[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US6706537B2 - Sterilization monitors and method of use - Google Patents

Sterilization monitors and method of use Download PDF

Info

Publication number
US6706537B2
US6706537B2 US09/921,065 US92106501A US6706537B2 US 6706537 B2 US6706537 B2 US 6706537B2 US 92106501 A US92106501 A US 92106501A US 6706537 B2 US6706537 B2 US 6706537B2
Authority
US
United States
Prior art keywords
sterilization
composition
peracid
monitor
colorant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US09/921,065
Other versions
US20030207453A1 (en
Inventor
Ramon T. Ignacio
Allan P. Piechowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US09/921,065 priority Critical patent/US6706537B2/en
Publication of US20030207453A1 publication Critical patent/US20030207453A1/en
Application granted granted Critical
Publication of US6706537B2 publication Critical patent/US6706537B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • A61L2/28Devices for testing the effectiveness or completeness of sterilisation, e.g. indicators which change colour

Definitions

  • This invention relates to sterilization monitors.
  • Medical instruments and parenteral drugs are sterilized prior to use.
  • a traditional sterilization process uses steam under pressure.
  • Alternative sterilization processes use ethylene oxide, hydrogen peroxide, or peracetic acid in the vapor form as the sterilant.
  • Sterilization processes using peracid solutions may be performed in a sterilization chamber.
  • the instruments being sterilized are exposed to a sterilization solution containing, for example about 2000 ppm or 2500 ppm of peracetic acid.
  • the instruments are exposed to the solution for a sufficient time at a sufficiently high enough temperature, e.g., 50° C.-60° C., for the sterilization to be effective.
  • the invention features monitoring a sterilization process that uses a vapor including a peracid (e.g., peracetic acid) with a monitor composition.
  • the monitor composition contains a colorant and a halogen source.
  • the peracid contacts the monitor composition, resulting in halogenation of the colorant to occur.
  • Halogenation of the colorant causes the colorant and the monitor composition to undergo a distinct, permanent color change that provides an indication that sterilization has occurred.
  • a distinct color change in the indicator composition occurs if normal medical professionals can readily discern the color change through visual observation.
  • Preferred colorants include dyes such as the sodium salt of fluorescein or phenol red that is susceptible to halogenation.
  • the invention also features sterilization indicators including a substrate and the indicator composition, as well as the indicator composition itself.
  • the indicator composition can be used, for example, on indicating labels, or indicator tapes, and in devices that monitor the variables of a sterilization process (e.g., time, temperature, and concentration).
  • the invention features a monitor composition for monitoring a sterilization process including peracid, e.g., peracetic acid.
  • the monitoring composition contains a colorant and a halogen source.
  • the halogenated colorant may in turn be susceptible to additional reactions which cause the monitoring composition to undergo a further distinct color change, dependent upon, e.g., the concentration of the peracid in the solution.
  • the colorant may be a dye such as phenol red.
  • the invention also features a method of monitoring peracid liquid phase sterilization processes.
  • the monitor composition includes a colorant and is exposed to a solution including peracid during a sterilization process.
  • the monitoring composition will change to a particular color if the sterilization process meets certain pre-determined sterilization parameters, such as exposure time, exposure temperature, and exposure concentration of peracid (e.g., 1 minute, 25° C., and 1000 ppm of peracid).
  • the invention also features a method of determining whether a solution including peracid has a concentration of peracetic acid of about 2500 ppm.
  • the monitor composition is exposed to the peracetic acid solution under conditions that will cause the monitor composition to undergo a color change at about 2500 ppm of peracetic acid.
  • the invention also features a method of monitoring a sterilization process that uses a liquid peracid sterilant by contacting a sterilization monitoring device with a liquid peracid from a sterilization solution during the sterilization process.
  • the sterilization monitoring device includes a vapor permeable barrier and a monitor composition.
  • the peracid vapor from the liquid sterilant penetrates the vapor barrier contacting the monitor composition including a colorant susceptible to halogenation and a halogen source, and the peracid contacts the halogen source to produce halogen which halogenates the colorant to cause a color change in the composition.
  • the invention also features a sterilization monitoring device including a housing having a vapor permeable barrier and a monitor composition enclosed within the housing.
  • the monitor composition includes a halogen source and a colorant susceptible to halogenation in the presence of a peracid from a sterilization solution. The peracid contacts the halogen source to produce halogen which halogenates the colorant to cause a color change in the composition.
  • the invention also features a sterilization monitoring device including a substrate, having a laminated side, carrying a monitoring composition, and a housing having a vapor permeable barrier.
  • the housing also includes a vapor impermeable barrier.
  • the vapor impermeable barrier defines a vapor head space.
  • the substrate is enclosed within the housing with the laminated side mounted to the vapor permeable barrier.
  • the FIGURE is a cross-sectional view of a sterilization monitoring device.
  • Sterilization monitors and sterilization monitoring devices are used to monitor sterilization processes that include the use of a peracid.
  • the sterilization monitors and monitoring devices also can be used to determine the concentration of a peracid present during the sterilization process.
  • the peracid may be any of the conventional peracids known to be useful as sterilants.
  • the peracids may contain, for example, between one and eight carbon atoms, may be saturated or unsaturated, may be halogenated, and may be aliphatic, aromatic, or non-aromatic. Examples include performic acid, peracetic acid, perpropinoic acid, perbutanoic acid, etc.
  • a preferred sterilization monitor for vapor phase sterilization processes includes a monitor composition and a substrate.
  • the monitor composition undergoes a distinct color change when exposed to peracid vapor.
  • the monitor composition, carried on the substrate may exhibit the distinct color change within a certain period of time (e.g., 5 minutes, 15 minutes, or 2 hours) of exposure to an atmosphere containing 5% peracetic acid at room temperature.
  • the color of the monitor composition (prior to or after exposure to peracetic acid) preferably does not change or fade if left exposed to normal fluorescent lights at a distance of three inches for one or two days.
  • a preferred monitor composition contains a dye, a halogen source, and a binder resin.
  • the dye is susceptible to halogenation in the presence of a halogen source and a peracid, and changes color as a result of the halogenation to provide a distinct color change in the monitor composition. Once halogenation is complete the color of the dye does not change if left exposed to normal air. As a result, assuming the dye is the only colorant in the monitor composition, once halogenation of the dye is complete the color of the monitor composition is essentially fixed.
  • Examples of such dyes include the sodium salt of fluorescein (acid yellow 73) and phenol red.
  • a monitor composition containing fluorescein (acid yellow 73) for instance, in the presence of a bromine source and a peracid, will turn from yellow to orange, and in the presence of an iodine source will turn from yellow to red.
  • a sufficient quantity of the dye should be included in the monitor composition to provide the desired color intensity.
  • the quantity of the dye in the composition also will influence the rate at which the composition undergoes the distinct color change.
  • the indicator composition may contain, for example, between 0.5% and 10%, or between 1% and 5%, of the dye by weight.
  • the halogen source can be, for example, a halogen salt, such as alkaline earth metal halide salts (e.g., magnesium bromide or magnesium iodide) or alkali metal halide salts (e.g., potassium bromide).
  • a halogen salt such as alkaline earth metal halide salts (e.g., magnesium bromide or magnesium iodide) or alkali metal halide salts (e.g., potassium bromide).
  • alkaline earth metal halide salts e.g., magnesium bromide or magnesium iodide
  • alkali metal halide salts e.g., potassium bromide
  • a sufficient quantity of the halogen source should be included in the monitor composition to react with a sufficient quantity of the dye to cause the color charge at the desired rate.
  • the monitor composition may contain, for example, between 1% and 60%, or 5% and 45%, of the bromine source by weight.
  • the binder resin binds the composition to the substrate.
  • binder resins include shellac, ethyl cellulose, hydroxypropyl methylcellulose, methyl cellulose, and ethyl hydroxyethyl ethylcellulose.
  • the shellac can be, for example, bleached bone dry shellac.
  • a sufficient quantity of binder resin should be included in the composition to provide adequate binding of the composition to the substrate.
  • the binder resin also may influence the rate at which peracid penetrates into the composition during the sterilization process. The rate of peracid penetration, in turn, may influence the rate of color change of the composition.
  • the monitor composition may contain, for example, between 20% and 98%, or between 40% and 70%, of the resin binder by weight.
  • the monitor composition optionally may include other ingredients such as colorants that do not change color during the sterilization process, resins that perform functions other than binding (e.g., providing water resistance or solvent dispersibility), or opacifying agents.
  • the monitor composition Prior to application to the substrate, the monitor composition is dissolved/dispersed in a suitable solvent (e.g., water or a lower-alkyl (C 1 -C 4 ) alcohol like ethanol or isopropyl). Generally, anywhere from one to two parts of solvent to one part of the indicator composition may be used.
  • a suitable solvent e.g., water or a lower-alkyl (C 1 -C 4 ) alcohol like ethanol or isopropyl.
  • the substrate may be, for example, blotter paper, which typically has a neutral pH, polyester (e.g., Melinex Polyester film or crepe paper).
  • the substrate may be in the form of a strips, having the indicator composition at one end; the other end can serve as a grip for the user.
  • the grip portion of the strip may be laminated with a plastic outer surface to minimize the absorption of peracid or other sterilization components by the grip during the sterilization process.
  • the substrate may also have an adhesive on the bottom surface that allows the sterilization monitor to be used as a label or as tape.
  • An example of a suitable polyester label is Copycode WH®, a white polyester with a printable topcoat manufactured by the Fasson Film Division of Avery-Dennison Co.
  • a suitable masking tape includes crepe paper from Endura Products on an upper surface to carry the monitor composition.
  • the monitor composition may be applied to the substrate by any suitable technique.
  • the indicator composition may be applied to the substrate using dip coating or conventional printing techniques such as flexographic printing, extrusion printing, or gravure printing.
  • Examples 1 and 2 are examples of vapor phase sterilization monitors.
  • a monitor composition (in solvent) was prepared that contained the following ingredients:
  • the composition was prepared according to the following procedure.
  • the shellac bleached bone dry is weighed into a 500 ml disposable plastic beaker.
  • the ethyl alcohol is weighed into a separate 500 ml disposable plastic beaker.
  • the beaker containing ethyl alcohol is placed under a disperser. While the disperser runs at a slow speed, the shellac bleached bone dry is added slowly to the beaker. Stirring continues until the resin has completely dissolved.
  • the isopropyl alcohol is weighed into a 100 ml beaker, and transferred to a #00 mill jar.
  • the sodium salt of fluoroscein (acid yellow 73) is weighed into an aluminum pan, and also transferred to the #00 mill jar.
  • the magnesium bromide is weighed into a 100 ml disposable beaker, and transferred to #00 mill jar.
  • the ethanol solution then also is transferred to #00 mill jar and the mixture is ground for four hours to provide the indicator composition (in solution).
  • Swatches are made with indicator composition on blotter paper using an Acculab Jr. drawdown machine with #0 rod.
  • a strip (approximately 3′′ ⁇ 1 ⁇ 2′′) was cut from the blotter paper, and hung inside a bottle containing 5% peracetic acid and 22% hydrogen peroxide.
  • the monitor composition initially is yellow, but the color changes to red within 10 minutes as the peracetic acid contacts the indicator composition and causes the bromination of the acid yellow 73.
  • a monitor composition (in solvent) containing phenol red was prepared that contained the following ingredients:
  • the composition was prepared and tested according to the following procedure.
  • the phenol red is weighed into a 100 ml disposable plastic beaker, and transferred to #00 mill jar.
  • the magnesium bromide is weighed into a 250 ml disposable plastic beaker, and also transferred to the #00 mill jar.
  • the V-129 is weighed into a in 1000 ml disposable plastic beaker, and transferred to the #00 mill jar.
  • the V-117 is weighed into a 100 ml disposable plastic beaker, and transferred to the #00 mill jar.
  • the isopropyl alcohol is weighed into a 100 ml beaker, and also transferred to the #00 mill jar.
  • the mixture is ground in the mill jar for one hour to provide the monitor composition (in solution). Swatches of the monitor composition are made on blotter paper and on Kimdura synthetic paper using the Acculab Jr. drawdown machine with #0 rod. Strips (about 3′′ ⁇ 1 ⁇ 2′′) are cut and hung inside the bottle containing 5% peracetic acid and 22% hydrogen peroxide.
  • the monitor composition printed on Kimdura synthetic paper initially was yellow, but it turned from yellow to blue within 20 minutes at room temperature as the peracetic acid contacted the monitor composition and caused the bromination of the phenol red.
  • the monitor composition printed on blotter paper also initially was yellow. It turned from yellow to green in 10 minutes at room temperature as the peracetic acid contacted the monitor composition and caused the bromination of the phenol red to form bromophenol blue.
  • the sterilization monitor can be used to monitor sterilization processes that use a peracid vapor.
  • the peracid may be any of the conventional peracids known to be useful as sterilants.
  • the peracids may contain, for example, between one and eight carbon atoms, may be saturated or unsaturated, may be halogenated, and may be non-aromatic or aromatic. Examples include performic acid, peracetic acid, perpropinoic acid, perbutanoic acid, etc.
  • the sterilization process may include, for example, exposure to an atmosphere containing at least 5% peracetic acid vapor for at least 10 minutes or 15 minutes.
  • the sterilization process may be conducted at elevated (greater than 40° C.) temperatures.
  • the sterilization process may include use of other sterilants (e.g., hydrogen peroxide) in addition to a peracid, or may include a plasma step that may, for example, involve a peracid. Of course, the sterilization process may not include a plasma step.
  • Sterilization processes that include use of peracids are described, for example, in U.S. Pat. No. 5,084,239 and U.S. Pat. No. 5,244,629.
  • a preferred sterilization monitor for liquid phase sterilization processes also includes a monitor composition and a substrate.
  • the monitor composition undergoes a distinct color change when exposed to peracid liquid, e.g., peracetic acid.
  • the monitoring composition carried on the substrate, may exhibit the distinct color change within a certain period of time (e.g., 1 second, 5 minutes, 15 minutes, or 2 hours) of exposure to a solution containing at least 1000 ppm of peracetic acid at 50° C.
  • the color of the monitoring composition (prior to or after exposure to peracetic acid) preferably does not change or fade if left in a darkened environment, e.g., a drawer.
  • the composition will fade, however, if exposed for an extended time, e.g. a month, to a lighted environment.
  • a preferred monitoring composition contains a dye, a halogen source, and a buffer.
  • the dye is susceptible to halogenation in the presence of a halogen source and peracid, and changes color as a result of the halogenation to provide an indication that peracid is present.
  • halogenated depending on the dye, peracid concentration, exposure temperature and exposure time, other reactions may take place which cause the halogenated dye to undergo a distinct color change that provides an indication of the concentration of the peracid in solution.
  • the halogenated dye may undergo further halogenation, or may undergo other chemical reactions, or may be pH sensitive.
  • dyes examples include the salt or free acid of phenol red, cresol red, fluorescein, chlorophenol red, m-cresol purple, pyrogallol red, crystal violet lactone, 3,4,5,6-tetrabromophenol sulfone phthalein, 3′,3′′,5′,5′′-tetraiodophenol phthalein, 4,5,6,7-tetrachlorofluorescein, basic fuchsin, phenolphthalein, xylene cyanole FF, as well as other triphenylmethyl type dyes, fluorescein type dyes, and phenolphthalein type dyes.
  • dyes include resorufin, indigo carmine, thionin, variamine blue, indophenol, neutral red, pararosaniline acetate, erioglaucine, malachite green oxalate, indigo, and bromocresol green.
  • a monitoring composition containing a bromine source and phenol red for instance, in the presence of a solution containing 2000 ppm peracetic acid, will turn from red to blue. In the presence of a solution containing 5000 ppm peracetic acid, the monitoring composition will turn from red to yellow/lime green.
  • a sufficient quantity of the dye should be included in the monitoring composition to provide the desired color intensity.
  • the quantity of the dye in the composition also will influence the rate at which the composition undergoes the distinct color change.
  • the indicator composition may contain, for example, between 0.0001% and 10%, or between 0.01% and 5.0%, of the dye by weight.
  • the halogen source is preferably bromide and can be, for example, a halogen salt, such as alkaline earth metal halide salts (e.g., calcium bromide and magnesium bromide) or alkali metal halide salts (e.g., lithium bromide and potassium bromide).
  • the halogen source can also be iodide (e.g, lithium iodide, calcium iodide, and magnesium iodide) or an ionic organic halide (e.g., tetra alkyl ammonium bromide or tetra alkyl ammonium iodide).
  • a sufficient quantity of the halogen source should be included in the monitoring composition to react with a sufficient quantity of the dye to cause the color change at the desired rate.
  • the monitoring composition may contain, for example, between 0.1% and 50%, or 10% and 30%, of the bromine source by weight.
  • the buffer component of the monitoring composition provides a more definite color change due to dye halogenation both by controlling the pH of the monitoring composition and by making the monitoring composition less sensitive to pH.
  • the buffer may not be necessary for the halogenation of the dye to occur and in some monitoring compositions, the buffer may not be a necessary component of the monitoring composition.
  • One skilled in the art could determine, depending on the dye, if the monitoring composition should include a buffer component.
  • the buffer if used, is preferably sodium acetate.
  • Other buffers e.g., phosphates, citrates and the like, which are known to those skilled in the art can be used.
  • the monitor composition can contain 0.0% to 80% sodium acetate by weight.
  • the monitor composition when dissolved in a suitable solvent, e.g., water, contains enough sodium acetate to produce a one molar solution (8.2 grams in 100 grams of water).
  • the monitor composition optionally may include other ingredients such as colorants that do not change color during the sterilization process, resins that perform several functions (e.g., binding, providing water resistance or solvent dispersibility), or other common ink components and opacifying agents.
  • colorants that do not change color during the sterilization process
  • resins that perform several functions (e.g., binding, providing water resistance or solvent dispersibility), or other common ink components and opacifying agents.
  • the components of the peracid monitor composition can be adjusted, e.g., increasing or decreasing their concentration in the composition, to monitor a peracetic acid liquid phase sterilization process to determine whether the sterilization process meets pre-determined parameters, e.g., exposure temperature, exposure peracid concentration, and exposure time.
  • the pre-determined parameters include an exposure temperature between 0° C. and 100° C., an exposure peracid concentration between 100 ppm and 10000 ppm, and an exposure time between 1 second and 30 minutes.
  • the exposure temperature is between 20° C. and 60° C.
  • the exposure peracetic acid concentration is between 1000 ppm and 5000 ppm
  • the exposure time is between 1 second and 15 minutes.
  • the concentration of dye in the monitoring composition can be decreased to monitor a sterilization process with a decreased exposure time.
  • the monitor composition Prior to application to the substrate, the monitor composition is dissolved/dispersed in a suitable solvent (e.g., water). Generally, 10 parts of solvent to one part of the monitoring composition is used.
  • a suitable solvent e.g., water
  • the substrate includes those described previously.
  • the substrate is a filter paper, SS-410, supplied by Schleicher & Schuell located in New Hampshire.
  • the monitor composition may be applied to the substrate by conventional techniques, e.g., dip, draw down, or air knife coating, and the like.
  • a monitor composition containing, for example, potassium bromide When a monitor composition containing, for example, potassium bromide is contacted with a solution containing peracetic acid, bromine is generated.
  • the bromine contacts the dye causing a first color change.
  • the halogenated dye may undergo additional reactions depending on the dye, peracetic acid concentration, exposure temperature, and exposure time, which causes the monitoring composition to undergo a second color change that, e.g., may provide an indication of the concentration of the peracetic acid present in the solution.
  • Example 3 is an example of a liquid phase monitor composition.
  • Example 4 is an example of a liquid phase sterilization monitor.
  • a monitor composition (in solvent) was prepared that contained the following ingredients:
  • the monitoring solution was tested by the following procedure. 5.0 ml of the above solution was added to 5.0 ml of each of the following solutions (concentrations are approximate):
  • the initial color of the monitor solution is red. After addition of the solutions listed above, the color changes as follows:
  • Peracetic Acid Color Change (a) 0000 ppm Red (b) 1000 ppm Purple (c) 1500 ppm Deep Blue (d) 2000 ppm Deep Blue (e) 2500 ppm Deep Blue (f) 3000 ppm Yellow/Lime Green (g) 3500 ppm Yellow/Lime Green (h) 4000 ppm Yellow/Lime Green (i) 10000 ppm Yellow/Lime Green
  • the quantities of acetic acid and hydrogen peroxide reflect dilutions of the original peracetic acid solution with water.
  • the composition worked best when the concentration of hydrogen peroxide in the solution is less than about 20% of the concentration of peracetic acid in the solution.
  • a monitor composition (in solvent) was prepared that contained the following ingredients:
  • the composition was prepared and tested according to the following procedure.
  • the monitoring composition is measured and mixed in a acceptable vessel, e.g., beaker.
  • the monitor solution is coated onto SS-410 paper in the following manner.
  • the SS-410 paper is mounted into a plastic handle and dipped into the monitor solution for 30 seconds.
  • the SS-410 paper is removed and the excess solution is allowed to drain off of the paper.
  • the coated SS-410 paper is then dried in an oven for 30 minutes at 60° C.
  • the dried strips are removed and left at room temperature and with normal exposure to light for 24 hours.
  • One coated substrate is dipped for one second into the following solutions:
  • the color of the monitor composition on the dried substrate changes (initially) from red to deep blue at 1000 ppm of peracetic acid.
  • the color change remains deep blue until the concentration of peracetic acid reaches about 2300 ppm at which point the color change begins to show traces of green.
  • the color change is completely green with peracetic acid concentrations from 2600 to 2800 ppm.
  • the color change remains green with peracetic acid concentrations greater than 2800 ppm up to at least 10,000 ppm.
  • the monitor compositions can be used to monitor sterilization processes that use liquid peracid solutions.
  • the sterilization process can include, for example, exposure to a peracetic acid solution containing at least 1000 ppm (preferably 2000 ppm) peracetic acid liquid for at least 10 minutes or 15 minutes. Sterilization processes using peracetic acid solutions are described, for example, in U.S. Pat. No. 4,892,706, which is incorporated by reference herein.
  • the sterilization process can be conducted at elevated (greater than 40° C.) temperatures.
  • the sterilant solution used in the sterilization process can include, in addition to a peracid liquid, other liquid sterilants, e.g., hydrogen peroxide.
  • the liquid peracid may be any of the conventional peracids known to be useful as sterilants.
  • the peracids may contain, for example, between one and eight carbon atoms, may be saturated or unsaturated, may be halogenated, and may be non-aromatic or aromatic. Examples include performic acid, peracetic acid, perpropinoic acid, perbutanoic acid, etc.
  • Sterilization monitors used to monitor vapor phase and liquid phase sterilization processes may be attached as a label to the item to be sterilized, used as masking tape to seal a package containing the item to be sterilized, or simply included in the sterilization chamber along with the item(s) to be sterilized.
  • the sterilization process may involve, for example, sterilization of medical instruments (e.g., fiber optic devices, endoscopic equipment), gloves, linen, parenteral drugs, etc.
  • Sterilization monitors also can be included in a peracid vapor-permeable package, with or without the item(s) to be sterilized, creating a sterilization monitoring device.
  • a preferred sterilization monitoring device includes a housing and a monitor composition carried on a substrate.
  • a sterilization monitoring device 10 includes a substrate 50 containing a monitor composition 51 , a housing 20 having a durable transparent top 30 , e.g., MYLARTM polyester film coated with SURLYNTM, polyvinylchloride (PVC) and glycol modified polyethylene terephthalate (PETG), defining a vapor head space 60 , and a microporous bottom 40 , e.g., GORE-TEXTM, TYVEKTM and COTRANTM.
  • Substrate 50 includes a laminated side 52 , e.g. MYLARTM polyester film coated with SURLYNTM, which is mounted, e.g., taped, to microporous bottom 40 .
  • the monitor composition includes the components described previously.
  • Durable transparent top 30 is sealed, e.g., heat sealed or glued, to microporous bottom 40 to enclose substrate 50 within vapor head space 60 .
  • sterilization monitoring device 10 is submerged in a sterilant solution containing a peracid.
  • the peracid vapor penetrates microporous bottom 40 , enters vapor head space 60 , and contacts monitor composition 51 of substrate 50 causing a color change of monitor composition 51 , observable through transparent top 30 .
  • the preferred sterilization monitoring device includes a laminated substrate chosen to inhibit peracid vapor from directly penetrating the microporous barrier and contacting the underside of the substrate. Direct penetration of the peracid vapor to the underside of the substrate may cause the monitor composition to undergo a distinct color change generally irrespective of peracid concentration, exposure time or sterilant temperature.
  • the lamination provides a controlled color change by forcing the peracid vapor to first contact the monitor composition on the perimeter of the substrate causing a color change of the monitor composition. Then, as the peracid vapor fills the vapor head space, the peracid vapor contacts the monitor composition in the center of the substrate Causing a color change of the monitor composition.
  • the location of color change of the monitor composition is used to monitor sterilization processes. For example, if the center of the substrate does not display a color change, the sterilization process did not meet pre-determined parameters.
  • the pre-determined parameters, described above, include exposure temperature, exposure peracid concentration, and exposure time.
  • the vapor head space of the sterilization monitoring device allows the peracid vapor to equilibrate and to accurately monitor peracid sterilization processes for a given set of pre-determined parameters.
  • the preferred sterilization monitoring device includes a PVC or PETG top, a TYVEKTM microporous bottom, and a 5 ⁇ 8′′ square piece of SS-410 filter paper laminated on one side.
  • the top defines a vapor head space of 3 ⁇ 8′′ to 1 ⁇ 8′′ above and to the sides of the substrate and is sealed to the tyvek microporous bottom.
  • the top is heat sealed to the bottom reducing the addition of further chemicals that may be added to the sterilization chamber by using a glue or epoxy.
  • a properly chosen glue e.g., Loctite 411 instant adhesive, can also be used.
  • a sterilization monitoring device including a monitor composition having a starting monitor composition color is immersed in a peracid solution of a sterilization process. As peracid vapor penetrates the vapor permeable bottom and fills the vapor head space, it contacts the monitor composition causing a color change of the monitor composition. The color change of the monitor composition proceeds from the perimeter of the device inward.
  • a sterilization monitoring device including a monitor composition having phenol red and potassium bromide is immersed into a peracetic acid solution of a sterilization process.
  • the starting color of the monitor composition is red.
  • a first dark blue color change of the monitor composition appears on the perimeter of the substrate.
  • the dark blue color change moves inward toward the center of the coated substrate followed by a second color change, yellow-green (lime), which also begins at the perimeter of the substrate and moves inward.
  • the pre-determined parameters of the sterilization process have been met (e.g. 12 minutes, 2000 ppm peracetic acid, 54° C.)
  • the entire monitor composition turns completely lime. If the pre-determined parameters have not been met, then a dark blue may remain in the center of the substrate surrounded by lime.
  • the sterilization monitoring device may also include an identification marker, e.g., a writable portion or tag, used to date and label the sterilization monitoring device, or that can be used as a record.
  • the sterilization monitoring device may also include a monitor composition including a buffer, halogen source, and colorant which replicates and/or is substantially parallel to and/or substantially mimics the response of biological indicators, e.g., Bacillus Stearothermophulus , to a sterilization process.
  • TYVEKTM 1025D is a spunbonded olefin available from the E. I. Du Pont De Nemours and Company, located in Wilmington, Del.
  • MYLARTM is a polyester film coated with SURLYNTM, a ethylene/methacrylic acid ionomer resin, supplied from the Donahue-Corry Associates, located in Dover, Mass. (MYLARTM and SURLYNTM are trademarks of E. I. Du Pont De Nemours and Company).
  • COLTRANTM is a microporous polyethylene film available from the Minnesota Mining and Manufacturing Company, located in St. Paul, Minn.
  • GORE-TEXTM is a fabric available from W. L. Gore and associates, Inc., located in Newark, Del.
  • Example 5 and 6 are examples of sterilization monitoring devices.
  • Example 3 The same monitor composition as used in Example 3 is coated onto 5 ⁇ 8′′ square 0.01′′ thick pieces of SS-410 filter paper having one laminated side.
  • the SS-410 paper is mounted into a plastic handle and dipped into the monitor solution for 30 seconds.
  • the SS-410 paper is removed and the excess solution is allowed to drain off of the paper.
  • the coated SS-410 paper is then dried in an oven for 30 minutes at 60° C. The dried strips are removed and left at room temperature and with normal exposure to light for 24 hours.
  • the laminated side of the coated paper is taped, e.g., double sided, to the center of a 2′′ square 0.01′′ thick piece of TYVEKTM type 101025 D spunbonded olefin, available from E. I. Du Pont De Nemours and Company, located in Wilmington, Del.
  • the substrate is enclosed within the sterilization monitoring device by the following manner.
  • a 2′′ square 0.01′′ piece of PVC, PJN-9708623, supplied by Perfecseal located in Minnesota, having a central 1′′ square 3 ⁇ 8′′ deep vapor head space is glued, using Loctite 411 instant adhesive, to the TYVEKTM.
  • Devices b and c were left for longer times at 2000 ppm peracetic acid and 54° C. and both turned 100% lime. Exposing the devices to shorter times or lower ppm peracetic acid produce substantially less lime. Higher temperatures show more lime as does higher concentration of peracetic acid. As a result, the device may be used to monitor the effects of pre-determined parameters, e.g., peracetic acid concentration, time of exposure, and temperature of sterilant solution.
  • pre-determined parameters e.g., peracetic acid concentration, time of exposure, and temperature of sterilant solution.
  • Example 3 The same monitor composition as used in Example 3 is prepared. The pH of the monitor composition is measured as 7.5. The monitor composition having is then coated onto two pieces of SS-410 filter paper and each substrate is mounted in a sterilization monitoring device as described in Example 5.
  • a second monitor composition as used in Example 3 is prepared.
  • the pH of the monitor composition is measured as 7.5.
  • a 0.1 N NaOH solution is added to the composition raising the pH to 10.
  • the monitor composition is then coated onto two pieces of SS-410 filter paper and each substrate is mounted in a sterilization monitoring device as described in Example 5.
  • one device made with a substrate having a monitor composition with a pH of 7.5, in tandem with one device made with a substrate having a monitoring composition with a pH of 10, showed the following results:
  • a sterilization monitoring device includes a monitor composition and a multiple housing, i.e., one housing, as described above, enclosing another.
  • the monitor composition is preferably a liquid, such as the monitor composition from Example 3.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

A sterilization monitor includes a substrate and an monitor composition. The monitor composition contains a colorant and a halogen source and undergoes a distinct color change when exposed to a peracid. The sterilization monitor can be used to monitor a sterilization process involving a peracid. A sterilization monitoring device, including a sterilization monitor enclosed in a housing having a vapor permeable barrier, can also be used to monitor a sterilization process.

Description

This application is a divisional of application U.S. Ser. No. 09/019,341, filed Feb. 5, 1998, now U.S. Pat. No. 6,287,518 which is a continuation-in-part of U.S. Ser. No. 08/882,630, filed Jun. 25 1997 now abandoned.
This invention relates to sterilization monitors.
BACKGROUND OF THE INVENTION
Medical instruments and parenteral drugs are sterilized prior to use. A traditional sterilization process uses steam under pressure. Alternative sterilization processes use ethylene oxide, hydrogen peroxide, or peracetic acid in the vapor form as the sterilant.
Sterilization processes using peracid solutions may be performed in a sterilization chamber. During a typical sterilization cycle, the instruments being sterilized are exposed to a sterilization solution containing, for example about 2000 ppm or 2500 ppm of peracetic acid. The instruments are exposed to the solution for a sufficient time at a sufficiently high enough temperature, e.g., 50° C.-60° C., for the sterilization to be effective.
SUMMARY OF THE INVENTION
The invention features monitoring a sterilization process that uses a vapor including a peracid (e.g., peracetic acid) with a monitor composition. The monitor composition contains a colorant and a halogen source. During the sterilization process, the peracid contacts the monitor composition, resulting in halogenation of the colorant to occur. Halogenation of the colorant causes the colorant and the monitor composition to undergo a distinct, permanent color change that provides an indication that sterilization has occurred. A distinct color change in the indicator composition occurs if normal medical professionals can readily discern the color change through visual observation.
Preferred colorants include dyes such as the sodium salt of fluorescein or phenol red that is susceptible to halogenation.
The invention also features sterilization indicators including a substrate and the indicator composition, as well as the indicator composition itself. The indicator composition can be used, for example, on indicating labels, or indicator tapes, and in devices that monitor the variables of a sterilization process (e.g., time, temperature, and concentration).
In another aspect, the invention features a monitor composition for monitoring a sterilization process including peracid, e.g., peracetic acid. The monitoring composition contains a colorant and a halogen source. When the monitoring composition is exposed to the peracid during a sterilization process the peracid causes halogenation of the colorant, which causes the monitoring composition to undergo a color change. The halogenated colorant may in turn be susceptible to additional reactions which cause the monitoring composition to undergo a further distinct color change, dependent upon, e.g., the concentration of the peracid in the solution. The colorant may be a dye such as phenol red.
The invention also features a method of monitoring peracid liquid phase sterilization processes. The monitor composition includes a colorant and is exposed to a solution including peracid during a sterilization process. The monitoring composition will change to a particular color if the sterilization process meets certain pre-determined sterilization parameters, such as exposure time, exposure temperature, and exposure concentration of peracid (e.g., 1 minute, 25° C., and 1000 ppm of peracid).
The invention also features a method of determining whether a solution including peracid has a concentration of peracetic acid of about 2500 ppm. The monitor composition is exposed to the peracetic acid solution under conditions that will cause the monitor composition to undergo a color change at about 2500 ppm of peracetic acid.
The invention also features a method of monitoring a sterilization process that uses a liquid peracid sterilant by contacting a sterilization monitoring device with a liquid peracid from a sterilization solution during the sterilization process. The sterilization monitoring device includes a vapor permeable barrier and a monitor composition. The peracid vapor from the liquid sterilant penetrates the vapor barrier contacting the monitor composition including a colorant susceptible to halogenation and a halogen source, and the peracid contacts the halogen source to produce halogen which halogenates the colorant to cause a color change in the composition.
The invention also features a sterilization monitoring device including a housing having a vapor permeable barrier and a monitor composition enclosed within the housing. The monitor composition includes a halogen source and a colorant susceptible to halogenation in the presence of a peracid from a sterilization solution. The peracid contacts the halogen source to produce halogen which halogenates the colorant to cause a color change in the composition.
The invention also features a sterilization monitoring device including a substrate, having a laminated side, carrying a monitoring composition, and a housing having a vapor permeable barrier. Preferably, the housing also includes a vapor impermeable barrier. The vapor impermeable barrier defines a vapor head space. The substrate is enclosed within the housing with the laminated side mounted to the vapor permeable barrier.
Other features and advantages of the invention will be apparent from the description of the preferred embodiment thereof, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The FIGURE is a cross-sectional view of a sterilization monitoring device.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Sterilization monitors and sterilization monitoring devices are used to monitor sterilization processes that include the use of a peracid. The sterilization monitors and monitoring devices also can be used to determine the concentration of a peracid present during the sterilization process.
The peracid may be any of the conventional peracids known to be useful as sterilants. The peracids may contain, for example, between one and eight carbon atoms, may be saturated or unsaturated, may be halogenated, and may be aliphatic, aromatic, or non-aromatic. Examples include performic acid, peracetic acid, perpropinoic acid, perbutanoic acid, etc.
Examples of Sterilization Monitors for Vapor Phase Sterilization Processes
A preferred sterilization monitor for vapor phase sterilization processes includes a monitor composition and a substrate.
The monitor composition undergoes a distinct color change when exposed to peracid vapor. For example, the monitor composition, carried on the substrate, may exhibit the distinct color change within a certain period of time (e.g., 5 minutes, 15 minutes, or 2 hours) of exposure to an atmosphere containing 5% peracetic acid at room temperature. The color of the monitor composition (prior to or after exposure to peracetic acid) preferably does not change or fade if left exposed to normal fluorescent lights at a distance of three inches for one or two days.
A preferred monitor composition contains a dye, a halogen source, and a binder resin.
The dye is susceptible to halogenation in the presence of a halogen source and a peracid, and changes color as a result of the halogenation to provide a distinct color change in the monitor composition. Once halogenation is complete the color of the dye does not change if left exposed to normal air. As a result, assuming the dye is the only colorant in the monitor composition, once halogenation of the dye is complete the color of the monitor composition is essentially fixed. Examples of such dyes include the sodium salt of fluorescein (acid yellow 73) and phenol red. A monitor composition containing fluorescein (acid yellow 73), for instance, in the presence of a bromine source and a peracid, will turn from yellow to orange, and in the presence of an iodine source will turn from yellow to red.
A sufficient quantity of the dye should be included in the monitor composition to provide the desired color intensity. The quantity of the dye in the composition also will influence the rate at which the composition undergoes the distinct color change. The indicator composition may contain, for example, between 0.5% and 10%, or between 1% and 5%, of the dye by weight.
The halogen source can be, for example, a halogen salt, such as alkaline earth metal halide salts (e.g., magnesium bromide or magnesium iodide) or alkali metal halide salts (e.g., potassium bromide). A sufficient quantity of the halogen source should be included in the monitor composition to react with a sufficient quantity of the dye to cause the color charge at the desired rate. The monitor composition may contain, for example, between 1% and 60%, or 5% and 45%, of the bromine source by weight.
The binder resin binds the composition to the substrate. Examples of binder resins include shellac, ethyl cellulose, hydroxypropyl methylcellulose, methyl cellulose, and ethyl hydroxyethyl ethylcellulose. The shellac can be, for example, bleached bone dry shellac. A sufficient quantity of binder resin should be included in the composition to provide adequate binding of the composition to the substrate. The binder resin also may influence the rate at which peracid penetrates into the composition during the sterilization process. The rate of peracid penetration, in turn, may influence the rate of color change of the composition. The monitor composition may contain, for example, between 20% and 98%, or between 40% and 70%, of the resin binder by weight.
The monitor composition optionally may include other ingredients such as colorants that do not change color during the sterilization process, resins that perform functions other than binding (e.g., providing water resistance or solvent dispersibility), or opacifying agents.
Prior to application to the substrate, the monitor composition is dissolved/dispersed in a suitable solvent (e.g., water or a lower-alkyl (C1-C4) alcohol like ethanol or isopropyl). Generally, anywhere from one to two parts of solvent to one part of the indicator composition may be used.
The substrate may be, for example, blotter paper, which typically has a neutral pH, polyester (e.g., Melinex Polyester film or crepe paper). The substrate may be in the form of a strips, having the indicator composition at one end; the other end can serve as a grip for the user. When the substrate is an absorbent material such as blotter paper, the grip portion of the strip may be laminated with a plastic outer surface to minimize the absorption of peracid or other sterilization components by the grip during the sterilization process.
The substrate may also have an adhesive on the bottom surface that allows the sterilization monitor to be used as a label or as tape. An example of a suitable polyester label is Copycode WH®, a white polyester with a printable topcoat manufactured by the Fasson Film Division of Avery-Dennison Co. A suitable masking tape includes crepe paper from Endura Products on an upper surface to carry the monitor composition.
The monitor composition may be applied to the substrate by any suitable technique. For example, the indicator composition may be applied to the substrate using dip coating or conventional printing techniques such as flexographic printing, extrusion printing, or gravure printing.
Examples 1 and 2 are examples of vapor phase sterilization monitors.
EXAMPLE 1
A monitor composition (in solvent) was prepared that contained the following ingredients:
Ingredient Quantity Supplier
Acid Yellow 073  3 Grams Spectra Dyes
Isopropyl Alcohol
50 Grams
Shellac Bleached 50 Grams Zehrung Corp.
Bone Dry (V-117)
Ethanol 50 Grams
Magnesium bromide 30 Grams Aldrich
The composition was prepared according to the following procedure. The shellac bleached bone dry is weighed into a 500 ml disposable plastic beaker. The ethyl alcohol is weighed into a separate 500 ml disposable plastic beaker. The beaker containing ethyl alcohol is placed under a disperser. While the disperser runs at a slow speed, the shellac bleached bone dry is added slowly to the beaker. Stirring continues until the resin has completely dissolved.
The isopropyl alcohol is weighed into a 100 ml beaker, and transferred to a #00 mill jar. The sodium salt of fluoroscein (acid yellow 73) is weighed into an aluminum pan, and also transferred to the #00 mill jar. In addition, the magnesium bromide is weighed into a 100 ml disposable beaker, and transferred to #00 mill jar. The ethanol solution then also is transferred to #00 mill jar and the mixture is ground for four hours to provide the indicator composition (in solution).
Swatches are made with indicator composition on blotter paper using an Acculab Jr. drawdown machine with #0 rod. A strip (approximately 3″×½″) was cut from the blotter paper, and hung inside a bottle containing 5% peracetic acid and 22% hydrogen peroxide. The monitor composition initially is yellow, but the color changes to red within 10 minutes as the peracetic acid contacts the indicator composition and causes the bromination of the acid yellow 73.
EXAMPLE 2
A monitor composition (in solvent) containing phenol red was prepared that contained the following ingredients:
Ingredient Quantity Supplier
Ethyl Alcohol 1000.00 grams (54.34%)
Phenol Red  20.00 grams (1.09%) Aldrich
Magnesium Bromide  200.00 grams (10.87%)
V-129*  600.00 grams (32.61%)
Shellac Bleached  20.00 grams (1.09%) Zehrung Corp.
Bone Dry (V-117)
*V-129 includes 9.3 grams of Methocel 50 CPS (from Dow Chemical), 9.3 grams of Methocel 4,000 CPS (from Dow Chemical), 348.84 grams of distilled water, and 232.56 grams of ethyl alcohol.
The composition was prepared and tested according to the following procedure. The phenol red is weighed into a 100 ml disposable plastic beaker, and transferred to #00 mill jar. The magnesium bromide is weighed into a 250 ml disposable plastic beaker, and also transferred to the #00 mill jar. The V-129 is weighed into a in 1000 ml disposable plastic beaker, and transferred to the #00 mill jar. In addition, the V-117 is weighed into a 100 ml disposable plastic beaker, and transferred to the #00 mill jar. Finally, the isopropyl alcohol is weighed into a 100 ml beaker, and also transferred to the #00 mill jar.
The mixture is ground in the mill jar for one hour to provide the monitor composition (in solution). Swatches of the monitor composition are made on blotter paper and on Kimdura synthetic paper using the Acculab Jr. drawdown machine with #0 rod. Strips (about 3″×½″) are cut and hung inside the bottle containing 5% peracetic acid and 22% hydrogen peroxide.
The monitor composition printed on Kimdura synthetic paper initially was yellow, but it turned from yellow to blue within 20 minutes at room temperature as the peracetic acid contacted the monitor composition and caused the bromination of the phenol red. The monitor composition printed on blotter paper also initially was yellow. It turned from yellow to green in 10 minutes at room temperature as the peracetic acid contacted the monitor composition and caused the bromination of the phenol red to form bromophenol blue.
The sterilization monitor can be used to monitor sterilization processes that use a peracid vapor. The peracid may be any of the conventional peracids known to be useful as sterilants. The peracids may contain, for example, between one and eight carbon atoms, may be saturated or unsaturated, may be halogenated, and may be non-aromatic or aromatic. Examples include performic acid, peracetic acid, perpropinoic acid, perbutanoic acid, etc.
The sterilization process may include, for example, exposure to an atmosphere containing at least 5% peracetic acid vapor for at least 10 minutes or 15 minutes. The sterilization process may be conducted at elevated (greater than 40° C.) temperatures. The sterilization process may include use of other sterilants (e.g., hydrogen peroxide) in addition to a peracid, or may include a plasma step that may, for example, involve a peracid. Of course, the sterilization process may not include a plasma step. Sterilization processes that include use of peracids are described, for example, in U.S. Pat. No. 5,084,239 and U.S. Pat. No. 5,244,629.
Examples of Sterilization Monitors for Liquid Phase Sterilization Processes
A preferred sterilization monitor for liquid phase sterilization processes also includes a monitor composition and a substrate.
The monitor composition undergoes a distinct color change when exposed to peracid liquid, e.g., peracetic acid. For example, the monitoring composition, carried on the substrate, may exhibit the distinct color change within a certain period of time (e.g., 1 second, 5 minutes, 15 minutes, or 2 hours) of exposure to a solution containing at least 1000 ppm of peracetic acid at 50° C. The color of the monitoring composition (prior to or after exposure to peracetic acid) preferably does not change or fade if left in a darkened environment, e.g., a drawer. The composition will fade, however, if exposed for an extended time, e.g. a month, to a lighted environment.
A preferred monitoring composition contains a dye, a halogen source, and a buffer.
The dye is susceptible to halogenation in the presence of a halogen source and peracid, and changes color as a result of the halogenation to provide an indication that peracid is present. Once halogenated, depending on the dye, peracid concentration, exposure temperature and exposure time, other reactions may take place which cause the halogenated dye to undergo a distinct color change that provides an indication of the concentration of the peracid in solution. For example, the halogenated dye may undergo further halogenation, or may undergo other chemical reactions, or may be pH sensitive.
Once halogenation and subsequent reactions are complete the color of the dye does not change if left exposed to normal air. As a result, assuming the dye is the only colorant in the monitoring composition, once halogenation and subsequent reactions of the dye are complete the color of the indicator composition is essentially fixed.
Examples of dyes that may be used include the salt or free acid of phenol red, cresol red, fluorescein, chlorophenol red, m-cresol purple, pyrogallol red, crystal violet lactone, 3,4,5,6-tetrabromophenol sulfone phthalein, 3′,3″,5′,5″-tetraiodophenol phthalein, 4,5,6,7-tetrachlorofluorescein, basic fuchsin, phenolphthalein, xylene cyanole FF, as well as other triphenylmethyl type dyes, fluorescein type dyes, and phenolphthalein type dyes. Other dyes include resorufin, indigo carmine, thionin, variamine blue, indophenol, neutral red, pararosaniline acetate, erioglaucine, malachite green oxalate, indigo, and bromocresol green.
A monitoring composition containing a bromine source and phenol red, for instance, in the presence of a solution containing 2000 ppm peracetic acid, will turn from red to blue. In the presence of a solution containing 5000 ppm peracetic acid, the monitoring composition will turn from red to yellow/lime green.
A sufficient quantity of the dye should be included in the monitoring composition to provide the desired color intensity. The quantity of the dye in the composition also will influence the rate at which the composition undergoes the distinct color change. The indicator composition may contain, for example, between 0.0001% and 10%, or between 0.01% and 5.0%, of the dye by weight.
The halogen source is preferably bromide and can be, for example, a halogen salt, such as alkaline earth metal halide salts (e.g., calcium bromide and magnesium bromide) or alkali metal halide salts (e.g., lithium bromide and potassium bromide). The halogen source can also be iodide (e.g, lithium iodide, calcium iodide, and magnesium iodide) or an ionic organic halide (e.g., tetra alkyl ammonium bromide or tetra alkyl ammonium iodide). A sufficient quantity of the halogen source should be included in the monitoring composition to react with a sufficient quantity of the dye to cause the color change at the desired rate. The monitoring composition may contain, for example, between 0.1% and 50%, or 10% and 30%, of the bromine source by weight.
The buffer component of the monitoring composition provides a more definite color change due to dye halogenation both by controlling the pH of the monitoring composition and by making the monitoring composition less sensitive to pH. The buffer, however, may not be necessary for the halogenation of the dye to occur and in some monitoring compositions, the buffer may not be a necessary component of the monitoring composition. One skilled in the art could determine, depending on the dye, if the monitoring composition should include a buffer component.
The buffer, if used, is preferably sodium acetate. Other buffers, e.g., phosphates, citrates and the like, which are known to those skilled in the art can be used. The monitor composition can contain 0.0% to 80% sodium acetate by weight. Preferably, the monitor composition when dissolved in a suitable solvent, e.g., water, contains enough sodium acetate to produce a one molar solution (8.2 grams in 100 grams of water).
The monitor composition optionally may include other ingredients such as colorants that do not change color during the sterilization process, resins that perform several functions (e.g., binding, providing water resistance or solvent dispersibility), or other common ink components and opacifying agents.
The components of the peracid monitor composition can be adjusted, e.g., increasing or decreasing their concentration in the composition, to monitor a peracetic acid liquid phase sterilization process to determine whether the sterilization process meets pre-determined parameters, e.g., exposure temperature, exposure peracid concentration, and exposure time. The pre-determined parameters include an exposure temperature between 0° C. and 100° C., an exposure peracid concentration between 100 ppm and 10000 ppm, and an exposure time between 1 second and 30 minutes. Preferably, the exposure temperature is between 20° C. and 60° C., the exposure peracetic acid concentration is between 1000 ppm and 5000 ppm, and the exposure time is between 1 second and 15 minutes. For example, the concentration of dye in the monitoring composition can be decreased to monitor a sterilization process with a decreased exposure time.
Prior to application to the substrate, the monitor composition is dissolved/dispersed in a suitable solvent (e.g., water). Generally, 10 parts of solvent to one part of the monitoring composition is used.
The substrate includes those described previously. Preferably the substrate is a filter paper, SS-410, supplied by Schleicher & Schuell located in New Hampshire.
The monitor composition may be applied to the substrate by conventional techniques, e.g., dip, draw down, or air knife coating, and the like.
When a monitor composition containing, for example, potassium bromide is contacted with a solution containing peracetic acid, bromine is generated. The bromine contacts the dye causing a first color change. The halogenated dye may undergo additional reactions depending on the dye, peracetic acid concentration, exposure temperature, and exposure time, which causes the monitoring composition to undergo a second color change that, e.g., may provide an indication of the concentration of the peracetic acid present in the solution.
Example 3 is an example of a liquid phase monitor composition. Example 4 is an example of a liquid phase sterilization monitor.
EXAMPLE 3
A monitor composition (in solvent) was prepared that contained the following ingredients:
Ingredient Quantity Supplier
Phenol Red, Sodium Salt 220 mg Aldrich
Potassium Bromide 2.0 Grams Aldrich
Sodium Acetate 8.2 Grams Aldrich
Distilled Water 100.0 Grams
The monitoring solution was tested by the following procedure. 5.0 ml of the above solution was added to 5.0 ml of each of the following solutions (concentrations are approximate):
Peracetic Acid Acetic Acid Hydrogen Peroxide
(a) 0000 ppm (distilled water control)
(b) 1000 ppm 1300 ppm 200 ppm
(c) 1500 ppm 2000 ppm 300 ppm
(d) 2000 ppm 2600 ppm 400 ppm
(e) 2500 ppm 3300 ppm 500 ppm
(f) 3000 ppm 4000 ppm 560 ppm
(g) 3500 ppm 4600 ppm 660 ppm
(h) 4000 ppm 5300 ppm 750 ppm
(i) 10000 ppm  13300 ppm  1900 ppm 
The initial color of the monitor solution is red. After addition of the solutions listed above, the color changes as follows:
Peracetic Acid Color Change
(a) 0000 ppm Red
(b) 1000 ppm Purple
(c) 1500 ppm Deep Blue
(d) 2000 ppm Deep Blue
(e) 2500 ppm Deep Blue
(f) 3000 ppm Yellow/Lime Green
(g) 3500 ppm Yellow/Lime Green
(h) 4000 ppm Yellow/Lime Green
(i) 10000 ppm  Yellow/Lime Green
The quantities of acetic acid and hydrogen peroxide reflect dilutions of the original peracetic acid solution with water. The composition worked best when the concentration of hydrogen peroxide in the solution is less than about 20% of the concentration of peracetic acid in the solution.
EXAMPLE 4
A monitor composition (in solvent) was prepared that contained the following ingredients:
Ingredient Quantity Supplier
Phenol Red, Sodium Salt 110 mg Aldrich
Potassium Bromide 2.0 Grams Aldrich
Sodium Acetate 8.2 Grams Aldrich
Distilled Water 100.0 Grams
The composition was prepared and tested according to the following procedure. The monitoring composition is measured and mixed in a acceptable vessel, e.g., beaker. The monitor solution is coated onto SS-410 paper in the following manner. The SS-410 paper is mounted into a plastic handle and dipped into the monitor solution for 30 seconds. The SS-410 paper is removed and the excess solution is allowed to drain off of the paper. The coated SS-410 paper is then dried in an oven for 30 minutes at 60° C. The dried strips are removed and left at room temperature and with normal exposure to light for 24 hours. One coated substrate is dipped for one second into the following solutions:
Peracetic Acid Acetic Acid Hydrogen Peroxide
(a) 0000 ppm (distilled water control)
(b) 1000 ppm 1300 ppm 200 ppm
(c) 1500 ppm 2000 ppm 300 ppm
(d) 2000 ppm 2600 ppm 400 ppm
(e) 2100 ppm 2800 ppm 400 ppm
(f) 2200 ppm 2900 ppm 400 ppm
(g) 2300 ppm 3100 ppm 400 ppm
(h) 2400 ppm 3200 ppm 500 ppm
(i) 2500 ppm 3300 ppm 500 ppm
(j) 2600 ppm 3500 ppm 500 ppm
(k) 2700 ppm 3600 ppm 500 ppm
(l) 2800 ppm 3700 ppm 500 ppm
(m) 2900 ppm 3900 ppm 500 ppm
(n) 3000 ppm 4000 ppm 560 ppm
(o) 3500 ppm 4600 ppm 660 ppm
(p) 4000 ppm 5300 ppm 750 ppm
(q) 10000 ppm  13300 ppm  1900 ppm 
Once removed, the excess solution is allowed to drain and the substrate is air dried. The color of the monitor composition on the dried substrate changes (initially) from red to deep blue at 1000 ppm of peracetic acid. The color change remains deep blue until the concentration of peracetic acid reaches about 2300 ppm at which point the color change begins to show traces of green. The color change is completely green with peracetic acid concentrations from 2600 to 2800 ppm. The color change remains green with peracetic acid concentrations greater than 2800 ppm up to at least 10,000 ppm.
The monitor compositions can be used to monitor sterilization processes that use liquid peracid solutions. The sterilization process can include, for example, exposure to a peracetic acid solution containing at least 1000 ppm (preferably 2000 ppm) peracetic acid liquid for at least 10 minutes or 15 minutes. Sterilization processes using peracetic acid solutions are described, for example, in U.S. Pat. No. 4,892,706, which is incorporated by reference herein. The sterilization process can be conducted at elevated (greater than 40° C.) temperatures. The sterilant solution used in the sterilization process can include, in addition to a peracid liquid, other liquid sterilants, e.g., hydrogen peroxide.
The liquid peracid may be any of the conventional peracids known to be useful as sterilants. The peracids may contain, for example, between one and eight carbon atoms, may be saturated or unsaturated, may be halogenated, and may be non-aromatic or aromatic. Examples include performic acid, peracetic acid, perpropinoic acid, perbutanoic acid, etc.
Examples of Sterilization Monitoring Devices
Sterilization monitors used to monitor vapor phase and liquid phase sterilization processes may be attached as a label to the item to be sterilized, used as masking tape to seal a package containing the item to be sterilized, or simply included in the sterilization chamber along with the item(s) to be sterilized. The sterilization process may involve, for example, sterilization of medical instruments (e.g., fiber optic devices, endoscopic equipment), gloves, linen, parenteral drugs, etc.
Sterilization monitors also can be included in a peracid vapor-permeable package, with or without the item(s) to be sterilized, creating a sterilization monitoring device.
A preferred sterilization monitoring device includes a housing and a monitor composition carried on a substrate.
Referring to the FIGURE, a sterilization monitoring device 10 includes a substrate 50 containing a monitor composition 51, a housing 20 having a durable transparent top 30, e.g., MYLAR™ polyester film coated with SURLYN™, polyvinylchloride (PVC) and glycol modified polyethylene terephthalate (PETG), defining a vapor head space 60, and a microporous bottom 40, e.g., GORE-TEX™, TYVEK™ and COTRAN™. Substrate 50 includes a laminated side 52, e.g. MYLAR™ polyester film coated with SURLYN™, which is mounted, e.g., taped, to microporous bottom 40. The monitor composition includes the components described previously. Durable transparent top 30 is sealed, e.g., heat sealed or glued, to microporous bottom 40 to enclose substrate 50 within vapor head space 60.
During a sterilization process, sterilization monitoring device 10 is submerged in a sterilant solution containing a peracid. The peracid vapor penetrates microporous bottom 40, enters vapor head space 60, and contacts monitor composition 51 of substrate 50 causing a color change of monitor composition 51, observable through transparent top 30.
The preferred sterilization monitoring device includes a laminated substrate chosen to inhibit peracid vapor from directly penetrating the microporous barrier and contacting the underside of the substrate. Direct penetration of the peracid vapor to the underside of the substrate may cause the monitor composition to undergo a distinct color change generally irrespective of peracid concentration, exposure time or sterilant temperature. The lamination provides a controlled color change by forcing the peracid vapor to first contact the monitor composition on the perimeter of the substrate causing a color change of the monitor composition. Then, as the peracid vapor fills the vapor head space, the peracid vapor contacts the monitor composition in the center of the substrate Causing a color change of the monitor composition. The location of color change of the monitor composition is used to monitor sterilization processes. For example, if the center of the substrate does not display a color change, the sterilization process did not meet pre-determined parameters. The pre-determined parameters, described above, include exposure temperature, exposure peracid concentration, and exposure time.
The vapor head space of the sterilization monitoring device allows the peracid vapor to equilibrate and to accurately monitor peracid sterilization processes for a given set of pre-determined parameters.
The preferred sterilization monitoring device includes a PVC or PETG top, a TYVEK™ microporous bottom, and a ⅝″ square piece of SS-410 filter paper laminated on one side. Preferably, the top defines a vapor head space of ⅜″ to ⅛″ above and to the sides of the substrate and is sealed to the tyvek microporous bottom.
Preferably the top is heat sealed to the bottom reducing the addition of further chemicals that may be added to the sterilization chamber by using a glue or epoxy. However, a properly chosen glue, e.g., Loctite 411 instant adhesive, can also be used.
A sterilization monitoring device including a monitor composition having a starting monitor composition color is immersed in a peracid solution of a sterilization process. As peracid vapor penetrates the vapor permeable bottom and fills the vapor head space, it contacts the monitor composition causing a color change of the monitor composition. The color change of the monitor composition proceeds from the perimeter of the device inward.
For example, a sterilization monitoring device including a monitor composition having phenol red and potassium bromide is immersed into a peracetic acid solution of a sterilization process. The starting color of the monitor composition is red. As peracetic acid vapor penetrates the vapor permeable bottom, a first dark blue color change of the monitor composition appears on the perimeter of the substrate. As exposure to peracetic acid continues, the dark blue color change moves inward toward the center of the coated substrate followed by a second color change, yellow-green (lime), which also begins at the perimeter of the substrate and moves inward. If the pre-determined parameters of the sterilization process have been met (e.g. 12 minutes, 2000 ppm peracetic acid, 54° C.), the entire monitor composition turns completely lime. If the pre-determined parameters have not been met, then a dark blue may remain in the center of the substrate surrounded by lime.
The sterilization monitoring device may also include an identification marker, e.g., a writable portion or tag, used to date and label the sterilization monitoring device, or that can be used as a record. The sterilization monitoring device may also include a monitor composition including a buffer, halogen source, and colorant which replicates and/or is substantially parallel to and/or substantially mimics the response of biological indicators, e.g., Bacillus Stearothermophulus, to a sterilization process.
Many of the materials used to construct the sterilization monitoring device are easily obtained. TYVEK™ 1025D is a spunbonded olefin available from the E. I. Du Pont De Nemours and Company, located in Wilmington, Del. MYLAR™ is a polyester film coated with SURLYN™, a ethylene/methacrylic acid ionomer resin, supplied from the Donahue-Corry Associates, located in Dover, Mass. (MYLAR™ and SURLYN™ are trademarks of E. I. Du Pont De Nemours and Company). COLTRAN™ is a microporous polyethylene film available from the Minnesota Mining and Manufacturing Company, located in St. Paul, Minn. GORE-TEX™ is a fabric available from W. L. Gore and associates, Inc., located in Newark, Del.
Example 5 and 6 are examples of sterilization monitoring devices.
EXAMPLE 5
The same monitor composition as used in Example 3 is coated onto ⅝″ square 0.01″ thick pieces of SS-410 filter paper having one laminated side. The SS-410 paper is mounted into a plastic handle and dipped into the monitor solution for 30 seconds. The SS-410 paper is removed and the excess solution is allowed to drain off of the paper. The coated SS-410 paper is then dried in an oven for 30 minutes at 60° C. The dried strips are removed and left at room temperature and with normal exposure to light for 24 hours.
The laminated side of the coated paper is taped, e.g., double sided, to the center of a 2″ square 0.01″ thick piece of TYVEK™ type 101025 D spunbonded olefin, available from E. I. Du Pont De Nemours and Company, located in Wilmington, Del. The substrate is enclosed within the sterilization monitoring device by the following manner. A 2″ square 0.01″ piece of PVC, PJN-9708623, supplied by Perfecseal located in Minnesota, having a central 1″ square ⅜″ deep vapor head space is glued, using Loctite 411 instant adhesive, to the TYVEK™.
Seven devices made by the procedure described above were placed in a 2 liter beaker containing variable concentrations of peracetic acid for various times and temperatures.
For 12 minutes at 54° C., submerged in 2000 ppm peracetic acid, 3 devices in tandem showed the following results:
Device % Change to Final Color (Lime)
a   100%
b 95-100%
c 90-100%
For 12 minutes in 1500 ppm peracetic acid at 54° C., two devices showed the following results.
Device % Change to Final Color (Lime)
d   50%
e 50-60%
For 12 minutes in 2500 ppm peracetic acid at 54° C., two devices showed the following results.
Device % Change to Final Color (Lime)
f 100%
g 100%
Devices b and c were left for longer times at 2000 ppm peracetic acid and 54° C. and both turned 100% lime. Exposing the devices to shorter times or lower ppm peracetic acid produce substantially less lime. Higher temperatures show more lime as does higher concentration of peracetic acid. As a result, the device may be used to monitor the effects of pre-determined parameters, e.g., peracetic acid concentration, time of exposure, and temperature of sterilant solution.
EXAMPLE 6
The same monitor composition as used in Example 3 is prepared. The pH of the monitor composition is measured as 7.5. The monitor composition having is then coated onto two pieces of SS-410 filter paper and each substrate is mounted in a sterilization monitoring device as described in Example 5.
A second monitor composition as used in Example 3 is prepared. The pH of the monitor composition is measured as 7.5. A 0.1 N NaOH solution is added to the composition raising the pH to 10. The monitor composition is then coated onto two pieces of SS-410 filter paper and each substrate is mounted in a sterilization monitoring device as described in Example 5.
At 54° C., submerged in 2000 ppm peracetic acid, one device made with a substrate having a monitor composition with a pH of 7.5, in tandem with one device made with a substrate having a monitoring composition with a pH of 10, showed the following results:
Device % Change to Final Color (Lime)
pH 7.5 100% with an 11 minute exposure
pH
10 100% with an 12 minute exposure
For 12 minutes at 54° C., submerged in 2000 ppm peracetic acid, 2 other devices in tandem showed the following results:
Device % Change to Final Color (Lime)
pH 7.5  95%
pH
10 100%
In other embodiments, a sterilization monitoring device includes a monitor composition and a multiple housing, i.e., one housing, as described above, enclosing another. The monitor composition is preferably a liquid, such as the monitor composition from Example 3.
Other embodiments are within the claims.

Claims (29)

What is claimed is:
1. A method of monitoring a sterilization process including the use of a liquid peracid sterilant, comprising
exposing a monitor composition including a colorant susceptible to halogenation and a halogen source to a liquid peracid during a sterilization process, wherein the liquid peracid contacts the halogen source to produce halogen which halogenates the colorant to cause a color change in the composition, wherein said sterilization process is monitored by detecting the distinct color change in the composition.
2. The method of claim 1, wherein said halogenated colorant is susceptible to additional reactions which cause the monitor composition te undergoes a distinct color change dependent upon the concentration of acid present during the sterilization process, exposure time, and exposure temperature.
3. The method of claim 1, wherein said colorant comprises a dye.
4. The method of claim 1, wherein said monitor composition is carried on a substrate.
5. The method of claim 1, wherein the sterilization process includes the use of a sterilization solution including a peracid, wherein the concentration of peracid in the sterilization solution is at least 1000 ppm.
6. The method of claim 1, wherein said colorant comprises phenol red or a salt of phenol red.
7. The method of claim 1, wherein said colorant is selected from the group consisting of cresol red, fluorescein, chlorophenol red, m-cresol purple, pyrogallol red, crystal violet lactone, 3,4,5,6-tetrabromophenol, 3′,3″,5′,5″-tetraiodophenol phthalein, 4,5,6,7-tetrachlorofluorescein, basic fuchsin, phenolphthalein, xylene cyanole FF, resorufin, indigo carmine, thionin, variamine blue, indophenol, neutral red, pararosaniline acetate, erioglaucine, malachite green oxalate, indigo, bromocresol green.
8. The method of claim 1, wherein said colorant comprises phenol red and said halogen source comprises potassium bromide.
9. The method of claim 1, wherein the exposure occurs during a sterilization process.
10. The method of claim 9, wherein said monitor composition is exposed to the peracid for at least 1 minute.
11. The method of claim 1, wherein the monitor composition is exposed to the peracid for at least 1 second.
12. The method of claim 11, wherein the sterilization process includes the use of a sterilization solution including a peracid, and wherein the concentration of the peracid in the sterilization solution is at least 1000 ppm and the monitor composition is contacted with the sterilization solution.
13. The method of claim 1, wherein said halogen source comprises an alkali halide salt.
14. The method of claim 13, wherein said salt comprises potassium bromide.
15. The method of claim 1, wherein said monitor composition further comprises a buffer.
16. The method of claim 15, wherein said buffer comprises sodium acetate.
17. A method of monitoring a sterilization process that uses a liquid peracid sterilant, comprising
contacting a sterilization monitoring device with a liquid peracid from a sterilization solution during the sterilization process, and sterilization monitoring device including a vapor barrier wherein peracid vapor from the liquid sterilant penetrates the vapor barrier and contacts a monitor composition in the sterilization monitoring device,
wherein the monitor composition includes a colorant susceptible to halogenation and a halogen source, and the peracid contacts the halogen source to produce halogen which halogenates the colorant to cause a distinct color change in the composition, and wherein the sterilization process is monitored by detecting the distinct color change in the composition.
18. The method of claim 17, wherein said halogenated colorant is susceptible to additional reactions which cause the monitoring composition to undergo a distinct color change that provides an indication if the sterilization process meets pre-determined sterilization parameters.
19. The method of claim 17, wherein said peracid is peracetic acid.
20. The method of claim 17, wherein said colorant is phenol red and said halogen source is potassium bromide.
21. The method of claim 17, wherein said monitor composition further comprises a buffer.
22. A sterilization monitoring device comprising a housing including a vapor permeable barrier and a monitor composition enclosed within the housing, the monitor composition including a halogen source and a colorant susceptible to halogenation in the presence of a peracid, wherein the peracid contacts the halogen source to produce halogen which halogenates the colorant to cause a color change in the composition.
23. The sterilization monitoring device of claim 22, wherein said colorant comprises phenol red or its alkali salt.
24. The sterilization monitoring device of claim 22, wherein said colorant is selected from the group consisting of cresol red, fluorescein, chlorophenol red, m-cresol purple, pyrogallol red, crystal violet lactone, 3,4,5,6-tetrabromophenol, 3′,3″,5′,5″-tetraiodophenol phthalein, 4,5,6,7-tetrachlorofluorescein, basic fuchsin, phenolphthalein, xylene cyanole FF, resorufin, indigo carmine, thionin, variamine blue, indophenol, neutral red, pararosaniline acetate, erioglaucine, malachite green oxalate, indigo, bromocresol green.
25. The sterilization monitoring device of claim 22, wherein said colorant comprises phenol red and said halogen source comprises potassium bromide.
26. The sterilization monitoring device of claim 22, wherein said halogen source comprises an alkali halide salt.
27. The sterilization monitoring device of claim 26, wherein said salt comprises potassium bromide.
28. The sterilization monitoring device of claim 22, wherein said monitor composition further comprises a buffer.
29. The sterilization monitoring device of claim 28, wherein said buffer comprises sodium acetate.
US09/921,065 1997-06-25 2001-08-02 Sterilization monitors and method of use Expired - Fee Related US6706537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/921,065 US6706537B2 (en) 1997-06-25 2001-08-02 Sterilization monitors and method of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88263097A 1997-06-25 1997-06-25
US09/019,341 US6287518B1 (en) 1997-06-25 1998-02-05 Sterilization monitors
US09/921,065 US6706537B2 (en) 1997-06-25 2001-08-02 Sterilization monitors and method of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/019,341 Division US6287518B1 (en) 1997-06-25 1998-02-05 Sterilization monitors

Publications (2)

Publication Number Publication Date
US20030207453A1 US20030207453A1 (en) 2003-11-06
US6706537B2 true US6706537B2 (en) 2004-03-16

Family

ID=26692121

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/019,341 Expired - Fee Related US6287518B1 (en) 1997-06-25 1998-02-05 Sterilization monitors
US09/477,978 Expired - Lifetime US6346417B1 (en) 1997-06-25 2000-01-05 Sterilization monitors
US09/477,859 Expired - Fee Related US6440744B1 (en) 1997-06-25 2000-01-05 Sterilization monitoring method
US09/921,065 Expired - Fee Related US6706537B2 (en) 1997-06-25 2001-08-02 Sterilization monitors and method of use

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/019,341 Expired - Fee Related US6287518B1 (en) 1997-06-25 1998-02-05 Sterilization monitors
US09/477,978 Expired - Lifetime US6346417B1 (en) 1997-06-25 2000-01-05 Sterilization monitors
US09/477,859 Expired - Fee Related US6440744B1 (en) 1997-06-25 2000-01-05 Sterilization monitoring method

Country Status (7)

Country Link
US (4) US6287518B1 (en)
EP (1) EP0991432B1 (en)
AU (1) AU729771B2 (en)
CA (1) CA2292672A1 (en)
DE (1) DE69828606D1 (en)
ES (1) ES2235339T3 (en)
WO (1) WO1998058683A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084977A1 (en) * 2003-10-16 2005-04-21 Kimberly-Clark Worldwide, Inc. Method and device for detecting ammonia odors and helicobacter pylori urease infection
US20050085739A1 (en) * 2003-10-16 2005-04-21 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US20080021381A1 (en) * 2006-07-20 2008-01-24 Baxter International Inc. Medical fluid access device with antiseptic indicator
US20080021392A1 (en) * 2006-07-20 2008-01-24 Lurvey Kent L Medical fluid access site with antiseptic indicator
US20080295561A1 (en) * 2007-05-26 2008-12-04 Hideyuki Miyahara Method of forming a recess in a work
US9125973B2 (en) 2007-07-20 2015-09-08 Baxter International Inc. Antimicrobial housing and cover for a medical device
USRE47452E1 (en) 2007-07-20 2019-06-25 Baxter International Inc. Antimicrobial housing and cover for a medical device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287518B1 (en) * 1997-06-25 2001-09-11 3M Innovative Properties Company Sterilization monitors
US6355448B1 (en) * 1998-06-02 2002-03-12 3M Innovative Properties Company Sterilization indicator with chemically stabilized enzyme
US7045343B2 (en) * 1998-06-02 2006-05-16 3M Innovative Properties Company Sterilization indicator test packs
CA2369492A1 (en) * 1999-04-13 2000-10-19 Gordhanbhai N. Patel Indicators for monitoring sterilization with plasma
US6942989B2 (en) * 1999-05-03 2005-09-13 Icf Technologies, Inc. Methods, compositions and kits for biological indicator of sterilization
US20040106167A1 (en) * 1999-05-03 2004-06-03 Icf Technologies, Inc. Methods for evaluating sterilization procedures using a biological indicator
US7326562B2 (en) * 1999-05-03 2008-02-05 Icf Technologies, Inc. Biological indicator system to detect effectiveness of sterilization
US6749807B1 (en) * 1999-05-19 2004-06-15 Steris Corporation Flow through chemical indicator for measurement of active biocidal agents in a single use package
JP2003519777A (en) * 1999-06-08 2003-06-24 パテル,ゴードハンハイ,エヌ. Dosimeter for sterilization using ethylene oxide
US6884394B1 (en) 1999-08-05 2005-04-26 3M Innovative Properties Company Chemical indicator reader
US6485979B1 (en) 1999-08-05 2002-11-26 3M Innovative Properties Company Electronic system for tracking and monitoring articles to be sterilized and associated method
CA2378555A1 (en) * 1999-08-06 2001-02-15 Gordhanbhai N. Patel Dosimeter for sterilization with ethylene oxide
US6790411B1 (en) * 1999-12-02 2004-09-14 3M Innovative Properties Company Hydrogen peroxide indicator and method
JP4212746B2 (en) * 2000-02-02 2009-01-21 日本エア・リキード株式会社 Halogen compound detoxification tower and detection method
CA2311509C (en) * 2000-06-14 2008-11-25 Technologies Of Sterilization With Ozone Ts03 Inc. Method of monitoring sterilization and indicator therefor
JP3418937B2 (en) * 2000-06-29 2003-06-23 株式会社ホギメディカル Indicator for plasma sterilization
US6534006B2 (en) * 2000-08-04 2003-03-18 3M Innovative Properties Company Chemical indicator for determining the adequacy of a liquid sterilization process
ATE308348T1 (en) * 2000-08-04 2005-11-15 3M Innovative Properties Co STERILIZATION INDICATOR
DE60227547D1 (en) * 2001-09-15 2008-08-21 Icf Technologies Inc KITS AND METHOD FOR DETERMINING THE EFFECTIVENESS OF STERILIZATION OR DISINFECTION PROCEDURES
AU2002358964A1 (en) * 2001-12-19 2003-06-30 Uriel Bachrach A device for monitoring a predetermined temperature
US7192554B2 (en) * 2001-12-31 2007-03-20 3M Innovative Properties Company Hydrogen peroxide and peracetic acid indicators and methods
US7186373B2 (en) * 2003-07-22 2007-03-06 Steris Inc. Visual detector for vaporized hydrogen peroxide
GB0414222D0 (en) * 2004-06-24 2004-07-28 Univ Cardiff pH sensor
US20060218994A1 (en) * 2005-03-31 2006-10-05 Szu-Min Lin Monitoring of cleaning process
MXPA05011978A (en) * 2005-11-04 2007-05-03 Grupo P I Mabe Sa De C V Non-woven fabric that acts as an indicator.
US8091568B2 (en) * 2006-08-16 2012-01-10 Novartis Ag Temporal photo-bleaching of colored lens care solutions and use thereof
US7850925B2 (en) * 2007-06-15 2010-12-14 American Sterilizer Company Apparatus for removal of vaporized hydrogen peroxide from a region
RU2458324C2 (en) * 2010-10-25 2012-08-10 Федеральное государственное учреждение науки "Екатеринбургский научно-исследовательский институт вирусных инфекций" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Method for producing saturated steam sterilisation indicator
US9244013B2 (en) * 2012-06-29 2016-01-26 Johnson & Johnson Vision Care, Inc. Method of quantifying UV disinfecting doses applied to an ophthalmic lens using indicators
WO2014150048A1 (en) * 2013-03-15 2014-09-25 3M Innovative Properties Company Post-steam sterilization moisture-indicating articles
US12012574B2 (en) * 2013-11-11 2024-06-18 Whiteley Corporation Pty. Ltd. Process for removing dry surface biofilm
AU2014346334B2 (en) * 2013-11-11 2017-01-05 Whiteley Corporation Pty Ltd Disinfectant composition
WO2017151901A1 (en) * 2016-03-04 2017-09-08 Instructive Color, Llc Medical surfaces indicating sterilization or disinfection, and methods of making and using the same
US20190175776A1 (en) * 2017-12-11 2019-06-13 Microban Products Company Indicator and detection composition for disinfection compliance monitoring, indicator and detection system and method of using

Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3098751A (en) 1960-07-18 1963-07-23 Aseptic Thermo Indicator Compa Printing ink composition for ethylene oxide sterilization indicators
US3183173A (en) 1963-06-10 1965-05-11 Miles Lab Test composition for detecting hydrogen peroxide
US3627469A (en) 1970-04-27 1971-12-14 Kendall & Co Exposure and sterilization indicators comprising substituted pyridines quinolines and/or isoquinolines
US3627698A (en) 1970-03-20 1971-12-14 Boehringer Mannheim Gmbh Hydroperoxide diagnostic agents containing a chromogen indicator
US3654179A (en) 1971-03-01 1972-04-04 Miles Lab Indicator for detecting hydrogen peroxide and peroxidative compounds containing bindschedler's green
US3654180A (en) 1971-03-01 1972-04-04 Miles Lab Indicator for detecting hydrogen peroxide and peroxidative compounds containing alpha naphthoflavone
US3667916A (en) 1970-11-17 1972-06-06 Johnson & Johnson Sterilization indicator
US3704096A (en) 1970-10-16 1972-11-28 Pollution Control Ind Inc Sterilizing package and method and means for sterilizing an article and thereafter checking its sterility
US3862824A (en) 1974-05-30 1975-01-28 Arthur William Chapman Means for indicating completion of sterilisation processes
US3899295A (en) 1973-11-23 1975-08-12 Bio Medical Sciences Inc Integrity indicator
US4042336A (en) 1974-05-14 1977-08-16 Bio-Medical Sciences Inc. Time temperature integrating indicator
US4091921A (en) 1975-08-21 1978-05-30 Faser Industries Sterilizable package and method
US4138216A (en) 1977-12-23 1979-02-06 Bio-Medical Sciences, Inc. Device for monitoring ethylene oxide sterilization process
US4145186A (en) 1976-10-04 1979-03-20 H. W. Andersen Products Inc. Sterilization detection device and method
US4168779A (en) 1976-11-22 1979-09-25 Toppan Printing Co., Ltd. Package for sterilization
US4206844A (en) 1977-01-04 1980-06-10 Toppan Printing Co., Ltd. Package for a sterilized material
EP0014447A1 (en) 1979-02-05 1980-08-20 Arvey Corporation Sterilization pouch with insertable sterilization indicator
US4240926A (en) 1979-02-26 1980-12-23 Akzona Incorporated Sterilization indicator
US4314344A (en) 1980-01-31 1982-02-02 Dasibi Environmental Corporation Method and apparatus for generating selected gas concentrations
US4328182A (en) 1979-10-24 1982-05-04 Albert Browne Limited Sterilization indicators containing amino acid(s) and pH indicator
US4407960A (en) 1980-06-25 1983-10-04 American Sterilizer Company Visual chemical indicating composition for monitoring sterilization
US4416984A (en) 1981-05-22 1983-11-22 Concord Laboratories, Inc. Sterilization indicator
US4448548A (en) 1979-06-11 1984-05-15 Pymah Corporation Steam sterilization indicator
US4461837A (en) 1981-09-30 1984-07-24 American Sterilizer Company Contamination-free sterilization indicating system
US4521376A (en) 1983-06-13 1985-06-04 Info-Chem Inc. Glutaraldehyde indicator
US4579823A (en) 1983-09-27 1986-04-01 Ryder International Corporation Sterilization indicator
US4596773A (en) 1981-05-22 1986-06-24 Concord Laboratories, Inc. Sterilization indicator
US4643876A (en) 1985-06-21 1987-02-17 Surgikos, Inc. Hydrogen peroxide plasma sterilization system
US4671936A (en) 1982-12-30 1987-06-09 American Sterilizer Company Ethylene oxide sterilization and aeration indicator
US4673635A (en) 1984-03-02 1987-06-16 Wako Pure Chemical Industries Ltd. Triphenyl methane derivatives and method of quantitatively measuring an oxidative substance
US4717661A (en) 1986-01-21 1988-01-05 Castle Company Biological indicator for sterilization processes
US4741437A (en) 1983-01-31 1988-05-03 North American Science Associates Inc. Self-contained indicator device
US4756882A (en) 1985-06-21 1988-07-12 Surgikos Inc. Hydrogen peroxide plasma sterilization system
US4828797A (en) 1986-06-24 1989-05-09 Edward Weck Incorporated EO biological test pack
US4839291A (en) 1987-05-15 1989-06-13 American Sterilizer Company Disposable biological indicator test pack for monitoring steam and ethylene oxide sterilization cycles
US4885253A (en) 1989-03-27 1989-12-05 Steris Corporation Universal biological indicator system
US4935371A (en) 1986-12-31 1990-06-19 American Sterilizer Company Sterilizable gas permeable container for use in culturing living cells
EP0421760A1 (en) 1989-10-03 1991-04-10 JOHNSON & JOHNSON MEDICAL, INC. Sterilizer test pack
US5057434A (en) * 1989-08-29 1991-10-15 Lifelines Technology, Inc. Multifunctional time-temperature indicator
US5073488A (en) 1988-11-29 1991-12-17 Minnesota Mining And Manufacturing Company Rapid method for determining efficacy of a sterilization cycle and rapid read-out biological indicator
US5084239A (en) 1990-08-31 1992-01-28 Abtox, Inc. Plasma sterilizing process with pulsed antimicrobial agent treatment
US5139957A (en) 1990-05-24 1992-08-18 American Sterilizer Company Chemical indicator that includes potassium dichromate and urea and method of using the same to detect hydrogen peroxide
US5167923A (en) 1989-09-28 1992-12-01 Pymah Corporation Sterility indicator
WO1993016386A1 (en) 1992-02-10 1993-08-19 Actimed Laboratories, Inc. Method for immobilizing dye on substrates
US5244629A (en) 1990-08-31 1993-09-14 Caputo Ross A Plasma sterilizing process with pulsed antimicrobial agent pretreatment
US5260023A (en) 1991-05-07 1993-11-09 Everseal Preservation Labs, Inc. System and method for preserving acid-containing articles
US5260656A (en) 1992-03-31 1993-11-09 Bruker Instruments, Inc. Method for improving the resolution of solid-state NMR multiple-pulse imaging systems
US5337496A (en) 1986-10-29 1994-08-16 Enviro-Gro Technologies Sludge treatment process
US5344017A (en) 1993-08-13 1994-09-06 Wittrock Paul M Instrument pouch with in-pouch sterile processing indicator
US5389336A (en) 1993-02-04 1995-02-14 American Sterilizer Company Method of decontaminating a chamber that has movable shelves
WO1995006134A1 (en) 1993-08-25 1995-03-02 Abtox, Inc. Bacillus circulans based biological indicator for gaseous sterilants
US5451372A (en) 1993-08-20 1995-09-19 Pymah Corporation Device for monitoring sterilization process utilizing 100% ethylene oxide
US5482684A (en) 1994-05-03 1996-01-09 Abtox, Inc. Vessel useful for monitoring plasma sterilizing processes
EP0707186A1 (en) 1994-10-11 1996-04-17 JOHNSON & JOHNSON MEDICAL, INC. Plasma-enhanced vacuum drying
US5516648A (en) 1994-08-18 1996-05-14 Steris Corporation Encapsulated biological indicator
US5518927A (en) 1994-08-17 1996-05-21 Steris Corporation Instrument sterilation life-span indicator
US5552320A (en) 1993-08-09 1996-09-03 Johnson & Johnson Medical, Inc. Self-contained biological indicator
WO1996033242A2 (en) 1995-04-19 1996-10-24 North American Science Associates, Inc. Indicator ink compositions
US6287518B1 (en) * 1997-06-25 2001-09-11 3M Innovative Properties Company Sterilization monitors

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE364117B (en) 1969-06-05 1974-02-11 Minnesota Mining & Mfg
GB1411287A (en) 1972-07-12 1975-10-22 Agfa Gevaert Liquid electrophotographic developers
US4165399A (en) 1975-11-24 1979-08-21 American Can Company Binderless ink for jet printing
US4179397A (en) 1978-05-22 1979-12-18 American Can Company Indicator ink
US4188437A (en) 1978-05-25 1980-02-12 American Can Company Thermotropic adhesive tape
US4155895A (en) 1978-05-30 1979-05-22 American Can Company Thermotropic ink
US4166044A (en) 1978-05-30 1979-08-28 American Can Company Binderless thermotropic jet ink
US4195058A (en) * 1978-08-30 1980-03-25 Allied Chemical Corporation Vapor permeation time-temperature indicator
FR2508317B1 (en) 1981-06-26 1986-07-25 Charvin Guy STERILIZATION INDICATOR
US4756758A (en) 1987-04-24 1988-07-12 Videojet Systems International, Inc. Thermochromic jet ink
US4898762A (en) 1988-07-01 1990-02-06 Minnesota Mining And Manufacturing Company Easy tear sterilization indicator tape
DD268396A1 (en) 1988-01-19 1989-05-31 Erfurt Medizinische Akademie METHOD AND DEVICE FOR STERILIZING OR DISINFECTING OBJECTS
DD273776A1 (en) 1988-07-06 1989-11-29 Erfurt Medizinische Akademie CONTROL INDICATOR FOR GAS STERILIZATION
JPH0297575A (en) 1988-09-30 1990-04-10 Sakura Color Prod Corp Sterilization-indicating ink composition for ink jet recording
US5039492A (en) * 1989-01-27 1991-08-13 Metricor, Inc. Optical pH and gas concentration sensor
GB9002856D0 (en) * 1990-02-08 1990-04-04 Alcan Int Ltd Fluid detection device
US5254473A (en) * 1990-03-16 1993-10-19 Jp Laboratories Solid state device for monitoring integral values of time and temperature of storage of perishables
DE9004818U1 (en) 1990-04-27 1990-07-05 Vereinigte Papierwarenfabriken GmbH, 8000 München label
RU1817022C (en) * 1991-03-12 1993-05-23 Ереванское Отделение Неорганических Материалов "Иреа" Indicating composition for quantitative determination of chlorine in air
US5316575A (en) 1992-10-08 1994-05-31 Videojet Systems, International, Inc. Pigmented, low volatile organic compound, ink jet composition and method
US5620656A (en) 1993-08-25 1997-04-15 Abtox, Inc. Packaging systems for peracid sterilization processes
US5377496A (en) 1993-10-05 1995-01-03 Carrier Corporation Refrigeration system with installed acid contamination indicator
AU1999495A (en) * 1994-03-15 1995-10-03 Abtox, Inc. Packaging systems for peracid sterilization processes
US5483819A (en) * 1994-05-27 1996-01-16 W.R. Grace & Co.-Conn. Method of detecting the permeability of an object to oxygen
GB9417607D0 (en) * 1994-09-02 1994-10-19 Lucas Ind Plc Fuel filter
US5732529A (en) 1996-03-29 1998-03-31 Ethicon, Inc. Apparatus for feeding foil stock in a process for making sealed sterile packages
US5623810A (en) 1996-03-29 1997-04-29 Ethicon, Inc. Method for making sterile suture packages
ES2244058T3 (en) 1997-04-17 2005-12-01 Ethicon, Inc. CHEMICAL INDICATOR AND ITS USE.
US6238623B1 (en) * 1997-05-21 2001-05-29 3M Innovative Properties Company Labels and tracking systems for sterilization procedures
US5882611A (en) 1997-06-02 1999-03-16 Ethicon, Inc. Cassette and delivery system
US5887716A (en) 1997-06-02 1999-03-30 Johnson & Johnson Medical, Inc. Liquid sterilant cassette and indicia system
US5942438A (en) 1997-11-07 1999-08-24 Johnson & Johnson Medical, Inc. Chemical indicator for oxidation-type sterilization processes using bleachable dyes

Patent Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3098751A (en) 1960-07-18 1963-07-23 Aseptic Thermo Indicator Compa Printing ink composition for ethylene oxide sterilization indicators
US3183173A (en) 1963-06-10 1965-05-11 Miles Lab Test composition for detecting hydrogen peroxide
US3627698A (en) 1970-03-20 1971-12-14 Boehringer Mannheim Gmbh Hydroperoxide diagnostic agents containing a chromogen indicator
US3627469A (en) 1970-04-27 1971-12-14 Kendall & Co Exposure and sterilization indicators comprising substituted pyridines quinolines and/or isoquinolines
US3704096A (en) 1970-10-16 1972-11-28 Pollution Control Ind Inc Sterilizing package and method and means for sterilizing an article and thereafter checking its sterility
US3667916A (en) 1970-11-17 1972-06-06 Johnson & Johnson Sterilization indicator
US3654180A (en) 1971-03-01 1972-04-04 Miles Lab Indicator for detecting hydrogen peroxide and peroxidative compounds containing alpha naphthoflavone
US3654179A (en) 1971-03-01 1972-04-04 Miles Lab Indicator for detecting hydrogen peroxide and peroxidative compounds containing bindschedler's green
US3899295A (en) 1973-11-23 1975-08-12 Bio Medical Sciences Inc Integrity indicator
US4098577A (en) 1973-11-23 1978-07-04 Bio-Medical Sciences Inc. Method and indicator for detecting the loss of integrity of a package
US4042336A (en) 1974-05-14 1977-08-16 Bio-Medical Sciences Inc. Time temperature integrating indicator
US3862824A (en) 1974-05-30 1975-01-28 Arthur William Chapman Means for indicating completion of sterilisation processes
US4091921A (en) 1975-08-21 1978-05-30 Faser Industries Sterilizable package and method
US4145186A (en) 1976-10-04 1979-03-20 H. W. Andersen Products Inc. Sterilization detection device and method
US4168779A (en) 1976-11-22 1979-09-25 Toppan Printing Co., Ltd. Package for sterilization
US4206844A (en) 1977-01-04 1980-06-10 Toppan Printing Co., Ltd. Package for a sterilized material
US4138216A (en) 1977-12-23 1979-02-06 Bio-Medical Sciences, Inc. Device for monitoring ethylene oxide sterilization process
US4138216B1 (en) 1977-12-23 1997-06-17 Info Chem Inc Device for monitoring ethylene oxide sterilization process
EP0014447A1 (en) 1979-02-05 1980-08-20 Arvey Corporation Sterilization pouch with insertable sterilization indicator
US4240926A (en) 1979-02-26 1980-12-23 Akzona Incorporated Sterilization indicator
US4448548A (en) 1979-06-11 1984-05-15 Pymah Corporation Steam sterilization indicator
US4328182A (en) 1979-10-24 1982-05-04 Albert Browne Limited Sterilization indicators containing amino acid(s) and pH indicator
US4314344A (en) 1980-01-31 1982-02-02 Dasibi Environmental Corporation Method and apparatus for generating selected gas concentrations
US4407960A (en) 1980-06-25 1983-10-04 American Sterilizer Company Visual chemical indicating composition for monitoring sterilization
US4416984A (en) 1981-05-22 1983-11-22 Concord Laboratories, Inc. Sterilization indicator
US4596773A (en) 1981-05-22 1986-06-24 Concord Laboratories, Inc. Sterilization indicator
US4461837A (en) 1981-09-30 1984-07-24 American Sterilizer Company Contamination-free sterilization indicating system
US4671936A (en) 1982-12-30 1987-06-09 American Sterilizer Company Ethylene oxide sterilization and aeration indicator
US4741437A (en) 1983-01-31 1988-05-03 North American Science Associates Inc. Self-contained indicator device
US4521376A (en) 1983-06-13 1985-06-04 Info-Chem Inc. Glutaraldehyde indicator
US4579823A (en) 1983-09-27 1986-04-01 Ryder International Corporation Sterilization indicator
US4673635A (en) 1984-03-02 1987-06-16 Wako Pure Chemical Industries Ltd. Triphenyl methane derivatives and method of quantitatively measuring an oxidative substance
US4756882A (en) 1985-06-21 1988-07-12 Surgikos Inc. Hydrogen peroxide plasma sterilization system
US4643876A (en) 1985-06-21 1987-02-17 Surgikos, Inc. Hydrogen peroxide plasma sterilization system
US4717661A (en) 1986-01-21 1988-01-05 Castle Company Biological indicator for sterilization processes
US4828797A (en) 1986-06-24 1989-05-09 Edward Weck Incorporated EO biological test pack
US5337496A (en) 1986-10-29 1994-08-16 Enviro-Gro Technologies Sludge treatment process
US4935371A (en) 1986-12-31 1990-06-19 American Sterilizer Company Sterilizable gas permeable container for use in culturing living cells
US4839291A (en) 1987-05-15 1989-06-13 American Sterilizer Company Disposable biological indicator test pack for monitoring steam and ethylene oxide sterilization cycles
US5073488A (en) 1988-11-29 1991-12-17 Minnesota Mining And Manufacturing Company Rapid method for determining efficacy of a sterilization cycle and rapid read-out biological indicator
US4885253A (en) 1989-03-27 1989-12-05 Steris Corporation Universal biological indicator system
US5057434A (en) * 1989-08-29 1991-10-15 Lifelines Technology, Inc. Multifunctional time-temperature indicator
US5167923A (en) 1989-09-28 1992-12-01 Pymah Corporation Sterility indicator
EP0421760A1 (en) 1989-10-03 1991-04-10 JOHNSON & JOHNSON MEDICAL, INC. Sterilizer test pack
US5139957A (en) 1990-05-24 1992-08-18 American Sterilizer Company Chemical indicator that includes potassium dichromate and urea and method of using the same to detect hydrogen peroxide
US5084239A (en) 1990-08-31 1992-01-28 Abtox, Inc. Plasma sterilizing process with pulsed antimicrobial agent treatment
US5244629A (en) 1990-08-31 1993-09-14 Caputo Ross A Plasma sterilizing process with pulsed antimicrobial agent pretreatment
US5260023A (en) 1991-05-07 1993-11-09 Everseal Preservation Labs, Inc. System and method for preserving acid-containing articles
WO1993016386A1 (en) 1992-02-10 1993-08-19 Actimed Laboratories, Inc. Method for immobilizing dye on substrates
US5260656A (en) 1992-03-31 1993-11-09 Bruker Instruments, Inc. Method for improving the resolution of solid-state NMR multiple-pulse imaging systems
US5389336A (en) 1993-02-04 1995-02-14 American Sterilizer Company Method of decontaminating a chamber that has movable shelves
US5552320A (en) 1993-08-09 1996-09-03 Johnson & Johnson Medical, Inc. Self-contained biological indicator
US5344017A (en) 1993-08-13 1994-09-06 Wittrock Paul M Instrument pouch with in-pouch sterile processing indicator
US5451372A (en) 1993-08-20 1995-09-19 Pymah Corporation Device for monitoring sterilization process utilizing 100% ethylene oxide
WO1995006134A1 (en) 1993-08-25 1995-03-02 Abtox, Inc. Bacillus circulans based biological indicator for gaseous sterilants
US5498526A (en) 1993-08-25 1996-03-12 Abtox, Inc. Bacillus circulans based biological indicator for gaseous sterilants
US5482684A (en) 1994-05-03 1996-01-09 Abtox, Inc. Vessel useful for monitoring plasma sterilizing processes
US5518927A (en) 1994-08-17 1996-05-21 Steris Corporation Instrument sterilation life-span indicator
US5516648A (en) 1994-08-18 1996-05-14 Steris Corporation Encapsulated biological indicator
EP0707186A1 (en) 1994-10-11 1996-04-17 JOHNSON & JOHNSON MEDICAL, INC. Plasma-enhanced vacuum drying
WO1996033242A2 (en) 1995-04-19 1996-10-24 North American Science Associates, Inc. Indicator ink compositions
US6287518B1 (en) * 1997-06-25 2001-09-11 3M Innovative Properties Company Sterilization monitors
US6346417B1 (en) * 1997-06-25 2002-02-12 3M Innovative Properties Company Sterilization monitors
US6440744B1 (en) * 1997-06-25 2002-08-27 3M Innovative Properties Company Sterilization monitoring method

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Sterilization Using Gaseous Hydrogen Peroxide-Validation of the VHP(TM) Series 100 Endoscope . . . ", Technical Report, Amsco International, Inc. Apr. 1994.
"Sterilization Using Gaseous Hydrogen Peroxide—Validation of the VHP™ Series 100 Endoscope . . . ", Technical Report, Amsco International, Inc. Apr. 1994.
Advertisements for Sternard Chemical Indicator Strip, Advanced Sterilization Products, 1995.
Alfa et al., "Comparison of Ion Plasma, Vaporized Hydrogen Peroxide, and 100% Ethylene Oxide Sterilizers to the 12/88 Ethylene Oxide Gas Sterilizer", Infection Control and Hospital Epidemiology, pp. 92-100, Feb. 1996.
Borneff et al., On the Efficacy and Validation of H2O2 Plasma Sterilizers.
Derwent 1983-16226K , 1983.* *
Derwent Abstract of SU 1817022A, Mar. 12, 1991.
Eskenazi et al., "Evaluation of Glutaraldehyde and Hydrogen Peroxide for Sanitizing Packaging Materials of Medical Devices in Sterility Testing", J. Assoc. Off. Anal. Chem. (vol. 65, No. 5) 1982.
Gunter Spicher, "Biological Indicators and Monitoring Systems for Validation and Cycle Control of Sterilization Processes", Zbl. Bakt. Hyg. A 267, 463-484, 1988.
John McCormack, "Ask these questions before buying new sterilization technologies", Materials Management, 68-69, Jun. 1994.
Nancy G. Chobin, RN, "Cost analysis of three low-temperature sterilization systems", pp. 29-34, Journal of Healthcare Material Management, Aug. 1994.
P. Mecke, "Hydrogen Peroxide Plasma-an Interesting Microbiocidal Concept", Hygiene+ Medizin, 1992: 17:537-543.
Steris Process Monitoring, 612025 Rev. C, May 1995.
Steris Process, Chemical Monitoring Strips for Independent Monitoring of the Steris Process, Brochure of Steris Corporation (No date supplied).

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582485B2 (en) * 2003-10-16 2009-09-01 Kimberly-Clark Worldride, Inc. Method and device for detecting ammonia odors and helicobacter pylori urease infection
US20050085739A1 (en) * 2003-10-16 2005-04-21 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US8702618B2 (en) 2003-10-16 2014-04-22 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US20050084977A1 (en) * 2003-10-16 2005-04-21 Kimberly-Clark Worldwide, Inc. Method and device for detecting ammonia odors and helicobacter pylori urease infection
US8221328B2 (en) 2003-10-16 2012-07-17 Kimberly-Clark Worldwide, Inc. Visual indicating device for bad breath
US20080021392A1 (en) * 2006-07-20 2008-01-24 Lurvey Kent L Medical fluid access site with antiseptic indicator
US7981381B2 (en) 2006-07-20 2011-07-19 Baxter International Inc. Medical fluid access device with antiseptic indicator
US20080107564A1 (en) * 2006-07-20 2008-05-08 Shmuel Sternberg Medical fluid access site with antiseptic indicator
US8431086B2 (en) 2006-07-20 2013-04-30 Baxter International Inc. Medical fluid access device with antiseptic indicator
US20080021381A1 (en) * 2006-07-20 2008-01-24 Baxter International Inc. Medical fluid access device with antiseptic indicator
US20080295561A1 (en) * 2007-05-26 2008-12-04 Hideyuki Miyahara Method of forming a recess in a work
US9125973B2 (en) 2007-07-20 2015-09-08 Baxter International Inc. Antimicrobial housing and cover for a medical device
US9574060B2 (en) 2007-07-20 2017-02-21 Baxter International Inc. Antimicrobial housing and cover for a medical device
USRE47452E1 (en) 2007-07-20 2019-06-25 Baxter International Inc. Antimicrobial housing and cover for a medical device

Also Published As

Publication number Publication date
WO1998058683A3 (en) 1999-03-25
EP0991432A2 (en) 2000-04-12
US6440744B1 (en) 2002-08-27
AU8174798A (en) 1999-01-04
US6287518B1 (en) 2001-09-11
AU729771B2 (en) 2001-02-08
US20030207453A1 (en) 2003-11-06
ES2235339T3 (en) 2005-07-01
EP0991432B1 (en) 2005-01-12
WO1998058683A2 (en) 1998-12-30
US6346417B1 (en) 2002-02-12
CA2292672A1 (en) 1998-12-30
DE69828606D1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US6706537B2 (en) Sterilization monitors and method of use
US6063631A (en) Sterilization indicator
CA2253041C (en) Chemical indicator for oxidation-type sterilization processes using bleachable dyes
US5518927A (en) Instrument sterilation life-span indicator
JP6082053B2 (en) Chemical indicator compositions, indicators, and methods
CA2472039C (en) Hydrogen peroxide and peracetic acid indicators and methods using the same
US6395551B1 (en) Indicator for liquid disinfection or sterilization solutions
EP0309173A2 (en) Time-color indicators
JPH07171205A (en) Monitoring device for sterilization method using 100percent ethylene oxide
CA1073327A (en) Ethylene oxide indicator
JP2002303618A (en) Indicator for plasma sterilization and packaging material for sterilization
JP2002071570A (en) Indicator for plasma sterilization and packaging material for sterilization
WO1995024933A1 (en) Packaging systems for peracid sterilization processes

Legal Events

Date Code Title Description
CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20160316