[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US7472109B2 - Method for optimization of temporal and spatial data processing - Google Patents

Method for optimization of temporal and spatial data processing Download PDF

Info

Publication number
US7472109B2
US7472109B2 US10/331,911 US33191102A US7472109B2 US 7472109 B2 US7472109 B2 US 7472109B2 US 33191102 A US33191102 A US 33191102A US 7472109 B2 US7472109 B2 US 7472109B2
Authority
US
United States
Prior art keywords
spatial
function
temporal
objects
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/331,911
Other versions
US20040128314A1 (en
Inventor
Edwin Katibah
Martin Siegenthaler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US10/331,911 priority Critical patent/US7472109B2/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KATIBAH, EDWIN, SIEGENTHALER, MARTIN
Priority to TW092133336A priority patent/TWI231374B/en
Priority to JP2004563335A priority patent/JP4641421B2/en
Priority to EP03768011A priority patent/EP1579342A1/en
Priority to PCT/GB2003/005513 priority patent/WO2004059531A1/en
Priority to CN200380107856A priority patent/CN100585588C/en
Priority to AU2003292433A priority patent/AU2003292433A1/en
Publication of US20040128314A1 publication Critical patent/US20040128314A1/en
Priority to IL169495A priority patent/IL169495A0/en
Priority to US12/207,441 priority patent/US8296343B2/en
Publication of US7472109B2 publication Critical patent/US7472109B2/en
Application granted granted Critical
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2477Temporal data queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99941Database schema or data structure
    • Y10S707/99944Object-oriented database structure

Definitions

  • the present invention is related to temporal and spatial data processing.
  • the Global Positioning System is a set of satellites that orbit the earth and make it possible for people with ground GPS receivers to pinpoint their geographic location.
  • the GPS is owned and operated by the U.S. Department of Defense but is available for general use around the world.
  • Each satellite contains a computer, an atomic clock, and a radio.
  • Each satellite has an understanding of its orbit and has a clock. With this, each satellite continually broadcasts its changing position and time.
  • each GPS receiver contains a computer that “triangulates” its position by getting bearings from three of the four satellites. The result is a geographic position in the form of a longitude and latitude.
  • GPS data As the GPS receiver continuously triangulates a position, the result is a set of values, referred to as GPS data. Each value provides a longitude and latitude for a time.
  • the GPS data may be stored in a table as “timeseries” data (i.e., timeseries refers to a datatype available in an IBM® Informix® TimeSeries DataBlade® module from International Business Machines Corporation). Timeseries data includes GPS data for a particular type of object (e.g., a car).
  • the GPS receiver may also include the capability to determine an altitude, in addition to longitude and latitude.
  • a temporal application might use timeseries data to identify all stock trades on a company between 4:00 p.m. and 5:00 p.m.
  • a spatial application may use the timeseries data to identify how far a car has traveled between 4:00 p.m. and 5:00 p.m.
  • Temporal/spatial applications are able to perform many functions, such as: document how many stops a truck makes on a route; determine whether and when an individual's car left a certain location (e.g., a school campus) and whether and when the car returned; determine when a container was loaded onto a ship, where the container stopped while traveling on the ship, and how long before the container arrives at a destination (e.g., a port); determine when connecting flights arrive at an airport; and, determine whether a taxi arrived at a particular location at a particular time.
  • a certain location e.g., a school campus
  • a destination e.g., a port
  • FIG. 1 illustrates prior art processing by a user to convert time data to spatial data that may be queried with a spatial query.
  • a user desires to submit a Structured Query Language (SQL) request that determines whether a car 100 passed in front of a specific bank 104 .
  • Relational DataBase Management System (RDBMS) software uses a Structured Query Language (SQL) interface.
  • SQL Structured Query Language
  • the SQL interface has evolved into a standard language for RDBMS software and has been adopted as such by both the American National Standards Institute (ANSI) and the International Standards Organization (ISO).
  • the car 100 has a GPS receiver that calculates GPS data and a computer system that routes the GPS data to a server (not shown).
  • the user loads the GPS data into a table to create timeseries data 110 .
  • Table 1 illustrates a table of timeseries data.
  • the table of timeseries data includes a time, a longitude, and a latitude for each row of the table. The longitude and latitude may be specified in degrees.
  • the user converts the timeseries data 110 through a first SQL conversion 114 into point objects 120 that specify longitude and latitude (i.e., X, Y) values.
  • point objects 120 that specify longitude and latitude (i.e., X, Y) values.
  • the user stores the time and point objects 120 into Table 2, which illustrates the data stored after creation of point objects.
  • the user converts the point objects 120 through a second SQL conversion 124 into a line object 130 that reflects a line of travel of the car 100 .
  • Table 3 illustrates that a single row of data is stored after a path is generated, and the row has a starting time and a path.
  • the line object 130 is a type of spatial object that may be queried with a spatial query 140 . Therefore, after creating the line object 130 , the user submits spatial query 140 to determine whether the line the car traveled intersects with the building location.
  • Select statement (1) is the spatial query 140 submitted by the user and includes an intersect function. In select statement (1), the user specifies “car.line”, which is the spatial object that the user created.
  • the real time location of the car 100 passes through a number of intermediate steps (i.e., first and second SQL conversions 114 , 124 ) before a spatial query can be made against the time data.
  • first and second SQL conversions 114 , 124 the majority of temporal functionality may be lost in the first SQL conversion 114 .
  • This solution stores timeseries data 110 for the car 100 in a database table, and queries (with first SQL conversion 114 ) the table to build point objects 120 .
  • the solution queries the point objects (which are results of the first SQL conversion 114 ) to generate the path object 130 .
  • data is loaded into a table of timeseries data and selection is done in the temporal domain. That is selection is based on time.
  • the data is converted for use in a spatial domain.
  • analysis of the data and rendering of a spatial object is completed in the spatial domain.
  • an IBM® Informix® TimeSeries Real Time Loader RTL (available from International Business Machines Corporation) is used to load the data.
  • RTL Real Time Loader
  • the data points are moved from the time series in the temporal domain to spatial points.
  • the spatial points are then used to build line objects, which are then used for path analysis. This domain translation is time consuming, eroding the value of the timely data, as well as, creating redundancies.
  • a spatial query is received specifying a mapping function that identifies a set of temporal values for one or more objects.
  • Geographic positions are automatically extracted from each set of temporal values for each of the one or more objects.
  • Point objects are generated from the geographic positions.
  • One or more spatial objects are generated from the point objects.
  • the described implementations of the invention provide a method, system, and program for improved temporal/spatial data processing.
  • FIG. 1 illustrates prior art processing by a user to convert time data to spatial data that may be queried with a spatial query.
  • FIG. 2 illustrates, in a block diagram, a computing environment in accordance with certain implementations of the invention.
  • FIG. 3 illustrates, in a block diagram, use of a mapping function in a request that determines whether a car passed in front of a specific bank in accordance with certain implementations of the invention.
  • FIG. 4A illustrates logic implemented in a database engine in accordance with certain implementations of the invention.
  • FIG. 4B illustrates logic implemented in temporal/spatial module in accordance with certain implementations of the invention.
  • FIG. 5 illustrates one implementation of the architecture of the computer systems in accordance with certain implementations of the invention.
  • Implementations of the invention provide functions that move data from the temporal to spatial domain directly, thereby reducing the lag between collecting and using the data, as well as, eliminating redundancies.
  • FIG. 2 illustrates, in a block diagram, a computing environment in accordance with certain implementations of the invention.
  • a client computer 200 executes one or more client applications 202 .
  • a client application 110 may be any type of application program.
  • a location based computer 210 includes a location aware device 214 , such as a GPS receiver.
  • the location aware device 214 is capable of generating temporal values either continuously or periodically.
  • the temporal values include a time with an associated longitude, latitude.
  • the temporal values may also include other information, such as vehicle identification, speed of travel, etc.
  • the time intrinsically holds a date.
  • the client computer 200 is connected to a server computer 220 by a network, such as a local area network (LAN), wide area network (WAN), or the Internet.
  • the location based computer 210 is connected via a wireless interface (e.g., cell phone or Cellular Digital Packet Data (CDPD) modem) to the Internet.
  • the Internet is a world-wide collection of connected computer networks (i.e., a network of networks).
  • the location based computer 210 reads temporal values from the location aware device 214 and routes the temporal values to the server computer 220 via the wireless connection to the Internet. Although for ease of understanding, one location based computer 210 is illustrated, typically, multiple location based computers 210 are communicating with the server computer 220 .
  • the server computer 220 includes a database engine 230 , which includes temporal/spatial module 250 , which processes a mapping function 252 .
  • the temporal/spatial module 250 may store data in memory buffer 254 during its execution.
  • the database engine 230 also includes database 260 , which includes timeseries data for one or more objects, one or more point objects, and one or more spatial objects.
  • the temporal values for a particular object (e.g., a car) received from the location based computer 210 are stored in timeseries data.
  • the temporal/spatial module 250 internally converts the timeseries data to point objects, and converts the point objects to spatial objects that may be processed with a spatial query by a client application 202 .
  • the term “temporal/spatial data system” 240 is used to refer to the temporal/spatial module 250 and database 260 .
  • the database engine 130 may be an IBM® Informix® Dynamic Server (IDS), which is available from International Business Machines Corporation.
  • IDS IBM® Informix® Dynamic Server
  • the temporal/spatial module 250 is implemented as a server extension. Also, when a client application 220 submits a spatial query that includes mapping function 252 to server computer 220 , the intermediate data used in processing the spatial query or the mapping function 252 is not moved between the client computer 200 and the server computer 220 .
  • the temporal/spatial module 250 is implemented utilizing MapInfo SpatialWare®, Spatial DataBlade® or Geodetic DataBlade® on an IBM® Informix® Dynamic Server.
  • a new mapping function 252 is provided for optimized processing of timeseries data.
  • the input to the mapping function 252 is a set of temporal values (i.e., a portion or all of timeseries data, which may also be referred to as a “clip”) and zero or more additional arguments.
  • the additional arguments may include, for example, projection data.
  • the output of the mapping function 252 is a path (i.e., a type of spatial object).
  • the mapping function 252 takes on the format of timeSeriesToPath function (2).
  • timeSeriesToPath ( ⁇ set of temporal values>, (2) ⁇ list of additional arguments>)
  • Timeseries data for an object stores data for a particular type of object (e.g., a car) that produces temporal values with a location aware device (e.g., a GPS receiver).
  • Temporal values include a time along with longitude, latitude values.
  • the set of temporal values is defined with a start time and an end time with reference to data stored in the timeseries data.
  • FIG. 3 illustrates, in a block diagram, use of a mapping function in a request that determines whether a car 300 passed in front of a specific bank 304 in accordance with certain implementations of the invention.
  • a request is processed that determines whether a car 300 passed in front of a specific bank 304 .
  • the car 300 has a location aware device (e.g., a GPS receiver) that calculates temporal values and a computer system that routes the temporal values to a server (not shown).
  • the temporal values for the car 300 are loaded into a table of timeseries data 310 at the server.
  • a spatial query may be submitted that references the timeseries data 310 .
  • a spatial query 340 that includes a mapping function 252 may be submitted.
  • the first argument of the mapping function specifies all or a portion of the timeseries data 310 (i.e., specifies a set of temporal values).
  • spatial query 340 is illustrated with select statement (3):
  • the temporal/spatial data system 240 collapses the selection and conversion steps of the prior art ( FIG. 1 ) into a single operation.
  • the steps involved in the processing of temporal values have been reduced, redundant data has been eliminated, and the timeseries functionality is available for the select statement.
  • This elimination of the intermediary steps reduces the lag time between the time the location data is added to the database and the time the location data is available as spatial data for querying.
  • FIG. 4A illustrates logic implemented in a database engine 230 in accordance with certain implementations of the invention.
  • Control begins at block 400 with the database engine 230 receiving a spatial query with a mapping function 252 .
  • the database engine 230 selects the next record to process for the query, starting with the first record.
  • the database engine 230 invokes the temporal/spatial module 250 to process the mapping function 252 for the selected record.
  • the database engine 230 determines whether there are additional records to process. If so, processing loops back to block 405 , otherwise, processing continues to block 430 .
  • the database engine 230 evaluates the spatial query against the one or more spatial objects.
  • FIG. 4B illustrates logic implemented in temporal/spatial module 250 in accordance with certain implementations of the invention.
  • Control begins at block 440 with the temporal/spatial module 250 retrieving a set of temporal values (i.e., all or a portion of timeseries data for the object associated with the selected record) specified in a mapping function 252 .
  • the set of temporal values is received as all or a portion of a table.
  • the temporal/spatial module 250 extracts longitude, latitude data (X, Y) from the temporal values in the timeseries data.
  • the temporal/spatial module 250 generates point objects.
  • One point object is instantiated for each longitude, latitude pair in memory buffer 254 at the server 220 .
  • a point object is a type of spatial object and has two methods, one for latitude and one for longitude.
  • the temporal/spatial module 250 generates a spatial object from the point objects.
  • different types of spatial objects may be generated.
  • at least one spatial object is a path object that is instantiated for the set of point objects in memory 254 at the server 220 .
  • the path object is a type of spatial object and has methods, such as length and endpoint.
  • the spatial object is returned.
  • a spatial query that includes a mapping function 252 may be evaluated against the one or more spatial objects that are returned as a result of evaluating the mapping function 252 .
  • implementations of the invention avoid prior art processing that required building tables to convert temporal data to spatial data.
  • Select statement (3) references a single object (i.e., a taxi), but since a select statement is evaluated against database 160 , the select statement may reference a group of objects, such as all taxis.
  • Select statement (4) is evaluated against the generated spatial object for the interval specified by the set of temporal values. Furthermore, evaluation of select statement (4) returns “true” if the building location and the path for the car having the identification “Yellow Cab #123” in the interval specified by the timeSeriesToPath function intersect.
  • a query such as select statement (5) may be submitted.
  • the mapping function takes on different formats to be compatible with vendor specific spatial products, and the spatial object composed in block 470 is dependent on the underlying spatial product.
  • the format of the mapping function 252 may be timeSeriesToLine( ), and the spatial object composed by the temporal/spatial module 250 would be a line object.
  • One product is an IBM® Informix® Geodetic DataBlade® module available from International Business Machines Corporation. If the Geodetic DataBlade® is installed, the “path” portion of the timeSeriesToPath function would be modified to represent the desired spatial object (e.g., GeoString, GeoPolygon, GeoString, etc.), and a corresponding spatial object would be composed by the temporal/spatial module 250 .
  • Another product is an IBM® Informix® Spatial DataBlade® module available from International Business Machines Corporation.
  • mapping function 252 may reference the following spatial objects ST_LineString, ST_Multiline, ST_Polygon, etc., and the temporal/spatial module 250 would return the corresponding object.
  • the “ST” prefix before an object name indicates that the object was defined by a standards body, Open GIS Consortium. More information on the Open GIS Consortium is available at http://www.opengis.org.
  • the Mapinfo SpatialWare® module is a product from MapInfo Corporation, and in the instance of MapInfo SpatialWare® module, MapInfo SpatialWare's® implementation specific objects would be returned.
  • Select statement (6) illustrates a spatial query that includes a mapping function 252 for the car example of FIG. 3 when utilizing an ST_CROSSES function available from the IBM® Informix® Spatial DataBlade® module.
  • the ST_CROSSES function determines whether geometries cross each other.
  • the ST_BUFFER function (available from the IBM® Informix® Spatial DataBlade® module) identifies a buffer around a point. In this example, a radius of 50 is selected around a point representing a building's location.
  • the mapping function 252 is TimeSeriesToLineString.
  • Evaluation of the withinR function results in a set of temporal values for an object.
  • a track identifies a particular table holding timeseries data for the object; a date and time text string “2001-07-01 08:00:00.00000” provides a starting time for the set of temporal values; “datetime year to fraction(5)” results in conversion of the date and time text string to a datatype of date-time with resolution of a factor of 5; minute represents an interval; the number 45 represents the size of the interval; and, “future” represents direction of time.
  • the interval may be: second, minute, hour, day, week, month, or year.
  • the direction may be future (i.e., the interval goes forwards from the starting time) or backwards (i.e., the interval goes backwards from the starting time).
  • the set of temporal values goes for a 45 minute interval, forward from the specified date and time.
  • the number 5 represents projection for the mapping function and is an example of an additional argument (as was discussed with respect to mapping function (2)).
  • the result of processing the TimeSeriesToLineString( ) function is a spatial object. Then, the ST_CROSSES function evaluates whether the spatial object crosses the buffer around the point of the building location.
  • Select statement (7) illustrates a spatial query that includes a mapping function 252 for the car example of FIG. 3 utilizing a ST_OVERLAP function (available from the MapInfo SpatialWare® module).
  • the ST_OVERLAP function returns TRUE if there are common points between two spatial objects.
  • the HG_CIRCLE function (available from a MapInfo SpatialWare® module) identifies a circle of radius 50 around a point of a building specified by the latitude (building.lat) and longitude (building.lng).
  • the mapping function 252 is TimeSeriesToPolyLine. Evaluation of the withinR function results in a set of temporal values for an object.
  • the set of temporal values goes for an 8 hour interval, forward from the specified date and time. In this case, the mapping function 252 receives a set of temporal values as an argument without any additional arguments.
  • the result of processing the TimeSeriesToPolyLine( ) function is a spatial object. Then, the ST_OVERLAP function evaluates whether the spatial object overlaps the buffer around the point of the building location.
  • Select statement (8) illustrates a spatial query that includes a mapping function 252 for the car example of FIG. 3 using the GeoPoint function (available from IBM® Informix® Geodetic DataBlade®).
  • GeoPoint function available from IBM® Informix® Geodetic DataBlade®.
  • TRUE is returned if both the geospatial time ranges intersect and any point in the segment is less than or equal to the geodistance.
  • the GeoPoint function (available from the IBM® Informix® Spatial DataBlade® module) identifies a point of a building specified by the latitude (building.lat) and longitude (building.lng). The altitude (building.altitude) is used to draw a sphere around the point of the building.
  • the mapping function 252 is TimeSeriesToGeoString. Evaluation of the withinR function results in a set of temporal values for an object. In select statement (8), the set of temporal values goes for an 1 day interval, forward from the specified date and time. In this case, the mapping function 252 receives a set of temporal values as an argument without any additional arguments.
  • the result of processing the TimeSeriesToGeoString( ) function is a spatial object.
  • the within function evaluates whether the spatial object is within 50 units of the sphere generated by the GeoPoint function.
  • the 50 units is specified with the “50:geodistance” argument of the within function.
  • Select statements (6), (7) and (8) derive the spatial object over different periods (e.g., minute, hour, day), but have the same starting time using the withinR timeseries function.
  • select statements (6), (7) and (8) illustrate one data set being utilized in three different spatial environments. Without the benefit of the temporal/spatial data system 240 , an administrator would have to manage three copies of data and convert each copy to a different format. Eliminating this redundant data frees both data and processing resources.
  • the temporal/spatial data system 240 reduces the time temporary data spends in the server 220 from the time the timeseries data is loaded into database 260 and until the timeseries data is presented as a spatial object. Moreover, the temporal/spatial data system 240 reduces the amount of storage needed for intermediary data staging. The temporal/spatial data system 240 transforms data directly from the temporal to the spatial domain, thereby reducing time lag between receipt of the timeseries data to the time a spatial object is ready for querying.
  • implementations of the invention eliminate steps required by prior art systems to convert data from the temporal domain to the spatial domain in a “batch” mode. This makes the data more readily available, reducing the number of instances of data and making more timeseries functionality available during processing/analysis of the data.
  • the data goes directly from a timeseries to a spatial object used in spatial analysis.
  • IBM, Informix, and DataBlade are registered trademarks or trademarks of International Business Machines Corporation in the United States and/or other countries.
  • SpatialWare is a registered trademark or trademark of MapInfo Corporation in the United States and/or other countries.
  • the described techniques for maintaining information on network components may be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof.
  • article of manufacture refers to code or logic implemented in hardware logic (e.g., an integrated circuit chip, Programmable Gate Array (PGA), Application Specific Integrated Circuit (ASIC), etc.) or a computer readable medium, such as magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic, etc.).
  • Code in the computer readable medium is accessed and executed by a processor.
  • the code in which preferred embodiments are implemented may further be accessible through a transmission medium or from a file server over a network.
  • the article of manufacture in which the code is implemented may comprise a transmission media, such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc.
  • the “article of manufacture” may comprise the medium in which the code is embodied.
  • the “article of manufacture” may comprise a combination of hardware and software components in which the code is embodied, processed, and executed.
  • the article of manufacture may comprise any information bearing medium known in the art.
  • FIGS. 4A-4B describe specific operations occurring in a particular order. In alternative implementations, certain of the logic operations may be performed in a different order, modified or removed. Moreover, steps may be added to the above described logic and still conform to the described implementations. Further, operations described herein may occur sequentially or certain operations may be processed in parallel, or operations described as performed by a single process may be performed by distributed processes.
  • FIGS. 4A-4B The illustrated logic of FIGS. 4A-4B was described as being implemented in software.
  • the logic may be implemented in hardware or in programmable and non-programmable gate array logic.
  • FIG. 5 illustrates one implementation of the architecture of the computer systems 200 , 210 , 220 in accordance with certain implementations of the invention.
  • the computer systems 200 , 210 , 220 may implement a computer architecture 500 having a processor 502 (e.g., a microprocessor), a memory 503 (e.g., a volatile memory device), and storage 506 (e.g., a non-volatile storage area, such as magnetic disk drives, optical disk drives, a tape drive, etc.).
  • An operating system 505 may execute in memory 503 .
  • the storage 506 may comprise an internal storage device or an attached or network accessible storage. Computer programs 504 in the storage 506 are loaded into the memory 503 and executed by the processor 502 in a manner known in the art.
  • the architecture further includes a network card 508 to enable communication with a network.
  • An input device 510 is used to provide user input to the processor 502 , and may include a keyboard, mouse, pen-stylus, microphone, touch sensitive display screen, or any other activation or input mechanism known in the art.
  • An output device 512 is capable of rendering information transmitted from the processor 502 , or other component, such as a display monitor, printer, storage, etc.
  • the computer architecture 500 may comprise any computing device known in the art, such as a mainframe, server, personal computer, workstation, laptop, handheld computer, telephony device, network appliance, virtualization device, storage controller, etc. Any processor 502 and operating system 505 known in the art may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

Disclosed is a method for processing temporal data. A spatial query is received specifying a mapping function that identifies a set of temporal values for one or more objects. Geographic positions are automatically extracted from each set of temporal values for each of the one or more objects. Point objects are generated from the geographic positions. One or more spatial objects are generated from the point objects.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is related to temporal and spatial data processing.
2. Description of the Related Art
The Global Positioning System is a set of satellites that orbit the earth and make it possible for people with ground GPS receivers to pinpoint their geographic location. The GPS is owned and operated by the U.S. Department of Defense but is available for general use around the world.
At any given time, four satellites from the set of satellites are above the horizon. Each satellite contains a computer, an atomic clock, and a radio. Each satellite has an understanding of its orbit and has a clock. With this, each satellite continually broadcasts its changing position and time. On the ground, each GPS receiver contains a computer that “triangulates” its position by getting bearings from three of the four satellites. The result is a geographic position in the form of a longitude and latitude.
As the GPS receiver continuously triangulates a position, the result is a set of values, referred to as GPS data. Each value provides a longitude and latitude for a time. The GPS data may be stored in a table as “timeseries” data (i.e., timeseries refers to a datatype available in an IBM® Informix® TimeSeries DataBlade® module from International Business Machines Corporation). Timeseries data includes GPS data for a particular type of object (e.g., a car). Moreover, if four or more satellites can be received, the GPS receiver may also include the capability to determine an altitude, in addition to longitude and latitude.
With the proliferation of GPS receivers, more temporal spatial applications are being developed. For example, a temporal application might use timeseries data to identify all stock trades on a company between 4:00 p.m. and 5:00 p.m. A spatial application may use the timeseries data to identify how far a car has traveled between 4:00 p.m. and 5:00 p.m.
Temporal/spatial applications are able to perform many functions, such as: document how many stops a truck makes on a route; determine whether and when an individual's car left a certain location (e.g., a school campus) and whether and when the car returned; determine when a container was loaded onto a ship, where the container stopped while traveling on the ship, and how long before the container arrives at a destination (e.g., a port); determine when connecting flights arrive at an airport; and, determine whether a taxi arrived at a particular location at a particular time.
FIG. 1 illustrates prior art processing by a user to convert time data to spatial data that may be queried with a spatial query. In this example, in FIG. 1, a user desires to submit a Structured Query Language (SQL) request that determines whether a car 100 passed in front of a specific bank 104. Relational DataBase Management System (RDBMS) software uses a Structured Query Language (SQL) interface. The SQL interface has evolved into a standard language for RDBMS software and has been adopted as such by both the American National Standards Institute (ANSI) and the International Standards Organization (ISO).
The car 100 has a GPS receiver that calculates GPS data and a computer system that routes the GPS data to a server (not shown). The user loads the GPS data into a table to create timeseries data 110. Table 1 illustrates a table of timeseries data. The table of timeseries data includes a time, a longitude, and a latitude for each row of the table. The longitude and latitude may be specified in degrees.
TABLE 1
Time Longitude Latitude
00:00:01 37 degrees 37 degrees
. . . . . . . . .
The user converts the timeseries data 110 through a first SQL conversion 114 into point objects 120 that specify longitude and latitude (i.e., X, Y) values. With the SQL conversion, the user stores the time and point objects 120 into Table 2, which illustrates the data stored after creation of point objects.
TABLE 2
Time Point
00:00:01 (X, Y)
. . . . . .
The user converts the point objects 120 through a second SQL conversion 124 into a line object 130 that reflects a line of travel of the car 100. Table 3 illustrates that a single row of data is stored after a path is generated, and the row has a starting time and a path.
TABLE 3
Time Path
00:00:01 Point1, Point2, . . .
The line object 130 is a type of spatial object that may be queried with a spatial query 140. Therefore, after creating the line object 130, the user submits spatial query 140 to determine whether the line the car traveled intersects with the building location. Select statement (1) is the spatial query 140 submitted by the user and includes an intersect function. In select statement (1), the user specifies “car.line”, which is the spatial object that the user created.
select intersect(car.line, building.location) (1)
  where building.location where build.name = ‘AMB’ and car.id =
  ‘taxi’)
Thus, the real time location of the car 100 passes through a number of intermediate steps (i.e., first and second SQL conversions 114, 124) before a spatial query can be made against the time data. In addition, the majority of temporal functionality may be lost in the first SQL conversion 114. This solution stores timeseries data 110 for the car 100 in a database table, and queries (with first SQL conversion 114) the table to build point objects 120. The solution queries the point objects (which are results of the first SQL conversion 114) to generate the path object 130.
Thus, in temporal/spatial applications, data is loaded into a table of timeseries data and selection is done in the temporal domain. That is selection is based on time. The data is converted for use in a spatial domain. Then, analysis of the data and rendering of a spatial object is completed in the spatial domain. In instances in which significant amounts of data are loaded, an IBM® Informix® TimeSeries Real Time Loader (RTL) (available from International Business Machines Corporation) is used to load the data. To facilitate spatial processing, the data points are moved from the time series in the temporal domain to spatial points. The spatial points are then used to build line objects, which are then used for path analysis. This domain translation is time consuming, eroding the value of the timely data, as well as, creating redundancies.
Therefore, there is a need in the art for improved temporal/spatial data processing.
SUMMARY OF THE INVENTION
Provided are a method, system, and program for processing temporal data. A spatial query is received specifying a mapping function that identifies a set of temporal values for one or more objects. Geographic positions are automatically extracted from each set of temporal values for each of the one or more objects. Point objects are generated from the geographic positions. One or more spatial objects are generated from the point objects.
The described implementations of the invention provide a method, system, and program for improved temporal/spatial data processing.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
FIG. 1 illustrates prior art processing by a user to convert time data to spatial data that may be queried with a spatial query.
FIG. 2 illustrates, in a block diagram, a computing environment in accordance with certain implementations of the invention.
FIG. 3 illustrates, in a block diagram, use of a mapping function in a request that determines whether a car passed in front of a specific bank in accordance with certain implementations of the invention.
FIG. 4A illustrates logic implemented in a database engine in accordance with certain implementations of the invention.
FIG. 4B illustrates logic implemented in temporal/spatial module in accordance with certain implementations of the invention.
FIG. 5 illustrates one implementation of the architecture of the computer systems in accordance with certain implementations of the invention.
DETAILED DESCRIPTION
In the following description, reference is made to the accompanying drawings which form a part hereof and which illustrate several implementations of the present invention. It is understood that other implementations may be utilized and structural and operational changes may be made without departing from the scope of the present invention.
Implementations of the invention provide functions that move data from the temporal to spatial domain directly, thereby reducing the lag between collecting and using the data, as well as, eliminating redundancies.
FIG. 2 illustrates, in a block diagram, a computing environment in accordance with certain implementations of the invention. A client computer 200 executes one or more client applications 202. A client application 110 may be any type of application program.
A location based computer 210 includes a location aware device 214, such as a GPS receiver. The location aware device 214 is capable of generating temporal values either continuously or periodically. In certain implementations, the temporal values include a time with an associated longitude, latitude. In certain implementations, the temporal values may also include other information, such as vehicle identification, speed of travel, etc. In certain implementations, the time intrinsically holds a date.
The client computer 200 is connected to a server computer 220 by a network, such as a local area network (LAN), wide area network (WAN), or the Internet. The location based computer 210 is connected via a wireless interface (e.g., cell phone or Cellular Digital Packet Data (CDPD) modem) to the Internet. The Internet is a world-wide collection of connected computer networks (i.e., a network of networks).
The location based computer 210 reads temporal values from the location aware device 214 and routes the temporal values to the server computer 220 via the wireless connection to the Internet. Although for ease of understanding, one location based computer 210 is illustrated, typically, multiple location based computers 210 are communicating with the server computer 220.
The server computer 220 includes a database engine 230, which includes temporal/spatial module 250, which processes a mapping function 252. The temporal/spatial module 250 may store data in memory buffer 254 during its execution. The database engine 230 also includes database 260, which includes timeseries data for one or more objects, one or more point objects, and one or more spatial objects. In particular, the temporal values for a particular object (e.g., a car) received from the location based computer 210 are stored in timeseries data. The temporal/spatial module 250 internally converts the timeseries data to point objects, and converts the point objects to spatial objects that may be processed with a spatial query by a client application 202. In certain implementations of the invention, the term “temporal/spatial data system” 240 is used to refer to the temporal/spatial module 250 and database 260.
In certain implementations, the database engine 130 may be an IBM® Informix® Dynamic Server (IDS), which is available from International Business Machines Corporation.
In certain implementations, the temporal/spatial module 250 is implemented as a server extension. Also, when a client application 220 submits a spatial query that includes mapping function 252 to server computer 220, the intermediate data used in processing the spatial query or the mapping function 252 is not moved between the client computer 200 and the server computer 220.
In certain implementations, the temporal/spatial module 250 is implemented utilizing MapInfo SpatialWare®, Spatial DataBlade® or Geodetic DataBlade® on an IBM® Informix® Dynamic Server.
In certain implementations, a new mapping function 252 is provided for optimized processing of timeseries data. The input to the mapping function 252 is a set of temporal values (i.e., a portion or all of timeseries data, which may also be referred to as a “clip”) and zero or more additional arguments. In certain implementations, the additional arguments may include, for example, projection data. The output of the mapping function 252 is a path (i.e., a type of spatial object). In certain implementations, the mapping function 252 takes on the format of timeSeriesToPath function (2).
timeSeriesToPath (<set of temporal values>, (2)
      <list of additional arguments>)
Timeseries data for an object stores data for a particular type of object (e.g., a car) that produces temporal values with a location aware device (e.g., a GPS receiver). Temporal values include a time along with longitude, latitude values. In certain implementations, the set of temporal values is defined with a start time and an end time with reference to data stored in the timeseries data.
FIG. 3 illustrates, in a block diagram, use of a mapping function in a request that determines whether a car 300 passed in front of a specific bank 304 in accordance with certain implementations of the invention. In this example, in FIG. 3, a request is processed that determines whether a car 300 passed in front of a specific bank 304. The car 300 has a location aware device (e.g., a GPS receiver) that calculates temporal values and a computer system that routes the temporal values to a server (not shown). The temporal values for the car 300 are loaded into a table of timeseries data 310 at the server. Then, a spatial query may be submitted that references the timeseries data 310. That is, a user does not need to convert the timeseries data 310 into spatial data and query the spatial data. Instead, a spatial query 340 that includes a mapping function 252 may be submitted. The first argument of the mapping function specifies all or a portion of the timeseries data 310 (i.e., specifies a set of temporal values). For example, spatial query 340 is illustrated with select statement (3):
select intersect(timeSeriesToPath(startTime, endTime,...), (3)
  building.location where build.name = ‘AMB’ and car.id = ‘taxi’)
Thus, the temporal/spatial data system 240 collapses the selection and conversion steps of the prior art (FIG. 1) into a single operation. The steps involved in the processing of temporal values have been reduced, redundant data has been eliminated, and the timeseries functionality is available for the select statement. This elimination of the intermediary steps reduces the lag time between the time the location data is added to the database and the time the location data is available as spatial data for querying.
FIG. 4A illustrates logic implemented in a database engine 230 in accordance with certain implementations of the invention. Control begins at block 400 with the database engine 230 receiving a spatial query with a mapping function 252. In block 405, the database engine 230 selects the next record to process for the query, starting with the first record. In block 410, the database engine 230 invokes the temporal/spatial module 250 to process the mapping function 252 for the selected record. In block 420, the database engine 230 determines whether there are additional records to process. If so, processing loops back to block 405, otherwise, processing continues to block 430. In block 430, the database engine 230 evaluates the spatial query against the one or more spatial objects.
FIG. 4B illustrates logic implemented in temporal/spatial module 250 in accordance with certain implementations of the invention. Control begins at block 440 with the temporal/spatial module 250 retrieving a set of temporal values (i.e., all or a portion of timeseries data for the object associated with the selected record) specified in a mapping function 252. In certain implementations, the set of temporal values is received as all or a portion of a table. In block 450, the temporal/spatial module 250 extracts longitude, latitude data (X, Y) from the temporal values in the timeseries data. In block 460, the temporal/spatial module 250 generates point objects. One point object is instantiated for each longitude, latitude pair in memory buffer 254 at the server 220. A point object is a type of spatial object and has two methods, one for latitude and one for longitude.
In block 470, the temporal/spatial module 250 generates a spatial object from the point objects. In different implementations, different types of spatial objects may be generated. In certain implementations, at least one spatial object is a path object that is instantiated for the set of point objects in memory 254 at the server 220. The path object is a type of spatial object and has methods, such as length and endpoint.
In block 480, the spatial object is returned. Then, a spatial query that includes a mapping function 252 may be evaluated against the one or more spatial objects that are returned as a result of evaluating the mapping function 252.
Thus, implementations of the invention avoid prior art processing that required building tables to convert temporal data to spatial data.
Select statement (3) references a single object (i.e., a taxi), but since a select statement is evaluated against database 160, the select statement may reference a group of objects, such as all taxis.
In select statement (4), car.id=“Yellow Cab #123”, and evaluation of the timeSeriesToPath function results in generation of one spatial object (for Yellow Cab #123) with a corresponding set of temporal values (i.e., all or a portion of the timeseries data selected in the timeSeriesToPath function). Select statement (4) is evaluated against the generated spatial object for the interval specified by the set of temporal values. Furthermore, evaluation of select statement (4) returns “true” if the building location and the path for the car having the identification “Yellow Cab #123” in the interval specified by the timeSeriesToPath function intersect.
select intersect(timeSeriestToPath(startTime, endTime,...), (4)
  building.location where build.name = ‘AMB’ and
  car.id = ‘Yellow Cab #123’
Since a select statement is executed by a database engine 230 (e.g., a RDBMS), a query such as select statement (5) may be submitted.
select car.id, intersect(timeSeriestToPath(startTime, EndTime,...), (5)
  building.location where build.name = ‘AMB’ and car.type = ‘taxi’
The evaluation of the timeSeriesToPath function in select statement (5) generates a spatial object for each car whose type is “taxi”. For example, if there are six cars whose type is “taxi”, then six spatial objects are generated. Each of the six spatial objects has associated timeseries data, and so each of the six spatial objects has a set of temporal values (i.e., all or a of the timeseries data selected in the timeSeriesToPath function). Then, select statement (5) is evaluated against each spatial object to return the car identifier (i.e., car.id) for cars of type taxi (i.e., car.type=“taxi”) and the result of the intersect function (which is either true or false). In particular, the evaluation of select statement (5) returns Table 4. In Table 4, the first column indicates the taxi identifier, and the second column indicates whether the taxi intersected with the building during the specified interval.
TABLE 4
Path of Taxi Intersected
Taxi Identifier with Building
Yellow Cab #1 false
Yellow Cab #2 true
Joe's Taxi Service false
You Drive Taxi true
Red and Blue Taxi #16 false
Udrive Bipedal Taxi false
In certain implementations, the mapping function takes on different formats to be compatible with vendor specific spatial products, and the spatial object composed in block 470 is dependent on the underlying spatial product. For example, if a vendor specific spatial product returned a line, the format of the mapping function 252 may be timeSeriesToLine( ), and the spatial object composed by the temporal/spatial module 250 would be a line object.
One product is an IBM® Informix® Geodetic DataBlade® module available from International Business Machines Corporation. If the Geodetic DataBlade® is installed, the “path” portion of the timeSeriesToPath function would be modified to represent the desired spatial object (e.g., GeoString, GeoPolygon, GeoString, etc.), and a corresponding spatial object would be composed by the temporal/spatial module 250. Another product is an IBM® Informix® Spatial DataBlade® module available from International Business Machines Corporation. If the IBM® Informix® Spatial DataBlade® module is installed, the mapping function 252 may reference the following spatial objects ST_LineString, ST_Multiline, ST_Polygon, etc., and the temporal/spatial module 250 would return the corresponding object. The “ST” prefix before an object name indicates that the object was defined by a standards body, Open GIS Consortium. More information on the Open GIS Consortium is available at http://www.opengis.org. The Mapinfo SpatialWare® module is a product from MapInfo Corporation, and in the instance of MapInfo SpatialWare® module, MapInfo SpatialWare's® implementation specific objects would be returned.
Select statement (6) illustrates a spatial query that includes a mapping function 252 for the car example of FIG. 3 when utilizing an ST_CROSSES function available from the IBM® Informix® Spatial DataBlade® module. The ST_CROSSES function determines whether geometries cross each other.
select ST_CROSSES(ST_BUFFER(building.location,50), (6)
  TimeSeriesToLineString(withinR(track, ‘2001-07-01
    08:00:00.00000’::datetime year to fraction(5),
    ‘minute’,
    45,
    ‘future’), 5)
from car_track, building
where building.name = ‘BIG BANK’ and car_track.id = ‘taxi’;
In select statement (6), the ST_BUFFER function (available from the IBM® Informix® Spatial DataBlade® module) identifies a buffer around a point. In this example, a radius of 50 is selected around a point representing a building's location. The mapping function 252 is TimeSeriesToLineString.
Evaluation of the withinR function results in a set of temporal values for an object. For the withinR function, a track identifies a particular table holding timeseries data for the object; a date and time text string “2001-07-01 08:00:00.00000” provides a starting time for the set of temporal values; “datetime year to fraction(5)” results in conversion of the date and time text string to a datatype of date-time with resolution of a factor of 5; minute represents an interval; the number 45 represents the size of the interval; and, “future” represents direction of time. In certain implementations, the interval may be: second, minute, hour, day, week, month, or year. In certain implementations, the direction may be future (i.e., the interval goes forwards from the starting time) or backwards (i.e., the interval goes backwards from the starting time). In select statement (6), the set of temporal values goes for a 45 minute interval, forward from the specified date and time. The number 5 represents projection for the mapping function and is an example of an additional argument (as was discussed with respect to mapping function (2)).
The result of processing the TimeSeriesToLineString( ) function is a spatial object. Then, the ST_CROSSES function evaluates whether the spatial object crosses the buffer around the point of the building location.
Select statement (7) illustrates a spatial query that includes a mapping function 252 for the car example of FIG. 3 utilizing a ST_OVERLAP function (available from the MapInfo SpatialWare® module). The ST_OVERLAP function returns TRUE if there are common points between two spatial objects.
select ST_OVERLAP( (7)
  HG_CIRCLE(building.lat,building.lng, 50),
  TimeSeriesToPolyLine(withinR(track, ‘2001-07-01
  08:00:00.00000’::datetime year to fraction(5),
  ‘hour’,
  8,
  ‘future’))
from car_track, building
where building.name = ‘BIG BANK’ and car_track.id = ‘taxi’;
In select statement (7), the HG_CIRCLE function (available from a MapInfo SpatialWare® module) identifies a circle of radius 50 around a point of a building specified by the latitude (building.lat) and longitude (building.lng). The mapping function 252 is TimeSeriesToPolyLine. Evaluation of the withinR function results in a set of temporal values for an object. In select statement (7), the set of temporal values goes for an 8 hour interval, forward from the specified date and time. In this case, the mapping function 252 receives a set of temporal values as an argument without any additional arguments.
The result of processing the TimeSeriesToPolyLine( ) function is a spatial object. Then, the ST_OVERLAP function evaluates whether the spatial object overlaps the buffer around the point of the building location.
Select statement (8) illustrates a spatial query that includes a mapping function 252 for the car example of FIG. 3 using the GeoPoint function (available from IBM® Informix® Geodetic DataBlade®). For the GeoPoint function, TRUE is returned if both the geospatial time ranges intersect and any point in the segment is less than or equal to the geodistance.
select within( (8)
  GeoPoint((building.lat,building.lng), building.altitude, ‘ANY’),
  TimeSeriesToGeoString(withinR(track, ‘2001-07-01
  08:00:00.00000’::datetime year to fraction(5),
  ‘day’,
  1,
  ‘future’))
  50:geodistance)
from car_track, building
where building.name = ‘BIG BANK’ and car_track.id = ‘taxi’;
In select statement (8), the GeoPoint function (available from the IBM® Informix® Spatial DataBlade® module) identifies a point of a building specified by the latitude (building.lat) and longitude (building.lng). The altitude (building.altitude) is used to draw a sphere around the point of the building. The mapping function 252 is TimeSeriesToGeoString. Evaluation of the withinR function results in a set of temporal values for an object. In select statement (8), the set of temporal values goes for an 1 day interval, forward from the specified date and time. In this case, the mapping function 252 receives a set of temporal values as an argument without any additional arguments.
The result of processing the TimeSeriesToGeoString( ) function is a spatial object. Then, the within function evaluates whether the spatial object is within 50 units of the sphere generated by the GeoPoint function. The 50 units is specified with the “50:geodistance” argument of the within function.
Select statements (6), (7) and (8) derive the spatial object over different periods (e.g., minute, hour, day), but have the same starting time using the withinR timeseries function.
Moreover, select statements (6), (7) and (8) illustrate one data set being utilized in three different spatial environments. Without the benefit of the temporal/spatial data system 240, an administrator would have to manage three copies of data and convert each copy to a different format. Eliminating this redundant data frees both data and processing resources.
In summary, prior solutions were complex and had lower data throughput. On the other hand, the temporal/spatial data system 240 reduces the time temporary data spends in the server 220 from the time the timeseries data is loaded into database 260 and until the timeseries data is presented as a spatial object. Moreover, the temporal/spatial data system 240 reduces the amount of storage needed for intermediary data staging. The temporal/spatial data system 240 transforms data directly from the temporal to the spatial domain, thereby reducing time lag between receipt of the timeseries data to the time a spatial object is ready for querying.
In summary, implementations of the invention eliminate steps required by prior art systems to convert data from the temporal domain to the spatial domain in a “batch” mode. This makes the data more readily available, reducing the number of instances of data and making more timeseries functionality available during processing/analysis of the data. The data goes directly from a timeseries to a spatial object used in spatial analysis.
IBM, Informix, and DataBlade are registered trademarks or trademarks of International Business Machines Corporation in the United States and/or other countries. SpatialWare is a registered trademark or trademark of MapInfo Corporation in the United States and/or other countries.
Additional Implementation Details
The described techniques for maintaining information on network components may be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof. The term “article of manufacture” as used herein refers to code or logic implemented in hardware logic (e.g., an integrated circuit chip, Programmable Gate Array (PGA), Application Specific Integrated Circuit (ASIC), etc.) or a computer readable medium, such as magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic, etc.). Code in the computer readable medium is accessed and executed by a processor. The code in which preferred embodiments are implemented may further be accessible through a transmission medium or from a file server over a network. In such cases, the article of manufacture in which the code is implemented may comprise a transmission media, such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc. Thus, the “article of manufacture” may comprise the medium in which the code is embodied. Additionally, the “article of manufacture” may comprise a combination of hardware and software components in which the code is embodied, processed, and executed. Of course, those skilled in the art will recognize that many modifications may be made to this configuration without departing from the scope of the present invention, and that the article of manufacture may comprise any information bearing medium known in the art.
The logic of FIGS. 4A-4B describe specific operations occurring in a particular order. In alternative implementations, certain of the logic operations may be performed in a different order, modified or removed. Moreover, steps may be added to the above described logic and still conform to the described implementations. Further, operations described herein may occur sequentially or certain operations may be processed in parallel, or operations described as performed by a single process may be performed by distributed processes.
The illustrated logic of FIGS. 4A-4B was described as being implemented in software. The logic may be implemented in hardware or in programmable and non-programmable gate array logic.
FIG. 5 illustrates one implementation of the architecture of the computer systems 200, 210, 220 in accordance with certain implementations of the invention. The computer systems 200, 210, 220 may implement a computer architecture 500 having a processor 502 (e.g., a microprocessor), a memory 503 (e.g., a volatile memory device), and storage 506 (e.g., a non-volatile storage area, such as magnetic disk drives, optical disk drives, a tape drive, etc.). An operating system 505 may execute in memory 503. The storage 506 may comprise an internal storage device or an attached or network accessible storage. Computer programs 504 in the storage 506 are loaded into the memory 503 and executed by the processor 502 in a manner known in the art. The architecture further includes a network card 508 to enable communication with a network. An input device 510 is used to provide user input to the processor 502, and may include a keyboard, mouse, pen-stylus, microphone, touch sensitive display screen, or any other activation or input mechanism known in the art. An output device 512 is capable of rendering information transmitted from the processor 502, or other component, such as a display monitor, printer, storage, etc.
The computer architecture 500 may comprise any computing device known in the art, such as a mainframe, server, personal computer, workstation, laptop, handheld computer, telephony device, network appliance, virtualization device, storage controller, etc. Any processor 502 and operating system 505 known in the art may be used.
The foregoing description of the preferred implementations of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto. The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many implementations of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims (7)

1. A method for processing temporal data, comprising:
receiving a spatial query, wherein the spatial query includes a first function, wherein the first function includes as an argument a second function, wherein the second function includes an input argument that identifies a set of temporal values for each of one or more objects, wherein the set of temporal values comprises timeseries data for an associated object, and wherein the timeseries data provides, for each time of a series of times, a longitude value and a latitude value for the associated object, wherein output of the second function is one or more spatial objects;
for each record to process for the spatial query, invoking a module to process the second function for the selected record, wherein the second function is processed by:
(i) retrieving the set of temporal values associated with a selected record that were identified in the second function specified in the spatial query;
(ii) extracting geographic positions from the set of temporal values for each of the one or more objects, wherein the geographic positions comprise, for each time of the series of times in the retrieved set of temporal values, the longitude value and the latitude value;
(iii) generating point objects from the geographic positions, wherein each of the point objects specifies, for each time of the series of times in the retrieved set of temporal values, the longitude value and the latitude value; and
(iv) generating the one or more spatial objects from the point objects, wherein each of the one or more spatial objects includes one or more methods; and
evaluating the spatial query by evaluating the first function against the one or more spatial objects that are returned as a result of evaluating the second function to output results.
2. The method of claim 1, wherein each set of temporal values comprises all of timeseries data for the associated object.
3. The method of claim 1, wherein each set of temporal values comprises a portion of timeseries data for the associated object.
4. The method of claim 1, wherein the one or more spatial objects are vendor specific.
5. The method of claim 1, wherein the mapping function receives the portion of the set of temporal values as an argument.
6. The method of claim 1, wherein each set of temporal values for the one or more objects is determined by evaluating a function.
7. The method of claim 1, wherein the function may have multiple arguments.
US10/331,911 2002-12-30 2002-12-30 Method for optimization of temporal and spatial data processing Expired - Fee Related US7472109B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/331,911 US7472109B2 (en) 2002-12-30 2002-12-30 Method for optimization of temporal and spatial data processing
TW092133336A TWI231374B (en) 2002-12-30 2003-11-27 Method, system, and program for optimization of temporal and spatial data processing
AU2003292433A AU2003292433A1 (en) 2002-12-30 2003-12-17 Optimization of temporal and spatial data processing in an object relational database system
EP03768011A EP1579342A1 (en) 2002-12-30 2003-12-17 Optimization of temporal and spatial data processing in an object relational database system
PCT/GB2003/005513 WO2004059531A1 (en) 2002-12-30 2003-12-17 Optimization of temporal and spatial data processing in an object relational database system
CN200380107856A CN100585588C (en) 2002-12-30 2003-12-17 Optimization of temporal and spatial data processing in an object relational database system
JP2004563335A JP4641421B2 (en) 2002-12-30 2003-12-17 Methods, systems, and programs for optimizing temporal and spatial data processing
IL169495A IL169495A0 (en) 2002-12-30 2005-06-30 Optimization of temporal and spatial data processing in an object relational databse system
US12/207,441 US8296343B2 (en) 2002-12-30 2008-09-09 Optimization of temporal and spatial data processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/331,911 US7472109B2 (en) 2002-12-30 2002-12-30 Method for optimization of temporal and spatial data processing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/207,441 Continuation US8296343B2 (en) 2002-12-30 2008-09-09 Optimization of temporal and spatial data processing

Publications (2)

Publication Number Publication Date
US20040128314A1 US20040128314A1 (en) 2004-07-01
US7472109B2 true US7472109B2 (en) 2008-12-30

Family

ID=32654860

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/331,911 Expired - Fee Related US7472109B2 (en) 2002-12-30 2002-12-30 Method for optimization of temporal and spatial data processing
US12/207,441 Expired - Fee Related US8296343B2 (en) 2002-12-30 2008-09-09 Optimization of temporal and spatial data processing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/207,441 Expired - Fee Related US8296343B2 (en) 2002-12-30 2008-09-09 Optimization of temporal and spatial data processing

Country Status (8)

Country Link
US (2) US7472109B2 (en)
EP (1) EP1579342A1 (en)
JP (1) JP4641421B2 (en)
CN (1) CN100585588C (en)
AU (1) AU2003292433A1 (en)
IL (1) IL169495A0 (en)
TW (1) TWI231374B (en)
WO (1) WO2004059531A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8301495B2 (en) 2009-05-05 2012-10-30 Groupon, Inc. System and methods for discount retailing
US8355948B2 (en) 2009-05-05 2013-01-15 Groupon, Inc. System and methods for discount retailing
US8650072B2 (en) 2009-05-05 2014-02-11 Groupon, Inc. System and methods for providing location based discount retailing
US9996859B1 (en) 2012-03-30 2018-06-12 Groupon, Inc. Method, apparatus, and computer readable medium for providing a self-service interface
US10147130B2 (en) 2012-09-27 2018-12-04 Groupon, Inc. Online ordering for in-shop service
US10192243B1 (en) 2013-06-10 2019-01-29 Groupon, Inc. Method and apparatus for determining promotion pricing parameters
US10255620B1 (en) 2013-06-27 2019-04-09 Groupon, Inc. Fine print builder
US10304091B1 (en) 2012-04-30 2019-05-28 Groupon, Inc. Deal generation using point-of-sale systems and related methods
US10304093B2 (en) 2013-01-24 2019-05-28 Groupon, Inc. Method, apparatus, and computer readable medium for providing a self-service interface
US10664876B1 (en) 2013-06-20 2020-05-26 Groupon, Inc. Method and apparatus for promotion template generation
US10664861B1 (en) 2012-03-30 2020-05-26 Groupon, Inc. Generating promotion offers and providing analytics data
US11386461B2 (en) 2012-04-30 2022-07-12 Groupon, Inc. Deal generation using point-of-sale systems and related methods

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7447687B2 (en) * 2002-05-10 2008-11-04 International Business Machines Corporation Methods to browse database query information
US7716167B2 (en) 2002-12-18 2010-05-11 International Business Machines Corporation System and method for automatically building an OLAP model in a relational database
US7953694B2 (en) 2003-01-13 2011-05-31 International Business Machines Corporation Method, system, and program for specifying multidimensional calculations for a relational OLAP engine
US7895191B2 (en) 2003-04-09 2011-02-22 International Business Machines Corporation Improving performance of database queries
US7799273B2 (en) 2004-05-06 2010-09-21 Smp Logic Systems Llc Manufacturing execution system for validation, quality and risk assessment and monitoring of pharmaceutical manufacturing processes
US7444197B2 (en) 2004-05-06 2008-10-28 Smp Logic Systems Llc Methods, systems, and software program for validation and monitoring of pharmaceutical manufacturing processes
US7707143B2 (en) 2004-06-14 2010-04-27 International Business Machines Corporation Systems, methods, and computer program products that automatically discover metadata objects and generate multidimensional models
US20050283494A1 (en) * 2004-06-22 2005-12-22 International Business Machines Corporation Visualizing and manipulating multidimensional OLAP models graphically
US20070210937A1 (en) * 2005-04-21 2007-09-13 Microsoft Corporation Dynamic rendering of map information
US8843309B2 (en) * 2005-04-21 2014-09-23 Microsoft Corporation Virtual earth mapping
US7777648B2 (en) * 2005-04-21 2010-08-17 Microsoft Corporation Mode information displayed in a mapping application
US8103445B2 (en) * 2005-04-21 2012-01-24 Microsoft Corporation Dynamic map rendering as a function of a user parameter
US7466244B2 (en) * 2005-04-21 2008-12-16 Microsoft Corporation Virtual earth rooftop overlay and bounding
US7415448B2 (en) * 2006-03-20 2008-08-19 Microsoft Corporation Adaptive engine for processing geographic data
US7840340B2 (en) * 2007-04-13 2010-11-23 United Parcel Service Of America, Inc. Systems, methods, and computer program products for generating reference geocodes for point addresses
CN100498793C (en) * 2007-06-08 2009-06-10 北京神舟航天软件技术有限公司 Method for realizing two-dimensional predicate selectivity estimation by using wavelet-based compressed histogram
US8868106B2 (en) 2012-02-29 2014-10-21 Aeris Communications, Inc. System and method for large-scale and near-real-time search of mobile device locations in arbitrary geographical boundaries
US9411327B2 (en) 2012-08-27 2016-08-09 Johnson Controls Technology Company Systems and methods for classifying data in building automation systems
CN103617254A (en) * 2013-11-29 2014-03-05 北京京东尚科信息技术有限公司 Method, system and device for constructing geographic position coordinate information base
CN104063490B (en) * 2014-07-04 2017-06-23 浙江大学 A kind of efficient space-time data search method based on Dike-pond modes
US10417251B2 (en) * 2014-10-31 2019-09-17 The Boeing Company System and method for storage and analysis of time-based data
US10534326B2 (en) 2015-10-21 2020-01-14 Johnson Controls Technology Company Building automation system with integrated building information model
US10649419B2 (en) 2016-06-14 2020-05-12 Johnson Controls Technology Company Building management system with virtual points and optimized data integration
US10527306B2 (en) * 2016-01-22 2020-01-07 Johnson Controls Technology Company Building energy management system with energy analytics
US10055114B2 (en) * 2016-01-22 2018-08-21 Johnson Controls Technology Company Building energy management system with ad hoc dashboard
US10055206B2 (en) * 2016-06-14 2018-08-21 Johnson Controls Technology Company Building management system with framework agnostic user interface description
US11947785B2 (en) * 2016-01-22 2024-04-02 Johnson Controls Technology Company Building system with a building graph
US11268732B2 (en) * 2016-01-22 2022-03-08 Johnson Controls Technology Company Building energy management system with energy analytics
WO2017173167A1 (en) 2016-03-31 2017-10-05 Johnson Controls Technology Company Hvac device registration in a distributed building management system
US11774920B2 (en) 2016-05-04 2023-10-03 Johnson Controls Technology Company Building system with user presentation composition based on building context
US10417451B2 (en) 2017-09-27 2019-09-17 Johnson Controls Technology Company Building system with smart entity personal identifying information (PII) masking
US10505756B2 (en) 2017-02-10 2019-12-10 Johnson Controls Technology Company Building management system with space graphs
CN106649867B (en) * 2016-12-30 2018-05-18 北京亚控科技发展有限公司 A kind of method for organizing of object data
US10684033B2 (en) 2017-01-06 2020-06-16 Johnson Controls Technology Company HVAC system with automated device pairing
US11900287B2 (en) 2017-05-25 2024-02-13 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with budgetary constraints
US10854194B2 (en) 2017-02-10 2020-12-01 Johnson Controls Technology Company Building system with digital twin based data ingestion and processing
US11360447B2 (en) 2017-02-10 2022-06-14 Johnson Controls Technology Company Building smart entity system with agent based communication and control
US10452043B2 (en) 2017-02-10 2019-10-22 Johnson Controls Technology Company Building management system with nested stream generation
US10515098B2 (en) 2017-02-10 2019-12-24 Johnson Controls Technology Company Building management smart entity creation and maintenance using time series data
US11764991B2 (en) 2017-02-10 2023-09-19 Johnson Controls Technology Company Building management system with identity management
US10417245B2 (en) 2017-02-10 2019-09-17 Johnson Controls Technology Company Building management system with eventseries processing
US11307538B2 (en) 2017-02-10 2022-04-19 Johnson Controls Technology Company Web services platform with cloud-eased feedback control
US11280509B2 (en) 2017-07-17 2022-03-22 Johnson Controls Technology Company Systems and methods for agent based building simulation for optimal control
US11994833B2 (en) 2017-02-10 2024-05-28 Johnson Controls Technology Company Building smart entity system with agent based data ingestion and entity creation using time series data
WO2018175912A1 (en) 2017-03-24 2018-09-27 Johnson Controls Technology Company Building management system with dynamic channel communication
US11327737B2 (en) 2017-04-21 2022-05-10 Johnson Controls Tyco IP Holdings LLP Building management system with cloud management of gateway configurations
US10788229B2 (en) 2017-05-10 2020-09-29 Johnson Controls Technology Company Building management system with a distributed blockchain database
US11022947B2 (en) 2017-06-07 2021-06-01 Johnson Controls Technology Company Building energy optimization system with economic load demand response (ELDR) optimization and ELDR user interfaces
WO2018232147A1 (en) 2017-06-15 2018-12-20 Johnson Controls Technology Company Building management system with artificial intelligence for unified agent based control of building subsystems
US11422516B2 (en) 2017-07-21 2022-08-23 Johnson Controls Tyco IP Holdings LLP Building management system with dynamic rules with sub-rule reuse and equation driven smart diagnostics
US11726632B2 (en) 2017-07-27 2023-08-15 Johnson Controls Technology Company Building management system with global rule library and crowdsourcing framework
US20190095821A1 (en) 2017-09-27 2019-03-28 Johnson Controls Technology Company Building risk analysis system with expiry time prediction for threats
US11314788B2 (en) 2017-09-27 2022-04-26 Johnson Controls Tyco IP Holdings LLP Smart entity management for building management systems
US10962945B2 (en) 2017-09-27 2021-03-30 Johnson Controls Technology Company Building management system with integration of data into smart entities
US11314726B2 (en) 2017-09-27 2022-04-26 Johnson Controls Tyco IP Holdings LLP Web services for smart entity management for sensor systems
US11281169B2 (en) 2017-11-15 2022-03-22 Johnson Controls Tyco IP Holdings LLP Building management system with point virtualization for online meters
US10809682B2 (en) 2017-11-15 2020-10-20 Johnson Controls Technology Company Building management system with optimized processing of building system data
US11127235B2 (en) 2017-11-22 2021-09-21 Johnson Controls Tyco IP Holdings LLP Building campus with integrated smart environment
US11954713B2 (en) 2018-03-13 2024-04-09 Johnson Controls Tyco IP Holdings LLP Variable refrigerant flow system with electricity consumption apportionment
US11016648B2 (en) 2018-10-30 2021-05-25 Johnson Controls Technology Company Systems and methods for entity visualization and management with an entity node editor
US20200162280A1 (en) 2018-11-19 2020-05-21 Johnson Controls Technology Company Building system with performance identification through equipment exercising and entity relationships
US11164159B2 (en) 2019-01-18 2021-11-02 Johnson Controls Tyco IP Holdings LLP Smart building automation system with digital signage
US10788798B2 (en) 2019-01-28 2020-09-29 Johnson Controls Technology Company Building management system with hybrid edge-cloud processing
CN110796736B (en) * 2019-10-30 2023-02-10 广州海格星航信息科技有限公司 Method and device for establishing Beidou space map grid model
US11150617B2 (en) 2019-12-31 2021-10-19 Johnson Controls Tyco IP Holdings LLP Building data platform with event enrichment with contextual information
US12021650B2 (en) 2019-12-31 2024-06-25 Tyco Fire & Security Gmbh Building data platform with event subscriptions
US11894944B2 (en) 2019-12-31 2024-02-06 Johnson Controls Tyco IP Holdings LLP Building data platform with an enrichment loop
US20210200174A1 (en) 2019-12-31 2021-07-01 Johnson Controls Technology Company Building information model management system with hierarchy generation
US11769066B2 (en) 2021-11-17 2023-09-26 Johnson Controls Tyco IP Holdings LLP Building data platform with digital twin triggers and actions
US12100280B2 (en) 2020-02-04 2024-09-24 Tyco Fire & Security Gmbh Systems and methods for software defined fire detection and risk assessment
US11537386B2 (en) 2020-04-06 2022-12-27 Johnson Controls Tyco IP Holdings LLP Building system with dynamic configuration of network resources for 5G networks
US11874809B2 (en) 2020-06-08 2024-01-16 Johnson Controls Tyco IP Holdings LLP Building system with naming schema encoding entity type and entity relationships
US11397773B2 (en) 2020-09-30 2022-07-26 Johnson Controls Tyco IP Holdings LLP Building management system with semantic model integration
US11954154B2 (en) 2020-09-30 2024-04-09 Johnson Controls Tyco IP Holdings LLP Building management system with semantic model integration
US12058212B2 (en) 2020-10-30 2024-08-06 Tyco Fire & Security Gmbh Building management system with auto-configuration using existing points
US12061453B2 (en) 2020-12-18 2024-08-13 Tyco Fire & Security Gmbh Building management system performance index
CN117280291A (en) 2021-03-17 2023-12-22 江森自控泰科知识产权控股有限责任合伙公司 System and method for determining device energy waste
US11461347B1 (en) * 2021-06-16 2022-10-04 Amazon Technologies, Inc. Adaptive querying of time-series data over tiered storage
US11941014B1 (en) 2021-06-16 2024-03-26 Amazon Technologies, Inc. Versioned metadata management for a time-series database
US11899723B2 (en) 2021-06-22 2024-02-13 Johnson Controls Tyco IP Holdings LLP Building data platform with context based twin function processing
US11796974B2 (en) 2021-11-16 2023-10-24 Johnson Controls Tyco IP Holdings LLP Building data platform with schema extensibility for properties and tags of a digital twin
US11934966B2 (en) 2021-11-17 2024-03-19 Johnson Controls Tyco IP Holdings LLP Building data platform with digital twin inferences
US11704311B2 (en) 2021-11-24 2023-07-18 Johnson Controls Tyco IP Holdings LLP Building data platform with a distributed digital twin
US12013673B2 (en) 2021-11-29 2024-06-18 Tyco Fire & Security Gmbh Building control system using reinforcement learning
US11714930B2 (en) 2021-11-29 2023-08-01 Johnson Controls Tyco IP Holdings LLP Building data platform with digital twin based inferences and predictions for a graphical building model
US12013823B2 (en) 2022-09-08 2024-06-18 Tyco Fire & Security Gmbh Gateway system that maps points into a graph schema
US12061633B2 (en) 2022-09-08 2024-08-13 Tyco Fire & Security Gmbh Building system that maps points into a graph schema
EP4365751A1 (en) * 2022-11-03 2024-05-08 Software AG Dynamic data retention policies for iot platforms

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793904A (en) 1995-12-06 1998-08-11 Minnesota Mining And Manufacturing Company Zoned inspection system and method for presenting temporal multi-detector output in a spatial domain
US5983251A (en) 1993-09-08 1999-11-09 Idt, Inc. Method and apparatus for data analysis
US6014614A (en) * 1998-05-29 2000-01-11 Oracle Corporation Method and mechanism for performing spatial joins
US6147644A (en) 1996-12-30 2000-11-14 Southwest Research Institute Autonomous geolocation and message communication system and method
US6161105A (en) * 1994-11-21 2000-12-12 Oracle Corporation Method and apparatus for multidimensional database using binary hyperspatial code
US6201884B1 (en) 1999-02-16 2001-03-13 Schlumberger Technology Corporation Apparatus and method for trend analysis in graphical information involving spatial data
US6324466B1 (en) 1996-11-28 2001-11-27 Mannesmann Ag Method and terminal unit for the spatial allocation of information referring to one location
US20020032697A1 (en) 1998-04-03 2002-03-14 Synapix, Inc. Time inheritance scene graph for representation of media content
US20020035432A1 (en) * 2000-06-08 2002-03-21 Boguslaw Kubica Method and system for spatially indexing land
US20020055924A1 (en) 2000-01-18 2002-05-09 Richard Liming System and method providing a spatial location context
US20020062193A1 (en) * 2000-09-26 2002-05-23 Ching-Fang Lin Enhanced inertial measurement unit/global positioning system mapping and navigation process
US6401102B1 (en) 1998-06-26 2002-06-04 Hitachi Software Engineering Co., Ltd. Virtual geographic spatial object generating system
US20020069312A1 (en) 2000-07-10 2002-06-06 Jones Gad Quentin System and method for the storage, management and sharing of spatial-temporal based information
US20020087570A1 (en) * 2000-11-02 2002-07-04 Jacquez Geoffrey M. Space and time information system and method
US6430547B1 (en) 1999-09-22 2002-08-06 International Business Machines Corporation Method and system for integrating spatial analysis and data mining analysis to ascertain relationships between collected samples and geology with remotely sensed data
US20020143462A1 (en) 2001-03-23 2002-10-03 David Warren Method and apparatus for providing location based data services
US20020146166A1 (en) 2001-02-20 2002-10-10 Ravishankar Rao Method for combining feature distance with spatial distance for segmentation
US20020147729A1 (en) * 2000-01-12 2002-10-10 Balfour Technologies Llc Method and system for a four-dimensional temporal visualization data browser
US20020174124A1 (en) * 2001-04-16 2002-11-21 Haas Robert P. Spatially integrated relational database model with dynamic segmentation (SIR-DBMS)
US20030069693A1 (en) * 2001-01-16 2003-04-10 Snapp Douglas N. Geographic pointing device
US6772142B1 (en) * 2000-10-31 2004-08-03 Cornell Research Foundation, Inc. Method and apparatus for collecting and expressing geographically-referenced data
US6895329B1 (en) * 2000-10-30 2005-05-17 Board Of Trustees Of The University Of Illinois Method and system for querying in a moving object database

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682525A (en) * 1995-01-11 1997-10-28 Civix Corporation System and methods for remotely accessing a selected group of items of interest from a database
US6278994B1 (en) * 1997-07-10 2001-08-21 International Business Machines Corporation Fully integrated architecture for user-defined search
CA2281396A1 (en) * 1998-10-30 2000-04-30 Philip William Gillis Method and apparatus for storing data as liquid information
US6397208B1 (en) * 1999-01-19 2002-05-28 Microsoft Corporation System and method for locating real estate in the context of points-of-interest
US6202063B1 (en) * 1999-05-28 2001-03-13 Lucent Technologies Inc. Methods and apparatus for generating and using safe constraint queries
US6460046B1 (en) * 1999-06-01 2002-10-01 Navigation Technologies Corp. Method and system for forming, storing and using sets of data values
KR20000023961A (en) * 1999-12-22 2000-05-06 김정태 Information modeling method and database search system
JP2001338395A (en) * 2000-05-26 2001-12-07 Nec Nexsolutions Ltd System and method for managing moving object on fixed route
EP1160682A1 (en) * 2000-06-02 2001-12-05 Thomas Dr. Seidl Relation interval tree
JP2002236996A (en) * 2000-09-11 2002-08-23 Eastech On Line:Kk Bus operation information display system
JP2002150493A (en) * 2000-11-14 2002-05-24 Shigeo Kaneda Information delivery system and method storage medium storing information delivery program
JP2002324299A (en) * 2001-04-25 2002-11-08 Ntt Docomo Inc Bus management control system, bus management control method, bus management control program and computer readable recording medium
JP2002367088A (en) * 2001-06-12 2002-12-20 Fujitsu Ltd Method and program for providing vehicle information
JP4820498B2 (en) * 2001-06-13 2011-11-24 株式会社構造計画研究所 Traffic information providing center and method
US7117434B2 (en) * 2001-06-29 2006-10-03 International Business Machines Corporation Graphical web browsing interface for spatial data navigation and method of navigating data blocks
US7376636B1 (en) * 2002-06-07 2008-05-20 Oracle International Corporation Geocoding using a relational database

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983251A (en) 1993-09-08 1999-11-09 Idt, Inc. Method and apparatus for data analysis
US6161105A (en) * 1994-11-21 2000-12-12 Oracle Corporation Method and apparatus for multidimensional database using binary hyperspatial code
US5793904A (en) 1995-12-06 1998-08-11 Minnesota Mining And Manufacturing Company Zoned inspection system and method for presenting temporal multi-detector output in a spatial domain
US6324466B1 (en) 1996-11-28 2001-11-27 Mannesmann Ag Method and terminal unit for the spatial allocation of information referring to one location
US6147644A (en) 1996-12-30 2000-11-14 Southwest Research Institute Autonomous geolocation and message communication system and method
US20020032697A1 (en) 1998-04-03 2002-03-14 Synapix, Inc. Time inheritance scene graph for representation of media content
US6014614A (en) * 1998-05-29 2000-01-11 Oracle Corporation Method and mechanism for performing spatial joins
US6401102B1 (en) 1998-06-26 2002-06-04 Hitachi Software Engineering Co., Ltd. Virtual geographic spatial object generating system
US6201884B1 (en) 1999-02-16 2001-03-13 Schlumberger Technology Corporation Apparatus and method for trend analysis in graphical information involving spatial data
US6430547B1 (en) 1999-09-22 2002-08-06 International Business Machines Corporation Method and system for integrating spatial analysis and data mining analysis to ascertain relationships between collected samples and geology with remotely sensed data
US20020147729A1 (en) * 2000-01-12 2002-10-10 Balfour Technologies Llc Method and system for a four-dimensional temporal visualization data browser
US20020055924A1 (en) 2000-01-18 2002-05-09 Richard Liming System and method providing a spatial location context
US20020035432A1 (en) * 2000-06-08 2002-03-21 Boguslaw Kubica Method and system for spatially indexing land
US20020069312A1 (en) 2000-07-10 2002-06-06 Jones Gad Quentin System and method for the storage, management and sharing of spatial-temporal based information
US20020062193A1 (en) * 2000-09-26 2002-05-23 Ching-Fang Lin Enhanced inertial measurement unit/global positioning system mapping and navigation process
US6895329B1 (en) * 2000-10-30 2005-05-17 Board Of Trustees Of The University Of Illinois Method and system for querying in a moving object database
US6772142B1 (en) * 2000-10-31 2004-08-03 Cornell Research Foundation, Inc. Method and apparatus for collecting and expressing geographically-referenced data
US20020087570A1 (en) * 2000-11-02 2002-07-04 Jacquez Geoffrey M. Space and time information system and method
US20030069693A1 (en) * 2001-01-16 2003-04-10 Snapp Douglas N. Geographic pointing device
US20020146166A1 (en) 2001-02-20 2002-10-10 Ravishankar Rao Method for combining feature distance with spatial distance for segmentation
US20020143462A1 (en) 2001-03-23 2002-10-03 David Warren Method and apparatus for providing location based data services
US20020174124A1 (en) * 2001-04-16 2002-11-21 Haas Robert P. Spatially integrated relational database model with dynamic segmentation (SIR-DBMS)

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Graph Wavelets fro Spatial Traffic Analysis," by Mark Crovella and Eric Kolaczyk, [online] [retrieved on Feb. 11, 2005]. Retrieved from http://www.cs.bu.edu/techreports/pdf/2002-020-graph-wavelets.pdf.
Communication Pursuant to Article 96(2) EPC dated Oct. 10, 2005 for Application No. 03 768 011.3-2201.
EP Office Action, Feb. 12, 2007, for European Patent No. 03 768 011.3-2001.
European Office Action, Oct. 10, 2005, for European Application No. 03 768 011.3.
http://mathworld.wolfram.com/Argument.html. *
INFORMIX Press. "Informix TimeSeries DataBlade Module.." . User's Guide. Version 3.1-Excerpt. Apr. 1997, Part No. 000-3718. Title Page; Copyright Page; Table of Contents (6 p p. iii-viii); 7-39 to 7-41; 7-159 to 7-162.
Martin, R. D. et al. "The S-Plus DataBlade for INFORMIX-Universal Server. The Natural Wedding of an Object Relational Database with an Object-Oriented Data Analysis Engine." Scientific and Statistical Database Management, 1997. Proceedings, Ninth International Conference on Olympia, WA, USA Aug. 11-13, 1997. IEEE Comput. Soc., US, Aug. 11, 1997, pp. 126-130.
Olson, M.A. et al. "DataBlade Extensions for INFORMIX-Universal Server." COMPCON '97. Proceedings, IEEE, San Jose, CA, USA Feb. 23-26, 1997. IEEE Comput. Soc., US, Feb. 23, 1997, pp. 143-148.
PCT International Search Report for International Application No. PCT/GB03/05513 filed on Dec. 17, 2003.
PCT Written Opinion, May 5, 2004, for International Application No. PCT/GB03/05513.
Response to PCT Written Opinion, Sep. 24, 2004, for International Application No. PCT/GB03/05513.
Sokolov, Alexander, and Wulff, Fredrik, "Time Series-a web application for oceanographic data analysis," Jan. 14, 1998, Department of Systems Ecology, Marine Ecosystem Modeling Group, Stockholm University, WWW Page, http://data.ecology.su.se/models/BEDonWeb/Articles/TimeSeries. *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355948B2 (en) 2009-05-05 2013-01-15 Groupon, Inc. System and methods for discount retailing
US8650072B2 (en) 2009-05-05 2014-02-11 Groupon, Inc. System and methods for providing location based discount retailing
US8903733B2 (en) 2009-05-05 2014-12-02 Groupon, Inc. System and methods for discount retailing
US8301495B2 (en) 2009-05-05 2012-10-30 Groupon, Inc. System and methods for discount retailing
US11023914B2 (en) 2009-05-05 2021-06-01 Groupon, Inc. System and methods for discount retailing
US10664861B1 (en) 2012-03-30 2020-05-26 Groupon, Inc. Generating promotion offers and providing analytics data
US9996859B1 (en) 2012-03-30 2018-06-12 Groupon, Inc. Method, apparatus, and computer readable medium for providing a self-service interface
US11475477B2 (en) 2012-03-30 2022-10-18 Groupon, Inc. Generating promotion offers and providing analytics data
US11017440B2 (en) 2012-03-30 2021-05-25 Groupon, Inc. Method, apparatus, and computer readable medium for providing a self-service interface
US11386461B2 (en) 2012-04-30 2022-07-12 Groupon, Inc. Deal generation using point-of-sale systems and related methods
US10304091B1 (en) 2012-04-30 2019-05-28 Groupon, Inc. Deal generation using point-of-sale systems and related methods
US10147130B2 (en) 2012-09-27 2018-12-04 Groupon, Inc. Online ordering for in-shop service
US10713707B1 (en) 2012-09-27 2020-07-14 Groupon, Inc. Online ordering for in-shop service
US11615459B2 (en) 2012-09-27 2023-03-28 Groupon, Inc. Online ordering for in-shop service
US10304093B2 (en) 2013-01-24 2019-05-28 Groupon, Inc. Method, apparatus, and computer readable medium for providing a self-service interface
US11100542B2 (en) 2013-01-24 2021-08-24 Groupon, Inc. Method, apparatus, and computer readable medium for providing a self-service interface
US10878460B2 (en) 2013-06-10 2020-12-29 Groupon, Inc. Method and apparatus for determining promotion pricing parameters
US10192243B1 (en) 2013-06-10 2019-01-29 Groupon, Inc. Method and apparatus for determining promotion pricing parameters
US11481814B2 (en) 2013-06-10 2022-10-25 Groupon, Inc. Method and apparatus for determining promotion pricing parameters
US10664876B1 (en) 2013-06-20 2020-05-26 Groupon, Inc. Method and apparatus for promotion template generation
US11093980B2 (en) 2013-06-27 2021-08-17 Groupon, Inc. Fine print builder
US10255620B1 (en) 2013-06-27 2019-04-09 Groupon, Inc. Fine print builder

Also Published As

Publication number Publication date
AU2003292433A1 (en) 2004-07-22
EP1579342A1 (en) 2005-09-28
TW200419172A (en) 2004-10-01
WO2004059531A1 (en) 2004-07-15
US8296343B2 (en) 2012-10-23
JP2006512652A (en) 2006-04-13
CN100585588C (en) 2010-01-27
US20040128314A1 (en) 2004-07-01
US20090012994A1 (en) 2009-01-08
IL169495A0 (en) 2007-07-04
CN1732463A (en) 2006-02-08
JP4641421B2 (en) 2011-03-02
TWI231374B (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US7472109B2 (en) Method for optimization of temporal and spatial data processing
US8028087B2 (en) System and method for message processing and routing
US6885860B2 (en) Information management and processing in a wireless network
US6728758B2 (en) Agent for performing process using service list, message distribution method using service list, and storage medium storing program for realizing agent
US20040085318A1 (en) Graphics generation and integration
US20090265345A1 (en) Systems and methods for generating user specified information from a map
CN108446335B (en) Heterogeneous system data extraction and unified external data exchange method based on database
US7533085B2 (en) Method for searching deep web services
EP1426879B1 (en) Building a geographic database
US20100250543A1 (en) Efficient handling of multipart queries against relational data
KR20010027755A (en) System and method for displaying vehicle location information
CN107436903A (en) A kind of data base management method based on NoSQL
Garton Data enrichment and enhanced accessibility of waterborne commerce numerical data: spatially depicting the National Waterway Network
Cavallaro HIFI—Hypertext interface to external databases
Haskiya Developing an information system for archaeological sites and monuments-data model and construction
Lee et al. GEOGRAPHICAL INFORMATION APPLICATIONS OVER THE NET
NETMORKCU UNL MEfl OMONEEl f. lflf 1f
An Open Geodata Interoperability–A Key NII Requirement
Feuerlicht et al. Using data replication techniques to maintain data consistency in supply chain applications
CN107729545A (en) The treating method and apparatus of civil aviation travel record

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KATIBAH, EDWIN;SIEGENTHALER, MARTIN;REEL/FRAME:013923/0395

Effective date: 20030310

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20201230