidation reinforcing agent according to the invention
- FIG. 25 illustrates a treatment apparatus for carrying out the anodization in the black oxide treatment solution according to the invention.
- a treatment apparatus 50 comprises a treatment vessel 51 and a treatment solution 52 .
- a hoop-like or sheet-like conductor substrate 1 immersed in the treatment vessel 51 can be conveyed in a direction of an arrow by the attached guide rollers 53 .
- the treatment solution is maintained at a bath temperature of, for example, about 70° C., and the residence time of the conductor substrate 1 is about 5 to 20 seconds. That is, the time for treating the conductor substrate 1 is set to be about 5 to 20 seconds by adjusting the rotational speed of the guide rollers 53 .
- the treatment solution is one prepared by adding an oxidation reinforcing agent having excellent self-reducing force to a black oxide treatment solution, and is a mixture of a strong alkaline compound, an oxidizing agent and an oxidation reinforcing agent.
- the strong alkaline compound used herein is not limited to a particular compound but is, preferably, sodium hydroxide or potassium hydroxide.
- the strong alkaline compounds may be used alone or in a mixture of two or more compounds.
- the oxidizing agent used in combination may be the one that is usually used for the preparation of the black oxide treatment solution and is not limited to any particular compound but is, preferably, for example, sodium chlorite.
- the oxidation reinforcing agent that is added to the black oxide treatment solution according to the present invention so far as it has excellent self-reducing force.
- the oxidation reinforcing agent is sodium permanganate, sodium bichromate or sodium peroxodisulfate.
- the oxidation reinforcing agents may be used alone or in a mixture of two or more agents. Further, any additive may be added to the treatment solution, in addition to the strong alkaline compound, oxidizing agent and oxidation reinforcing agent.
- the treatment solution can be used, for example, in the following composition and under the following treating conditions.
- Bath temperature about 50 to 80° C. Treating time about 5 to 20 seconds
- a treatment apparatus 50 for anodization comprises a treatment vessel 51 and a treatment solution 52 .
- a hoop-like or sheet-like conductor substrate 1 immersed in the treatment vessel 51 can be conveyed in a direction of an arrow by attached guide rollers 53 .
- the treatment vessel 51 further has two platinum electrode plates ( ⁇ ) 54 and 55 connected to a rectifier 56 for anodization.
- the guide rollers 53 are also connected to the rectifier 56 to provide feeder rollers (+).
- the treatment solution for anodization is maintained at a bath temperature of, for example, about 70° C., and the residence time of the conductor substrate 1 is about 1 to 20 seconds.
- the time for treating the conductor substrate 1 is set to be about 1 to 20 seconds by adjusting the rotational speed of the guide rollers 53 .
- the electric current applied for the anodization may be either a pulse current or a direct current, and the current density is about 0.2 to 10 A/dm 2 .
- the treating solution for anodization by itself may have a same composition as that of the conventional blackening solution and thus contains a strong alkaline compound and an oxidizing agent as main components.
- the strong alkaline compound and the oxidizing agent used herein are as described above. Further, any additive may be added to the treatment solution in addition to the strong alkaline compound and the oxidizing agent.
- the treatment solution for anodization can be used, for example, in the following composition and under the following treating conditions.
- Bath temperature about 50 to 80° C. Treating time about 1 to 20 seconds
- Current density about 0.2 to about 10 A/dm 2
- the hydroxide-containing copper oxide layer of the conductor substrate is bonded through the hydrogen bonding force to the sealing resin covering the surface of the copper oxide layer to obtain a strong adhering force imparting very excellent reliability to the resulting semiconductor device.
- FIG. 6 is a sectional view schematically illustrating a mechanism of bonding between the hydroxide-containing copper oxide layer 1 and the epoxy resin 9 in the semiconductor device of the present invention.
- the hydroxide in the hydroxide-containing copper oxide layer 1 generates a strong adhering force upon being hydrogen-bonded to the hydroxyl group (—OH) formed by the curing of the epoxy resin 9 . So far as the present inventors know, there is no proposal in the prior art to reinforce the adhering force as a result of incorporation of hydroxide in copper oxide.
- the copper oxide layer 1 on the surface of the conductor substrate (copper or copper alloy) and the epoxy resin 9 are only weakly bonded together, generating only a weak adhering force, without precluding such problems as occurrence of cracks and peeling of the molding resin.
- the present inventors have observed different copper oxide layers with regard to the presence of hydroxyl groups (—OH) based on the hydroxide, using the Fourier transform infrared spectroscopy (FT-IR). Confirmation of the presence of hydroxyl groups (—OH) proves the generation of the hydrogen bonding force.
- FT-IR Fourier transform infrared spectroscopy
- a region C represents a peak due to —OH groups (wavelength: about 3400 cm ⁇ 1 ) based on the hydroxide.
- the samples have very thin layers of copper oxide and exhibit relatively small peaks due to —OH groups.
- the presence of the hydroxide can be confirmed from an increase in the layer thickness (sample IV is an amplified example).
- FIG. 8 is a graph plotting the test results of adhesion of the sealing resin conducted for making sure a strong adhering force stemming from the hydrogen bonding force.
- the following seven conductor substrates were prepared as samples.
- Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added);
- Thicknesses of the copper oxide layers are as described already with reference to FIG. 4 .
- the individual samples were sealed with the resin (epoxy resin) over an area of 10.2 mm 2 .
- Treatment was made before sealing and after sealing under the following testing conditions A and B, and an adhesion strengths (KgF) of the sealing resin was measured. Note that the treatment before and after sealing applied herein was conducted by taking into consideration the practical production of the semiconductor devices; i.e., the pre-treatment was conducted simulating the curing step at the time of mounting the chip and the wire-bonding step, and the after-treatment was conducted simulating the solder reflowing step.
- the strength of adhesion of the sealing resin becomes comparable to that of the method of the present invention only when the layer thickness is increased whereas according to the method of the present invention, a satisfactorily large adhesion strength of the sealing resin is obtained even when the layer has a small thickness.
- the present inventors have further observed the surface states of the above-mentioned five samples (measuring range: 4 ⁇ m 2 ) by using a scanning electron microscope (SEM, ⁇ 10,000) and an atomic force microscope (AFM, ⁇ 10,000), along with determination of the average surface roughness Ra. The results of measurement are shown in FIGS. 9 to 13 .
- the hydroxide-containing copper oxide layer formed according to the method of the present invention is constituted from fine needle-like crystals.
- the needle-like crystals have particle sizes of not larger than about 0.5 ⁇ m.
- the method of the present invention makes it possible to avoid a phenomenon in that the elements added to the copper alloy are concentrated due to the heat in the step of producing the semiconductor device and in the solder reflowing step and that the sealed resin is peeled off the conductor substrate.
- the copper oxide layer formed according to the conventional method has a segregated layer, whereas the hydroxide-containing copper oxide layer, formed by the method of the present invention does not have such a segregated layer. A difference between these two layers will now be described with reference to FIGS. 14 and 15 .
- a segregated layer is formed due to elements contained in the copper alloy.
- a copper alloy used as a conductor substrate 1 The copper alloy usually contains such elements as Sn and Ni as additives.
- a cuprous oxide (Cu 2 O) layer 21 is formed in the surface portion of the conductor substrate 1 .
- copper (Cu) element in the conductor substrate 1 is homogeneously diffused as shown.
- a segregated layer 24 is formed as shown in step (C) of FIG. 14 due to the added elements that are remaining.
- cupric oxide (CuO) layer 22 is formed on the cuprous oxide (Cu 2 O) layer 21 .
- CuO cupric oxide
- the untreated copper alloy when the untreated copper alloy is oxidized according to the present invention, it is allowed to form a layer of the hydroxide-containing copper oxide without forming the segregated layer due to heating.
- the conductor substrate 1 of a copper alloy containing such elements as Sn and Ni as additives is oxidized by using the black oxide treatment solution containing an oxidation reinforcing agent added or using the black oxide treatment solution and the anodization in combination, there are formed, as illustrated in step (A) of FIG. 15 , the cuprous oxide (Cu 2 O) layer 21 , the cupric oxide (CuO) layer 22 and the hydroxide-containing cuprous hydroxide layer 23 having a rough surface in this order from the side of the conductor substrate 1 .
- the copper alloy of the samples used herein was a commercially available product (name “MF202”) containing a trace amount of tin (Sn).
- the heating condition was 300° C. ⁇ 5 minutes, and the etching rate using the argon gas was 26 ⁇ /min (SiO 2 ).
- Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution and the anodization in combination)
- Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added)
- FIGS. 16 to 19 are graphs plotting the results of AES analysis of the samples 1 to 4. From the Sn peaks in FIG. 16 (sample 1) and FIG. 19 (sample 4), it is learned that the Sn segregated layer has been formed in these conventional samples.
- FIG. 17 shows example 2 and FIG. 18 (sample 3), there is no Sn peak from which it is learned that no Sn segregated layer is formed by the method of the present invention.
- the silver (Ag)-plated layer is not contaminated in the step of forming the copper oxide layer unlike the case of forming the copper oxide layer according to the conventional method.
- the present inventors have formed a copper oxide layer on a copper alloy which has been partly plated with an Ag layer, and have qualitatively analyzed the Ag-plated layer neighboring the copper oxide layer to evaluate the contamination.
- the copper alloy of the samples used herein was a commercially available product (name “MF202”) containing a trace amount of tin (Sn).
- Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution and the anodization in combination)
- Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added)
- FIGS. 20 to 23 are graphs plotting the results of AES analysis of the samples 1 to 4.
- the samples 2 and 3 have the same profile as that of the sample 1 (untreated copper alloy) exhibiting absence of oxygen (O) that adversely affects the Ag plating.
- the hydroxide-containing copper oxide layer formed according to the method of the present invention has excellent heat resistance compared to that of the copper oxide layer formed according to the conventional method, and favorably adheres to the underlying conductor substrate.
- the present inventors have conducted a tape peeling test by using the following five samples (ten for each sample) according to the following procedure.
- the copper alloy used herein as the conductor substrate was “CDA194” (Fe: 2.35% by weight; P: 0.07% by weight; Zn: 0.12% by weight; Cu: balance), and had a size of 30 ⁇ 10 mm.
- Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added)
- Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution and the anodic oxidation in combination)
- ⁇ represents that the copper oxide layer was not peeled off
- ⁇ circle around (8) ⁇ represents that the copper oxide layer was partly peeled off
- X represents the copper oxide layer was entirely peeled off.
- the present invention as will be understood from the measurement results in Table 1, there is obtained a hydroxide-containing copper oxide layer featuring excellent adhesion at high temperatures. Even when heated at a temperature as high as 300° C. for an extended period of time, therefore, the layer does not peel off unlike the conventional films.
- the adhesion comparable to that of the present invention can be obtained only when a thick layer is formed by continuously conducting the blacking method for 4 minutes as represented by the sample E.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Lead Frames For Integrated Circuits (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
- Die Bonding (AREA)
Abstract
A conductor substrate for mounting a semiconductor element, at least a portion thereof mounting the semiconductor element being sealed with an insulating resin, wherein an uppermost surface layer of the conductor substrate comprises copper or an alloy thereof, and the conductor substrate is partly or entirely covered with a layer of copper oxide containing a hydroxide formed upon the surface treatment of the conductor substrate and a process of producing the conductor substrate as well as a process for the production of a semiconductor device using the conductor substrate.
Description
This application is a Divisional of application Ser. No. 10/824,523, filed Apr. 15, 2004, now U.S. Pat. No. 7,301,226, and claims the benefit of Japanese Patent Application No. 2004-044896, filed Feb. 20, 2004 and Japanese Patent Application No. 2003-112050, filed Apr. 16, 2003.
1. Field of the Invention
The present invention relates to a conductor substrate and a method of producing the same. More specifically, the invention relates to a conductor substrate useful for the production of a resin-sealed semiconductor device in which, after a semiconductor element is mounted, a portion mounting the element is sealed or covered with an insulating resin, and a method of producing the same. The invention is further concerned with a semiconductor device equipped with the above conductor substrate and a method of producing the same.
2. Description of Related Art
As is well known, there have been proposed a variety of semiconductor devices comprising a semiconductor element such as an IC chip or an LSI chip mounted on a substrate, and one of them is a resin-sealed semiconductor device in which a semiconductor element is mounted, and a portion mounting the semiconductor element is sealed with an insulating resin. The resin-sealed semiconductor device has a semiconductor element mounted on a conductor substrate such as a lead frame, along with necessary electric connection, and is often called a “semiconductor package”. The semiconductor packages are generally stored by the manufacturers after they are manufactured, and are offered to end users, depending upon their demand. Then, the end users mount the semiconductor packages on the substrates such as wiring boards by, for example, reflowing a solder to complete the final electronic equipment.
In the prior art process for producing electronic equipment, some problems have been found. One of the problems is caused during storage of the semiconductor devices. This is because, the resin sealing the semiconductor device tends to absorb moisture in the air while the semiconductor device is being stored until it is mounted on the substrate. The moisture absorbed by the sealing resin is rapidly vaporized and expanded due to the heat in the solder reflowing step (because a temperature of as high as about 180 to 200° C. is applied in this step) at the packaging the semiconductor device, producing a large stress in the sealing resin itself. As a result, cracks occur in the interface between the conductor substrate or the semiconductor element and the sealing resin, or the sealing resin peels off the conductor substrate. Such defects deteriorate the reliability of the semiconductor devices. It is therefore desired to provide a conductor substrate that is capable of sufficiently withstanding the stress due to vaporization and expansion of the moisture intimately adhering to the sealing resin or, in other words to provide a semiconductor device that can be stably stored for an extended period of time maintaining excellent adhesion.
Further, in recent years, from the standpoint of protecting global environment, there has been employed a lead-free solder instead of the conventional lead-containing solder in the step of solder reflowing in packaging the semiconductor device on the substrate. However, the lead-free solder has a melting point higher than that of the conventional solders (the conventional solders have a melting point of about 200° C., while the lead-free solder has a melting point of about 240 to 260° C.). Inevitably, therefore, the solder reflowing step must be conducted at a high temperature. As the packaging temperature increases, however, a larger stress is exerted on the semiconductor device, developing defects such as cracks in increased amounts.
A further study has been carried out in an attempt to solve the above-mentioned problems. For example, there has been proposed a method of forming a black oxide layer on a lead frame as illustrated in FIG. 1 to improve the adhesion of the sealing resin to the lead frame relying upon the anchoring effect (see, Japanese Unexamined Patent Publication (Kokai) No. 9-148509). The lead frame 101 illustrated is a press-molded article of copper or a copper alloy, and comprises a chip-mounting portion 102, an internal lead portion 103, an external lead portion 104, and a wire-bonding portion 105. Silver layer 102 a and 105 a are plated on the upper surfaces of the chip-mounting portion 102 and of the wire-bonding portion 105. Further, a circuit chip 106 is mounted on the chip-mounting portion 102. The circuit chip 106 and the wire-bonding portion 105 are connected together through a wire 107. Further, the lead frame 101 as a whole is sealed with a sealing resin 108. In order to improve the adhesion between the lead frame 101 and the sealing resin 108 relying upon the anchoring effect, a black oxide layer (cupric oxide CuO layer) 109 is formed on the limited portions where the silver layers 102 a and 105 a have not been plated. The black oxide layer 109 is formed upon anodization of the lead frame 101 in an organic alkali solution.
Further, referring to FIG. 2 , there has been proposed a method of interposing a layer of cuprous oxide (Cu2O) between the conductor substrate and the blackened layer, i.e., black oxide layer (cupric oxide layer) so that the adhesion does not decrease between the conductor substrate and the sealing resin even when a high temperature is applied (see, Japanese Unexamined Patent Publication (Kokai) No. 2001-210776). Namely, the illustrated lead frame 113 is made of copper or a copper alloy, and has a cuprous oxide (Cu2O) layer 114, a cupric oxide (CuO) layer 112 and a molding resin layer 115 formed thereon in this order. The cuprous oxide layer 114 can be formed by forming the cupric oxide layer 112 by immersing the lead frame 113 in an alkali bath so as to be blackened and, then, heating the lead frame 113 at a high temperature in an oxidizing atmosphere.
According to these prior art methods, however, there still remains room for improvement. With the method of forming a black oxide layer on the surface of the conductor substrate by the anodization, for example, the resulting black oxide layer becomes too thick and, besides, an extended period of time is required for forming the layer. With the method of interposing a cuprous oxide layer between the conductor substrate and the cupric oxide layer to cope with the reflowing step that uses the lead-free solder, on the other hand, the production step becomes complex and a considerably extended period of time is required until the production is finished.
It is, therefore, an object of the present invention to provide a conductor substrate that is capable of sufficiently withstanding the stress due to vaporization and expansion of the moisture and that ensures intimately adhesion of the sealing resin to the conductor substrate or, in other words, to provide a conductor substrate useful for the production of semiconductor devices that can be stably stored for an extended period of time while maintaining excellent adhesion.
It is another object of the present invention to provide a conductor substrate which permits the employment of a solder reflowing step using a lead-free solder at the time of packaging a semiconductor device on a wiring board.
It is still another object of the present invention to provide a method of producing a conductor substrate without requiring high temperatures or a treatment step that lasts for an extended period of time, i.e., a method of producing a conductor substrate which is particularly useful for the production of semiconductor devices.
Further, it is still another object of the present invention to provide a semiconductor device equipped with the above-mentioned conductor substrate and a method of producing the same.
The above and other objects of the invention will be easily understood from the following detailed description.
In one aspect thereof, the present invention resides in a conductor substrate for mounting a semiconductor element, at least a portion thereof mounting the semiconductor element being sealed with an insulating resin, wherein an uppermost surface layer of the conductor substrate comprises copper or an alloy thereof, and the conductor substrate is partly or entirely covered with a layer of copper oxide containing a hydroxide formed upon surface treatment of the conductor substrate.
In another aspect thereof, the present invention resides in a method of producing a conductor substrate for mounting a semiconductor element, followed by sealing at least a portion of the conductor substrate mounting the semiconductor element with an insulating resin, comprising the step of treating a surface of the conductor substrate, an uppermost surface layer of which is formed of copper or an alloy thereof, to partly or entirely cover the surface of the conductor substrate with a layer of copper oxide containing a hydroxide.
In still another aspect thereof, the present invention resides in a semiconductor device in which at least one semiconductor element is mounted on a predetermined position of a conductor substrate of the invention, and is sealed with an insulating resin, and a method of producing a semiconductor device which comprises the step of forming a layer of hydroxide-containing copper oxide on a conductor substrate by a method of the invention, followed by mounting a semiconductor element on a predetermined portion of the conductor substrate, electrically connecting the semiconductor element with the conductor substrate, and sealing at least a portion mounting the semiconductor element with an insulating resin.
In addition, in another aspect thereof, the present invention resides in an electronic equipment comprising the semiconductor device of the invention mounted on a mounting substrate, and a method of producing the same.
As will be appreciated from the following detailed description, according to the present invention, it becomes possible to obtain a conductor substrate that is capable of sufficiently withstanding the stress due to vaporization and expansion of the moisture exhibiting particularly excellent adhesion property and, hence, to provide a semiconductor device that can be stably stored for an extended period of time while maintaining excellent adhesion.
Further, according to the present invention, there occurs no inconvenience even when high temperatures are used for packaging the semiconductor device on a wiring board making it possible to employ a solder reflowing step using a lead-free solder and, hence, to provide a semiconductor device that is also environmentally friendly.
Furthermore, according to the present invention, it becomes possible to produce a conductor substrate and a semiconductor device of the invention requiring neither high temperatures nor the treating step that lasts for an extended period of time. No need of using the treating apparatus that must withstand high temperatures is effective in improving the production line and in reducing the production cost and, further, overcoming problems involved in the high-temperature treatment, such as a change in the composition due to the self-decomposition or vaporization of the solution used, difficulty in controlling the temperature of the solution used and troubles involved in maintaining stable treatment. The step of treatment according to the invention can be conducted at a temperature of about 50 to 80° C. by using the existing apparatus requiring easy maintenance concerning the composition and temperature of the solution, making it possible to improve the quality of the conductor substrate and of the semiconductor device and to stably conduct the treatment.
The invention resides in a conductor substrate, a resin-sealed semiconductor device and their production methods as well as an electronic equipment comprising the semiconductor device of the invention packaged therein and a method of production of the same. The invention will now be described with reference to the accompanying drawings. Note, however, that the invention is in no way limited to the following embodiments only.
The present invention resides in a conductor substrate comprising a semiconductor element mounted thereon, at least a portion thereof mounting the semiconductor element being sealed with an insulating resin. The conductor substrate of the invention can be embodied in a variety of embodiments within the scope of the invention. The invention will now be described with reference to FIG. 3 that illustrates a semiconductor device using the conductor substrate of the invention.
A semiconductor device 10 is provided with a lead frame 1, which is called a “conductor substrate” in the present invention. Though not illustrated, if the semiconductor device is provided with a heat-dissipating plate of which the outermost layer is formed of copper or an alloy thereof, then, the heat-dissipating plate may be regarded to be a conductor substrate of the present invention. In the following description, in particular, the conductor substrate is described by reference to the lead frame. However, any other member may be regarded to be the conductor substrate.
The conductor substrate is constituted from a metal member of which the outermost layer is formed of copper or an alloy thereof by taking the heat-dissipating property into consideration. That is, the conductor substrate may be substantially made of copper or an alloy thereof, or may be substantially made of a non-copper metal with the proviso that the outermost layer is at least formed of copper or an alloy thereof. In the latter case, the non-copper metal may be, for example, an FeNi alloy. Further, in this case, copper or an alloy thereof may be applied to form the outermost layer by plating or by any other film-forming method.
The conductor substrate is usually provided in the form of a thin plate, and is worked into a lead frame or any other shape by press working, etching, etc.
In the conductor substrate of the invention, it is essential that at least a portion of the conductor substrate is covered with a layer of copper oxide containing a hydroxide. In the illustrated semiconductor device 10, the conductor substrate (lead frame) 1 is covered with a layer 2 of hydroxide-containing copper oxide over its substantial portions, i.e., except for a portion having a silver-plated layer 3 thereon for connection to external units. Thus, by covering at least the back surface of the IC chip-mounting portion or, preferably, by covering the whole surface thereof with the hydroxide-containing copper oxide layer, the adhesion of the sealing resin to the lead frame is improved. The layer 2 of the hydroxide-containing copper oxide can be formed through a surface treatment of the conductor substrate of which at least the outermost surface layer is formed of copper or an alloy thereof, at a small layer thickness by using a simple method at a low temperature within a short period of time.
In the present invention, the surface treatment for forming the hydroxide-containing copper oxide layer is based on the specific or forced oxidation of the conductor substrate, and is preferably accomplished by either one of the following two methods or, as required, by a combination of the two methods.
- (1) Use of a blackening treatment solution having an oxidation reinforcing agent added thereto
The surface treatment usually employs only the blackening treatment solution which is particularly called herein, “black oxide treatment solution”. In the present invention, however, an oxidizing agent (called, particularly, “oxidation reinforcing agent” in the present invention) having excellent self-reducing force is added to the black oxide treatment solution and, then, the conductor substrate is immersed in the oxidizing agent-containing black oxide treatment solution. Note that, if used herein, the term “blackening” or “black oxide treatment” is intended to mean a conversion treatment for chemically forming an oxide layer on a surface of copper or an alloy thereof.
- (2) Use of the blackening treatment solution (black oxide treatment solution) and the anodization in combination
The conductor substrate is immersed in the black oxide treatment solution and is anodized in the solution.
Surprisingly, it is noted that either one of these surface treatment methods can be carried out at temperatures lower than that of the conventional blackening method (immersion method) and within a shortened period of time to complete the treatment. In practice, the surface treatment step can be usually conducted at a temperature of as relatively low as about 50 to 80° C. and is completed within a shortened period of time of about 1 to 20 seconds. This is because, according to the discovery by the present inventors, in the case of the present invention, a thin layer of the hydroxide-containing copper oxide is sufficient for obtaining a large degree of adhesion strength, and also the oxidation reaction proceeds quickly.
Further, since the surface treatment is accomplished within a shortened period of time as described above, the oxidation treatment is conducted after the silver layer is plated on the conductor substrate for, for example, wire bonding without contaminating the plated silver layer. Therefore, the conductor substrate and the conductor substrate plated with silver can be subjected to an oxidation treatment in the form of a hoop or a sheet by an in-line process, suppressing the cost yet greatly improving the productivity as compared to the oxidation treatment by immersion as represented by the conventional blackening method. The plated layers for wire bonding are not limited to the silver-plated layers only but may be, for example, palladium-plated layers or any plated layers.
A semiconductor element 5 is mounted on the lead frame 1 at a predetermined position. Though not illustrated, any bonding medium such as an adhesive sheet, die-bonding material, etc. is usually used for bonding the lead frame 1 and the semiconductor element 5 together. The semiconductor element 5 is, for example, an IC chip or an LSI chip. In the illustrated embodiment, one semiconductor element 5 is mounted, however, as required, two or more semiconductor elements may be mounted. In place of the semiconductor element or in combination with the semiconductor element, there may be mounted any active element or passive element. Namely, in the practice of the invention, there is no particular limitation on the kind of the semiconductor element to be mounted.
The semiconductor element 5 has its external connection terminals (not shown) connected to the silver-plated layers 3 of the lead frame 1 via bonding wires 8. The bonding wires 8 are fine wires made of, for example, gold (Au) or aluminum (Al). What is important here is that when the copper oxide layer is formed by the conventional blackening method, the silver-plated layer 3, too, is oxidized making it difficult to bond, for example, Au wires 8 to the silver-plated layer 3. Contrary to this, according to the present invention, the copper oxide layer is quickly formed upon the surface treatment. Therefore, the silver-plated layer 3 is not undesirably oxidized and, hence, the wire bonding method is conducted by using Au wires without any problem. As required, further, a flip-chip (FC) method may be used instead of the illustrated wire-bonding method.
In the illustrated semiconductor device 10, substantially the whole portion (functioning portion of the semiconductor device) inclusive of a portion mounting the semiconductor element 3 is filled or sealed with an insulating resin 9, and both ends of the lead frame 1 or the external lead portions only are exposed. The sealing resin 9 works to protect the semiconductor device 10 from the external moisture or shocks and encompasses any insulating resin so far as it does not adversely affect the effects of the invention. In the practice of the invention, a resin containing a hydroxyl group in the molecules is used as an insulating resin to effectively produce a hydrogen bonding force between the hydroxide-containing copper oxide layer (underlying layer) and the resin. Examples of a suitable sealing resin, although not restricted to, include an epoxy resin, a polyimide resin, a phenol resin and a vinyl chloride resin. Particularly, the epoxy resin is useful for the practice of the invention, since it produces a strong hydrogen bonding force between the epoxy resin and the hydrogen-containing copper oxide layer formed on the surface of the conductor substrate, preventing the occurrence of defects such as cracks and the peeling of resin.
Formation of the hydroxide-containing copper oxide layer according to the present invention will be described below in further detail.
According to the present invention, as described above, the thin copper oxide layer can be formed within a shortened period of time either by using the black oxide treatment solution to which the oxidation reinforcing agent is added or by using the black oxide treatment solution and the anodization in combination. FIG. 4 is attached to explain these layer formation methods, and shows a graph plotting the thicknesses of the copper oxide layer, i.e., a cuprous oxide (Cu2O) layer and a cupric oxide (CuO) layer formed by using an untreated copper alloy relying upon different methods:
1) Conventional blackening method for 10 seconds;
2) Method of the invention (using the black oxide treatment solution containing an oxidation reinforcing agent added, treated for 5 seconds);
3) Method of the invention (using the black oxide treatment solution containing an oxidation reinforcing agent added, treated for 10 seconds);
4) Method of the invention (using the black oxide treatment solution and the anodization in combination, treated for 2 seconds);
5) Method of the invention (using the black oxide treatment solution and the anodization in combination, treated for 10 seconds); and
6) Conventional blackening method for 240 seconds.
The layer thickness was measured in accordance with a cathode reduction method.
As will be understood from the graph of FIG. 4 , with the conventional blackening method which has heretofore been widely adopted, the treatment must be conducted for about 4 minutes to obtain a layer thickness of about 0.6 μm which is necessary for improving the adhesion and, besides, the treating temperature of about 100° C. is necessary. On the other hand, with the method of the present invention, the satisfactory layer thickness is in the range of about 0.1 to 0.15 μm, and the treating time is about 10 seconds in a low-temperature region of about 70° C. Further, with the method of the present invention, even when the treating time is shortened, the adhesion is improved and the oxide layer (Cu2O layer) is obtained. The oxide layer obtained has a thickness of about 0.02 to 0.05 μm, and exhibits an improved resin adhesion as explained later with reference to FIG. 8 despite the thickness is smaller than the Cu2O layer of a thickness of 0.05 μm that is obtained in the conventional blackening method for 10 seconds.
According to the present invention, a layer of copper oxide containing a hydroxide can be formed in the uppermost portion of the layer within a shortened period of time. This mechanism can be easily comprehended from FIGS. 5A to 5C which are sectional views illustrating, in sequence, the steps of forming a hydroxide-containing copper oxide layer according to the method of the invention. Referring, first, to FIG. 5A , a conductor substrate 1 of copper (or an alloy thereof) is prepared and is then subjected to an oxidation treatment. Note, however, in a single alkali bath usually used as a base for the conventional blackening solution that since Cu can be dissolved in the form of CuO2 2−, the oxidation treatment cannot be attained. In the conventional blackening solution, copper can be oxidized by the oxidizing force of an oxidizing agent, if such agent is added. However, to obtain a sufficiently high rate of oxidation, it is necessary to carry out the treatment at high temperatures, because when the treatment is conducted at a low temperature, the dissolving rate exceeds the oxidizing rate due to the oxidizing agent, and thus a favorable oxide layer cannot be formed.
Contrary to this, according to the present invention, an oxidation reinforcing agent having excellent self-reducing force such as sodium permanganate is added to the black oxide treatment solution (alkali bath, specifically, alkali bath containing a strong alkaline compound and an oxidizing agent as main components), or alternatively, the black oxide treatment solution (alkali bath) is used in combination with the anodization to carry out the oxidation treatment at low temperatures. Further, since the treatment is conducted at low temperatures, CuO2 2− produced upon dissolution can precipitate as cupric hydroxide Cu(OH)2.
(1) Use of a black oxide treatment solution having an oxidation reinforcing agent added thereto
In the initial stage of the reaction, there are formed a cuprous oxide Cu2O layer 21 and a cupric hydroxide Cu(OH)2 layer 23 on an upper surface of the conductor substrate 1 as illustrated in FIG. 5B . Here, the following two reactions take place.
2Cu+O2−→Cu2O+2e Reaction (1):
Cu2O+O2−→2CuO+2e Reaction (2):
2Cu+O2−→Cu2O+2e Reaction (1):
Cu2O+O2−→2CuO+2e Reaction (2):
Here, the reaction rate of the reaction (1) is greater than that of the reaction (2). As shown in FIG. 5C , therefore, there is formed a composite oxide layer which is a target layer of the invention, i.e., a three-layered structure comprising the cuprous oxide Cu2O layer 21, a cupric oxide CuO layer 22 and the cupric hydroxide Cu(OH)2 layer 23. Namely, simultaneously with the formation of the Cu2O layer and the CuO layer, CuO2 2− formed upon dissolution of copper undergoes the following reaction with water molecules:
CuO2 2−+2H2O→Cu(OH)2+2OH−
to form Cu(OH)2. Further, the resulting Cu(OH)2 is precipitated on the underlyingcupric oxide layer 22 as shown.
(2) Use of the black oxide treatment solution and the anodization in combination
CuO2 2−+2H2O→Cu(OH)2+2OH−
to form Cu(OH)2. Further, the resulting Cu(OH)2 is precipitated on the underlying
(2) Use of the black oxide treatment solution and the anodization in combination
In the initial stage of reaction, there are formed a cuprous oxide Cu2O layer 21 and a cupric hydroxide Cu(OH)2 layer 23 on a top surface of the conductor substrate 1 as illustrated in FIG. 5B . Here, the following two reactions take place.
2Cu+H2O→Cu2O+2H++2e Reaction (1):
Cu2O+H2O→2CuO+2H++2e Reaction (2):
2Cu+H2O→Cu2O+2H++2e Reaction (1):
Cu2O+H2O→2CuO+2H++2e Reaction (2):
Here, the reaction rate of the reaction (1) is greater than that of the reaction (2). As shown in FIG. 5C , therefore, there is formed a composite oxide layer which is a target layer of the invention, i.e., a three-layered structure comprising the cuprous oxide Cu2O layer 21, the cupric oxide CuO layer 22 and the cupric hydroxide Cu(OH)2 layer 23. Namely, simultaneously with the formation of the Cu2O layer and the CuO layer, CuO2 2− formed upon dissolution of copper undergoes the following reaction with H+ generated upon anodization:
CuO2 2−+2H+→Cu(OH)2
to form Cu(OH)2. Further, the resulting Cu(OH)2 is precipitated on the underlyingcupric oxide layer 22 as shown.
CuO2 2−+2H+→Cu(OH)2
to form Cu(OH)2. Further, the resulting Cu(OH)2 is precipitated on the underlying
In the practice of the present invention, the hydroxide-containing copper oxide layer is formed by using a treatment apparatus schematically illustrated in, for example, FIGS. 24 and 25 . FIG. 24 illustrates a treatment apparatus for carrying out the black oxide treatment in the presence of an oxidation reinforcing agent according to the invention, and FIG. 25 illustrates a treatment apparatus for carrying out the anodization in the black oxide treatment solution according to the invention.
Referring, first, to FIG. 24 , a treatment apparatus 50 comprises a treatment vessel 51 and a treatment solution 52. A hoop-like or sheet-like conductor substrate 1 immersed in the treatment vessel 51 can be conveyed in a direction of an arrow by the attached guide rollers 53. The treatment solution is maintained at a bath temperature of, for example, about 70° C., and the residence time of the conductor substrate 1 is about 5 to 20 seconds. That is, the time for treating the conductor substrate 1 is set to be about 5 to 20 seconds by adjusting the rotational speed of the guide rollers 53.
As previously described, the treatment solution is one prepared by adding an oxidation reinforcing agent having excellent self-reducing force to a black oxide treatment solution, and is a mixture of a strong alkaline compound, an oxidizing agent and an oxidation reinforcing agent. The strong alkaline compound used herein is not limited to a particular compound but is, preferably, sodium hydroxide or potassium hydroxide. The strong alkaline compounds may be used alone or in a mixture of two or more compounds. The oxidizing agent used in combination may be the one that is usually used for the preparation of the black oxide treatment solution and is not limited to any particular compound but is, preferably, for example, sodium chlorite. There is no particular limitation on the oxidation reinforcing agent that is added to the black oxide treatment solution according to the present invention so far as it has excellent self-reducing force. Preferably, however, the oxidation reinforcing agent is sodium permanganate, sodium bichromate or sodium peroxodisulfate. The oxidation reinforcing agents may be used alone or in a mixture of two or more agents. Further, any additive may be added to the treatment solution, in addition to the strong alkaline compound, oxidizing agent and oxidation reinforcing agent.
The treatment solution can be used, for example, in the following composition and under the following treating conditions.
Sodium chlorite (NaClO2) | 5 to 100 g/L | ||
Sodium hydroxide (NaOH) | 5 to 60 g/L | ||
Trisodium phosphate (Na3PO4) | 0 to 200 g/L | ||
Sodium permanganate (NaMnO4) | 50 to 100 g/L | ||
Treating conditions:
Bath temperature | about 50 to 80° C. | ||
Treating time | about 5 to 20 seconds | ||
Referring, next, to FIG. 25 , a treatment apparatus 50 for anodization comprises a treatment vessel 51 and a treatment solution 52. A hoop-like or sheet-like conductor substrate 1 immersed in the treatment vessel 51 can be conveyed in a direction of an arrow by attached guide rollers 53. The treatment vessel 51 further has two platinum electrode plates (−) 54 and 55 connected to a rectifier 56 for anodization. The guide rollers 53 are also connected to the rectifier 56 to provide feeder rollers (+). The treatment solution for anodization is maintained at a bath temperature of, for example, about 70° C., and the residence time of the conductor substrate 1 is about 1 to 20 seconds. That is, the time for treating the conductor substrate 1 is set to be about 1 to 20 seconds by adjusting the rotational speed of the guide rollers 53. The electric current applied for the anodization may be either a pulse current or a direct current, and the current density is about 0.2 to 10 A/dm2.
As described above, the treating solution for anodization by itself may have a same composition as that of the conventional blackening solution and thus contains a strong alkaline compound and an oxidizing agent as main components. The strong alkaline compound and the oxidizing agent used herein are as described above. Further, any additive may be added to the treatment solution in addition to the strong alkaline compound and the oxidizing agent.
The treatment solution for anodization can be used, for example, in the following composition and under the following treating conditions.
Sodium chlorite (NaClO2) | 0 to 100 g/L | ||
Sodium hydroxide (NaOH) | 5 to 60 g/L | ||
Trisodium phosphate (Na3PO4) | 0 to 200 g/L | ||
Treating Conditions:
Bath temperature | about 50 to 80° C. | ||
Treating time | about 1 to 20 seconds | ||
Current density: | about 0.2 to about 10 A/dm2 | ||
In the semiconductor device of the present invention, as described above, the hydroxide-containing copper oxide layer of the conductor substrate, an outermost surface of which is formed of copper or a copper alloy, is bonded through the hydrogen bonding force to the sealing resin covering the surface of the copper oxide layer to obtain a strong adhering force imparting very excellent reliability to the resulting semiconductor device. Generation of hydrogen bonding force of the present invention will be easily understood from FIG. 6 which is a sectional view schematically illustrating a mechanism of bonding between the hydroxide-containing copper oxide layer 1 and the epoxy resin 9 in the semiconductor device of the present invention. The hydroxide in the hydroxide-containing copper oxide layer 1 generates a strong adhering force upon being hydrogen-bonded to the hydroxyl group (—OH) formed by the curing of the epoxy resin 9. So far as the present inventors know, there is no proposal in the prior art to reinforce the adhering force as a result of incorporation of hydroxide in copper oxide.
Contrary to this, in the case of the conventional semiconductor device, as schematically illustrated in FIG. 7 , the copper oxide layer 1 on the surface of the conductor substrate (copper or copper alloy) and the epoxy resin 9 are only weakly bonded together, generating only a weak adhering force, without precluding such problems as occurrence of cracks and peeling of the molding resin.
Moreover, in order to make sure the generation of such a hydrogen bonding force from the viewpoint of chemical structure, the present inventors have observed different copper oxide layers with regard to the presence of hydroxyl groups (—OH) based on the hydroxide, using the Fourier transform infrared spectroscopy (FT-IR). Confirmation of the presence of hydroxyl groups (—OH) proves the generation of the hydrogen bonding force. The following four kinds of copper oxide layer samples were prepared for the analysis.
Sample I:
Conventional blackening method for 10 seconds
Sample II:
Method of the invention (treated for 10 seconds, using the black oxide treatment solution containing an oxidation reinforcing agent added)
Sample III:
Method of the invention (treated for 10 seconds, using the black oxide treatment solution and the anodization in combination)
Sample IV:
Method of the invention (treated for 120 seconds, using the black oxide treatment solution and the anodization in combination)
Referring to the analytical results of FIG. 26 , a region C represents a peak due to —OH groups (wavelength: about 3400 cm−1) based on the hydroxide. In FIG. 26 , the samples have very thin layers of copper oxide and exhibit relatively small peaks due to —OH groups. However, the presence of the hydroxide can be confirmed from an increase in the layer thickness (sample IV is an amplified example).
In the case of the sample I (prior art), no hydroxide is contained in the copper oxide layer, and a peak due to —OH group is not recognized. In the case of the sample II of the invention, on the other hand, a peak due to —OH group is recognizable though it is mild. In the case of the sample III of the invention, too, a peak due to —OH group is recognizable though it is mild like in the case of the sample II. In order to make sure whether a peak due to —OH group can be reliably recognized in the sample of the invention, the present inventors have extended the anodization time to 120 seconds as represented by the sample IV to clearly confirm the presence of the peak due to —OH group. From the above analytical results, it is obvious that the copper oxide layer formed by the method of the invention can generate a hydrogen bonding force between the copper oxide layer and the epoxy resin due to presence of hydroxide contained therein.
1) Untreated copper alloy;
2) Copper alloy treated by a conventional blackening method for 10 seconds;
3) Copper alloy treated by the method of the invention (treated for 5 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added);
4) Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added);
5) Copper alloy treated by the method of the invention (treated for 2 seconds using the black oxide treatment solution and the anodization in combination);
6) Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution and the anodization in combination); and
7) Copper alloy treated by a conventional blackening method for 240 seconds.
Thicknesses of the copper oxide layers are as described already with reference to FIG. 4 . The individual samples were sealed with the resin (epoxy resin) over an area of 10.2 mm2. Treatment was made before sealing and after sealing under the following testing conditions A and B, and an adhesion strengths (KgF) of the sealing resin was measured. Note that the treatment before and after sealing applied herein was conducted by taking into consideration the practical production of the semiconductor devices; i.e., the pre-treatment was conducted simulating the curing step at the time of mounting the chip and the wire-bonding step, and the after-treatment was conducted simulating the solder reflowing step.
Test A:
No heating before sealing of the epoxy resin+heating (300° C.×10 seconds) after sealing
Test B:
Heating (150° C.×3 hours+270° C.×5 minutes) before sealing of the epoxy resin+heating (300° C.×10 seconds) after sealing
As will be understood from the test results of FIG. 8 , according to the conventional method, the strength of adhesion of the sealing resin becomes comparable to that of the method of the present invention only when the layer thickness is increased whereas according to the method of the present invention, a satisfactorily large adhesion strength of the sealing resin is obtained even when the layer has a small thickness.
The present inventors have further observed the surface states of the above-mentioned five samples (measuring range: 4 μm2) by using a scanning electron microscope (SEM, ×10,000) and an atomic force microscope (AFM, ×10,000), along with determination of the average surface roughness Ra. The results of measurement are shown in FIGS. 9 to 13 .
- FIG. 9—Untreated copper alloy
- FIG. 10—Copper alloy treated by a conventional blackening method for 10 seconds
- FIG. 11—Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing oxidation reinforcing agent added)
- FIG. 12—Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution and the anodization in combination)
- FIG. 13—Copper alloy treated by a conventional blackening method for 240 seconds
As will be understood from these drawings, the hydroxide-containing copper oxide layer formed according to the method of the present invention is constituted from fine needle-like crystals. The needle-like crystals have particle sizes of not larger than about 0.5 μm.
Further, the method of the present invention makes it possible to avoid a phenomenon in that the elements added to the copper alloy are concentrated due to the heat in the step of producing the semiconductor device and in the solder reflowing step and that the sealed resin is peeled off the conductor substrate. This is because the copper oxide layer formed according to the conventional method has a segregated layer, whereas the hydroxide-containing copper oxide layer, formed by the method of the present invention does not have such a segregated layer. A difference between these two layers will now be described with reference to FIGS. 14 and 15 .
When the untreated copper alloy is heat-treated, as successively illustrated in FIG. 14 , a segregated layer is formed due to elements contained in the copper alloy. Referring, first, to step (A) of FIG. 14 , there is prepared a copper alloy used as a conductor substrate 1. The copper alloy usually contains such elements as Sn and Ni as additives. Then, as the conductor substrate 1 is heated, a cuprous oxide (Cu2O) layer 21 is formed in the surface portion of the conductor substrate 1. Here, copper (Cu) element in the conductor substrate 1 is homogeneously diffused as shown. As a result, a segregated layer 24 is formed as shown in step (C) of FIG. 14 due to the added elements that are remaining. Further, a cupric oxide (CuO) layer 22 is formed on the cuprous oxide (Cu2O) layer 21. When the copper oxide film is thus formed, a very brittle segregated layer 24 exists on the conductor substrate 1, giving rise to the occurrence of a serious problem in that the sealed resin peels off (peels off the segregated layer 24).
On the other hand, when the untreated copper alloy is oxidized according to the present invention, it is allowed to form a layer of the hydroxide-containing copper oxide without forming the segregated layer due to heating. Namely, when the conductor substrate 1 of a copper alloy containing such elements as Sn and Ni as additives is oxidized by using the black oxide treatment solution containing an oxidation reinforcing agent added or using the black oxide treatment solution and the anodization in combination, there are formed, as illustrated in step (A) of FIG. 15 , the cuprous oxide (Cu2O) layer 21, the cupric oxide (CuO) layer 22 and the hydroxide-containing cuprous hydroxide layer 23 having a rough surface in this order from the side of the conductor substrate 1. When heated in this surface state, copper (Cu) element in the conductor substrate 1 is unhomogeneously diffused due to ruggedness in the surface portion as illustrated in step (B) of FIG. 15 . As a result, even if the added elements are left, there is formed no segregated layer as illustrated in step (C) of FIG. 15 . In the case of the hydroxide-containing cuprous oxide layer 23 formed by the method of the present invention, therefore, the semiconductor device exhibits an enhanced heat resistance, since peeling off of the sealing resin due to presence of the segregated layer can be avoided.
In order to confirm the formation of the segregated layer caused by the concentration of elements added to the copper alloy, the present inventors have analyzed the following four samples in the direction of depth by using an Auger electron spectroscopic analyzer (AES). The copper alloy of the samples used herein was a commercially available product (name “MF202”) containing a trace amount of tin (Sn). The heating condition was 300° C.×5 minutes, and the etching rate using the argon gas was 26 Å/min (SiO2).
Sample 1:
Untreated copper alloy (MF202)
Sample 2:
Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution and the anodization in combination)
Sample 3:
Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added)
Sample 4:
Copper alloy treated by a conventional blackening method for 10 seconds
On the other hand, in FIG. 17 (sample 2) and FIG. 18 (sample 3), there is no Sn peak from which it is learned that no Sn segregated layer is formed by the method of the present invention.
Further, when the hydroxide-containing copper oxide layer is formed according to the method of the present invention, the silver (Ag)-plated layer is not contaminated in the step of forming the copper oxide layer unlike the case of forming the copper oxide layer according to the conventional method. In order to confirm this effect, the present inventors have formed a copper oxide layer on a copper alloy which has been partly plated with an Ag layer, and have qualitatively analyzed the Ag-plated layer neighboring the copper oxide layer to evaluate the contamination. The copper alloy of the samples used herein was a commercially available product (name “MF202”) containing a trace amount of tin (Sn).
Sample 1:
Untreated copper alloy (MF202)
Sample 2:
Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution and the anodization in combination)
Sample 3:
Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added)
Sample 4:
Copper alloy treated by a conventional blackening method for 240 seconds
Further, the hydroxide-containing copper oxide layer formed according to the method of the present invention has excellent heat resistance compared to that of the copper oxide layer formed according to the conventional method, and favorably adheres to the underlying conductor substrate. To confirm this effect, the present inventors have conducted a tape peeling test by using the following five samples (ten for each sample) according to the following procedure. The copper alloy used herein as the conductor substrate was “CDA194” (Fe: 2.35% by weight; P: 0.07% by weight; Zn: 0.12% by weight; Cu: balance), and had a size of 30×10 mm.
Sample A:
Untreated copper alloy (CDA194)
Sample B:
Copper alloy treated by a conventional blackening method for 10 seconds
Sample C:
Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution containing an oxidation reinforcing agent added)
Sample D:
Copper alloy treated by the method of the invention (treated for 10 seconds using the black oxide treatment solution and the anodic oxidation in combination)
Sample E:
Copper alloy treated by a conventional blackening method for 240 seconds
The respective samples were placed on a hot plate heated at 300° C. and were heated in the atmosphere for different periods of time (10 minutes, 15 minutes, 20 minutes, 25 minutes and 30 minutes). Then, an adhesive tape (trade name, “SCOTCH™ #810”, manufactured by 3M Co.) was applied to a surface of the sample to conduct the tape peeling test in compliance with JIS H 8504 (Plating Adhesion Testing Method—Tape Testing). The obtained test results are summarized in Table 1 below.
In Table 1, ◯ represents that the copper oxide layer was not peeled off, {circle around (8)} represents that the copper oxide layer was partly peeled off, and X represents the copper oxide layer was entirely peeled off.
TABLE 1 | ||
300° C. × heating time | ||
[heating on hot plate in atmosphere] |
10 min. | 15 min. | 20 min. | 25 min. | 30 min. | |
A. Untreated Cu alloy | ◯ | {circle around (8)} | {circle around (8)} | X | X |
B. Blackening; | ◯ | ◯ | ◯ | {circle around (8)} | |
10 sec. | |||||
C. Addition of | ◯ | ◯ | ◯ | ◯ | ◯ |
oxidizing agent | |||||
(Invention); | |||||
10 sec. | |||||
D. Anodization | ◯ | ◯ | ◯ | ◯ | ◯ |
(Invention); | |||||
10 sec. | |||||
E. Blackening; | ◯ | ◯ | ◯ | ◯ | ◯ |
240 sec. | |||||
According to the present invention, as will be understood from the measurement results in Table 1, there is obtained a hydroxide-containing copper oxide layer featuring excellent adhesion at high temperatures. Even when heated at a temperature as high as 300° C. for an extended period of time, therefore, the layer does not peel off unlike the conventional films. In the case of the conventional layer, for example, the adhesion comparable to that of the present invention can be obtained only when a thick layer is formed by continuously conducting the blacking method for 4 minutes as represented by the sample E.
Claims (40)
1. A method of producing a conductor substrate for mounting a semiconductor element on a surface portion thereof, comprising:
treating a surface of the conductor substrate, at least an uppermost surface layer of which is formed of copper or a copper alloy, to at least partly cover the surface of the conductor substrate with a layer of copper oxide containing a hydroxide,
wherein said layer of hydroxide-containing copper oxide has a three-layered structure comprising a cuprous oxide (Cu2O) layer, a cupric oxide (CuO) layer and a cupric hydroxide (Cu(OH)2) layer, in sequence, from the surface of said conductor substrate.
2. A method of producing a conductor substrate according to claim 1 , wherein said conductor substrate substantially comprises copper or an alloy thereof.
3. A method of producing a conductor substrate according to claim 1 , wherein said conductor substrate substantially comprises a non-copper metal and the uppermost surface layer of said conductor substrate comprises copper or an alloy thereof.
4. A method of producing a conductor substrate according to claim 1 , wherein said surface treatment step is conducted by immersing said conductor substrate in a black oxide treatment solution having added thereto an oxidizing agent.
5. A method of producing a conductor substrate according to claim 4 , wherein said black oxide treatment solution is a mixture of a strong alkaline compound and an oxidizing agent.
6. A method of producing a conductor substrate according to claim 4 , wherein said oxidizing agent is sodium permanganate, sodium bichromate, sodium peroxodisulfate, or a mixture thereof.
7. A method of producing a conductor substrate according to claim 1 , wherein said surface treatment step is carried out with an anodization treatment while immersing said conductor substrate in a black oxide treatment solution.
8. A method of producing a conductor substrate according to claim 7 , wherein said black oxide treatment solution is a mixture of a strong alkaline compound and an oxidizing agent.
9. A method of producing a conductor substrate according to claim 1 , wherein said surface treatment step is conducted at a temperature of 50 to 80° C. for 1 to 20 seconds.
10. A method of producing a conductor substrate according to claim 1 , wherein a resin containing a hydroxyl group in the molecules thereof is used as said insulating resin, to thereby produce a hydrogen bonding force between said hydroxyl group-containing resin and a said layer of hydroxide-containing copper oxide.
11. A method of producing a conductor substrate according to claim 10 , wherein an epoxy resin is used as said hydroxyl group-containing resin.
12. A method of producing a conductor substrate according to claim 1 , wherein a lead frame is used as said conductor substrate.
13. A method of producing a conductor substrate according to claim 1 , wherein said layer of hydroxide-containing copper oxide is applied to cover at least a portion of the surface of said conductor substrate except for wiring portions.
14. A method of producing a conductor substrate according to claim 1 , wherein said layer of hydroxide-containing copper oxide is applied to cover the whole surfaces of said conductor substrate.
15. A method of producing a conductor substrate according to claim 1 , wherein a heat-dissipating plate is used as said conductor substrate.
16. A method of producing a conductor substrate according to claim 1 , wherein said layer of hydroxide-containing copper oxide is formed in a thickness in a range of 0.02 to 0.2 μm.
17. A method of producing a conductor substrate according to claim 1 , wherein no segregated layer is formed between said conductor substrate and said layer of hydroxide-containing copper oxide when treated under a high-temperature condition.
18. A method of producing a conductor substrate according to claim 1 , wherein said layer of hydroxide-containing copper oxide is constituted from needle-like crystals having particle sizes of not larger than 0.5 μm.
19. A method of producing a semiconductor device, comprising:
forming a layer of hydroxide-containing copper oxide on a conductor substrate by the method recited in claim 1 , further comprising:
mounting a semiconductor element on a surface portion of said conductor substrate;
electrically connecting said semiconductor element with said conductor substrate; and
sealing at least the surface portion of said conductor substrate, having said semiconductor element mounted thereon, and said semiconductor element with an insulating resin.
20. A method of producing a semiconductor device according to claim 19 , wherein said conductor substrate is substantially entirely sealed with said insulating resin.
21. A method of producing a conductor substrate for mounting a semiconductor element on a surface portion thereof, comprising:
treating a surface of the conductor substrate, at least an uppermost surface layer of which is formed of copper or a copper alloy, to at least partly cover the surface of the conductor substrate with a layer of copper oxide containing a hydroxide,
wherein said surface treatment step is carried out with an anodization treatment while immersing said conductor substrate in a black oxide treatment solution.
22. A method of producing a conductor substrate according to claim 21 , wherein said conductor substrate substantially comprises copper or an alloy thereof.
23. A method of producing a conductor substrate according to claim 21 , wherein said conductor substrate substantially comprises a non-copper metal and the uppermost surface layer of said conductor substrate comprises copper or an alloy thereof
24. A method of producing a conductor substrate according to claim 21 , wherein said surface treatment step is conducted by immersing said conductor substrate in a black oxide treatment solution having added thereto an oxidizing agent.
25. A method of producing a conductor substrate according to claim 24 , wherein said black oxide treatment solution is a mixture of a strong alkaline compound and an oxidizing agent.
26. A method of producing a conductor substrate according to claim 24 , wherein said oxidizing agent is sodium permanganate, sodium bichromate, sodium peroxodisulfate, or a mixture thereof.
27. A method of producing a conductor substrate according to claim 21 , wherein said black oxide treatment solution is a mixture of a strong alkaline compound and an oxidizing agent.
28. A method of producing a conductor substrate according to claim 21 , wherein said surface treatment step is conducted at a temperature of 50 to 80° C. for 1 to 20 seconds.
29. A method of producing a conductor substrate according to claim 21 , wherein a resin containing a hydroxyl group in the molecules thereof is used as said insulating resin, to thereby produce a hydrogen bonding force between said hydroxyl group-containing resin and a said layer of hydroxide-containing copper oxide.
30. A method of producing a conductor substrate according to claim 29 , wherein an epoxy resin is used as said hydroxyl group-containing resin.
31. A method of producing a conductor substrate according to claim 21 , wherein a lead frame is used as said conductor substrate.
32. A method of producing a conductor substrate according to claim 21 , wherein said layer of hydroxide-containing copper oxide is applied to cover at least a portion of the surface of said conductor substrate except for wiring portions.
33. A method of producing a conductor substrate according to claim 21 , wherein said layer of hydroxide-containing copper oxide is applied to cover the whole surfaces of said conductor substrate.
34. A method of producing a conductor substrate according to claim 21 , wherein a heat-dissipating plate is used as said conductor substrate.
35. A method of producing a conductor substrate according to claim 21 , wherein said layer of hydroxide-containing copper oxide has a three-layered structure comprising a cuprous oxide Cu2O layer, a cupric oxide (CuO) layer and a cupric hydroxide (Cu(OH)2) layer, in sequence, from the surface of said conductor substrate.
36. A method of producing a conductor substrate according to claim 21 , wherein said layer of hydroxide-containing copper oxide is formed in a thickness in a range of 0.02 to 0.2 μm.
37. A method of producing a conductor substrate according to claim 21 , wherein no segregated layer is formed between said conductor substrate and said layer of hydroxide-containing copper oxide when treated under a high-temperature condition.
38. A method of producing a conductor substrate according to claim 21 , wherein said layer of hydroxide-containing copper oxide is constituted from needle-like crystals having particle sizes of not larger than 0.5 μm.
39. A method of producing a semiconductor device, comprising:
forming a layer of hydroxide-containing copper oxide on a conductor substrate by the method recited in claim 21 , further comprising:
mounting a semiconductor element on a surface portion of said conductor substrate;
electrically connecting said semiconductor element with said conductor substrate; and
sealing at least the surface portion of said conductor substrate, having said semiconductor element mounted thereon, and said semiconductor element with an insulating resin.
40. A method of producing a semiconductor device according to claim 39 , wherein said conductor substrate is substantially entirely sealed with said insulating resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/607,994 US7524702B2 (en) | 2003-04-16 | 2006-12-04 | Conductor substrate, semiconductor device and production method thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-112050(PAT. | 2003-04-16 | ||
JP2003112050 | 2003-04-16 | ||
JP2004-44896(PAT. | 2004-02-20 | ||
JP2004044896A JP3883543B2 (en) | 2003-04-16 | 2004-02-20 | Conductor substrate and semiconductor device |
US10/824,523 US7301226B2 (en) | 2003-04-16 | 2004-04-15 | Conductor substrate, semiconductor device and production method thereof |
US11/607,994 US7524702B2 (en) | 2003-04-16 | 2006-12-04 | Conductor substrate, semiconductor device and production method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/824,523 Division US7301226B2 (en) | 2003-04-16 | 2004-04-15 | Conductor substrate, semiconductor device and production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070085178A1 US20070085178A1 (en) | 2007-04-19 |
US7524702B2 true US7524702B2 (en) | 2009-04-28 |
Family
ID=32911482
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/824,523 Active 2024-12-13 US7301226B2 (en) | 2003-04-16 | 2004-04-15 | Conductor substrate, semiconductor device and production method thereof |
US11/607,994 Expired - Lifetime US7524702B2 (en) | 2003-04-16 | 2006-12-04 | Conductor substrate, semiconductor device and production method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/824,523 Active 2024-12-13 US7301226B2 (en) | 2003-04-16 | 2004-04-15 | Conductor substrate, semiconductor device and production method thereof |
Country Status (7)
Country | Link |
---|---|
US (2) | US7301226B2 (en) |
EP (2) | EP1833089B1 (en) |
JP (1) | JP3883543B2 (en) |
KR (2) | KR101089201B1 (en) |
CN (1) | CN100592501C (en) |
MY (1) | MY136745A (en) |
TW (1) | TWI353043B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120319259A1 (en) * | 2011-06-16 | 2012-12-20 | Samsung Electro-Mechanics Co., Ltd. | Power module package and method for fabricating the same |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7166543B2 (en) * | 2004-08-30 | 2007-01-23 | Micron Technology, Inc. | Methods for forming an enriched metal oxide surface for use in a semiconductor device |
JP2006073825A (en) * | 2004-09-02 | 2006-03-16 | Toshiba Corp | Semiconductor device and packaging method thereof |
US20060125062A1 (en) * | 2004-12-15 | 2006-06-15 | Zuniga-Ortiz Edgar R | Semiconductor package having improved adhesion and solderability |
JP4857594B2 (en) * | 2005-04-26 | 2012-01-18 | 大日本印刷株式会社 | Circuit member and method of manufacturing circuit member |
EP1924393A1 (en) * | 2005-08-24 | 2008-05-28 | Fry's Metals Inc. | Reducing joint embrittlement in lead-free soldering processes |
JPWO2007061112A1 (en) * | 2005-11-28 | 2009-05-07 | 大日本印刷株式会社 | Circuit member, method of manufacturing circuit member, and semiconductor device including circuit member |
DE102006022254B4 (en) * | 2006-05-11 | 2008-12-11 | Infineon Technologies Ag | Semiconductor device having semiconductor device components embedded in plastic package, array for a plurality of semiconductor devices, and methods for manufacturing semiconductor devices |
EP2100323A4 (en) * | 2006-12-12 | 2011-12-07 | Interplex Qlp Inc | Plastic electronic component package |
KR101102891B1 (en) * | 2007-09-04 | 2012-01-10 | 삼성전자주식회사 | Wire structure and thin film transistor using the same |
US8129229B1 (en) * | 2007-11-10 | 2012-03-06 | Utac Thai Limited | Method of manufacturing semiconductor package containing flip-chip arrangement |
JP4870699B2 (en) * | 2008-03-10 | 2012-02-08 | 日立ビアメカニクス株式会社 | Copper surface treatment method and printed wiring board surface treatment method |
JP5415106B2 (en) * | 2008-03-21 | 2014-02-12 | 住友化学株式会社 | Manufacturing method of resin package |
JP5247626B2 (en) * | 2008-08-22 | 2013-07-24 | 住友化学株式会社 | Lead frame, resin package, semiconductor device, and resin package manufacturing method |
US20120028011A1 (en) * | 2010-07-27 | 2012-02-02 | Chong Pyung An | Self-passivating mechanically stable hermetic thin film |
JP2013131595A (en) * | 2011-12-21 | 2013-07-04 | Hitachi Ltd | Method for joining metal member and resin together and assembly of metal member and resin |
US10522444B2 (en) | 2013-03-11 | 2019-12-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Surface treatment method and apparatus for semiconductor packaging |
KR101538543B1 (en) * | 2013-08-13 | 2015-07-22 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor Device and Fabricating Method Thereof |
JP6653139B2 (en) * | 2015-07-24 | 2020-02-26 | 株式会社三井ハイテック | Lead frame and manufacturing method thereof |
JP6415424B2 (en) * | 2015-12-17 | 2018-10-31 | アトテック ドイチェランド ゲーエムベーハー | Method of treating a metal surface and apparatus formed by this method |
CN106226342A (en) * | 2016-07-13 | 2016-12-14 | 博罗县精汇电子科技有限公司 | A kind of fall the glue method of inspection for PI high temperature gummed tape |
US20180076118A1 (en) * | 2016-09-09 | 2018-03-15 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package |
CN106856179A (en) * | 2017-01-20 | 2017-06-16 | 深圳市环基实业有限公司 | A kind of new type integrated circuit packaging technology |
CN107068577B (en) * | 2017-01-23 | 2020-01-17 | 深圳市环基实业有限公司 | Integrated circuit packaging process |
CN106653624B (en) * | 2017-01-23 | 2019-10-25 | 深圳市环基实业有限公司 | A kind of packaging technology of firm chip |
JP6863819B2 (en) * | 2017-05-11 | 2021-04-21 | 大口マテリアル株式会社 | Lead frame and its manufacturing method |
WO2018211992A1 (en) * | 2017-05-19 | 2018-11-22 | フリージア・マクロス株式会社 | Board for mounting electronic component, and manufacturing method therefor |
JP6892796B2 (en) | 2017-07-07 | 2021-06-23 | 新光電気工業株式会社 | Electronic component equipment and its manufacturing method |
JP7016677B2 (en) | 2017-11-21 | 2022-02-07 | 新光電気工業株式会社 | Manufacturing method of lead frame, semiconductor device, lead frame |
JP7170498B2 (en) * | 2018-10-24 | 2022-11-14 | 株式会社三井ハイテック | Leadframes and leadframe packages |
JP7304145B2 (en) | 2018-11-07 | 2023-07-06 | 新光電気工業株式会社 | Lead frame, semiconductor device, and lead frame manufacturing method |
IT201900009585A1 (en) * | 2019-06-20 | 2020-12-20 | St Microelectronics Srl | PROCEDURE FOR MANUFACTURING SEMICONDUCTOR DEVICES AND CORRESPONDING SEMICONDUCTOR DEVICE |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5741379A (en) | 1980-08-27 | 1982-03-08 | Mitsui Mining & Smelting Co Ltd | Blackening method for copper or copper alloy |
US4512818A (en) * | 1983-05-23 | 1985-04-23 | Shipley Company Inc. | Solution for formation of black oxide |
US4518449A (en) | 1983-10-27 | 1985-05-21 | Hitachi Cable Limited | Process for production of hydrate surfaced rolled copper foil laminated plates |
JPS60201651A (en) | 1984-03-26 | 1985-10-12 | Hitachi Cable Ltd | Lead frame for semiconductor |
JPS6421083U (en) | 1987-07-29 | 1989-02-02 | ||
US4888449A (en) | 1988-01-04 | 1989-12-19 | Olin Corporation | Semiconductor package |
US4997722A (en) | 1989-07-10 | 1991-03-05 | Edward Adler | Composition and method for improving adherence of copper foil to resinous substrates |
JPH03295262A (en) | 1990-04-13 | 1991-12-26 | Mitsubishi Electric Corp | Lead frame and manufacture thereof |
JPH05317807A (en) | 1992-05-22 | 1993-12-03 | Mitsubishi Electric Corp | Production of resin coated copper-based material |
US5459103A (en) | 1994-04-18 | 1995-10-17 | Texas Instruments Incorporated | Method of forming lead frame with strengthened encapsulation adhesion |
JPH09148509A (en) | 1995-11-22 | 1997-06-06 | Goto Seisakusho:Kk | Lead frame for semiconductor device and its surface treatment method |
US5785791A (en) | 1997-05-05 | 1998-07-28 | Motorola, Inc. | Method of manufacturing semiconductor component |
US5854741A (en) * | 1995-11-17 | 1998-12-29 | Amkor Electronics, Inc. | Unit printed circuit board carrier frame for ball grid array semiconductor packages and method for fabricating ball grid array semiconductor packages using the same |
JPH11145352A (en) | 1997-11-04 | 1999-05-28 | Sumitomo Metal Mining Co Ltd | Heat spreader |
JPH11211376A (en) | 1998-01-27 | 1999-08-06 | Mitsubishi Materials Corp | Heat transfer member and manufacture thereof |
US6034422A (en) | 1995-09-29 | 2000-03-07 | Dai Nippon Printing Co., Ltd. | Lead frame, method for partial noble plating of said lead frame and semiconductor device having said lead frame |
JP2001210776A (en) | 2000-01-24 | 2001-08-03 | Fujitsu Ltd | Semiconductor device, its manufacturing method, lead frame and its manufacturing method |
JP2002069661A (en) | 2000-08-30 | 2002-03-08 | Nikko Materials Co Ltd | Surface treatment method for copper |
JP2002231871A (en) | 2001-02-06 | 2002-08-16 | Toppan Printing Co Ltd | Method for manufacturing leadframe and leadframe |
US20020132056A1 (en) * | 2000-11-02 | 2002-09-19 | Shipley Company, L.L.C. | Process for treating adhesion promoted metal surfaces with an organo-silcon post-treatment |
US20030044597A1 (en) | 2000-08-17 | 2003-03-06 | Hifumi Nagai | Copper-alloy foil to be used for laminate sheet |
US20030227073A1 (en) | 2002-06-07 | 2003-12-11 | Fujitsu Limited | Lead frame and manufacturing method thereof and a semiconductor device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5861076A (en) * | 1991-07-19 | 1999-01-19 | Park Electrochemical Corporation | Method for making multi-layer circuit boards |
JP2002299538A (en) * | 2001-03-30 | 2002-10-11 | Dainippon Printing Co Ltd | Lead frame and semiconductor package using the same |
US20020152596A1 (en) * | 2001-04-18 | 2002-10-24 | Ruddy Steve A. | Method and apparatus for manufacturing hinges |
-
2004
- 2004-02-20 JP JP2004044896A patent/JP3883543B2/en not_active Expired - Lifetime
- 2004-04-07 EP EP07008445.4A patent/EP1833089B1/en not_active Expired - Lifetime
- 2004-04-07 EP EP04008448.5A patent/EP1469514B1/en not_active Expired - Lifetime
- 2004-04-12 TW TW093110107A patent/TWI353043B/en not_active IP Right Cessation
- 2004-04-13 KR KR1020040025201A patent/KR101089201B1/en active IP Right Grant
- 2004-04-13 MY MYPI20041354A patent/MY136745A/en unknown
- 2004-04-15 CN CN200410033875A patent/CN100592501C/en not_active Expired - Lifetime
- 2004-04-15 US US10/824,523 patent/US7301226B2/en active Active
-
2006
- 2006-12-04 US US11/607,994 patent/US7524702B2/en not_active Expired - Lifetime
-
2011
- 2011-01-12 KR KR1020110003081A patent/KR101121117B1/en active IP Right Grant
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5741379A (en) | 1980-08-27 | 1982-03-08 | Mitsui Mining & Smelting Co Ltd | Blackening method for copper or copper alloy |
US4512818A (en) * | 1983-05-23 | 1985-04-23 | Shipley Company Inc. | Solution for formation of black oxide |
US4518449A (en) | 1983-10-27 | 1985-05-21 | Hitachi Cable Limited | Process for production of hydrate surfaced rolled copper foil laminated plates |
JPS60201651A (en) | 1984-03-26 | 1985-10-12 | Hitachi Cable Ltd | Lead frame for semiconductor |
JPS6421083U (en) | 1987-07-29 | 1989-02-02 | ||
US4888449A (en) | 1988-01-04 | 1989-12-19 | Olin Corporation | Semiconductor package |
US4997722A (en) | 1989-07-10 | 1991-03-05 | Edward Adler | Composition and method for improving adherence of copper foil to resinous substrates |
JPH03295262A (en) | 1990-04-13 | 1991-12-26 | Mitsubishi Electric Corp | Lead frame and manufacture thereof |
JPH05317807A (en) | 1992-05-22 | 1993-12-03 | Mitsubishi Electric Corp | Production of resin coated copper-based material |
US5459103A (en) | 1994-04-18 | 1995-10-17 | Texas Instruments Incorporated | Method of forming lead frame with strengthened encapsulation adhesion |
US6034422A (en) | 1995-09-29 | 2000-03-07 | Dai Nippon Printing Co., Ltd. | Lead frame, method for partial noble plating of said lead frame and semiconductor device having said lead frame |
US5854741A (en) * | 1995-11-17 | 1998-12-29 | Amkor Electronics, Inc. | Unit printed circuit board carrier frame for ball grid array semiconductor packages and method for fabricating ball grid array semiconductor packages using the same |
JPH09148509A (en) | 1995-11-22 | 1997-06-06 | Goto Seisakusho:Kk | Lead frame for semiconductor device and its surface treatment method |
US5785791A (en) | 1997-05-05 | 1998-07-28 | Motorola, Inc. | Method of manufacturing semiconductor component |
JPH11145352A (en) | 1997-11-04 | 1999-05-28 | Sumitomo Metal Mining Co Ltd | Heat spreader |
JPH11211376A (en) | 1998-01-27 | 1999-08-06 | Mitsubishi Materials Corp | Heat transfer member and manufacture thereof |
JP2001210776A (en) | 2000-01-24 | 2001-08-03 | Fujitsu Ltd | Semiconductor device, its manufacturing method, lead frame and its manufacturing method |
US20030044597A1 (en) | 2000-08-17 | 2003-03-06 | Hifumi Nagai | Copper-alloy foil to be used for laminate sheet |
JP2002069661A (en) | 2000-08-30 | 2002-03-08 | Nikko Materials Co Ltd | Surface treatment method for copper |
US20020132056A1 (en) * | 2000-11-02 | 2002-09-19 | Shipley Company, L.L.C. | Process for treating adhesion promoted metal surfaces with an organo-silcon post-treatment |
JP2002231871A (en) | 2001-02-06 | 2002-08-16 | Toppan Printing Co Ltd | Method for manufacturing leadframe and leadframe |
US20030227073A1 (en) | 2002-06-07 | 2003-12-11 | Fujitsu Limited | Lead frame and manufacturing method thereof and a semiconductor device |
Non-Patent Citations (1)
Title |
---|
Office Action issued in corresponding Japanese Patent Application No. 2006-233837, mailed on Mar. 25, 2008. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120319259A1 (en) * | 2011-06-16 | 2012-12-20 | Samsung Electro-Mechanics Co., Ltd. | Power module package and method for fabricating the same |
US8729683B2 (en) * | 2011-06-16 | 2014-05-20 | Samsung Electro-Mechanics Co., Ltd | Power module package and method for fabricating the same |
US20140220736A1 (en) * | 2011-06-16 | 2014-08-07 | Samsung Electro-Mechanics Co., Ltd. | Power module package and method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
EP1833089A2 (en) | 2007-09-12 |
JP3883543B2 (en) | 2007-02-21 |
KR20040090452A (en) | 2004-10-25 |
KR101089201B1 (en) | 2011-12-02 |
TW200501340A (en) | 2005-01-01 |
EP1833089B1 (en) | 2014-12-17 |
KR101121117B1 (en) | 2012-03-22 |
JP2004332105A (en) | 2004-11-25 |
US20040207056A1 (en) | 2004-10-21 |
EP1833089A3 (en) | 2010-04-14 |
EP1469514B1 (en) | 2016-11-23 |
CN1538518A (en) | 2004-10-20 |
MY136745A (en) | 2008-11-28 |
US7301226B2 (en) | 2007-11-27 |
KR20110010832A (en) | 2011-02-07 |
CN100592501C (en) | 2010-02-24 |
EP1469514A2 (en) | 2004-10-20 |
EP1469514A3 (en) | 2005-07-13 |
TWI353043B (en) | 2011-11-21 |
US20070085178A1 (en) | 2007-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7524702B2 (en) | Conductor substrate, semiconductor device and production method thereof | |
US7190057B2 (en) | Packaging component and semiconductor package | |
EP0637082B1 (en) | Leadframe for an integrated circuit device | |
EP0751564A2 (en) | Ultra-thin noble metal coatings for electronic packaging | |
US8313983B2 (en) | Fabrication method for resin-encapsulated semiconductor device | |
JP4698708B2 (en) | Package parts and semiconductor packages | |
JP5264939B2 (en) | Package parts and semiconductor packages | |
TWI660068B (en) | Lead-frame structure, lead-frame, surface mount electronic device and methods of producing same | |
JPH10284667A (en) | Material for electric electronic device component having superior corrosion resistance and oxidation resistance | |
JPH07326701A (en) | Conductive material for electric-electronic part, lead frame and semiconductor integrated circuit using the same | |
JP3407839B2 (en) | Method of forming solder bump for semiconductor device | |
JP4628263B2 (en) | Package component, manufacturing method thereof, and semiconductor package | |
JP4740773B2 (en) | Lead frame, semiconductor device, and lead frame manufacturing method | |
JP4307473B2 (en) | Conductor base material and semiconductor device manufacturing method | |
JPH10284666A (en) | Electronic component device | |
JP3206342B2 (en) | Manufacturing method of ceramic IC package | |
JP2006196920A5 (en) | ||
JPS6180844A (en) | Basic wire for semiconductor lead frame | |
JPH10308491A (en) | Lead frame for semiconductor device and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |