US7459627B2 - Coaxial cable - Google Patents
Coaxial cable Download PDFInfo
- Publication number
- US7459627B2 US7459627B2 US11/860,503 US86050307A US7459627B2 US 7459627 B2 US7459627 B2 US 7459627B2 US 86050307 A US86050307 A US 86050307A US 7459627 B2 US7459627 B2 US 7459627B2
- Authority
- US
- United States
- Prior art keywords
- coaxial cable
- carbon nanotube
- insulating layer
- shielding
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002238 carbon nanotube film Substances 0.000 claims abstract description 50
- 239000010410 layer Substances 0.000 claims description 93
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 57
- 239000002041 carbon nanotube Substances 0.000 claims description 53
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 53
- 239000002131 composite material Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 3
- 238000001338 self-assembly Methods 0.000 claims description 2
- 239000002071 nanotube Substances 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 7
- 238000000576 coating method Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 description 12
- 239000004020 conductor Substances 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000004927 clay Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 2
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000009970 fire resistant effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001579 aluminosilicate mineral Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/1808—Construction of the conductors
- H01B11/1817—Co-axial cables with at least one metal deposit conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/02—Cables with twisted pairs or quads
- H01B11/06—Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
- H01B11/10—Screens specially adapted for reducing interference from external sources
- H01B11/1008—Features relating to screening tape per se
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/016—Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
Definitions
- the present invention relates to cables and, particularly, to a coaxial cable.
- a coaxial cable is an electrical cable including an inner conductor, an insulating layer, and a conducting layer, usually surrounded by a sheath.
- the inner conductor can be, e.g., a solid or braided wire, and the conducting layer can, for example, be a wound foil, a woven tape, or a braid.
- the coaxial cable requires an internal insulating layer (i.e., a dielectric) to act as a physical support and to maintain a constant spacing between the inner conductor and the conducting layer, in addition to electrically isolating the two.
- the coaxial cable may be rigid or flexible.
- the rigid type has a solid inner conductor
- the flexible type has a braided inner conductor.
- the conductors for both types are usually made of thin copper wires.
- the insulating layer also called the dielectric, has a significant effect on the cable's properties, such as its characteristic impedance and its attenuation.
- the dielectric may be solid or perforated with air spaces.
- the shielding layer is configured for ensuring that a signal to be transmitted stays inside the cable and that all other signals to stay out (i.e., acts as a two-way signal shield).
- the shielding layer also serves as a secondary conductor or ground wire.
- the coaxial cable is generally applied as a high-frequency transmission line to carry a high frequency or broadband signal.
- DC power (called a bias) is added to the signal to supply the equipment at the other end, as in direct broadcast satellite receivers, with operating power.
- the electromagnetic field carrying the signal exists (ideally) only in the space between the inner conductor and conducting layer, so the coaxial cable cannot interfere with and/or suffer interference from external electromagnetic fields.
- the conventional coaxial cable is low in yield and high in cost. Therefore, a coaxial cable that has great shield effectiveness and that is suitable for low-cost mass production is desired.
- the coaxial cable includes at least one conducting wire; at least one insulating layer, each insulating layer being respectively coated on a corresponding conducting wire; at least one shielding layer surrounding the insulating layer; and a sheath,
- the shielding layer is a carbon nanotube film.
- a coaxial cable in one present embodiment, includes a conducting wire, an insulating layer applied on the conducting wire, a shielding layer deposited on the insulating layer, and a sheath coating the shielding layer.
- a coaxial cable in another present embodiment, includes a number of conducting wires, a number of insulating layers respectively applied on the corresponding conducting wires, a shielding layer surrounding all the conducting wires coated with a corresponding insulating layer, and a sheath coating the shielding layer.
- a coaxial cable in another present embodiment, includes a number of conducting wires, a number of insulating layers respectively supplied on the corresponding conducting wires, a number of shielding layers respectively coating the corresponding insulating layers, and a sheath, in turn, surrounding all the conducting wires.
- Each conducting wire is coated with a corresponding combination of an insulating layer and a shielding layer.
- FIG. 1 is a perspective view of a coaxial cable of the first embodiment
- FIG. 2 is a plane, cross-sectional view along the II-II direction of the coaxial cable in FIG. 1 ;
- FIG. 3 is a plane, cross-sectional view of a coaxial cable of the second embodiment.
- FIG. 4 is a plane, cross-sectional view of a coaxial cable of the third embodiment.
- the coaxial cable 10 includes a conducting wire 110 , an insulating layer 120 , a shielding layer 130 , and a sheath 140 .
- the axis of the conducting wire 110 , the insulating layer 120 , the shielding layer 130 , and the sheath 140 is consistent (i.e., such elements are coaxial), and the arrangement thereof is, in turn, from center/inner to outer.
- the conducting wire 110 can be a single wire or a number of stranded wires.
- the conducting wire 110 is made of a conducting material, such as a metal, an alloy, a carbon nanotube, or a carbon nanotube composite having electrical conduction.
- Advantageous metals for this purpose are aluminum (Al) or copper (Cu).
- a particularly useful alloy is a copper-zinc alloy or a copper-silver alloy, wherein a mass percent of copper in the copper-zinc alloy is about 70% and that in the copper-silver alloy is about 10-40%.
- the carbon nanotube composite advantageously includes the carbon nanotubes and one of the above-mentioned alloys. Beneficially, the mass percent of the carbon nanotubes in the carbon nanotube composite is about 0.2%-10%.
- the carbon nanotube is, usefully, a sort/form of a carbon nanotube chain connected by van der Waals attractive forces between ends of adjacent carbon nanotubes.
- the insulating layer 120 coating/surrounding the conducting wire 110 is an electric insulator/dielectric, and can be, for example, polytetrafluoroethylene (PTFE) or a nano-sized clay/polymer composite.
- the clay of the composite is a hydrated alumino-silicate mineral in a nano-sized layer form.
- the mineral can, for example, be nano-sized kaolinite or nano-sized montmorillonite.
- the polymer of the clay/polymer composite is, usefully, chosen from the group consisting a material of silicone, polyamide, and polyolefin, such as polyethylene and polypropylene.
- the clay/polymer composite includes nano-sized montmorillonite and polyethylene.
- the clay/polymer composite has many good properties such as electrically insulating, fire resistant, low smoke potential, and halogen-free.
- the clay/polymer is an environmentally friendly material and can be applied as an electrically insulating material to protect the conducting wire and to keep/maintain a certain space between the conducting wire and the shielding layer.
- the shielding layer 130 coating/encompassing the insulating layer 120 is a carbon nanotube film.
- the carbon nanotube film may cover directly or/and wrap the insulating layer 120 by the van der Waals attractive force.
- the carbon nanotube film is in an ordered form or in a disordered form.
- a width of the shielding layer 130 is, approximately, on the order from tens of nanometers to several microns.
- the ordered carbon nanotube film can be a monolayer structure or a multilayer structure.
- the multilayer carbon nanotube film includes a number of clearances between the carbon nanotubes of the carbon nanotube films. The more the number of the carbon nanotube films that is empolyed, the smaller clearances.
- a method for making the ordered carbon nanotube film includes the steps of: (1) providing a carbon nanotube array; (2) drawing out a first carbon nanotube film from the carbon nanotube array; (3) adhering the first carbon nanotube film on a fixed frame, and removing the part of the first carbon nanotube film on an outside thereof; (4) repeating the step (2) and (3), then adhering a second carbon nanotube film above/upon the first carbon nanotube film adhered on the fixed frame; and (5) treating the above carbon nanotube films with an organic solvent.
- the carbon nanotube array is generally a super-aligned carbon nanotube array (Nature 2002, 419, 801).
- the carbon nanotube array can be manufactured using a chemical vapor deposition method.
- the method includes the steps of: (a) providing a substantially flat and smooth substrate, with the substrate being, e.g., a p-type or n-type silicon wafer; (b) depositing a catalyst on the substrate, the catalyst being usefully selected from the group consisting of iron, cobalt, nickel or alloys of the same; (c) annealing the substrate with the catalyst in protective gas at 300 ⁇ 400° C.
- the carbon-containing gas can, opportunely, be a hydrocarbon such as acetylene, ethane, etc.
- the protective gas can, beneficially, be an inert gas, nitrogen gas, or a mixture thereof.
- the superficial density of the carbon nanotube array manufactured by above-described process with the carbon nanotubes being compactly bundled up together is higher.
- the van der Waals attractive force between adjacent carbon nanotubes is strong, and diameters of the carbon nanotubes are correspondingly substantial.
- the first carbon nanotube film may be drawn out from the carbon nanotube array with a tool with a certain width, such as an adhesive tape.
- a tool with a certain width such as an adhesive tape.
- the initial carbon nanotubes of the carbon nanotube array can be drawn out with the adhesive tape.
- the other carbon nanotubes are also drawn out due to the van der Waals attractive force between ends of adjacent carbon nanotubes, and then the first carbon nanotube film is formed.
- the carbon nanotubes in the first carbon nanotube film are substantially parallel to each other.
- the carbon nanotube film may, for example, have a length of several centimeters and a thickness of several microns.
- the fixed frame advantageously is quadrate and made of a metal or any other suitable structural material.
- the first carbon nanotube film has a favorable surface tension/good wetting and, thus, can firmly attach to the fixed frame.
- the part of the first carbon nanotube film extending out of the fixed frame can be removed by a mechanical force, such as scraping with a knife.
- a second carbon nanotube film is drawn from the carbon nanotube array, as in the step (2).
- the second carbon nanotube film is adhered on the first carbon nanotube film and the fixed frame, as in the step (3).
- the first carbon nanotube film together with the second carbon nanotube film forms a stable two-layer film structure because of the van der Waals attractive force therebetween.
- a discernable inclination i.e., an exact 0° angle is not intended
- the carbon nanotubes of the first carbon nanotube film and that of the second carbon nanotube film is in an approximate range from 0° to 90°, quite usefully about 90° (e.g., at least within about ⁇ 5°). Still advantageously, a discernable inclination, in which an exact 0° angle is not included, is at least defined.
- step (4) can be repeated in order to get a multilayer carbon nanotube film structure.
- the carbon nanotube film is treated with an organic solvent by dripping the organic solvent thereon or by soaking the fixed frame in a vessel filled with the organic solvent. After this treatment, the parallel carbon nanotubes of the carbon nanotube film shrink into a number of the carbon nanotube yarns.
- the organic solvent is a volatilizable organic solvent, such as ethanol, methanol, acetone, dichloroethane, or chloroform.
- the disordered carbon nanotube film is a condensate self-assembly film.
- the method for making the disordered carbon nanotube film includes the steps of: (1) preparing a suspension of carbon nanotubes and an organic solvent; and (2) dripping the suspension on a liquid and forming a disordered carbon nanotube film.
- an organic solvent such as ethanol, acetone, methanol, isopropanol, and/or ethyl acetate
- the carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes, or multi-walled carbon nanotubes.
- a beneficial length of the carbon nanotubes is in an approximate range from microns to tens of microns.
- the step (1) includes the sub-steps, as following: putting a certain number of carbon nanotubes into the organic solvent and then getting a mixture; and (2) treating the mixture by ultrasonic dispersion for at least 5 minutes and getting a suspension with the carbon nanotubes uniformly dispersed therein.
- the liquid is non-infiltrative to the carbon nanotubes and, rather suitably, is pure water or a salt solution.
- the width of the discorded carbon nanotube film is determined by a mass percent of the carbon nanotubes of the suspension. For example, the width of the discorded carbon nanotube film is tens of nanometers when the mass percent of the carbon nanotubes is about 0.1%-1%, and the width of the discorded carbon nanotube film is hundreds to thousands of nanometers when the mass percent of the carbon nanotubes is about 1%-10%.
- the material of the sheath 140 is, advantageously, the same as the material used for the insulating layer 120 .
- This kind of material has many good properties, such as good mechanical behavior, electrically insulating, fire resistant, chemically durable, low smoke potential, and halogen-free.
- the material is an environmentally friendly material and can be applied to protect the coaxial cable 10 from external injury, such as physical, chemical, and/or mechanical injury.
- the coaxial cable 20 includes a number of conducting wires 210 ; a number of insulating layers 220 each, respectively, surrounding a corresponding one of the conducting wires 210 ; a single shielding layer 230 surrounding all the conducting wires 210 with the corresponding insulating layer 220 coated thereon; and a single sheath 240 wrapping the shielding layer 230 .
- the materials of the conducting wires 210 , the insulating layer 220 , the shielding layer 230 , and the sheath 240 are substantially similar to the materials of the corresponding parts in the first embodiment.
- the coaxial cable 30 includes a number of conducting wires 310 ; a number of insulating layers 320 respectively coating a corresponding one of the conducting wires 310 ; a number of shielding layers 330 respectively applied to a corresponding one of the insulating layers 320 ; and a single sheath 340 wrapping all the conducting wires 310 , with each conducting wire being separately coated, in turn, with a corresponding insulating layer 320 and a corresponding shielding layer 330 .
- the materials of the conducting wires 310 , the insulating layers 320 , the shielding layers 330 , and the sheath 340 are substantially similar to the materials of the corresponding parts in the first embodiment.
- the arrangement of the respective shielding layers 330 each surrounding a corresponding one of the conducting wires 310 can provide quite good shielding against noises (i.e., electrical interference) from outside and between the conducting wires 310 , which ensures the stable characteristics of the coaxial cable 30 .
Landscapes
- Insulated Conductors (AREA)
Abstract
Description
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710073892.8 | 2007-04-11 | ||
CN2007100738928A CN101286384B (en) | 2007-04-11 | 2007-04-11 | Electromagnetic shielding cable |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080251274A1 US20080251274A1 (en) | 2008-10-16 |
US7459627B2 true US7459627B2 (en) | 2008-12-02 |
Family
ID=39852679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/860,503 Active US7459627B2 (en) | 2007-04-11 | 2007-09-24 | Coaxial cable |
Country Status (2)
Country | Link |
---|---|
US (1) | US7459627B2 (en) |
CN (1) | CN101286384B (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080248235A1 (en) * | 2007-02-09 | 2008-10-09 | Tsinghua University | Carbon nanotube film structure and method for fabricating the same |
US20080299460A1 (en) * | 2007-06-01 | 2008-12-04 | Tsinghua University | Anode of lithium battery and method for fabricating the same |
US20090194313A1 (en) * | 2008-02-01 | 2009-08-06 | Tsinghua University | Coaxial cable |
US20110051974A1 (en) * | 2009-08-25 | 2011-03-03 | Tsinghua University | Earphone cable and earphone using the same |
US20110051973A1 (en) * | 2009-08-25 | 2011-03-03 | Tsinghua University | Earphone cable and earphone using the same |
US20110140309A1 (en) * | 2009-12-11 | 2011-06-16 | Beijing Funate Innovation Technology Co., Ltd. | Method for making carbon nanotube structure |
US8158217B2 (en) | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
US8168291B2 (en) | 2009-11-23 | 2012-05-01 | Applied Nanostructured Solutions, Llc | Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof |
US20120288765A1 (en) * | 2007-10-26 | 2012-11-15 | Hon Hai Precision Industry Co., Ltd. | Cathode of lithium battery and method for fabricating the same |
US8325079B2 (en) | 2009-04-24 | 2012-12-04 | Applied Nanostructured Solutions, Llc | CNT-based signature control material |
US8545963B2 (en) | 2009-12-14 | 2013-10-01 | Applied Nanostructured Solutions, Llc | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
US8561514B2 (en) | 2010-12-14 | 2013-10-22 | Atkins & Pearce, Inc. | Braided carbon nanotube threads and methods of manufacturing the same |
US8580342B2 (en) | 2009-02-27 | 2013-11-12 | Applied Nanostructured Solutions, Llc | Low temperature CNT growth using gas-preheat method |
US8585934B2 (en) | 2009-02-17 | 2013-11-19 | Applied Nanostructured Solutions, Llc | Composites comprising carbon nanotubes on fiber |
US8601965B2 (en) | 2009-11-23 | 2013-12-10 | Applied Nanostructured Solutions, Llc | CNT-tailored composite sea-based structures |
US8658897B2 (en) | 2011-07-11 | 2014-02-25 | Tangitek, Llc | Energy efficient noise dampening cables |
US8665581B2 (en) | 2010-03-02 | 2014-03-04 | Applied Nanostructured Solutions, Llc | Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof |
US8664573B2 (en) | 2009-04-27 | 2014-03-04 | Applied Nanostructured Solutions, Llc | CNT-based resistive heating for deicing composite structures |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US8787001B2 (en) | 2010-03-02 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US8784937B2 (en) | 2010-09-14 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
US8815341B2 (en) | 2010-09-22 | 2014-08-26 | Applied Nanostructured Solutions, Llc | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US8969225B2 (en) | 2009-08-03 | 2015-03-03 | Applied Nano Structured Soultions, LLC | Incorporation of nanoparticles in composite fibers |
US8999453B2 (en) | 2010-02-02 | 2015-04-07 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US9019060B2 (en) | 2010-06-22 | 2015-04-28 | Abb Research Ltd. | Electrical conductor with surrounding electrical insulation |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
US9055667B2 (en) | 2011-06-29 | 2015-06-09 | Tangitek, Llc | Noise dampening energy efficient tape and gasket material |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
US20150294767A1 (en) * | 2012-11-13 | 2015-10-15 | Ondal Medical Systems Gmbh | Coaxial cable for the electrical transmission of a radiofrequency and/or high-speed data signal, rotating joint comprising two such coaxial cables, and retaining apparatus comprising at least one such rotating joint |
US9163354B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
US9782948B2 (en) | 2011-03-03 | 2017-10-10 | Tangitek, Llc | Antenna apparatus and method for reducing background noise and increasing reception sensitivity |
RU2643156C1 (en) * | 2016-10-21 | 2018-01-31 | МСД Текнолоджис С.а.р.л. | Coaxial cable |
RU178132U1 (en) * | 2017-07-12 | 2018-03-26 | МСД Текнолоджис С.а.р.л. | EXTERNAL CONDUCTOR FOR COAXIAL TYPE ELECTRIC COMMUNICATION CABLES |
US10138128B2 (en) | 2009-03-03 | 2018-11-27 | Applied Nanostructured Solutions, Llc | System and method for surface treatment and barrier coating of fibers for in situ CNT growth |
RU195770U1 (en) * | 2019-11-27 | 2020-02-05 | Общество с ограниченной ответственностью НПП "Спецкабель" | HIGH FREQUENCY SYMMETRIC CABLE WITH A SCREEN BASED ON CARBON NANOTUBES |
RU195769U1 (en) * | 2019-11-27 | 2020-02-05 | Общество с ограниченной ответственностью НПП "Спецкабель" | HIGH FREQUENCY SYMMETRIC CABLE WITH A SCREEN BASED ON CARBON NANOTUBES |
US11424048B2 (en) | 2018-06-28 | 2022-08-23 | Carlisle Interconnect Technologies, Inc. | Coaxial cable utilizing plated carbon nanotube elements and method of manufacturing same |
US11426950B2 (en) | 2015-07-21 | 2022-08-30 | Tangitek, Llc | Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials |
US11600404B2 (en) * | 2016-06-20 | 2023-03-07 | Nexans | Electric cable comprising a metal layer |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101276724B (en) * | 2007-03-30 | 2011-06-22 | 北京富纳特创新科技有限公司 | Transmission electron microscope micro grid and preparing method thereof |
US8294098B2 (en) * | 2007-03-30 | 2012-10-23 | Tsinghua University | Transmission electron microscope micro-grid |
US20090314510A1 (en) * | 2008-01-11 | 2009-12-24 | Kukowski Thomas R | Elastomeric Conductors and Shields |
CN101848564B (en) * | 2009-03-27 | 2012-06-20 | 清华大学 | Heating element |
CN101998706B (en) * | 2009-08-14 | 2015-07-01 | 清华大学 | Carbon nanotube fabric and heating body using carbon nanotube fabric |
CN101991364B (en) * | 2009-08-14 | 2013-08-28 | 清华大学 | Electric oven |
CN102012060B (en) * | 2009-09-08 | 2012-12-19 | 清华大学 | Wall type electric warmer |
CN102019039B (en) * | 2009-09-11 | 2013-08-21 | 清华大学 | Infrared physiotherapy apparatus |
CN102056353A (en) * | 2009-11-10 | 2011-05-11 | 清华大学 | Heating device and manufacturing method thereof |
US8658902B2 (en) * | 2010-03-16 | 2014-02-25 | Ls Cable Ltd. | Electrical transmission line |
CN101880035A (en) | 2010-06-29 | 2010-11-10 | 清华大学 | Carbon nanotube structure |
US9087630B2 (en) | 2010-10-05 | 2015-07-21 | General Cable Technologies Corporation | Cable barrier layer with shielding segments |
US9136043B2 (en) | 2010-10-05 | 2015-09-15 | General Cable Technologies Corporation | Cable with barrier layer |
US8853540B2 (en) * | 2011-04-19 | 2014-10-07 | Commscope, Inc. Of North Carolina | Carbon nanotube enhanced conductors for communications cables and related communications cables and methods |
CN105097065B (en) * | 2014-04-23 | 2018-03-02 | 北京富纳特创新科技有限公司 | CNT compound wire |
EP3263753A4 (en) * | 2015-02-27 | 2018-11-21 | Hitachi Zosen Corporation | Method for manufacturing carbon nanotube fiber, device for manufacturing carbon nanotube fiber, and carbon nanotube fiber |
CN105206939A (en) * | 2015-08-24 | 2015-12-30 | 江苏俊知技术有限公司 | Flexible light wide-temperature leaky coaxial cable |
CN107516555A (en) * | 2016-06-16 | 2017-12-26 | 德尔福派克电气系统有限公司 | A kind of automobile shielded conductor |
CN107144717A (en) * | 2016-11-14 | 2017-09-08 | 湾世伟 | Nano material dielectric barrier type electronic type optical voltage transformer |
US10128022B1 (en) * | 2017-10-24 | 2018-11-13 | Northrop Grumman Systems Corporation | Lightweight carbon nanotube cable comprising a pair of plated twisted wires |
CN215496051U (en) * | 2021-07-15 | 2022-01-11 | 东莞市拓诚实业有限公司 | Cable with signal detection function |
US12003092B2 (en) | 2021-07-15 | 2024-06-04 | Dongguan City Tuocheng Industries Co., Ltd. | Cable with signal detection function |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040020681A1 (en) * | 2000-03-30 | 2004-02-05 | Olof Hjortstam | Power cable |
US20050170177A1 (en) * | 2004-01-29 | 2005-08-04 | Crawford Julian S. | Conductive filament |
US7045716B2 (en) * | 2003-05-15 | 2006-05-16 | Nexans | Electrical cable |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6265466B1 (en) * | 1999-02-12 | 2001-07-24 | Eikos, Inc. | Electromagnetic shielding composite comprising nanotubes |
-
2007
- 2007-04-11 CN CN2007100738928A patent/CN101286384B/en active Active
- 2007-09-24 US US11/860,503 patent/US7459627B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040020681A1 (en) * | 2000-03-30 | 2004-02-05 | Olof Hjortstam | Power cable |
US7045716B2 (en) * | 2003-05-15 | 2006-05-16 | Nexans | Electrical cable |
US20050170177A1 (en) * | 2004-01-29 | 2005-08-04 | Crawford Julian S. | Conductive filament |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8158217B2 (en) | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US9573812B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US9574300B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US20080248235A1 (en) * | 2007-02-09 | 2008-10-09 | Tsinghua University | Carbon nanotube film structure and method for fabricating the same |
US8048256B2 (en) * | 2007-02-09 | 2011-11-01 | Tsinghua University | Carbon nanotube film structure and method for fabricating the same |
US8734996B2 (en) | 2007-06-01 | 2014-05-27 | Tsinghua University | Anode of lithium battery and method for fabricating the same |
US20080299460A1 (en) * | 2007-06-01 | 2008-12-04 | Tsinghua University | Anode of lithium battery and method for fabricating the same |
US20120288765A1 (en) * | 2007-10-26 | 2012-11-15 | Hon Hai Precision Industry Co., Ltd. | Cathode of lithium battery and method for fabricating the same |
US8790826B2 (en) * | 2007-10-26 | 2014-07-29 | Tsinghua University | Cathode of lithium battery and method for fabricating the same |
US7750240B2 (en) * | 2008-02-01 | 2010-07-06 | Beijing Funate Innovation Technology Co., Ltd. | Coaxial cable |
US20090194313A1 (en) * | 2008-02-01 | 2009-08-06 | Tsinghua University | Coaxial cable |
US8585934B2 (en) | 2009-02-17 | 2013-11-19 | Applied Nanostructured Solutions, Llc | Composites comprising carbon nanotubes on fiber |
US8580342B2 (en) | 2009-02-27 | 2013-11-12 | Applied Nanostructured Solutions, Llc | Low temperature CNT growth using gas-preheat method |
US10138128B2 (en) | 2009-03-03 | 2018-11-27 | Applied Nanostructured Solutions, Llc | System and method for surface treatment and barrier coating of fibers for in situ CNT growth |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
US9241433B2 (en) | 2009-04-24 | 2016-01-19 | Applied Nanostructured Solutions, Llc | CNT-infused EMI shielding composite and coating |
US8325079B2 (en) | 2009-04-24 | 2012-12-04 | Applied Nanostructured Solutions, Llc | CNT-based signature control material |
US8664573B2 (en) | 2009-04-27 | 2014-03-04 | Applied Nanostructured Solutions, Llc | CNT-based resistive heating for deicing composite structures |
US8969225B2 (en) | 2009-08-03 | 2015-03-03 | Applied Nano Structured Soultions, LLC | Incorporation of nanoparticles in composite fibers |
US8363873B2 (en) * | 2009-08-25 | 2013-01-29 | Tsinghua University | Earphone cable and earphone using the same |
US20110051973A1 (en) * | 2009-08-25 | 2011-03-03 | Tsinghua University | Earphone cable and earphone using the same |
US20110051974A1 (en) * | 2009-08-25 | 2011-03-03 | Tsinghua University | Earphone cable and earphone using the same |
US8331602B2 (en) * | 2009-08-25 | 2012-12-11 | Tsinghua University | Earphone cable and earphone using the same |
US8601965B2 (en) | 2009-11-23 | 2013-12-10 | Applied Nanostructured Solutions, Llc | CNT-tailored composite sea-based structures |
US8662449B2 (en) | 2009-11-23 | 2014-03-04 | Applied Nanostructured Solutions, Llc | CNT-tailored composite air-based structures |
US8168291B2 (en) | 2009-11-23 | 2012-05-01 | Applied Nanostructured Solutions, Llc | Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof |
US20110140309A1 (en) * | 2009-12-11 | 2011-06-16 | Beijing Funate Innovation Technology Co., Ltd. | Method for making carbon nanotube structure |
US8431053B2 (en) * | 2009-12-11 | 2013-04-30 | Beijing Funate Innovation Technology Co., Ltd. | Method for making carbon nanotube structure |
US8545963B2 (en) | 2009-12-14 | 2013-10-01 | Applied Nanostructured Solutions, Llc | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
US9163354B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
US8999453B2 (en) | 2010-02-02 | 2015-04-07 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
US8665581B2 (en) | 2010-03-02 | 2014-03-04 | Applied Nanostructured Solutions, Llc | Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof |
US8787001B2 (en) | 2010-03-02 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US9019060B2 (en) | 2010-06-22 | 2015-04-28 | Abb Research Ltd. | Electrical conductor with surrounding electrical insulation |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
US9907174B2 (en) | 2010-08-30 | 2018-02-27 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
US8784937B2 (en) | 2010-09-14 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
US8815341B2 (en) | 2010-09-22 | 2014-08-26 | Applied Nanostructured Solutions, Llc | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
US8561514B2 (en) | 2010-12-14 | 2013-10-22 | Atkins & Pearce, Inc. | Braided carbon nanotube threads and methods of manufacturing the same |
US9782948B2 (en) | 2011-03-03 | 2017-10-10 | Tangitek, Llc | Antenna apparatus and method for reducing background noise and increasing reception sensitivity |
US9055667B2 (en) | 2011-06-29 | 2015-06-09 | Tangitek, Llc | Noise dampening energy efficient tape and gasket material |
US8658897B2 (en) | 2011-07-11 | 2014-02-25 | Tangitek, Llc | Energy efficient noise dampening cables |
US10262775B2 (en) | 2011-07-11 | 2019-04-16 | Tangitek, Llc | Energy efficient noise dampening cables |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
US9627105B2 (en) * | 2012-11-13 | 2017-04-18 | Ondal Medical Systems Gmbh | Coaxial cable for the electrical transmission of a radiofrequency and/or high-speed data signal, rotating joint comprising two such coaxial cables, and retaining apparatus comprising at least one such rotating joint |
US20150294767A1 (en) * | 2012-11-13 | 2015-10-15 | Ondal Medical Systems Gmbh | Coaxial cable for the electrical transmission of a radiofrequency and/or high-speed data signal, rotating joint comprising two such coaxial cables, and retaining apparatus comprising at least one such rotating joint |
US11426950B2 (en) | 2015-07-21 | 2022-08-30 | Tangitek, Llc | Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials |
US11600404B2 (en) * | 2016-06-20 | 2023-03-07 | Nexans | Electric cable comprising a metal layer |
RU2643156C1 (en) * | 2016-10-21 | 2018-01-31 | МСД Текнолоджис С.а.р.л. | Coaxial cable |
RU178132U1 (en) * | 2017-07-12 | 2018-03-26 | МСД Текнолоджис С.а.р.л. | EXTERNAL CONDUCTOR FOR COAXIAL TYPE ELECTRIC COMMUNICATION CABLES |
US11424048B2 (en) | 2018-06-28 | 2022-08-23 | Carlisle Interconnect Technologies, Inc. | Coaxial cable utilizing plated carbon nanotube elements and method of manufacturing same |
RU195769U1 (en) * | 2019-11-27 | 2020-02-05 | Общество с ограниченной ответственностью НПП "Спецкабель" | HIGH FREQUENCY SYMMETRIC CABLE WITH A SCREEN BASED ON CARBON NANOTUBES |
RU195770U1 (en) * | 2019-11-27 | 2020-02-05 | Общество с ограниченной ответственностью НПП "Спецкабель" | HIGH FREQUENCY SYMMETRIC CABLE WITH A SCREEN BASED ON CARBON NANOTUBES |
Also Published As
Publication number | Publication date |
---|---|
CN101286384B (en) | 2010-12-29 |
CN101286384A (en) | 2008-10-15 |
US20080251274A1 (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7459627B2 (en) | Coaxial cable | |
US7491883B2 (en) | Coaxial cable | |
US7449631B2 (en) | Coaxial cable | |
JP5539663B2 (en) | coaxial cable | |
US7413474B2 (en) | Composite coaxial cable employing carbon nanotubes therein | |
JP4424690B2 (en) | coaxial cable | |
JP5015971B2 (en) | Coaxial cable manufacturing method | |
US9831012B2 (en) | Cable | |
US10373739B2 (en) | Carbon nanotube shielding for transmission cables | |
US8363873B2 (en) | Earphone cable and earphone using the same | |
US20090159328A1 (en) | Electromagnetic shielding layer and method for making the same | |
US8331602B2 (en) | Earphone cable and earphone using the same | |
TWI345793B (en) | Cable | |
EP2085979B1 (en) | Coaxial cable and method for making the same | |
US10714231B2 (en) | Graphene wire, cable employing the same, and method of manufacturing the same | |
KR20180014554A (en) | Graphene wire and Manufacturing method thereof | |
JP2018014345A (en) | Electromagnetic wave shielding material, electromagnetic wave shielding cable, electromagnetic wave shielding tape, and wire harness | |
TWI413131B (en) | Cable | |
TWI335036B (en) | Electro magnetic shielding cable | |
KR20190048235A (en) | coaxial cable manufacturing method | |
KR20170069541A (en) | Electrical cable including flexible and electrically conductive tube comprising metal and polymer and method for fabrication of the same, and application for electromagnetic interference shielding of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HON HAI PRECISION INDUSTRY CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, HSI-FU;LIU, LIANG;JIANG, KAI-LI;AND OTHERS;REEL/FRAME:019869/0621 Effective date: 20070810 Owner name: TSINGHUA UNIVERSITY, CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, HSI-FU;LIU, LIANG;JIANG, KAI-LI;AND OTHERS;REEL/FRAME:019869/0621 Effective date: 20070810 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |