[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US6927508B1 - Decoupling device for actuators - Google Patents

Decoupling device for actuators Download PDF

Info

Publication number
US6927508B1
US6927508B1 US09/831,150 US83115002A US6927508B1 US 6927508 B1 US6927508 B1 US 6927508B1 US 83115002 A US83115002 A US 83115002A US 6927508 B1 US6927508 B1 US 6927508B1
Authority
US
United States
Prior art keywords
decoupling
securing element
elements
housing
decoupling elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US09/831,150
Other languages
English (en)
Inventor
Bernhard Rupp
Gerd Knoepfel
Otto Brass
Gerhard Zink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KNOEPFEL, GERD, ZINK, GERHARD, BRASS, OTTO, RUPP, BERNHARD
Application granted granted Critical
Publication of US6927508B1 publication Critical patent/US6927508B1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Definitions

  • the invention is directed on a decoupling device for actuators.
  • tangential rotary oscillations are produced, for example in a main excitation oscillation direction of the actuator, and oscillations are produced in the radial and axial directions.
  • tangential rotary oscillations are produced, for example in a main excitation oscillation direction of the actuator, and oscillations are produced in the radial and axial directions.
  • Decoupling devices for actuators and electric motors are known, but these are relatively rigid. Running noise of the electric motor and running-induced oscillations of a fan connected for example to the electric motor, e.g. due to an imbalance of the impeller, are largely transmitted to a fan housing and lead to an undesirable generation of noise.
  • the decoupling elements are adjusted in terms of their natural frequency so that a natural frequency of the decoupling element differs significantly from a natural frequency of the actuator.
  • the damping can as a result be partially increased.
  • EP 0 682 396 A2 has disclosed the use of elastic balls, preferably comprised of an elastomer, in order to decouple two components from each other.
  • the balls are each accommodated in an ellipsoidal cavity so that the balls permit a certain amount of free rotational movement.
  • Each component has cavities of this kind so that the cavities of the two components are disposed opposite each other after assembly. The cavities are let into an intermediary piece.
  • the device requires a central securing element and for damping, requires another elastic element which is disposed around a longitudinal axis.
  • the decoupling device according to the invention has the advantage over the prior art that an almost ideal decoupling of all oscillations of the actuator is achieved in a simple manner.
  • decoupling elements is advantageously embodied in the form of an “angular ball bearing”, since as a result, powerful forces can be absorbed and oscillations in the tangential direction can be damped. Oscillations in the radial and axial directions are damped through elastic compression of the balls.
  • the decoupling elements are simply subjected to pressure in all of the loading directions of the system. This results in a favorable ability to withstand vibration.
  • Particularly advantageous decoupling elements are rolling bodies in the form of balls made of an elastomer, which are connected to one another by means of an intermediary piece that is inserted into a slot of a securing element. This allows the decoupling elements to be very easily held and installed.
  • FIG. 1 shows a section through an actuator with a decoupling device
  • FIG. 2 is a schematic depiction of existing stress directions
  • FIG. 3 shows an exemplary embodiment of decoupling elements
  • FIGS. 4 a-c show a first part of a decoupling housing
  • FIGS. 5 a & b show a securing element
  • FIGS. 6 a-c show a second part of a decoupling housing
  • FIG. 7 shows a section along the line VII—VII in FIG. 1 .
  • FIGS. 8 a-c show another exemplary embodiment of a decoupling device and a decoupling element
  • FIG. 9 shows another exemplary embodiment of a decoupling housing
  • FIG. 10 shows another exemplary embodiment for a securing element and a
  • FIG. 11 shows another possible disposition of the securing element
  • FIG. 12 shows another possible embodiment of support shoulders in a decoupling housing and a securing element.
  • FIG. 1 shows a section through a decoupling device 1 with an actuator 2 .
  • This combination of the decoupling device 1 and actuator 2 for example an electric motor 2 , has a longitudinal axis 3 .
  • the decoupling device 1 is comprised of a decoupling housing 6 , which is composed, for example, of two annular parts, an upper part 7 , and a base part 8 .
  • the decoupling housing 6 is adjoined by a function housing 13 , for example a fan housing 13 , which encompasses a fan 12 driven by the electric motor.
  • the base part 8 of the decoupling housing 6 can, for example, also be part of the function housing 13 .
  • the decoupling housing 6 is then comprised of the housing parts 7 and 13 .
  • the decoupling device 1 is also composed of elastic decoupling elements 14 , 15 and a securing element 19 , e.g. in the form of a ring in this instance.
  • the decoupling elements 14 , 15 are for example rolling bodies which in this instance are embodied in the shape of balls and are made, for example, of an elastomer.
  • the decoupling elements 14 , 15 in this instance are disposed one above the other in pairs, for example, along a line 18 which extends parallel to the longitudinal axis 3 .
  • the actuator 2 is connected at least indirectly to the securing element 19 .
  • the decoupling elements 14 , 15 are connected to each other, for example, by means of an intermediary piece 20 .
  • a longitudinal axis of the intermediary piece 20 extending parallel to the line 18 runs parallel to the longitudinal axis 3 when the decoupling device 1 is installed.
  • the presence of the intermediary piece or strut 20 permits the two decoupling elements 14 , 15 to be very easily held simultaneously and permits them to be installed as an ensemble with the securing element 19 .
  • both decoupling housing halves 7 , 8 there are recesses 23 that open toward the longitudinal axis 3 and are disposed in the outer radial edge region, which constitute support shoulders 24 , 25 in the top part 7 or bottom part 8 of the decoupling housing for the decoupling elements 14 , 15 .
  • the securing element 19 disposed inside the decoupling housing 6 , 7 , 8 provides support shoulders 26 disposed opposite from the support shoulders 24 , 25 .
  • the support shoulders 24 - 26 have sections which are disposed in the radial direction and are referred to as radial support shoulders 24 . 2 , 25 . 2 , 26 . 2 . These are engaged by axial forces.
  • the support shoulders 24 - 26 also have sections which are disposed in the axial direction and are referred to as axial support shoulders 24 . 1 , 25 . 1 , 26 . 1 . These are acted on by radial forces.
  • Axial support shoulders 24 . 1 , 25 . 1 , 26 . 1 and radial support shoulders 24 . 2 , 25 . 2 , 26 . 2 are disposed for example perpendicular to each other here.
  • the support shoulder 24 . 1 is referred to as the axial support shoulder because it extends approximately parallel to the longitudinal axis 3 .
  • the support shoulder 24 . 2 is referred to as the radial support shoulder because in this instance, it extends approximately perpendicular to the longitudinal axis 3 .
  • the decoupling elements 14 , 15 are secured in the recesses 23 ( FIG. 7 ) and are connected to each other by means of the intermediary piece 20 , it is not possible for the securing element 19 to rotate entirely around the longitudinal axis 3 .
  • the support shoulders 24 - 26 are embodied so that when there is a relative rotation of the securing element 19 in relation to the decoupling housing 6 , 7 , 8 the decoupling elements 14 , 15 roll around a rotational axis 27 that extends obliquely in relation to the longitudinal axis 3 . In principle, this corresponds to the disposition of a dual-row angular ball bearing. In order to absorb axial forces in both directions, the decoupling elements 14 , 15 are disposed in opposition. Ball bearing terminology refers to X configurations and O configurations.
  • FIG. 2 shows the oscillation directions in the axial 30 , radial 31 , and tangential 32 direction, which occur during operation of the actuator 2 .
  • the decoupling device 1 should decouple these oscillations of the actuator 2 from the fan housing 13 , for example.
  • FIG. 3 shows how two decoupling elements 14 , 15 , which are round in cross section for example, are connected to each other by means of the intermediary piece 20 , for example.
  • the cross section of the intermediary piece 20 perpendicular to the line 18 can be rectangular or also round, for example.
  • FIG. 4 shows the top part 7 of the decoupling housing 6 from FIG. 1 in a bottom view and top view ( FIGS. 4 a, c ) and shows a cross section in FIG. 4 b.
  • the top part 7 has a round, annular cross-sectional contour. Any other cross-sectional contour is also conceivable, for example a quadriform cross-sectional contour.
  • the top part 7 can also be embodied as cup-shaped 33 , as indicated with dashed lines in FIG. 4 b .
  • the top part 7 contains for example three recesses 23 , which constitute the support shoulders 24 . 1 , 24 . 2 for the decoupling elements 14 .
  • center lines are shown extending from the recesses 23 , perpendicular to the longitudinal axis 3 that extends perpendicular to the plane of the drawing.
  • the drawing clearly shows that recesses 23 adjacent to one another in the circumference direction and decoupling elements 14 disposed in the recesses 23 are disposed at a uniform angle ⁇ from one another.
  • a section VII—VII in FIG. 1 is shown, which shows the recess 23 more clearly.
  • the decoupling elements 14 , 15 rest against the support shoulders 24 . 1 , 24 . 2 , 25 . 1 , 25 . 2 .
  • FIG. 4 b shows a plane 34 which extends perpendicular to the longitudinal axis 3 and passes through the radial support shoulder 24 . 2 .
  • the recesses 23 and therefore the decoupling elements 14 are thus disposed, for example, in one plane.
  • top part 7 In an outer region of the top part 7 , there is a bore 37 through which for example a screw is guided, in order to connect the top part 7 to the base part 8 and housing 13 .
  • the top part 7 of the decoupling housing 1 is made of plastic, metal, or ceramic.
  • FIG. 5 shows the securing element 19 , which is embodied as annular, for example.
  • the securing element 19 in this instance is adapted, for example, to the cross-sectional contour of the top part 7 of the decoupling housing 6 from FIG. 4 . Any other cross-sectional contour is also conceivable.
  • the securing element 19 has at least one radial projection 35 .
  • the radial projection 35 is disposed, for example, on the outer edge of the securing element 19 .
  • This radial projection 35 can extend, for example, around the entire securing element 19 .
  • this radial projection can also be provided only where the decoupling elements 14 , 15 are disposed after assembly, which positions are indicated here with dashed lines, in order to separate the decoupling elements 14 from the decoupling elements 15 at these locations.
  • the securing element 19 is provided with a slot 36 in the projection 35 , into which the intermediary piece 20 is inserted. This facilitates assembly.
  • the slot depth in the projection 35 must be at least deep enough that the decoupling elements 14 , 15 connected by the intermediary piece 20 can be inserted until they touch the support shoulders 26 of the securing element 19 .
  • decoupling elements 14 , 15 are installed individually, without being connected to one another by an intermediary piece 20 , then instead of the slot, a recess 45 or an axial hole 45 can be provided, in which the decoupling element 14 , 15 is partially disposed so that is not possible to rotate the securing element 19 entirely around the longitudinal axis 3 .
  • the recesses 45 for example holes 45 , in the securing element 19 are produced, for example, so that after assembly of the decoupling housing 6 and securing element 19 , these holes are disposed centrally between the decoupling elements 14 , 15 .
  • the decoupling elements 14 shown with dashed lines here, are then disposed in the holes 45 .
  • a diameter of the holes 45 should not be so large that the axially opposed decoupling elements 14 , 15 touch after assembly.
  • the diameter of the holes 45 thereby depends on the thickness of the securing element 19 at the location of the hole 45 .
  • the securing element 19 has the same number of recesses 45 or slots 36 .
  • the securing element 19 can be provided with only slots 36 or only recesses 45 . Any combination of slot 36 and recess 45 in the projection 35 is also conceivable.
  • the securing element 19 has radial and axial support shoulders 26 . 1 , 26 . 2 for the decoupling elements 14 , 15 ; a radial support shoulder 26 . 1 is embodied on a front side 39 and a back side 40 of each radial projection 35 and an axial support shoulder 26 . 2 is embodied on the annular body 42 perpendicular to the radial support shoulder 26 . 1 and divided by the projection 35 .
  • a notch 38 is disposed on the securing element 19 in those locations where a screw, for example, which connects the housing parts 7 , 8 , 13 to one another, passes through after assembly.
  • the securing element 19 is made of plastic, metal, or ceramic.
  • FIG. 6 shows the base part 8 of the decoupling housing 6 in a bottom view and top view ( FIGS. 6 a, c ) and shows a cross section in FIG. 6 b.
  • the base part 8 has an annular cross-sectional contour.
  • this base part 8 contains for example three recesses 23 which constitute the support shoulders 25 for the decoupling elements 1 s and, toward the securing element 19 , open toward an inner edge 22 of the base part 8 .
  • the recesses 23 and therefore the decoupling elements 15 are disposed, for example, in one plane.
  • the base part 8 there is at least one bore 37 .
  • a screw is guided through this bore 37 of the part 8 and through another bore of the part 7 in order to connect the base part 8 to the top part 7 .
  • the recesses 23 of the part 8 are then disposed over the recesses 23 of the part 7 .
  • the base part 8 of the decoupling housing 6 is made of plastic, metal, or ceramic.
  • the parts 6 , 7 , 19 , and 6 , 8 , or 13 are assembled so that the respective recesses 23 and the slots 36 are disposed congruently over one another. As a result, other centering elements are not required.
  • FIG. 7 shows a section along the line VII—VII in FIG. 1 .
  • the support shoulder 24 is constituted by the recess 23 and is embodied approximately in the form of a semicircle, in this instance arc-shaped, in such a way that when torque is delivered by the electric motor 2 , as an example of an actuator, and with the accompanying rolling motion, the decoupling elements 14 embodied as balls are elastically compressed and a restoring force is generated by the elastic deformation.
  • the embodiment as an arc-shaped recess 23 produces a progression of restoring force since the deformation of the decoupling elements 14 , 15 increases progressively.
  • the elastic deformation of the intermediary piece 20 in this movement plays a subordinate role here.
  • the curvature of the arc-shaped recess 23 is for example less than the curvature of the decoupling elements 14 .
  • the recess 23 can, for example, also be embodied as elliptical. In this connection, the sharpest curvature of this elliptical form can correspond at most to the curvature of the ball 14 .
  • the decoupling elements 14 , 15 and the recess 23 can be embodied elliptically. It is also conceivable for there to be other combinations, with the embodiment of the decoupling elements 14 , 15 in the form of rolling bodies in the recess 23 .
  • the recess 23 is embodied in the radial direction in such a way that the securing element 19 and the housing 6 , 7 cannot touch after the decoupling element 14 is installed, i.e. there is a sufficiently large gap between the housing 6 , 7 and the support shoulder 26 . 1 .
  • FIG. 7 apply analogously to a parallel slot through the recess 23 of the part 8 in FIG. 1 .
  • FIGS. 8 a-c show another exemplary embodiment of a decoupling device 1 and of decoupling elements 14 , 15 .
  • the decoupling elements 14 , 15 are embodied, for example, as hemispherical.
  • FIG. 8 b shows a top view of a decoupling element 15 according to FIG. 8 a , without the housing 6 , 7 , 8 , 13 and the securing element 19 .
  • the decoupling element 15 has a circular radial cross section in relation to the line 18 and is provided with a nipple 46 .
  • the nipple has a round cross section.
  • FIG. 8 c shows a side view of the decoupling element 15 according to FIG. 8 b .
  • the axial cross section of the decoupling element 15 in relation to the line 18 can also be elliptical for example.
  • the nipples 46 of the decoupling elements 14 , 15 protrude, for example, into the existing hole 45 of the securing element 19 so that is not possible for the securing element 19 to rotate entirely around the longitudinal axis 3 .
  • a height of the nipples 46 of the decoupling elements 14 , 15 is embodied so that at most, the two touch.
  • the decoupling elements 14 , 15 can also be connected to each other, for example by virtue of the fact that the two nipples 46 constitute a common intermediary piece 20 . These decoupling elements could then be inserted into the slot 36 of the securing element 19 .
  • the securing element 19 in this exemplary embodiment of the decoupling device 1 does not have any support shoulders against which the decoupling elements 14 , 15 roll.
  • FIG. 9 shows another exemplary embodiment of the decoupling housing 6 or the function housing 13 . Since the same reference numerals apply as in FIG. 1 , no further explanation is given for them.
  • the decoupling elements 14 , 15 are disposed one above the other in pairs along a line 18 that extends parallel to longitudinal axis 3 .
  • This embodiment differs from the one in FIG. 1 by virtue of the fact that the recesses 23 are not disposed on the edge of a part 7 , 8 , 13 of the decoupling housing 16 , but are accommodated in a column 41 .
  • FIG. 7 shows the cross section of the column 41 perpendicular to the longitudinal axis 3 through a support shoulder 24 , 25 .
  • a longitudinal axis of the column 41 extending parallel to the line 18 in this instance extends, for example, parallel to longitudinal axis 3 .
  • the heights of the columns 41 in the decoupling housing parts 7 and 8 or 13 are selected so that after installation, the decoupling elements 14 , 15 rest against the respective axial support shoulders 24 . 1 , 25 . 1 .
  • the columns 41 of the two housing parts 7 , 8 , 13 can also touch.
  • the columns 41 can also protrude beyond the housing parts 7 , 8 , 13 in the longitudinal direction.
  • the recesses in the outer housing part ( FIG. 1 ) and the recesses in the columns ( FIG. 9 ) can also be provided in an embodiment of the housing parts 6 , 7 , 8 , 13 .
  • the decoupling housing parts 7 and 8 or 13 that have the recesses 23 can be rotated around the longitudinal axis 3 by any arbitrary angle. It is then no longer possible for there to be a connection by means of an intermediary piece 20 . Recesses 45 must then be provided, as shown in FIG. 5 , at the corresponding locations in which the decoupling elements 14 , 15 are disposed.
  • FIG. 10 shows another exemplary embodiment for the securing element 19 and a decoupling housing part 7 , 8 , 13 .
  • the decoupling elements 14 , 15 and 14 ′, 15 ′ are not disposed above one another.
  • the decoupling elements 14 , 14 ′ or 15 , 15 ′ are not disposed in a plane extending perpendicular to the longitudinal axis 3 .
  • Decoupling elements 14 ′, 15 ′ that are connected to each other by means of the intermediary piece 20 (right half of FIG. 10 ) and other decoupling elements 14 , 15 which are not connected to each other by means of an intermediary piece (left half of FIG. 10 ) can both be used in an embodiment of the decoupling device 1 .
  • the decoupling elements 14 , 15 have a knob 48 , which protrudes into a recess 45 , a hole 45 , or a slot 36 .
  • the decoupling elements 14 ′, 15 ′ are connected to each other by means of the intermediary piece 20 , which does not extend parallel to longitudinal axis 3 after assembly of the decoupling device 1 .
  • FIG. 11 shows another possible configuration of the securing element 19 and decoupling housing 6 . Since the same reference numerals apply as in FIGS. 1 and 5 , no further explanation is given for them here.
  • the decoupling elements 14 , 15 are disposed over one another in this instance, in pairs for example, along a line 18 which extends parallel to longitudinal axis 3 .
  • the recess 23 here is embodied in the column 41 .
  • a longitudinal axis 52 of the column 41 extends perpendicular to longitudinal axis 3 , for example.
  • the longitudinal axis 52 of the column 41 can also be embodied at a different angle to the longitudinal axis 3 .
  • the securing element 19 constitutes the axial support shoulder 26 . 1 the farthest from the longitudinal axis 3 .
  • a surface of the radial support shoulder 24 . 1 is not parallel to the longitudinal axis 3 .
  • FIG. 12 shows another possible embodiment of support shoulders 24 - 26 in the decoupling housing 6 , 7 , 8 , 13 and securing element 19 .
  • the support shoulders 24 - 26 in this instance are embodied so that the rotational axis 27 extends perpendicular to the longitudinal axis.
  • the curvature radius of the recess 23 in this instance corresponds, for example, to the curvature radius of the decoupling elements 14 , 15 .
  • a clear identification of the axial and radial support shoulder is not possible.
  • the decoupling housing part 7 can also accommodate for example four decoupling elements in a manner already described above and the other decoupling housing part 8 , 13 can accommodate for example five decoupling elements in a manner already described above. Any other combination is conceivable depending on the magnitude of the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Frames (AREA)
  • Vibration Prevention Devices (AREA)
US09/831,150 1999-09-08 2000-09-05 Decoupling device for actuators Expired - Lifetime US6927508B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19942840A DE19942840A1 (de) 1999-09-08 1999-09-08 Entkopplungsvorrichtung für Aktuatoren
PCT/DE2000/003045 WO2001018424A1 (de) 1999-09-08 2000-09-05 Entkopplungsvorrichtung für aktuatoren

Publications (1)

Publication Number Publication Date
US6927508B1 true US6927508B1 (en) 2005-08-09

Family

ID=7921189

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/831,150 Expired - Lifetime US6927508B1 (en) 1999-09-08 2000-09-05 Decoupling device for actuators

Country Status (5)

Country Link
US (1) US6927508B1 (de)
EP (1) EP1127229B1 (de)
JP (1) JP4555528B2 (de)
DE (2) DE19942840A1 (de)
WO (1) WO2001018424A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110101800A1 (en) * 2006-12-27 2011-05-05 Robert Bosch Gmbh Apparatus for holding an electrical machine such that it is decoupled from vibration
CN102150345B (zh) * 2008-09-15 2014-03-26 罗伯特·博世有限公司 电气机械的振动退耦的支托
EP2270959A4 (de) * 2008-03-11 2016-10-26 Nissan Motor Motor, halterungsglied eines motors und verfahren zur halterung eines motors

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10326996A1 (de) 2003-06-12 2005-01-05 Robert Bosch Gmbh Entikopplungsvorrichtung für Elektromotoren und Verfahren zur Herstellung eines Elektromotors
DE102007058366A1 (de) * 2007-12-03 2009-08-06 Müller Weingarten AG Schwingungsisolierende Befestigungsvorrichtung
JP5762111B2 (ja) * 2011-04-25 2015-08-12 シャープ株式会社 モータ保持構造及び電気機器
DE102011082506A1 (de) 2011-09-12 2013-03-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Motoranordnung sowie Fahrzeug
DE102017102258A1 (de) * 2017-02-06 2018-08-09 Kiekert Ag Antriebseinheit für ein kraftfahrzeug-aggregat
DE102019106921B4 (de) 2018-04-19 2022-03-17 Hanon Systems Anordnung zum entkoppelten Halten eines Elektromotors und Vorrichtung zum Fördern eines Luftvolumenstromes mit der Anordnung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE605203C (de) * 1934-11-06 Neue Elektro Bohner G M B H Aufhaengung von elektrischen Flanschmotoren mittels Gummibuechsen
US2881995A (en) * 1957-11-19 1959-04-14 Gen Tire & Rubber Co Vibration damping shock absorbing support
FR1255721A (fr) * 1959-04-27 1961-03-10 Electrolux Ab Dispositif pour suspension de groupe moteur et appareils munis de ce dispositif
US3746894A (en) * 1971-08-04 1973-07-17 Gen Electric Dynamoelectric machine vibration isolation mounting arrangement
DE3641096A1 (de) * 1986-01-10 1987-07-16 Siemens Ag Elektrische maschine mit einer deren aussenluefter abdeckenden topffoermigen luefterhaube
DE4306588A1 (de) * 1992-07-14 1994-01-20 Bosch Gmbh Robert Schwingungsdämpfende Halterung von Elektromotoren
DE4321633A1 (de) * 1993-06-30 1995-01-12 Bosch Gmbh Robert Vorrichtung zum elastischen Aufnehmen eines angetriebenen Aggregats in einer gestellfesten Halterung
US5530304A (en) * 1993-01-20 1996-06-25 Hitachi, Ltd. Miniature motor and fan using the same
FR2732524A1 (fr) * 1995-04-03 1996-10-04 Valeo Thermique Habitacle Dispositif de fixation elastique d'un moteur electrique a l'interieur d'un boitier, notamment pour vehicule automobile
US6278209B1 (en) * 1998-03-28 2001-08-21 Robert Bosch Gmbh Decoupling device for an electric motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1273198B (it) 1994-05-12 1997-07-07 Bitron A Spa Perfezionamenti ad un motoventilatore a commutazione elettronica per l'abitacolo di un autoveicolo

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE605203C (de) * 1934-11-06 Neue Elektro Bohner G M B H Aufhaengung von elektrischen Flanschmotoren mittels Gummibuechsen
US2881995A (en) * 1957-11-19 1959-04-14 Gen Tire & Rubber Co Vibration damping shock absorbing support
FR1255721A (fr) * 1959-04-27 1961-03-10 Electrolux Ab Dispositif pour suspension de groupe moteur et appareils munis de ce dispositif
US3746894A (en) * 1971-08-04 1973-07-17 Gen Electric Dynamoelectric machine vibration isolation mounting arrangement
DE3641096A1 (de) * 1986-01-10 1987-07-16 Siemens Ag Elektrische maschine mit einer deren aussenluefter abdeckenden topffoermigen luefterhaube
DE4306588A1 (de) * 1992-07-14 1994-01-20 Bosch Gmbh Robert Schwingungsdämpfende Halterung von Elektromotoren
US5530304A (en) * 1993-01-20 1996-06-25 Hitachi, Ltd. Miniature motor and fan using the same
DE4321633A1 (de) * 1993-06-30 1995-01-12 Bosch Gmbh Robert Vorrichtung zum elastischen Aufnehmen eines angetriebenen Aggregats in einer gestellfesten Halterung
FR2732524A1 (fr) * 1995-04-03 1996-10-04 Valeo Thermique Habitacle Dispositif de fixation elastique d'un moteur electrique a l'interieur d'un boitier, notamment pour vehicule automobile
EP0736954A1 (de) * 1995-04-03 1996-10-09 Valeo Climatisation Vorrichtung zur elastischen Befestigung eines Elektromotors ein einem Gehäuse, insbesondere für Kraftfahrzeuge
US6278209B1 (en) * 1998-03-28 2001-08-21 Robert Bosch Gmbh Decoupling device for an electric motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110101800A1 (en) * 2006-12-27 2011-05-05 Robert Bosch Gmbh Apparatus for holding an electrical machine such that it is decoupled from vibration
CN101589534B (zh) * 2006-12-27 2012-10-17 罗伯特.博世有限公司 用于隔振地保持电机的装置
US8492940B2 (en) 2006-12-27 2013-07-23 Robert Bosch Gmbh Apparatus for holding an electrical machine such that it is decoupled from vibration
EP2270959A4 (de) * 2008-03-11 2016-10-26 Nissan Motor Motor, halterungsglied eines motors und verfahren zur halterung eines motors
CN102150345B (zh) * 2008-09-15 2014-03-26 罗伯特·博世有限公司 电气机械的振动退耦的支托

Also Published As

Publication number Publication date
WO2001018424A1 (de) 2001-03-15
DE19942840A1 (de) 2001-03-15
DE50013885D1 (de) 2007-02-01
JP2003509004A (ja) 2003-03-04
JP4555528B2 (ja) 2010-10-06
EP1127229A1 (de) 2001-08-29
EP1127229B1 (de) 2006-12-20

Similar Documents

Publication Publication Date Title
US6927508B1 (en) Decoupling device for actuators
US7553123B2 (en) Annular support for rolling bearings
US7679233B2 (en) Decoupling device and method for the production of an electric motor
KR100822997B1 (ko) 밸런서
US6291920B1 (en) Motor counter weight attachment
US7714477B2 (en) Stator of rotating electric machine and structure thereof
US6278209B1 (en) Decoupling device for an electric motor
US8360754B2 (en) Support for rolling bearing
JP2011226466A (ja) 真空ポンプ用の振動減衰器
US20010010438A1 (en) Damper system and bearing centering device for magnetic bearing vacuum pump
JPH0719255A (ja) ねじり振動減衰器
JP2703878B2 (ja) ターボ分子ポンプ
US4680984A (en) Torsional vibration damper
US5445365A (en) Anti-vibration element
JP6575542B2 (ja) タイヤホイール、ブレーキロータ及びハブの組付構造
JP3693834B2 (ja) 防振装置
JPH11125309A (ja) 真空防振継手
EP1083355A2 (de) Elastische Kupplung für koaxiale Wellen
JP4102950B2 (ja) 電動機の回転子
WO2020158052A1 (ja) 軸受押さえ板、及び、それを用いた回転電機
EP3418530A1 (de) Drehmaschine
US8919753B2 (en) Spring plate
JP2022147644A (ja) 車載用電動流体機械
CN216056609U (zh) 马达和扫除机
JP2022147643A (ja) 車載用電動流体機械

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUPP, BERNHARD;KNOEPFEL, GERD;BRASS, OTTO;AND OTHERS;REEL/FRAME:012451/0518;SIGNING DATES FROM 20010830 TO 20010903

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12