US7081312B1 - Multiple stage combustion process to maintain a controllable reformation temperature profile - Google Patents
Multiple stage combustion process to maintain a controllable reformation temperature profile Download PDFInfo
- Publication number
- US7081312B1 US7081312B1 US09/669,969 US66996900A US7081312B1 US 7081312 B1 US7081312 B1 US 7081312B1 US 66996900 A US66996900 A US 66996900A US 7081312 B1 US7081312 B1 US 7081312B1
- Authority
- US
- United States
- Prior art keywords
- fuel cell
- fuel
- reaction
- endothermic
- exothermic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 16
- 238000006243 chemical reaction Methods 0.000 claims abstract description 163
- 239000000446 fuel Substances 0.000 claims abstract description 137
- 239000003054 catalyst Substances 0.000 claims description 33
- 239000000376 reactant Substances 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 21
- 230000001590 oxidative effect Effects 0.000 claims description 18
- 239000007800 oxidant agent Substances 0.000 claims description 17
- 238000012546 transfer Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 24
- 239000012530 fluid Substances 0.000 abstract description 5
- 230000020169 heat generation Effects 0.000 abstract description 3
- 230000001052 transient effect Effects 0.000 abstract description 3
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 27
- 239000001257 hydrogen Substances 0.000 description 27
- 229910052739 hydrogen Inorganic materials 0.000 description 27
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 239000001301 oxygen Substances 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- 238000002407 reforming Methods 0.000 description 18
- 239000012528 membrane Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- -1 hydrogen ions Chemical class 0.000 description 14
- 238000007084 catalytic combustion reaction Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 8
- 239000003502 gasoline Substances 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 239000006200 vaporizer Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007805 chemical reaction reactant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/249—Plate-type reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
- C01B3/58—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
- C01B3/583—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2453—Plates arranged in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2456—Geometry of the plates
- B01J2219/2458—Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2461—Heat exchange aspects
- B01J2219/2462—Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
- B01J2219/2464—Independent temperature control in various sections of the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2461—Heat exchange aspects
- B01J2219/2465—Two reactions in indirect heat exchange with each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2469—Feeding means
- B01J2219/247—Feeding means for the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2477—Construction materials of the catalysts
- B01J2219/2479—Catalysts coated on the surface of plates or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2477—Construction materials of the catalysts
- B01J2219/2481—Catalysts in granular from between plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2483—Construction materials of the plates
- B01J2219/2485—Metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2483—Construction materials of the plates
- B01J2219/2487—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2491—Other constructional details
- B01J2219/2492—Assembling means
- B01J2219/2496—Means for assembling modules together, e.g. casings, holders, fluidic connectors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0435—Catalytic purification
- C01B2203/044—Selective oxidation of carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/047—Composition of the impurity the impurity being carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/066—Integration with other chemical processes with fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0822—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1029—Catalysts in the form of a foam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1217—Alcohols
- C01B2203/1223—Methanol
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1288—Evaporation of one or more of the different feed components
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1614—Controlling the temperature
- C01B2203/1619—Measuring the temperature
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1642—Controlling the product
- C01B2203/1671—Controlling the composition of the product
- C01B2203/1676—Measuring the composition of the product
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1695—Adjusting the feed of the combustion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Definitions
- This invention relates to fuel cell systems and components, and more particularly to a fuel cell system that combines exothermic and endothermic processes in one reaction vessel.
- a primary advantage of fuel cells is that fuel cells can convert stored energy to electricity with about 60–70 percent efficiency, with higher efficiencies theoretically possible. Further, fuel cells produce virtually no pollution. These advantages make fuel cells particularly suitable for vehicle propulsion applications and to replace the internal combustion engine which operates at less than 30 percent efficiency and can produce undesirable emissions.
- a fuel cell principally operates by oxidizing an element, compound or molecule (that is, chemically combining with oxygen) to release electrical and thermal energy.
- fuel cells operate by the simple chemical reaction between two materials such as a fuel and an oxidant.
- hydrogen is consumed by reacting the hydrogen with oxygen from air to produce water, electrical energy and heat. This is accomplished by feeding the hydrogen over a first electrode (anode), and feeding the oxygen over a second electrode (cathode).
- the two electrodes are separated by an electrolyte which is a material that allows charged molecules or “ions” to move through the electrolyte.
- electrolytes There are several different types of electrolytes that can be utilized including the acid-type, alkaline-type, molten-carbonate-type and solid-oxide-type.
- PEM proto exchange membrane electrolytes
- solid polymer electrolyte are of the acid-type, and potentially have high-power and low-voltage, and thus are desirable for vehicle applications.
- FIG. 1 shows a fuel cell that has been simplified for purposes of illustrating the operation of a fuel cell.
- a hydrogen gas stream 12 is fed into a first sealed chamber or manifold (in the case of a fuel cell stack) 14 and over a first electrode (anode) 24 and on to a first face 16 (the anode side) of a proton exchange membrane assembly assembly 18 .
- the proton exchange membrane assembly 18 typically includes the electrolyte membrane 19 having two faces, and on each face there is a catalyst, usually a noble metal such as platinum, and an electrically conductive diffusion media (such as a carbon fiber mat) overlying the catalyst.
- the catalyst and diffusion media are not shown in FIG. 1 .
- the catalyst on the anode face of the assembly promotes the dissociation of hydrogen molecules and the catalyst on the cathode face of the assembly promotes the dissociation of oxygen molecules and a reaction of oxygen with hydrogen protons to produce water.
- the electrolyte membrane 19 allows the diffusion of hydrogen ions 26 from one electrode 24 to another electrode 34 .
- FIG. 1 is a simple illustration attempting to depict the diffusion of these hydrogen ions 26 from the anode to the cathode side of the electrolyte membrane. However, the electrolyte membrane 19 does not include channels as shown in FIG. 1 .
- a compressed air stream 22 is supplied to a second chamber or manifold (for a fuel cell stack) 15 in a manner so that the compressed air flows over a second electrode (cathode) 34 and on to a second face 20 of the proton exchange membrane assembly 18 .
- the proton exchange membrane assembly 18 is selective and allows only the hydrogen protons 26 to pass through the membrane assembly 18 rejecting larger diatomic hydrogen molecules 28 .
- a single hydrogen proton (or its equivalent) 26 passes through the membrane, it leaves behind an electron 30 .
- the electrons 30 that are left behind can be collected in the electrode (conductor) 24 .
- fuel cell systems include a stack of single cells (fuel cell stack) with adjacent cells sharing a common electrode. In that case, the electrodes 24 , 34 would be bipolar.
- each electrode 24 , 34 includes channels 25 formed therein through which either hydrogen or oxygen flows.
- the concentrated electrons in the electrode 24 causes a potential negative voltage on the electrode 24 due to the excess of electrons (because the electrons are negatively charged).
- the oxygen molecules are directed to the second face 20 of the proton exchange membrane assembly 18 , the oxygen meets the hydrogen proton 26 as the proton passes through the membrane.
- the chemical reaction of the hydrogen proton 26 and the oxygen on the cathode side of the cell requires electrons and therefore a shortage of electrons is created.
- the needed electrons can be supplied by a second electrode 34 (that is, the cathode electrode).
- the oxygen and the hydrogen proton 26 in the presence of the electrons 30 from the second electrode 34 , easily combined to produce water 32 .
- the reactions at the electrodes are as follows: Anode 2H 2 ⁇ 4H + +4e ⁇ Cathode O 2 +4e ⁇ +4H + ⁇ 2H 2 O.
- an electrical potential exists between the two electrodes. That is, the hydrogen electrode 24 has an excess of electrons and the oxygen electrode 34 needs electrons.
- the electrical potential can be utilized by placing an electrical load, such as electrical motor 36 (to propel a vehicle) between the anode 24 and the cathode 34 . Since electrical energy is used as it goes around the loop, the only by-products of this fuel system are water vapor and the heat loss through inefficiency of the cell itself (or about 30 percent of the power). With 70 percent efficiency, this process is significantly more attractive for extracting stored energy than an internal combustion engine that typically extracts only 20–30 percent of stored fuel energy.
- Both hydrogen and oxygen are each supplied to the fuel cell in excess to provide the greatest rate of reaction possible.
- the hydrogen gas stream will be under pressure of about 3 bars if it is produced from a fuel reformation reaction and therefore the oxygen stream 22 must be pumped up to the same pressure to avoid damage to the proton exchange membrane and the catalyst of the assembly 18 .
- Any water produced or remaining on either side of the fuel cell is removed and is discharged or may be sent through a water/vapor stream line 38 to a water reservoir (such as the holding tank 46 shown in FIG. 2 ) for use in other components or for use in the fuel cell at startup.
- tail gas exhaust stream 40 , 42 from both sides of the fuel cell are discharged to the atmosphere or preferably are supplied to a combustor for burning and producing heat needed for other operations such as the fuel reformation process described hereafter. Since the reactants are supplied to the fuel cell in excess, tail gas exhaust stream 40 from the anode side contains hydrogen and the tail gas exhaust stream 42 from the cathode side contains oxygen. Both of the fuel cell tail gas streams 40 , 42 may be combusted in a catalytic combustor to provide heat for other components in the fuel cell system.
- the fuel cell is maintained at a temperature of about 80 degrees Celsius or greater. Maintaining this temperature may require heat to be added or removed from the fuel cell stack. Often heat must be supplied to the fuel cell at startup. This heat can be supplied by a catalytic or flame combustor. However, during post startup or normal operation of the fuel cell, heat is generated by the fuel cell and the generated heat can be removed by any of a variety of heat exchange methods but preferably is removed using a liquid coolant.
- fuel cell systems require a variety of auxiliary equipment such as pumps, heat exchangers, fuel processors, combustors, water separation and collection equipment, hydrogen cleanup or purification systems and so on to support the operation of the fuel cell itself.
- auxiliary equipment such as pumps, heat exchangers, fuel processors, combustors, water separation and collection equipment, hydrogen cleanup or purification systems and so on.
- compressed or liquefied hydrogen could be used to operate a fuel cell in a vehicle, to date this is not practical.
- the use of compressed or liquefied hydrogen ignores the extensive infrastructure currently being used to supplying gasoline for internal combustion engine automobiles and trucks. Consequently, it is more desirable to utilize a fuel such as methanol, gasoline, diesel, methane and the like to provide a hydrogen source for the fuel cell.
- a fuel such as methanol, gasoline, diesel, methane and the like
- the methanol, gasoline, diesel, methane and the like must be reformed to provide a hydrogen gas source. This is accomplished by using methanol or gasoline fuel processing or reforming equipment, and hydrogen cleanup or purification equipment.
- Fuel cell systems often include a fuel processing section which reforms the fuel such as methanol, gasoline, diesel, methane and the like to produce hydrogen and a variety of other byproducts.
- a fuel processing section which reforms the fuel such as methanol, gasoline, diesel, methane and the like to produce hydrogen and a variety of other byproducts.
- these reforming (reformation) processes are endothermic and require energy input to drive the reformation reaction.
- a catalytic or flame combustor is utilized to provide heat for the reforming process. Most often, this is accomplished by utilizing a working fluid (liquid or gas) loop that transfers heat from the combustion process to the reforming process.
- a working fluid loop that transfers heat from the combustion process to the reforming process.
- the response time for heat transfer needed during startup and transient conditions of the fuel cell are less than optimal when the system uses a fluid to transfer heat between the combustor and the reformer vessel.
- the working fluid loop, associated heat exchangers and piping add to the overall mass and volume of the fuel cell system.
- the invention includes a reaction vessel that integrates and balances an endothermic process with at least one exothermic process of a fuel cell system.
- the exothermic process is conducted in stages to provide more uniform and/or controllable heat generation and exchange, and to produce a uniform, and/or controllable temperature profile in the endothermic reaction process, if desired (depending on the fuel used).
- the invention eliminates the working fluid heat exchange loop of prior art fuel reforming sections that had unsatisfactory response times at startup, and during transient conditions, and also added to the overall mass and volume of the fuel cell system.
- One embodiment of the invention includes a reaction vessel having an outer shell and catalyst carried in the shell for promoting an endothermic reaction.
- the reaction vessel is constructed and arranged to charge an endothermic reactant(s) into the shell.
- a plurality of heat exchanger devices are also provided having portions separately positioned and carried within the shell. Each heat exchanger device is independently controlled from the other heat exchanger devices so that heat transferred by the heat exchanger devices to the catalyst, and the temperature of the catalyst in the shell, may be varied at different locations within the reaction vessel.
- the reaction vessel is constructed and arranged so that exothermic reactants may be charged into each heat exchanger device and combusted to generate heat for driving the endothermic reaction occurring in another portion of the reaction vessel.
- the exothermic reactants may include anode and cathode exhaust streams from a fuel cell stack.
- Another embodiment of the present invention includes a reaction vessel having a plurality of endothermic reaction sections and a plurality of heat transfer devices.
- Each heat transfer device is associated with an endothermic reaction section so that sufficient heat may be transferred to the endothermic reaction section and so as to control the temperature profile of the endothermic reaction section within a predetermined range.
- the endothermic reaction sections may be spaced apart from each other and so that a heat transfer device is positioned between adjacent spaced apart endothermic reaction sections.
- Another embodiment of the present invention includes a combination reaction vessel having multiple staged catalytic combustion chambers and a plurality of endothermic reaction chambers.
- Each endothermic reaction chamber has a combustion chamber adjacent thereto so that heat generated in the combustion chamber is transferred to the adjacent endothermic reaction chamber.
- Each catalytic combustion chamber may have a plurality of reactant charge openings for supplying at least one reactant to the catalytic combustion chamber. The charge openings may be positioned within the catalytic combustion chamber to provide a substantially uniform temperature along the length of the catalytic combustion chamber.
- Another embodiment of the invention includes a charge manifold having a plurality of charge pipes extending therefrom.
- Each charge pipe extends into an exothermic reaction chamber.
- the charge pipes have charge holes provided along the length of each charge pipe so the fuel or oxidant may be charged into the combustion reaction chamber through the charge holes.
- Preferably valves are associated with each charge pipe and a controller is provided for selectively controlling the amount of fuel or oxidant charged to each exothermic reaction chamber.
- Each charge pipe may separate adjacent side-by-side exothermic reaction chambers.
- a directional flow header may be provided at the end of each exothermic reaction chamber for directing gases exiting one exothermic reaction chamber to the entrance of an adjacent side-by-side exothermic reaction chamber.
- Another embodiment of present invention includes the incorporation of a fuel/water vaporizer into the combination reaction vessel.
- a fuel/water mixture is injected into a plurality of vaporization chambers and is vaporized by heat generated by the catalytic combustion of a fuel mixture charged into a plurality of exothermic reaction chambers.
- No catalyst is provided in the vaporization chambers.
- An oxidant and fuel are charged into the exothermic reaction chambers and catalytically combusted to produce heat to vaporize the fuel/water mixture.
- Another embodiment of present invention includes a combination reaction vessel that incorporates an exothermic and endothermic reaction.
- the reaction vessel includes a plurality of endothermic reaction chamber sections that are spaced apart vertically and horizontally.
- a plurality of exothermic reaction chamber sections are also provided in a spaced apart fashion so that a partition section is provided between laterally spaced apart exothermic reaction chamber sections.
- the partition sections provide for staged adiabatic reforming of the fuel/water mixture.
- the catalyst loading in different portions of the endothermic reaction chamber sections may be varied as desired.
- FIG. 1 illustrates a fuel cell useful in the present invention
- FIG. 2 is a schematic illustration of a fuel cell system useful in a present invention
- FIG. 3 is a sectional view of a combination reaction vessel for housing an endothermic and an exothermic reaction according to the present invention
- FIG. 4 is a sectional view of an alternative embodiment of a combination reaction vessel for housing an endothermic and an exothermic reaction according to the present invention
- FIG. 5 is a sectional view of an alternative embodiment of a combination reaction vessel for housing an endothermic and an exothermic reaction according to the present invention
- FIG. 6 is an exploded, prospective view, with portions broken away, of an alternative embodiment of a combination reaction vessel for housing an endothermic and an exothermic reaction according to the present invention.
- FIG. 7 is a sectional view of an alternative embodiment of a reaction vessel for housing a staged endothermic reaction according to the present invention.
- the fuel cell system includes a fuel cell (or fuel cell stack) 10 .
- the system may also include the following auxiliary equipment to support the fuel cell stack 10 .
- Water is provided and held in a water reservoir or holding tank 46 which is connected to a vaporizer 48 by water line 44 .
- a fuel source is provided and held in a tank 52 that is also connected to the vaporizer 48 by line 50 .
- the fuel used is methanol, gasoline, diesel, methane and the like.
- the fuel and water may be vaporized by any method known to those skilled in the art, but preferably the heat for the vaporization step is supplied by a heat exchanger 39 in the vaporizer that catalytically combusts hydrogen 40 ′ and oxygen 42 ′ from the fuel cell stack 10 exhaust.
- the vaporizer may be included as an integral part of the reaction vessel 54 as will be described hereafter.
- the fuel and water are vaporized together (or may be vaporized separately) and a resultant vaporized fuel/water stream is delivered via line 58 to an endothermic reaction section of a combination reaction vessel 54 .
- a fuel reformation process is conducted in the endothermic reaction section.
- the combination reaction vessel 54 also houses an exothermic reaction section.
- the exothermic reaction may be, for example, catalytic combustion of a fuel or preferential oxidation of the exhaust stream from the fuel reforming section. If the exothermic reaction process is catalytic combustion, preferably the anode exhaust stream 40 and cathode exhaust stream 42 from the fuel cell 10 are used as the catalytic combustion reactants.
- the exhaust from the exothermic reaction may be discharged to the atmosphere via line 43 .
- the reformation process effluent stream 56 may include hydrogen molecules (H 2 ), CO, CO 2 , N 2 , CH 4 .
- the reformation process effluent stream 56 may be delivered to a hydrogen purification section 59 to reduce the concentration of CO and hydrocarbons (or carbon based molecules).
- the hydrogen purification section 59 may include any of a variety of components for purifying the reformation process effluent stream 56 and may include high and low temperature reactors to shift the equilibrium of the stream 56 constituents (thus reducing the concentration of CO), preferential oxidation reactor(s), additional hydrocarbon reforming components, separators, adsorbers and similar equipment.
- Eventually a hydrogen rich stream 60 is delivered to the anode side of the fuel cell 10 .
- air 22 is pumped to the cathode side of the fuel cell 10 .
- the anode and cathode exhaust streams from the fuel cell stack carry water that can be condensed out using a separator/condenser as the stream exits fuel cell stack and the liquid water may be sent to reservoir 46 .
- the water may be condensed out after the stack effluent passes through exhaust tail gas combustors.
- FIG. 3 illustrates a combination reaction vessel 54 for housing an endothermic and an exothermic reaction.
- the combination reaction vessel 54 includes an endothermic reaction chamber section 62 and an exothermic reaction chamber section 64 that share a common wall or substrate 66 .
- Each endothermic reaction chamber section 62 and exothermic reaction chamber section 64 includes an associated outside wall 68 , 70 respectively.
- a catalyst 61 for promoting the reformation reaction of the fuel and water, is provided in the endothermic reaction chamber section 62 . As illustrated in FIG. 3 the catalyst 61 may overlie at least one of the outside wall 68 and/or the substrate 66 .
- the catalyst 61 may be provided directly on the outside wall 68 or the substrate 66 , or intermediate layers (not shown) may be provided therebetween.
- the vaporized fuel and water mixture may enter the endothermic reaction chamber section 62 from one end 72 or may be selectively charged to the endothermic reaction chamber through charge lines 74 or openings 75 selectively positioned along the length of the endothermic reaction chamber section 62 .
- endothermic reactants as used herein means reactants of an endothermic reaction. In this case, for example, the endothermic reactants are the organic fuel and water.
- the exothermic reaction chamber section 64 may be similarly constructed. As illustrated in FIG. 3 , an exothermic catalyst 65 may overlie at least one of the outside wall 70 or substrate 66 . Similarly, the catalyst 65 may be provided directly on the outside wall 70 or the substrate 66 , or intermediate layers (not shown) may be provided therebetween.
- a fuel combustion process may be conducted in the exothermic reaction chamber 64 .
- An oxidant such as oxygen (from air) may be charged into the chamber section 64 through one end 76 of the chamber and a fuel such as hydrogen or a hydrocarbon may be supplied to the chamber through one or more charge lines 74 ′ or through a charge openings 75 ′ that may be positioned along the length of the exothermic reaction chamber section 64 .
- the fuel may be charged through the open end 76 and the oxidant supplied through the charge lines 74 ′ or charge openings 75 ′.
- an exothermic reaction such as a preferential oxidation reaction to reduce CO or hydrocarbons may be conducted in the exothermic reaction chamber section 64 .
- the heat generated by the exothermic reaction in the exothermic reaction chamber section 64 is transferred through the substrate 66 to warm the endothermic reaction chamber section 62 , catalyst 61 and reactants, and to drive (that is, to provide the heat necessary to complete the reaction) the endothermic reaction process.
- the term “exothermic reactants” as used herein means the reactants of an exothermic reaction.
- the exothermic reactants may include a fuel such as an organic fuel including, for example, hydrogen, methanol, gasoline, diesel, methane and the like; and an oxidant, such as oxygen in the form of air.
- FIG. 4 illustrates an alternative embodiment of the present invention wherein either the endothermic or the exothermic catalyst may be provided on a solid porous substrate 78 or porous pellets 80 or any of a variety materials that would provide increased surface area for either of the catalysts.
- the catalyst is also considered to be overlying the substrate for purposes of this invention.
- FIG. 5 illustrates an alternative embodiment of the present invention wherein a reactant charge pipe 82 extends into one of the reaction chambers 62 , 64 and has a plurality of discharge holes 84 formed therein along the length of the reaction chamber to selectively discharge a reactant into the chamber at predetermined locations.
- the charge pipe 82 delivers a fuel such as hydrogen to the combustion reaction chamber 64 which has an oxidant such as oxygen or air flowing therein.
- the charge pipe 82 may be used to introduce oxygen to allow for staged preferential oxidation.
- reactant charge pipe 82 with discharge holes 84 allows the fuel or oxidant to be supplied in relatively low concentrations so as to reduce the risk of autoignition and also to provide a more uniform heat generation profile along the length of the exothermic reaction chamber 64 .
- porous catalyst pellets or another suitable supported catalyst may be provided in the exothermic reaction chamber 64 .
- the substrate 66 may be made from a variety of materials having suitable heat transfer characteristics and may include any of several metals such as stainless-steel, copper, aluminum, or any of a variety of composites, ceramics, compounds or polymer base materials.
- the combination reaction vessel provides a staged exothermic reaction process (preferably combustion of a fuel) to provide a uniform temperature profile and heat transfer to drive an endothermic reaction (preferably a fuel reforming process) occurring in an adjacent chamber.
- another embodiment of the present invention includes a combination reaction vessel 54 having a plurality of spaced apart, parallel endothermic reaction chambers 62 .
- the endothermic reaction chambers 62 are vertically spaced apart and separated by an exothermic reaction chamber 64 that has a longitudinal axis and flow path running in a perpendicular direction to the longitudinal axis and flow path of the endothermic reaction chamber 62 .
- parallel co-flowing and counter flow configurations are contemplated as a part of the present invention.
- an endothermic reaction catalyst is provided in each of the endothermic reaction chambers 62 and the endothermic reactants, such as a methanol/water, gasoline/water vapor mixture, or other fuel/water mixture are supplied through one end 72 (see also FIG. 3 ) of the endothermic reaction chamber and flow in the direction indicated by arrow shown entering the reaction chamber 62 in FIG. 6 .
- the endothermic reactants such as a methanol/water, gasoline/water vapor mixture, or other fuel/water mixture
- a plurality of spaced apart parallel exothermic reaction chambers 64 are provided so that each exothermic chamber 64 separates two endothermic reaction chambers 62 so as to provide a staged exothermic reaction process.
- the exothermic chambers 64 may also be arranged in a laterally adjacent side-by-side configuration.
- An inlet header 86 is provided having an inlet opening 88 formed therein through which at least one of the exothermic reactants is charged to the exothermic reaction chambers 64 .
- exhaust gas (which contains oxygen) from the cathode side of the fuel cell is feed through the inlet opening 88 .
- the cathode exhaust gas flows down a first set of exothermic reaction chambers and is directed by a flow directing header 90 down a second set of exothermic reaction chambers, and so on in a serpentine fashion throughout the combination reaction vessel 54 and finally exits through an exhaust opening 92 formed in an outlet header 94 .
- a second exothermic reaction reactant may be charged into the exothermic reaction chambers 64 utilizing a charge manifold 96 .
- the charge manifold 96 includes a plurality of charge pipes or lines 82 .
- a charge pipe 82 is received in one of each of the exothermic reaction chambers 64 .
- the charge pipe 82 has a plurality of discharge holes 84 which are spaced apart along the length of the exothermic reaction chamber (as also shown in FIG. 5 ).
- the combination reaction vessel 54 may be constructed and arranged so that the charge pipes 82 also function to separate laterally adjacent side-by-side exothermic reaction chambers. That is, the charge crepe 82 acts as a wall separating laterally adjacent exothermic reaction chambers.
- the heat generated throughout the exothermic reaction chamber may be controlled so that it is substantially uniform, or graduated is so desired. Consequently, the heat transferred to the endothermic reaction chamber, catalyst and reactants is such that the temperature profile in the endothermic reaction chamber is controlled to be substantially uniform, or graduated if so desired. Maintaining a controllable temperature profile in a fuel reforming process is important to avoid undesirable side effects such as catalyst degradation, or methane slip. At low power, the temperature profile may be such as to promote a high temperature reformation with a high temperature shift reaction at the exit of the reaction chamber. The temperature at the exit end of the reaction chamber should be high enough to suppress methane formation for a given catalyst.
- a plurality of temperature or concentrations sensors 104 may be selectively placed in the combination reaction vessel, and valves 100 may be included in the charge manifold 96 to selectively control the amount of reactant being charged to the chamber and thus control the reaction as desired.
- Associated on-board computer controllers 102 , drivers and associated electrical equipment can be provided to control the above described components and processes in a manner known to those skilled in the art.
- the charge manifold 96 may be constructed and arranged to controllably charge reactants so that a uniform temperature profile at full power is provided which would utilize the entire reactor volume.
- the charge manifold 96 may be constructed and arranged to controllably charge reactants so that a uniform temperature profile at full power is provided which would utilize the entire reactor volume.
- turndown situations for example, when the vehicle is stopped
- less power is require, and thus only a portion of the reactor is required to reform fuel because of the lower power demand.
- the remaining endothermic reaction sections or portions thereof could be utilized to perform a water gas shift reaction to reduce the concentration of CO in the fuel reforming stream.
- the temperature in the first two endothermic reaction sections could be controlled to provide relatively high temperature fuel reforming and the temperature in the remaining endothermic reaction sections (that is, in the rearward portion of the reaction vessel) could be controlled to be relatively low thereby reducing unwanted reformation byproducts and so that a maximum conversion is accomplished during the fuel reforming while minimizing methane slip.
- the vaporizer may be included in the front portion of the combination reaction vessel 54 .
- the combination reaction vessel shown in FIG. 7 operates similarly to the vessel shown in FIG. 2 , but with a few exceptions.
- a fuel/water mixture may be charge through line 258 into a first section of the combination reaction vessel 54 to be vaporized in a first heat exchanger section 202 .
- the fuel/water mixture flows through a plurality of spaced apart chamber 262 ′ that do not include a fuel reforming catalyst. Thereafter, the endothermic reaction chambers 262 include a fuel reforming catalyst as previously discussed.
- the fuel/water mixture entering the chambers 262 ′ is vaporized by heat generated by the catalytic combustion of a combustion fuel mixture charged into a plurality of exothermic reaction chambers 264 .
- An oxidant or fuel preferably an oxidant such as oxygen from the fuel cell stack effluent, may be charged to the exothermic reaction chambers 264 through a charge line 242 and header 243 .
- An oxidant or fuel preferably a fuel such as hydrogen from the fuel cell stack effluent, is charged to the exothermic reaction chambers 264 through charge line 282 .
- a combustion fuel mixture travels through the plurality of spaced apart exothermic reaction chambers 264 generating heat to vaporize the fuel/water mixture or reform the fuel/water mixture.
- one of the oxidant or fuel is charged to the exothermic reaction chambers 264 through charge lines 282 in a staged fashion as previously discussed.
- the exothermic reaction chambers 264 to are spaced apart vertically and horizontally so that a partition section 299 is provided between laterally spaced apart exothermic reaction chambers 264 .
- the partition sections 299 provide for staged adiabatic reformation of the fuel/water mixture.
- the catalyst loading in different portions of the endothermic reaction chambers 262 may be varied as desired. That is, the catalyst loading may be graded throughout the reforming sections.
- the combination reaction vessel 54 may include flow directing headers 190 to directing the flow of exhaust exiting the first set of exothermic reaction chambers 264 so that it enters a second set of exothermic reaction chambers that are spaced a distance from the first set.
- the combustion reaction exhaust exits the vessel through line 245 in the reformation reaction exhaust exits the vessel through line 256 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Feeding And Controlling Fuel (AREA)
- Incineration Of Waste (AREA)
Abstract
Description
Anode 2H2→4H++4e−
Cathode O2+4e−+4H+→2H2O.
Claims (6)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/669,969 US7081312B1 (en) | 2000-09-26 | 2000-09-26 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
DE10147368A DE10147368A1 (en) | 2000-09-26 | 2001-09-25 | Fuel cell system for vehicle, has reaction vessel with catalyser carried that delivers endothermic reaction and arranged so that endothermic reactants can be supplied to vessel. |
JP2001294237A JP2002198074A (en) | 2000-09-26 | 2001-09-26 | Multi-stage combustion process to maintain a controllable reforming temperature profile |
US10/962,651 US7993784B2 (en) | 2000-09-26 | 2004-10-12 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US10/962,802 US7842424B2 (en) | 2000-09-26 | 2004-10-12 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/669,969 US7081312B1 (en) | 2000-09-26 | 2000-09-26 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/962,802 Division US7842424B2 (en) | 2000-09-26 | 2004-10-12 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US10/962,651 Division US7993784B2 (en) | 2000-09-26 | 2004-10-12 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
Publications (1)
Publication Number | Publication Date |
---|---|
US7081312B1 true US7081312B1 (en) | 2006-07-25 |
Family
ID=24688469
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/669,969 Expired - Lifetime US7081312B1 (en) | 2000-09-26 | 2000-09-26 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US10/962,802 Expired - Fee Related US7842424B2 (en) | 2000-09-26 | 2004-10-12 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US10/962,651 Expired - Fee Related US7993784B2 (en) | 2000-09-26 | 2004-10-12 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/962,802 Expired - Fee Related US7842424B2 (en) | 2000-09-26 | 2004-10-12 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US10/962,651 Expired - Fee Related US7993784B2 (en) | 2000-09-26 | 2004-10-12 | Multiple stage combustion process to maintain a controllable reformation temperature profile |
Country Status (3)
Country | Link |
---|---|
US (3) | US7081312B1 (en) |
JP (1) | JP2002198074A (en) |
DE (1) | DE10147368A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050048332A1 (en) * | 2000-09-26 | 2005-03-03 | General Motors Corporation | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US20080292922A1 (en) * | 2007-05-22 | 2008-11-27 | Fischer Bernhard A | Method and apparatus for fueling a solid oxide fuel cell stack assembly |
US20090311566A1 (en) * | 2008-06-12 | 2009-12-17 | Hyundai Motor Company | Separating plate for fuel cell stack and method of manufacturing the same |
US20120020851A1 (en) * | 2002-01-04 | 2012-01-26 | Meggitt (Uk) Limited | Reformer Apparatus and Method |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7220390B2 (en) * | 2003-05-16 | 2007-05-22 | Velocys, Inc. | Microchannel with internal fin support for catalyst or sorption medium |
US7306868B2 (en) * | 2003-10-02 | 2007-12-11 | Hewlett-Packard Development Company, L.P. | Integrated fuel cell stack and catalytic combustor apparatus, assembly, and method of use |
US7470408B2 (en) * | 2003-12-18 | 2008-12-30 | Velocys | In situ mixing in microchannels |
GB0408896D0 (en) * | 2004-04-20 | 2004-05-26 | Accentus Plc | Catalytic reactor |
JP2006265007A (en) * | 2005-03-22 | 2006-10-05 | Toyota Motor Corp | Fuel reformer |
JP4405432B2 (en) * | 2005-05-23 | 2010-01-27 | 本田技研工業株式会社 | Reformer |
JP2007091565A (en) * | 2005-09-30 | 2007-04-12 | Nissan Motor Co Ltd | Fuel modification reactor |
US20070122667A1 (en) * | 2005-11-28 | 2007-05-31 | Kelley Richard H | Fuel cell system with integrated fuel processor |
JP5214230B2 (en) * | 2007-12-04 | 2013-06-19 | Jx日鉱日石エネルギー株式会社 | Starting method of fuel cell system |
US7745667B2 (en) * | 2008-04-07 | 2010-06-29 | Velocys | Microchannel apparatus comprising structured walls, chemical processes, methods of making formaldehyde |
US20100143755A1 (en) * | 2009-06-24 | 2010-06-10 | Fischer Bernhard A | Multi-Channel Fuel Reformer with Augmented Heat Transfer |
KR101035663B1 (en) * | 2009-07-21 | 2011-05-19 | 한국에너지기술연구원 | Medium circulation combustor and medium circulation combustion method using the same |
WO2016124567A1 (en) * | 2015-02-05 | 2016-08-11 | Casale Sa | Burner for the production of synthesis gas and related cooling circuit |
CN114824386B (en) * | 2022-03-25 | 2024-02-23 | 清华大学 | Fuel pretreatment device and fuel cell system |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4650727A (en) | 1986-01-28 | 1987-03-17 | The United States Of America As Represented By The United States Department Of Energy | Fuel processor for fuel cell power system |
US4781241A (en) | 1987-08-27 | 1988-11-01 | International Fuel Cells Corporation | Heat exchanger for fuel cell power plant reformer |
US5043232A (en) | 1990-05-10 | 1991-08-27 | International Fuel Cells Corporation | Fuel Preheating for a fuel processing system of a fuel cell power plant |
US5175062A (en) | 1991-01-30 | 1992-12-29 | Energy Research Corporation | Reforming unit for fuel cell stack |
US5272017A (en) | 1992-04-03 | 1993-12-21 | General Motors Corporation | Membrane-electrode assemblies for electrochemical cells |
US5470670A (en) | 1993-03-01 | 1995-11-28 | Matsushita Electric Industrial Co., Ltd. | Fuel cell |
US5670269A (en) | 1994-07-05 | 1997-09-23 | Ishikawajima-Harima Heavy Industries, Co., Ltd. | Molten carbonate power generation system with plate reformer |
US5763114A (en) * | 1994-09-01 | 1998-06-09 | Gas Research Institute | Integrated reformer/CPN SOFC stack module design |
US5780179A (en) | 1995-06-26 | 1998-07-14 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell system for use on mobile bodies |
US5851689A (en) | 1997-01-23 | 1998-12-22 | Bechtel Corporation | Method for operating a fuel cell assembly |
US5997594A (en) * | 1996-10-30 | 1999-12-07 | Northwest Power Systems, Llc | Steam reformer with internal hydrogen purification |
US6183703B1 (en) * | 1996-04-12 | 2001-02-06 | Ztek Corporation | Thermally enhanced compact reformer |
US20020071797A1 (en) * | 2000-10-06 | 2002-06-13 | Loffler Daniel G. | Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen |
US6472092B1 (en) * | 1998-08-12 | 2002-10-29 | Honda Giken Kogyo Kabushiki Kaisha | Fuel-reforming apparatus comprising a plate-shaped reforming catalyst |
US6797244B1 (en) * | 1999-05-27 | 2004-09-28 | Dtc Fuel Cells Llc | Compact light weight autothermal reformer assembly |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US962802A (en) * | 1908-04-20 | 1910-06-28 | Sakichi Toyoda | Picker-check for looms. |
US962651A (en) * | 1910-03-24 | 1910-06-28 | F K De Borde | Sea power-generator. |
US4877693A (en) * | 1985-12-23 | 1989-10-31 | Energy Research Corporation | Fuel cell apparatus for internal reforming |
CN1094465C (en) * | 1996-06-28 | 2002-11-20 | 松下电工株式会社 | Modification apparatus |
US7066973B1 (en) * | 1996-08-26 | 2006-06-27 | Nuvera Fuel Cells | Integrated reformer and shift reactor |
JP2000034102A (en) * | 1998-07-17 | 2000-02-02 | Toyota Motor Corp | Reformer control device |
US6238815B1 (en) * | 1998-07-29 | 2001-05-29 | General Motors Corporation | Thermally integrated staged methanol reformer and method |
US6969506B2 (en) * | 1999-08-17 | 2005-11-29 | Battelle Memorial Institute | Methods of conducting simultaneous exothermic and endothermic reactions |
US7081312B1 (en) | 2000-09-26 | 2006-07-25 | General Motors Corporation | Multiple stage combustion process to maintain a controllable reformation temperature profile |
-
2000
- 2000-09-26 US US09/669,969 patent/US7081312B1/en not_active Expired - Lifetime
-
2001
- 2001-09-25 DE DE10147368A patent/DE10147368A1/en not_active Ceased
- 2001-09-26 JP JP2001294237A patent/JP2002198074A/en active Pending
-
2004
- 2004-10-12 US US10/962,802 patent/US7842424B2/en not_active Expired - Fee Related
- 2004-10-12 US US10/962,651 patent/US7993784B2/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4650727A (en) | 1986-01-28 | 1987-03-17 | The United States Of America As Represented By The United States Department Of Energy | Fuel processor for fuel cell power system |
US4781241A (en) | 1987-08-27 | 1988-11-01 | International Fuel Cells Corporation | Heat exchanger for fuel cell power plant reformer |
US5043232A (en) | 1990-05-10 | 1991-08-27 | International Fuel Cells Corporation | Fuel Preheating for a fuel processing system of a fuel cell power plant |
US5175062A (en) | 1991-01-30 | 1992-12-29 | Energy Research Corporation | Reforming unit for fuel cell stack |
US5272017A (en) | 1992-04-03 | 1993-12-21 | General Motors Corporation | Membrane-electrode assemblies for electrochemical cells |
US5316871A (en) | 1992-04-03 | 1994-05-31 | General Motors Corporation | Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby |
US5470670A (en) | 1993-03-01 | 1995-11-28 | Matsushita Electric Industrial Co., Ltd. | Fuel cell |
US5670269A (en) | 1994-07-05 | 1997-09-23 | Ishikawajima-Harima Heavy Industries, Co., Ltd. | Molten carbonate power generation system with plate reformer |
US5763114A (en) * | 1994-09-01 | 1998-06-09 | Gas Research Institute | Integrated reformer/CPN SOFC stack module design |
US5780179A (en) | 1995-06-26 | 1998-07-14 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell system for use on mobile bodies |
US6183703B1 (en) * | 1996-04-12 | 2001-02-06 | Ztek Corporation | Thermally enhanced compact reformer |
US5997594A (en) * | 1996-10-30 | 1999-12-07 | Northwest Power Systems, Llc | Steam reformer with internal hydrogen purification |
US5851689A (en) | 1997-01-23 | 1998-12-22 | Bechtel Corporation | Method for operating a fuel cell assembly |
US6472092B1 (en) * | 1998-08-12 | 2002-10-29 | Honda Giken Kogyo Kabushiki Kaisha | Fuel-reforming apparatus comprising a plate-shaped reforming catalyst |
US6797244B1 (en) * | 1999-05-27 | 2004-09-28 | Dtc Fuel Cells Llc | Compact light weight autothermal reformer assembly |
US20020071797A1 (en) * | 2000-10-06 | 2002-06-13 | Loffler Daniel G. | Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen |
Non-Patent Citations (1)
Title |
---|
Fuel Cell Information, "Fuel Cells-a long primer", www.slip.net/~h2man/fuelcell.htm. |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050048332A1 (en) * | 2000-09-26 | 2005-03-03 | General Motors Corporation | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US20050048333A1 (en) * | 2000-09-26 | 2005-03-03 | General Motors Corporation | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US7842424B2 (en) | 2000-09-26 | 2010-11-30 | Gm Global Technology Operations, Inc. | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US7993784B2 (en) | 2000-09-26 | 2011-08-09 | GM Global Technology Operations LLC | Multiple stage combustion process to maintain a controllable reformation temperature profile |
US20120020851A1 (en) * | 2002-01-04 | 2012-01-26 | Meggitt (Uk) Limited | Reformer Apparatus and Method |
US8882865B2 (en) * | 2002-01-04 | 2014-11-11 | Meggitt (Uk) Ltd. | Reformer apparatus and method with heat exchange occurring through a cross-flow configuration |
US20080292922A1 (en) * | 2007-05-22 | 2008-11-27 | Fischer Bernhard A | Method and apparatus for fueling a solid oxide fuel cell stack assembly |
US20090311566A1 (en) * | 2008-06-12 | 2009-12-17 | Hyundai Motor Company | Separating plate for fuel cell stack and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
US7993784B2 (en) | 2011-08-09 |
US7842424B2 (en) | 2010-11-30 |
DE10147368A1 (en) | 2002-04-25 |
US20050048332A1 (en) | 2005-03-03 |
JP2002198074A (en) | 2002-07-12 |
US20050048333A1 (en) | 2005-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7081312B1 (en) | Multiple stage combustion process to maintain a controllable reformation temperature profile | |
JP4340315B2 (en) | FUEL CELL POWER PLANT AND METHOD OF OPERATING FUEL CELL POWER PLANT | |
US8231697B2 (en) | Rapid start fuel reforming systems and techniques | |
US8062799B2 (en) | High-efficiency dual-stack molten carbonate fuel cell system | |
US7270901B2 (en) | Combined autothermal/steam reforming fuel processor mechanization | |
US6312842B1 (en) | Water retention system for a fuel cell power plant | |
KR100286572B1 (en) | Fuel cell vehicle small fuel reformer and its system using metal thin film | |
EP1241723B1 (en) | Water recovery for a fuel cell system | |
US7338727B2 (en) | Method of operating a fuel cell to provide a heated and humidified oxidant | |
JP4065235B2 (en) | Water vapor transfer device for fuel cell reformer | |
US6277509B1 (en) | Hydride bed water recovery system for a fuel cell power plant | |
JPH06314570A (en) | Fuel cell manifold structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL MOTORS CORPORATION, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PETTIT, WILLIAM HENRY;REEL/FRAME:011182/0679 Effective date: 20000919 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL MOTORS CORPORATION;REEL/FRAME:022092/0737 Effective date: 20050119 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL MOTORS CORPORATION;REEL/FRAME:022092/0737 Effective date: 20050119 |
|
AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0501 Effective date: 20081231 |
|
AS | Assignment |
Owner name: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECU Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022556/0013 Effective date: 20090409 Owner name: CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SEC Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022556/0013 Effective date: 20090409 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023238/0015 Effective date: 20090709 |
|
XAS | Not any more in us assignment database |
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0383 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0326 Effective date: 20090814 |
|
AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023155/0922 Effective date: 20090710 |
|
AS | Assignment |
Owner name: UAW RETIREE MEDICAL BENEFITS TRUST, MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023161/0864 Effective date: 20090710 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UAW RETIREE MEDICAL BENEFITS TRUST;REEL/FRAME:025311/0680 Effective date: 20101026 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:025245/0273 Effective date: 20100420 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST COMPANY, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025327/0222 Effective date: 20101027 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025780/0795 Effective date: 20101202 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:034183/0680 Effective date: 20141017 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |