US6798740B1 - Method and apparatus for switch core health monitoring and redundancy - Google Patents
Method and apparatus for switch core health monitoring and redundancy Download PDFInfo
- Publication number
- US6798740B1 US6798740B1 US09/524,093 US52409300A US6798740B1 US 6798740 B1 US6798740 B1 US 6798740B1 US 52409300 A US52409300 A US 52409300A US 6798740 B1 US6798740 B1 US 6798740B1
- Authority
- US
- United States
- Prior art keywords
- errors
- fabric
- specified number
- tap
- protection path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/22—Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/202—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
- G06F11/2023—Failover techniques
- G06F11/2025—Failover techniques using centralised failover control functionality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/202—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
- G06F11/2038—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant with a single idle spare processing component
Definitions
- the present invention relates generally to data transmission in wide area networks, by way of example, the asynchronous transfer mode (ATM) networks. More specifically, the invention relates to error monitoring within the ATM network and to a decision process for switching to the redundant portions of the switching fabric and network.
- ATM asynchronous transfer mode
- the new communication networks are altering the business landscape and are altering the very way individuals work, shop, and keep in touch with each other. Not only, for example, can one use cellular phone service or e-mail to communicate with others, one can also now obtain large documents, graphic images, databases, and other types of information having significant memory footprints through wireless and wireline networks.
- LAN local area network
- a digitized signal can be transported from a source through a LAN and through the Internet, to a final destination.
- a backbone data transport infrastructure by way of example, through an ATM network.
- the Internet is, in essence, a collection of many large and small computer networks that are coupled together over high speed backbone data links such as T-1, T-3, OC-1 and OC-3. Stated differently, the Internet is a network of networks. As a result of the creation of the Internet, worldwide access may be achieved. People and their equipment may now communicate from most any civilized point to another in a fast and relatively inexpensive medium.
- the Internet While it is popular to think of the Internet as one network of networks, there are other such Internets that are in existence and that are under development. For example, the network now commonly known as the Internet was originally a network of institutional networks including university networks. As a result of the commercialization of the Internet and the resultant reduction in quality of service, new generation Internet type networks are under development to better achieve the purposes of the original “Internet”. Moreover, new international standards and protocols are being approved to create additional and enhanced Internets. For the sake of simplicity, however, each of the worldwide Internet networks will be referred to collectively as the Internet.
- the Internet is a packet switched network that is currently based upon a group of protocols known as transmission control protocol/Internet protocol (TCP/IP).
- TCP is a connection-oriented protocol that first establishes a connection between two computer systems that are to exchange data. TCP then breaks a given digital information signal into packets having a defined format. The packets are then attached to headers that are for containing control and address information.
- a TCP packet in addition to a destination address, typically contains a sequence number that is to be used by the destination in reconstructing a signal that is similar to the original digital information that was broken into packets at the originating end.
- TCP packets also typically include port IDs, checksum values and other types of control information as is known by those skilled in the art.
- IP protocol is used for routing purposes.
- the IP protocol includes the destination and originating addresses and default gateway identifiers.
- IP routers therefore, are operable to evaluate IP protocol information for routing an IP data packet and to evaluate TCP protocol information for error control and other similar purposes.
- protocols and standards are often defined. These protocols and standards are used to guide the design of the communication devices, and more specifically, to guide the design of the operating logic and software within the devices. While communication devices that are designed in view of these standards do not always follow the suggested models exactly, they are usually compatible with the protocol-defined interfaces (physical and logical). In order to appreciate the construction and operation of many devices, it is important to generally understand the concepts of some of the significant protocol standards and models.
- ISO/OSI provides a network framework or model that allows equipment from different vendors to communicate with each other.
- the OSI model organizes the communication process into seven different categories or layers and places these layers in a sequence based on their relation to the user. Layers 1 through 3 deal provide actual network access and control. Layers 4 through 7 relate to the point to point communications between the message source and destination.
- Layer 1 includes the physical layer meaning the actual hardware that transmits currents having a voltage representing a bit of information. Layer 1 also provides for the functional and procedural characteristics of the hardware to activate, maintain, and deactivate physical data links that transparently pass the bit stream for communication between data link entities.
- Layer 2 is the data link layer or the technology specific transfer layer that effectuates and controls the actual transmissions between network entities. For example, layer 2 provides for activation, maintenance, and deactivation of data link connections, character and frame synchronization, grouping of bits into characters and frames, error control, media access control and flow control.
- Layer 3 is the network layer at which routing, switching and delaying decisions are made to create a path through a network. Such decisions are made in view of the network as a whole and of the available communication paths through the network. For example, decisions as to which nodes should be used to create a signal path are decided at layer 3. As may be seen, layers 1, 2 and 3 control the physical aspects of data transmission.
- layer 4 is the transport layer that defines the rules for information exchange and manages the point to point delivery of information within and between networks including providing error recovery and flow control.
- Layer 5 is the session layer that controls the basic communications that occur at layer 4.
- Layer 6 is the presentation layer that serves as a gateway (a type of “software” interface) between protocols and syntax of dissimilar systems.
- Layer 7 is the application layer that includes higher level functions for particular application services. Examples of layer 7 functions include file transfer, creation of virtual terminals, and remote file access.
- IP is a layer three protocol.
- many of the backbone data transport infrastructures utilize a different layer protocol than an Internet router.
- Many of the common backbone data transport systems utilized include time division multiplexed (TDM) transmission systems.
- TDM systems are generally known. These TDM systems are usually implemented in a manner that provides full redundancy in order to maintain transmission in the event of a fault on one of the channels or communication links.
- a protection path is, traditionally, a redundant path for transmitting signals in a failure condition.
- Error conditions that prompt a node to switch to the protection path often are related to hardware (layer 1) problems in which communications are not being successfully transmitted in a communication link. As communication glitches are not uncommon, however, it is unacceptable design to have a system that switches the instant that a communication glitch occurs. A system must determine that the glitch results from an actual hardware or communication path failure. Usually, however, it is difficult to make such a determination from only one glitch.
- a synchronous transfer mode networks are advantageous in that they are very high-speed transmission broadband type networks that improve network efficiencies by transmitting data, including voice data in an asynchronous manner. Stated differently, conventional networks carry data in a synchronous manner which results in the transmission of empty data slots in a TDM network. Thus, network capacity is wasted.
- ATM networks however, only transmit fixed length data packets, in units called cells, as a need to transmit the data presents itself.
- ATM is a broadband, load delay, packet type of switching and multiplexing system that allows for flexible transmission band widths and is capable of transmitting data in excess of a 600 Mbps data transmission rate.
- the cell stream is often continuous and without gaps. Cells produced by differing streams to an ATM multiplexer are stored in queues awaiting cell assignment.
- the ATM system by building a queue of cells, produces a continuous stream of data thereby maximizing network efficiencies.
- Tap Mux Tap multiplexer
- Each Tap Mux interfaces with a primary and redundant (protection) path switch fabric access devices.
- the Tap Mux is connected to each fabric access device by way of four serial lines. Two of the serial lines are for the primary path and two are for the protection path.
- Each serial line typically carries a nibble (4-bits) of serial data that are eventually converted to a parallel format by a fabric access device.
- four fabric access devices are provided for converting the four bit nibbles of data into a parallel form. The invention improves network efficiencies by monitoring each of the many communication links within the switching fabric to determine when a switch should occur to the protection path.
- the inventive system monitors each input line for a plurality of fabric access devices in a manner that does not require detected errors to be time stamped.
- the fabric access devices effectively form an interface between a processing unit and a plurality of Tap Muxes.
- One function of the Fabric Access Devices (FAD) is to convert the 4-bit nibbles of data received from a plurality of serial buses into a parallel bit stream. Additionally, the FAD selectively switches a source of inputs carrying the nibbles of data to produce an output to the processor unit.
- the present invention includes creating 72 state machines for monitoring each of the input data line sources to the FADs and for determining when switching should occur. Accordingly, the switching logic that is defined herein for the described embodiments is distributed across 72 state machines in one of the described embodiments.
- the defined logic includes monitoring the input line sources for specified errors and, upon the detection of the occurrence of an error, initiating a fixed length window of time during which the occurrence of the specified errors are counted. Once a defined number of errors on a given line is exceeded within the fixed length window of time, switching occurs from the primary path to the protection path.
- One advantage of utilizing a fixed length window in the described embodiment of the invention is that time stamping of errors is not required. Thus the error-checking algorithm is simplified. Additionally, by defining a number of errors in a communication link for a fixed time length period, a number can be utilized in which occasional glitches do not result in switching but wherein a true hardware type of communication link problem does lead to the fast switching of the network.
- Each of the 72 state machines are executed by a health maintenance module formed within a fabric processor.
- the fabric processor includes an error checking module and a fabric control module. Accordingly, the error-checking module continuously checks each of the 72 input line sources to the four FADs for the detected errors.
- the health maintenance module communicates with the error-checking module to implement the error switching logic defined herein.
- the health maintenance module determines that it is necessary to switch fabrics, it communicates with the fabric control module to prompt it to initiate and complete switching from the primary fabric to the protection fabric. Typically, switching is provided for the entire fabric even if the error is found to occur in only one communication line of the primary switching fabric.
- Each of these modules are logically formed by computer instructions stored within a storage device of the Fabric controller and are executed by an internal processor in communication therewith by way of an internal bus.
- the processor executes the computer instructions stored within the storage device to perform the functionality represented by the fabric control module, the error-checking module, and the health maintenance module.
- the storage device includes additional computer instructions, that define the Fabric controller's interaction and data processing capabilities in general.
- the processor of the Fabric controller generates control signals that are to be transmitted externally by way of a parallel bus that is controlled by an internal bus controller.
- An inventive method of the described embodiment of the invention generally includes checking for the occurrence of errors of a defined set of errors, and when such an error is found, setting an error counter to one and then starting a fixed length timing window. Each time an error is received, the error-counter is incremented to monitor the total number of errors. If the total number of errors for a given communication link exceeds a specified number within fixed length timing window, i.e., since receipt of the first error, switching to the protection path is initiated.
- a sliding window is used. More specifically, each error is recorded with a time stamp. If a specified number of errors are detected within a defined time period, then protection path switching is initiated.
- This alternate embodiment is not as desirable because it requires a more complicated algorithm that evaluates the time stamps of the detected errors. On the other hand, it is advantageous in that it will always detect the condition in which a specified number of errors are detected within a specified period of time. In the described embodiment, protection path switching only occurs if the specified number of errors are detected within the initiated fixed length timing window.
- the Tap Mux In one described embodiment of the invention, four types of error are monitored for the Tap Mux and for the FADs. Those errors are cell parity, idle pattern, clock recovery, and phase lock loop lock. For the switch fabric, however, two errors are monitored. They are the buffers in use error and the free que head pointer error.
- FIG. 1 is a functional block diagram of a switch fabric including a Fabric controller according to a described embodiment of the present invention
- FIG. 2 is a functional block diagram of a Fabric controller according to a described embodiment of the invention.
- FIG. 3 is a functional block diagram of a Tap Mux in communication with four fabric access devices and 8 port devices, wherein, the four FADs are coupled to a Fabric controller formed according to one embodiment of the present invention
- FIG. 4A is a functional block diagram that shows a Fabric controller in communication with a FAD over a bus
- FIG. 4B illustrates with greater detail the functionality of the FAD in terms of combining the 4-bit niblets to create one 8-bit word
- FIG. 5 is a flow chart illustrating a method for determining whether to switch an ATM switching fabric from a primary side to a protection side according to a described embodiment of the present invention
- FIG. 6 is a timing diagram to illustrate operation of the timing window with respect to the counting of detected errors.
- FIG. 7 is a flow chart illustrating a method for error checking for each of the 72 input line sources of the four fabric access devices of an ATM switching fabric according to one embodiment of the present invention.
- FIG. 1 is a functional block diagram of a switch fabric including a Fabric controller according to a described embodiment of the present invention.
- the Fabric controller 104 is coupled to communicate with a plurality of fabric access devices (FAD) 108 , 112 , 116 , and 120 over a plurality of 8-bit parallel buses 124 , 128 , 132 , and 136 respectively. While not explicitly shown, Fabric controller 104 also is coupled to communicate with four additional FADs over four additional 8-bit parallel buses for the protection path.
- FAD fabric access devices
- Each of the FADs 108 , 112 , 116 , and 120 as well as the four protection path FADs are coupled to 9 Tap Muxes, namely, Tap Mux 0 through Tap Muxes 7 and to a Tap mux of the Fabric controller 104 .
- each Tap Mux namely, Tap Mux 0 through Tap Muxes 7 and the Fabric controller Tap Mux
- Each serial line of the Tap Muxes is used to transmit a 4-bit data (nibble) to the respective FAD.
- the FAD receiving the nibble then combines the two 4-bit nibbles to create an 8-bit word and to convert that 8-bit word from a serial format to a parallel format for transmission on the 8-bit parallel bus to the Fabric controller 104 .
- the Fabric controller 104 includes an error checking module 172 , a fabric controller module 176 , and a health maintenance module 180 .
- the error checking module 172 is for monitoring the signals receive on each of the four FADs from the Fabric controller as well as from the 8 Tap Muxes, namely, Tap Mux 140 , 144 , 148 , 152 , 156 , 160 , 164 , and 168 .
- each Tap Mux transmits over two serial data lines to each FAD for the primary path and two for the protection path. Accordingly, error checking module checks for errors on 18 data lines for each of the four FADs.
- each Fad includes firmware or software that monitors the signaling over the input data lines to generate flags or signals indicating that specified error types have been detected during the transmission of a data byte over a data line.
- an error signal is generated upon the occurrence of a detected error for any one of the two serial data lines received from a Tap Mux since the two serial lines are used to generate one eight bit word or signal.
- the Health Maintenance Module 180 includes the logic for monitoring defined error conditions and for determining for switching should occur from the primary path to the protection path based on detected error conditions (stored error signals) for any of the serial data line sources received by each of the four FADs. In general, if a defined error threshold number is exceeded on any one of the thirty-six input data line sources for the four fabric access devices, the health maintenance module determines that switching to the protection switch fabric should occur. A more detailed description of the operation and logic of the health maintenance module 180 is explained below.
- FIG. 2 is a functional block diagram of a Fabric controller processor according to a described embodiment of the invention. More specifically, the Fabric controller 200 includes a central processor unit 204 , a storage device 208 , and a memory, each of which being operable to communicate with each other over a bus 216 that is controlled by a bus controller 220 . Bus controller 220 in turn is coupled to communicate with a transceiver 224 that transmits and receives a bit of data at a time in a parallel manner.
- Storage device 208 includes computer instructions for defining the logical operation of a Fabric controller as well as logic for switching to the protection path for reasons other than defined herein. Specifically, however, the switching logic defined by the computer instructions within storage device 208 , when prompted by processor 204 , causes switching to occur to the protection path whenever a specified number of defined errors occur within a specified period.
- a fixed window of a hundred-milliseconds is defined wherein, if 10 or more defined errors occur within the one hundred-millisecond window, switch over is effectuated.
- the one hundred-millisecond window is a fixed length window.
- ten defined errors must be detected within 100 milliseconds of the detection of the first error.
- occurrence of 10 errors within a hundred-millisecond window may not cause a switch over to the protection path if those 10 errors are not detected within the defined hundred-millisecond window.
- the fixed window may be compared a bucket that overflows whenever it receives 10 or more units.
- the bucket is “emptied” 100 milliseconds after the detection of a first error.
- an overflow condition occurs only if 10 errors are received prior to the bucket being emptied. It is the overflow condition that prompts selection of the protection switching fabric.
- FIG. 3 is a functional block diagram of a Tap Mux in communication with four fabric access devices and 8 port devices, wherein, the four FADs are coupled to a Fabric controller formed according to one embodiment of the present invention.
- Tap Mux 300 is coupled to receive serial data from each of 8 port devices 300 through 340 .
- Each of the port devices produces serial data to the Tap Mux.
- Tap Mux 300 receives eight bits from the first serial port 304 to form the two 4-bit nibbles of data 348 and 352 .
- the Tap Mux similarly forms nibbles for each of the other port devices by selecting them in turn.
- a port device remains selected for transmitting data to create the nibbles 348 and 352 until a complete 80 byte ATM cell is completely transmitted. Thereafter, the next port device is selected. If it does not have an 80 byte cell ready for transmission, then the subsequent port device is selected.
- Fabric controller 360 includes a health maintenance module 364 that monitors the inputs received by FAD 320 over lines 324 , 344 , and 358 to determine if specified errors occur thereon.
- a health maintenance module 364 that monitors the inputs received by FAD 320 over lines 324 , 344 , and 358 to determine if specified errors occur thereon.
- FIG. 3 One purpose of FIG. 3 is to illustrate the relationships between the various data sources and paths within the switching fabric.
- FIG. 4A is a functional block diagram that illustrates a Fabric controller 404 in communication with a FAD 408 over a bus 412 .
- Bus 412 is described as elsewhere, is an 8-bit parallel bus.
- FAD 408 is communicatively coupled to each of the Tap Muxes 416 through Tap Mux 440 as well as to a Tap Mux that is formed within Fabric controller 404 .
- Each of the Tap Muxes are coupled to communicate with FAD 408 over two serial data lines.
- Tap Mux 416 is coupled to FAD 408 over data lines 444 and 448 .
- Tap Mux 416 is transmitting 4-bit nibblets 452 and 456 to FAD 408 .
- FAD 408 in turn combines the two nibblets to create one 8-bit word that is transmitted over bus 412 to Fabric controller 404 in a parallel bus.
- FIG. 4B illustrates with greater detail the functionality of the FAD in terms of combining the 4-bit nibblets to create one 8-bit word.
- nibblet 452 includes data bits A, B, C and D and nibblet 456 includes data bits E, F, G and H.
- FAD 408 combines the two nibblets 452 and 456 to create one 8-bit word having bits A through H.
- Health maintenance module 364 of Fabric controller 404 monitors the detection of specified errors occurring on each of the data line sources on which signals are transmitted to FAD 408 .
- FIG. 4A illustrates that health maintenance module 364 monitors the input for signals transmitted to FAD 408 from nine different sources.
- the error checking that occurs and the fabric switching logic of the described algorithm is, for the system shown in FIG. 4A, is executed by nine different state machines.
- a state machine monitors each of the nine input line sources of FAD 408 for errors to determine whether switching to the protection switch fabric is occur.
- Fad 408 software (or firmware) within Fad 408 actually deterines if errors occur and then builds a list of error for each transmission of the two 4-bit nibbles of data received from the Tap Muxes on a given data line source.
- the list of errors are monitored by the Fabric controller 404 .
- the Fabric controller polls Fad 408 to receive queued errors (if any) over a communication line (e.g., lines 452 and 456 ).
- Fad 408 periodically transmits detected errors to Fad 408 for analysis by the health maintenance module.
- FIG. 5 is a flow chart illustrating a method for determining whether to switch an ATM switching fabric from a primary side to a protection side according to a described embodiment of the present invention.
- a Fabric controller checks for errors (step 504 ). As with the explained in greater detail below, specific lists of errors are monitored by the Fabric controller. Additionally, as has been described previously, the Fabric controller performs the error checking for a total of 72 input line sources received at one of four different fabric access devices. Accordingly, the error-checking (step 504 ) is actually performed by 72 different state machines. For the remaining portion of the discussion of FIG. 5, it should be understood that each of the steps shown herein is performed by each of the 72 state machines. For simplicity, the discussion will focus on the logic performed by only one at the 72 state machines. In an alternate embodiment, one state machine is operable to monitor Fad receive errors for all 72 data input line sources to the four fabric access devices.
- the Fabric controller continues to check for errors until it finds a specified error (step 508 ). Thereafter, the Fabric controller sets an error counter equal to the value of one and initiates a timing window.
- the timing window is a fixed length window of hundred-milliseconds.
- the next step is to determine whether hundred-milliseconds has expired (step 520 ), if hundred-milliseconds has expired, then normal operation is resumed (step 524 ) until the next error is detected. If the hundred-millisecond window has not expired, then the Fabric controller checks for errors again (step 528 ). If no error is found, then the Fabric controller goes back to (step 520 ) to determine if the hundred-millisecond has expired. If, on the other hand, an error is found, then the error counter is incremented (step 532 ). Thereafter, the Fabric controller determines whether the error counter is equal to or exceeds the value 10.
- FIG. 6 is a timing diagram to illustrate operation of the timing window with respect to the counting of detected errors.
- Window 604 is defined at the detection of the first error.
- Window 608 is defined after window 604 expires in the example of FIG. 6 at the detection of the tenth error since it is the first error after expiration of window 604 .
- a new hundred-millisecond window 608 is initiated. Switching to the protection switch fabric does not occur here because error was not detected within the period of window 604 .
- a total of 10 errors is detected within a hundred-millisecond period but the distribution of errors does not result in switching to the protection switch fabric.
- FIG. 7 is a flow chart illustrating a method for error checking for each of the 72 input line sources of the four fabric access devices of an ATM switching fabric according to one embodiment of the present invention.
- the method of FIG. 7 includes three basic steps. First, the top multiplexer is checked for errors (step 710 ), second, the fabric access devices are checked for errors (step 720 ). Finally, the switch fabric itself is checked for errors (step 730 ). With respect to (step 710 ), four different types of errors are monitored. Specifically, the Fabric controller, for example, Fabric controller 360 of FIG. 3 or Fabric controller 404 of FIG. 4A checks for cell parity errors (step 712 ), idle pattern errors (step 714 ), clock recovery errors (step 716 ), or phase lock loop lock errors (step 718 ). Other known types of errors may be monitored in place of or in addition to these errors.
- the Fabric controller for example, Fabric controller 360 of FIG. 3 or Fabric controller 404 of FIG. 4A checks for cell parity errors (step 712 ), idle pattern errors (step 714
- cell parity relates to parity error checking indicating that a cell had a bit that changed state or that a bit was inadvertently dropped during the transmission.
- the idle pattern error indicates that an ATM data line has been idle in excess of a defined period.
- a clock recovery error is one indicating clock recovery synchronization problems are being detected.
- the Phase lock loop lock error indicates that the phase lock loop lock state machines are attempting to align the two clocks too frequently thereby, again, reducing through put capacity.
- step 720 The error checking of (step 720 ) is the same as that of the Tap Mux of step 710 in the described embodiment of the invention. Finally, the Fabric controller checks for buffers in use in (step 732 ) or free queue head pointer in (step 734 ) for detecting errors in the switch fabric.
- inventive method and apparatus disclosed herein are particularly advantageous in that they provide a capability for effectuating fabric switching from a primary to a protection path in a manner is fast and that is efficient in terms of system code and resources.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
Claims (35)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/524,093 US6798740B1 (en) | 2000-03-13 | 2000-03-13 | Method and apparatus for switch core health monitoring and redundancy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/524,093 US6798740B1 (en) | 2000-03-13 | 2000-03-13 | Method and apparatus for switch core health monitoring and redundancy |
Publications (1)
Publication Number | Publication Date |
---|---|
US6798740B1 true US6798740B1 (en) | 2004-09-28 |
Family
ID=32991056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/524,093 Expired - Lifetime US6798740B1 (en) | 2000-03-13 | 2000-03-13 | Method and apparatus for switch core health monitoring and redundancy |
Country Status (1)
Country | Link |
---|---|
US (1) | US6798740B1 (en) |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020097713A1 (en) * | 2000-11-17 | 2002-07-25 | Andrew Chang | Backplane interface adapter |
US20030002443A1 (en) * | 2001-05-24 | 2003-01-02 | International Business Machines Corporation | System and method for enhancing the availability of routing systems through equal cost multipath |
US20030061199A1 (en) * | 2001-09-27 | 2003-03-27 | Joey Chow | System and method of selecting sources for a network element having redundant sources |
US20030112746A1 (en) * | 2001-09-27 | 2003-06-19 | Schaller William S. | System and method for providing detection of faults and switching of fabrics in a redundant-architecture communication system |
US20040024626A1 (en) * | 2000-08-02 | 2004-02-05 | Jeroen Bruijning | System and method for processing transaction data |
US20040022263A1 (en) * | 2002-08-02 | 2004-02-05 | Xiaodong Zhao | Cross point switch with out-of-band parameter fine tuning |
US20040179548A1 (en) * | 2000-11-17 | 2004-09-16 | Andrew Chang | Method and system for encoding wide striped cells |
US20050089049A1 (en) * | 2001-05-15 | 2005-04-28 | Foundry Networks, Inc. | High-performance network switch |
US20050198403A1 (en) * | 2004-02-09 | 2005-09-08 | Akinwale Akinpelu | Multi-service network system |
US20060153092A1 (en) * | 2004-12-24 | 2006-07-13 | Eldad Matityahu | Active response communications network tap |
US20070002755A1 (en) * | 2005-07-01 | 2007-01-04 | Eldad Matityahu | Communications network tap with heartbeat monitor |
WO2007009347A1 (en) * | 2005-07-15 | 2007-01-25 | Huawei Technologies Co., Ltd. | A method and apparatus for transmitting service stream on a virtual interchange system |
US7187687B1 (en) | 2002-05-06 | 2007-03-06 | Foundry Networks, Inc. | Pipeline method and system for switching packets |
US7266117B1 (en) | 2002-05-06 | 2007-09-04 | Foundry Networks, Inc. | System architecture for very fast ethernet blade |
US20080034267A1 (en) * | 2006-08-07 | 2008-02-07 | Broadcom Corporation | Switch with error checking and correcting |
US7356030B2 (en) | 2000-11-17 | 2008-04-08 | Foundry Networks, Inc. | Network switch cross point |
US7508752B1 (en) * | 2003-05-30 | 2009-03-24 | Cisco Technology, Inc. | Hardware facility switching in cross-connect systems |
US20090245128A1 (en) * | 2007-08-07 | 2009-10-01 | Eldad Matityahu | Integrated switch tap arrangement with visual display arrangement and methods thereof |
US7649885B1 (en) | 2002-05-06 | 2010-01-19 | Foundry Networks, Inc. | Network routing system for enhanced efficiency and monitoring capability |
US7657703B1 (en) | 2004-10-29 | 2010-02-02 | Foundry Networks, Inc. | Double density content addressable memory (CAM) lookup scheme |
CN1870575B (en) * | 2005-07-15 | 2010-04-21 | 华为技术有限公司 | Method for raising transmission reliability in virtual exchange system |
US20100135312A1 (en) * | 1999-01-12 | 2010-06-03 | Mitchem W Jeffrey | Method for Scoring Queued Frames for Selective Transmission Through a Switch |
US7813365B2 (en) | 2000-12-19 | 2010-10-12 | Foundry Networks, Inc. | System and method for router queue and congestion management |
US7817659B2 (en) | 2004-03-26 | 2010-10-19 | Foundry Networks, Llc | Method and apparatus for aggregating input data streams |
US20100278052A1 (en) * | 2005-03-07 | 2010-11-04 | Eldad Matityahu | Intellegent communications network tap port aggregator and methods thereof |
US7830884B2 (en) | 2002-05-06 | 2010-11-09 | Foundry Networks, Llc | Flexible method for processing data packets in a network routing system for enhanced efficiency and monitoring capability |
US7903654B2 (en) | 2006-08-22 | 2011-03-08 | Foundry Networks, Llc | System and method for ECMP load sharing |
US7948872B2 (en) | 2000-11-17 | 2011-05-24 | Foundry Networks, Llc | Backplane interface adapter with error control and redundant fabric |
US20110164521A1 (en) * | 2007-08-07 | 2011-07-07 | Eldad Matityahu | Arrangement for utilization rate display and methods thereof |
US7978614B2 (en) | 2007-01-11 | 2011-07-12 | Foundry Network, LLC | Techniques for detecting non-receipt of fault detection protocol packets |
US20110211473A1 (en) * | 2010-02-28 | 2011-09-01 | Eldad Matityahu | Time machine device and methods thereof |
US8031045B1 (en) | 2009-05-14 | 2011-10-04 | Viewteq Corp. | Apparatus and method for an A/B RF redundant sensing switch |
US8037399B2 (en) | 2007-07-18 | 2011-10-11 | Foundry Networks, Llc | Techniques for segmented CRC design in high speed networks |
US8090901B2 (en) | 2009-05-14 | 2012-01-03 | Brocade Communications Systems, Inc. | TCAM management approach that minimize movements |
US8149839B1 (en) | 2007-09-26 | 2012-04-03 | Foundry Networks, Llc | Selection of trunk ports and paths using rotation |
US8190881B2 (en) | 2007-10-15 | 2012-05-29 | Foundry Networks Llc | Scalable distributed web-based authentication |
US20120173846A1 (en) * | 2010-12-30 | 2012-07-05 | Stmicroelectronics (Beijing) R&D Co., Ltd. | Method to reduce the energy cost of network-on-chip systems |
US8238255B2 (en) | 2006-11-22 | 2012-08-07 | Foundry Networks, Llc | Recovering from failures without impact on data traffic in a shared bus architecture |
US8271859B2 (en) | 2007-07-18 | 2012-09-18 | Foundry Networks Llc | Segmented CRC design in high speed networks |
US8448162B2 (en) | 2005-12-28 | 2013-05-21 | Foundry Networks, Llc | Hitless software upgrades |
US8537690B2 (en) | 2007-12-27 | 2013-09-17 | Net Optics, Inc. | Director device arrangement with visual display arrangement and methods thereof |
US8582472B2 (en) | 2007-08-07 | 2013-11-12 | Net Optics, Inc. | Arrangement for an enhanced communication network tap port aggregator and methods thereof |
US8599850B2 (en) | 2009-09-21 | 2013-12-03 | Brocade Communications Systems, Inc. | Provisioning single or multistage networks using ethernet service instances (ESIs) |
US8671219B2 (en) | 2002-05-06 | 2014-03-11 | Foundry Networks, Llc | Method and apparatus for efficiently processing data packets in a computer network |
US8718051B2 (en) | 2003-05-15 | 2014-05-06 | Foundry Networks, Llc | System and method for high speed packet transmission |
US8730961B1 (en) | 2004-04-26 | 2014-05-20 | Foundry Networks, Llc | System and method for optimizing router lookup |
US8902735B2 (en) | 2010-02-28 | 2014-12-02 | Net Optics, Inc. | Gigabits zero-delay tap and methods thereof |
US9306959B2 (en) | 2010-02-26 | 2016-04-05 | Ixia | Dual bypass module and methods thereof |
US9749261B2 (en) | 2010-02-28 | 2017-08-29 | Ixia | Arrangements and methods for minimizing delay in high-speed taps |
US9767892B1 (en) * | 2016-04-27 | 2017-09-19 | Altera Corporation | Memory elements with dynamic pull-up weakening write assist circuitry |
US9813448B2 (en) | 2010-02-26 | 2017-11-07 | Ixia | Secured network arrangement and methods thereof |
US9998213B2 (en) | 2016-07-29 | 2018-06-12 | Keysight Technologies Singapore (Holdings) Pte. Ltd. | Network tap with battery-assisted and programmable failover |
US10020031B2 (en) * | 2015-05-21 | 2018-07-10 | Arm Limited | Location-based optimization for memory systems |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5398236A (en) * | 1993-05-26 | 1995-03-14 | Nec America, Inc. | Asynchronous transfer mode link recovery mechanism |
US5408462A (en) * | 1993-10-07 | 1995-04-18 | Adc Telecommunications, Inc. | Protection switching apparatus and method |
US5909427A (en) * | 1995-07-19 | 1999-06-01 | Fujitsu Network Communications, Inc. | Redundant switch system and method of operation |
US6067286A (en) * | 1995-04-11 | 2000-05-23 | General Datacomm, Inc. | Data network switch with fault tolerance |
US6101167A (en) * | 1996-12-20 | 2000-08-08 | Nec Corporation | Path switching system |
US6195351B1 (en) * | 1998-01-28 | 2001-02-27 | 3Com Corporation | Logical switch set |
US6308282B1 (en) * | 1998-11-10 | 2001-10-23 | Honeywell International Inc. | Apparatus and methods for providing fault tolerance of networks and network interface cards |
US6347073B1 (en) * | 1998-04-29 | 2002-02-12 | 3Com Corporation | Method and system for controlling data transfer between a logical switch set and outside nodes |
US6359858B1 (en) * | 1999-06-03 | 2002-03-19 | Fujitsu Network Communications, Inc. | Switching redundancy control |
US6366557B1 (en) * | 1997-10-31 | 2002-04-02 | Nortel Networks Limited | Method and apparatus for a Gigabit Ethernet MAC (GMAC) |
-
2000
- 2000-03-13 US US09/524,093 patent/US6798740B1/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5398236A (en) * | 1993-05-26 | 1995-03-14 | Nec America, Inc. | Asynchronous transfer mode link recovery mechanism |
US5408462A (en) * | 1993-10-07 | 1995-04-18 | Adc Telecommunications, Inc. | Protection switching apparatus and method |
US6067286A (en) * | 1995-04-11 | 2000-05-23 | General Datacomm, Inc. | Data network switch with fault tolerance |
US5909427A (en) * | 1995-07-19 | 1999-06-01 | Fujitsu Network Communications, Inc. | Redundant switch system and method of operation |
US5983260A (en) * | 1995-07-19 | 1999-11-09 | Fujitsu Network Communications, Inc. | Serial control and data interconnects for coupling an I/O module with a switch fabric in a switch |
US6101167A (en) * | 1996-12-20 | 2000-08-08 | Nec Corporation | Path switching system |
US6366557B1 (en) * | 1997-10-31 | 2002-04-02 | Nortel Networks Limited | Method and apparatus for a Gigabit Ethernet MAC (GMAC) |
US6195351B1 (en) * | 1998-01-28 | 2001-02-27 | 3Com Corporation | Logical switch set |
US6347073B1 (en) * | 1998-04-29 | 2002-02-12 | 3Com Corporation | Method and system for controlling data transfer between a logical switch set and outside nodes |
US6308282B1 (en) * | 1998-11-10 | 2001-10-23 | Honeywell International Inc. | Apparatus and methods for providing fault tolerance of networks and network interface cards |
US6359858B1 (en) * | 1999-06-03 | 2002-03-19 | Fujitsu Network Communications, Inc. | Switching redundancy control |
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8014315B2 (en) | 1999-01-12 | 2011-09-06 | Mcdata Corporation | Method for scoring queued frames for selective transmission through a switch |
US7848253B2 (en) | 1999-01-12 | 2010-12-07 | Mcdata Corporation | Method for scoring queued frames for selective transmission through a switch |
US20100135312A1 (en) * | 1999-01-12 | 2010-06-03 | Mitchem W Jeffrey | Method for Scoring Queued Frames for Selective Transmission Through a Switch |
US7958202B2 (en) * | 2000-08-02 | 2011-06-07 | Nederlandse Organisatie Voor Toegepast-Natuurweteschappelijk Onderzoek TNO | System and method for processing transaction data |
US20040024626A1 (en) * | 2000-08-02 | 2004-02-05 | Jeroen Bruijning | System and method for processing transaction data |
US7236490B2 (en) | 2000-11-17 | 2007-06-26 | Foundry Networks, Inc. | Backplane interface adapter |
US7356030B2 (en) | 2000-11-17 | 2008-04-08 | Foundry Networks, Inc. | Network switch cross point |
US20020097713A1 (en) * | 2000-11-17 | 2002-07-25 | Andrew Chang | Backplane interface adapter |
US7995580B2 (en) | 2000-11-17 | 2011-08-09 | Foundry Networks, Inc. | Backplane interface adapter with error control and redundant fabric |
US8964754B2 (en) | 2000-11-17 | 2015-02-24 | Foundry Networks, Llc | Backplane interface adapter with error control and redundant fabric |
US7978702B2 (en) | 2000-11-17 | 2011-07-12 | Foundry Networks, Llc | Backplane interface adapter |
US7948872B2 (en) | 2000-11-17 | 2011-05-24 | Foundry Networks, Llc | Backplane interface adapter with error control and redundant fabric |
US20040179548A1 (en) * | 2000-11-17 | 2004-09-16 | Andrew Chang | Method and system for encoding wide striped cells |
US9030937B2 (en) | 2000-11-17 | 2015-05-12 | Foundry Networks, Llc | Backplane interface adapter with error control and redundant fabric |
US8619781B2 (en) | 2000-11-17 | 2013-12-31 | Foundry Networks, Llc | Backplane interface adapter with error control and redundant fabric |
US8514716B2 (en) | 2000-11-17 | 2013-08-20 | Foundry Networks, Llc | Backplane interface adapter with error control and redundant fabric |
US7203194B2 (en) | 2000-11-17 | 2007-04-10 | Foundry Networks, Inc. | Method and system for encoding wide striped cells |
US7974208B2 (en) | 2000-12-19 | 2011-07-05 | Foundry Networks, Inc. | System and method for router queue and congestion management |
US7813365B2 (en) | 2000-12-19 | 2010-10-12 | Foundry Networks, Inc. | System and method for router queue and congestion management |
US7206283B2 (en) | 2001-05-15 | 2007-04-17 | Foundry Networks, Inc. | High-performance network switch |
US20050089049A1 (en) * | 2001-05-15 | 2005-04-28 | Foundry Networks, Inc. | High-performance network switch |
US20030002443A1 (en) * | 2001-05-24 | 2003-01-02 | International Business Machines Corporation | System and method for enhancing the availability of routing systems through equal cost multipath |
US6987735B2 (en) * | 2001-05-24 | 2006-01-17 | International Business Machines Corporation | System and method for enhancing the availability of routing systems through equal cost multipath |
US20030061199A1 (en) * | 2001-09-27 | 2003-03-27 | Joey Chow | System and method of selecting sources for a network element having redundant sources |
US20030112746A1 (en) * | 2001-09-27 | 2003-06-19 | Schaller William S. | System and method for providing detection of faults and switching of fabrics in a redundant-architecture communication system |
US7170908B2 (en) * | 2001-09-27 | 2007-01-30 | Alcatel Canada Inc. | System and method of selecting sources for a network element having redundant sources |
US7085225B2 (en) * | 2001-09-27 | 2006-08-01 | Alcatel Canada Inc. | System and method for providing detection of faults and switching of fabrics in a redundant-architecture communication system |
US7649885B1 (en) | 2002-05-06 | 2010-01-19 | Foundry Networks, Inc. | Network routing system for enhanced efficiency and monitoring capability |
US8671219B2 (en) | 2002-05-06 | 2014-03-11 | Foundry Networks, Llc | Method and apparatus for efficiently processing data packets in a computer network |
US7266117B1 (en) | 2002-05-06 | 2007-09-04 | Foundry Networks, Inc. | System architecture for very fast ethernet blade |
US7738450B1 (en) | 2002-05-06 | 2010-06-15 | Foundry Networks, Inc. | System architecture for very fast ethernet blade |
US7813367B2 (en) | 2002-05-06 | 2010-10-12 | Foundry Networks, Inc. | Pipeline method and system for switching packets |
US8194666B2 (en) | 2002-05-06 | 2012-06-05 | Foundry Networks, Llc | Flexible method for processing data packets in a network routing system for enhanced efficiency and monitoring capability |
US8989202B2 (en) | 2002-05-06 | 2015-03-24 | Foundry Networks, Llc | Pipeline method and system for switching packets |
US7187687B1 (en) | 2002-05-06 | 2007-03-06 | Foundry Networks, Inc. | Pipeline method and system for switching packets |
US7830884B2 (en) | 2002-05-06 | 2010-11-09 | Foundry Networks, Llc | Flexible method for processing data packets in a network routing system for enhanced efficiency and monitoring capability |
US8170044B2 (en) | 2002-05-06 | 2012-05-01 | Foundry Networks, Llc | Pipeline method and system for switching packets |
US20040022263A1 (en) * | 2002-08-02 | 2004-02-05 | Xiaodong Zhao | Cross point switch with out-of-band parameter fine tuning |
US8718051B2 (en) | 2003-05-15 | 2014-05-06 | Foundry Networks, Llc | System and method for high speed packet transmission |
US8811390B2 (en) | 2003-05-15 | 2014-08-19 | Foundry Networks, Llc | System and method for high speed packet transmission |
US9461940B2 (en) | 2003-05-15 | 2016-10-04 | Foundry Networks, Llc | System and method for high speed packet transmission |
US7508752B1 (en) * | 2003-05-30 | 2009-03-24 | Cisco Technology, Inc. | Hardware facility switching in cross-connect systems |
US20110222681A1 (en) * | 2004-02-09 | 2011-09-15 | At&T Intellectual Property Ii, L.P. | Multi-Service Network System |
US8990432B2 (en) | 2004-02-09 | 2015-03-24 | At&T Intellectual Property Ii, L.P. | Multi-service network system |
US20050198403A1 (en) * | 2004-02-09 | 2005-09-08 | Akinwale Akinpelu | Multi-service network system |
US7702818B2 (en) * | 2004-02-09 | 2010-04-20 | At&T Intellectual Property Ii, L.P. | Multi-service network system |
US7817659B2 (en) | 2004-03-26 | 2010-10-19 | Foundry Networks, Llc | Method and apparatus for aggregating input data streams |
US8493988B2 (en) | 2004-03-26 | 2013-07-23 | Foundry Networks, Llc | Method and apparatus for aggregating input data streams |
US9338100B2 (en) | 2004-03-26 | 2016-05-10 | Foundry Networks, Llc | Method and apparatus for aggregating input data streams |
US8730961B1 (en) | 2004-04-26 | 2014-05-20 | Foundry Networks, Llc | System and method for optimizing router lookup |
US7657703B1 (en) | 2004-10-29 | 2010-02-02 | Foundry Networks, Inc. | Double density content addressable memory (CAM) lookup scheme |
US7953923B2 (en) | 2004-10-29 | 2011-05-31 | Foundry Networks, Llc | Double density content addressable memory (CAM) lookup scheme |
US7953922B2 (en) | 2004-10-29 | 2011-05-31 | Foundry Networks, Llc | Double density content addressable memory (CAM) lookup scheme |
US20060153092A1 (en) * | 2004-12-24 | 2006-07-13 | Eldad Matityahu | Active response communications network tap |
US8320242B2 (en) | 2004-12-24 | 2012-11-27 | Net Optics, Inc. | Active response communications network tap |
US20100278052A1 (en) * | 2005-03-07 | 2010-11-04 | Eldad Matityahu | Intellegent communications network tap port aggregator and methods thereof |
US8654932B2 (en) | 2005-03-07 | 2014-02-18 | Net Optics, Inc. | Intelligent communications network tap port aggregator and methods thereof |
US7599301B2 (en) * | 2005-07-01 | 2009-10-06 | Net Optics, Inc. | Communications network tap with heartbeat monitor |
US20070002755A1 (en) * | 2005-07-01 | 2007-01-04 | Eldad Matityahu | Communications network tap with heartbeat monitor |
CN1870575B (en) * | 2005-07-15 | 2010-04-21 | 华为技术有限公司 | Method for raising transmission reliability in virtual exchange system |
WO2007009347A1 (en) * | 2005-07-15 | 2007-01-25 | Huawei Technologies Co., Ltd. | A method and apparatus for transmitting service stream on a virtual interchange system |
US8448162B2 (en) | 2005-12-28 | 2013-05-21 | Foundry Networks, Llc | Hitless software upgrades |
US9378005B2 (en) | 2005-12-28 | 2016-06-28 | Foundry Networks, Llc | Hitless software upgrades |
US7900116B2 (en) * | 2006-08-07 | 2011-03-01 | Broadcom Corporation | Switch with error checking and correcting |
US20080034267A1 (en) * | 2006-08-07 | 2008-02-07 | Broadcom Corporation | Switch with error checking and correcting |
US7903654B2 (en) | 2006-08-22 | 2011-03-08 | Foundry Networks, Llc | System and method for ECMP load sharing |
US9030943B2 (en) | 2006-11-22 | 2015-05-12 | Foundry Networks, Llc | Recovering from failures without impact on data traffic in a shared bus architecture |
US8238255B2 (en) | 2006-11-22 | 2012-08-07 | Foundry Networks, Llc | Recovering from failures without impact on data traffic in a shared bus architecture |
US8395996B2 (en) | 2007-01-11 | 2013-03-12 | Foundry Networks, Llc | Techniques for processing incoming failure detection protocol packets |
US7978614B2 (en) | 2007-01-11 | 2011-07-12 | Foundry Network, LLC | Techniques for detecting non-receipt of fault detection protocol packets |
US8155011B2 (en) | 2007-01-11 | 2012-04-10 | Foundry Networks, Llc | Techniques for using dual memory structures for processing failure detection protocol packets |
US9112780B2 (en) | 2007-01-11 | 2015-08-18 | Foundry Networks, Llc | Techniques for processing incoming failure detection protocol packets |
US8037399B2 (en) | 2007-07-18 | 2011-10-11 | Foundry Networks, Llc | Techniques for segmented CRC design in high speed networks |
US8271859B2 (en) | 2007-07-18 | 2012-09-18 | Foundry Networks Llc | Segmented CRC design in high speed networks |
US20090245128A1 (en) * | 2007-08-07 | 2009-10-01 | Eldad Matityahu | Integrated switch tap arrangement with visual display arrangement and methods thereof |
US20110164521A1 (en) * | 2007-08-07 | 2011-07-07 | Eldad Matityahu | Arrangement for utilization rate display and methods thereof |
US8094576B2 (en) | 2007-08-07 | 2012-01-10 | Net Optic, Inc. | Integrated switch tap arrangement with visual display arrangement and methods thereof |
US8432827B2 (en) * | 2007-08-07 | 2013-04-30 | Net Optics, Inc. | Arrangement for utilization rate display and methods thereof |
US8582472B2 (en) | 2007-08-07 | 2013-11-12 | Net Optics, Inc. | Arrangement for an enhanced communication network tap port aggregator and methods thereof |
US9712419B2 (en) | 2007-08-07 | 2017-07-18 | Ixia | Integrated switch tap arrangement and methods thereof |
US8509236B2 (en) | 2007-09-26 | 2013-08-13 | Foundry Networks, Llc | Techniques for selecting paths and/or trunk ports for forwarding traffic flows |
US8149839B1 (en) | 2007-09-26 | 2012-04-03 | Foundry Networks, Llc | Selection of trunk ports and paths using rotation |
US8667268B2 (en) | 2007-10-15 | 2014-03-04 | Foundry Networks, Llc | Scalable distributed web-based authentication |
US8190881B2 (en) | 2007-10-15 | 2012-05-29 | Foundry Networks Llc | Scalable distributed web-based authentication |
US8799645B2 (en) | 2007-10-15 | 2014-08-05 | Foundry Networks, LLC. | Scalable distributed web-based authentication |
US8537690B2 (en) | 2007-12-27 | 2013-09-17 | Net Optics, Inc. | Director device arrangement with visual display arrangement and methods thereof |
US8090901B2 (en) | 2009-05-14 | 2012-01-03 | Brocade Communications Systems, Inc. | TCAM management approach that minimize movements |
US8031045B1 (en) | 2009-05-14 | 2011-10-04 | Viewteq Corp. | Apparatus and method for an A/B RF redundant sensing switch |
US9166818B2 (en) | 2009-09-21 | 2015-10-20 | Brocade Communications Systems, Inc. | Provisioning single or multistage networks using ethernet service instances (ESIs) |
US8599850B2 (en) | 2009-09-21 | 2013-12-03 | Brocade Communications Systems, Inc. | Provisioning single or multistage networks using ethernet service instances (ESIs) |
US9813448B2 (en) | 2010-02-26 | 2017-11-07 | Ixia | Secured network arrangement and methods thereof |
US9306959B2 (en) | 2010-02-26 | 2016-04-05 | Ixia | Dual bypass module and methods thereof |
US9749261B2 (en) | 2010-02-28 | 2017-08-29 | Ixia | Arrangements and methods for minimizing delay in high-speed taps |
US8755293B2 (en) | 2010-02-28 | 2014-06-17 | Net Optics, Inc. | Time machine device and methods thereof |
US20110211473A1 (en) * | 2010-02-28 | 2011-09-01 | Eldad Matityahu | Time machine device and methods thereof |
US8902735B2 (en) | 2010-02-28 | 2014-12-02 | Net Optics, Inc. | Gigabits zero-delay tap and methods thereof |
US20120173846A1 (en) * | 2010-12-30 | 2012-07-05 | Stmicroelectronics (Beijing) R&D Co., Ltd. | Method to reduce the energy cost of network-on-chip systems |
US10020031B2 (en) * | 2015-05-21 | 2018-07-10 | Arm Limited | Location-based optimization for memory systems |
US9767892B1 (en) * | 2016-04-27 | 2017-09-19 | Altera Corporation | Memory elements with dynamic pull-up weakening write assist circuitry |
US9998213B2 (en) | 2016-07-29 | 2018-06-12 | Keysight Technologies Singapore (Holdings) Pte. Ltd. | Network tap with battery-assisted and programmable failover |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6798740B1 (en) | Method and apparatus for switch core health monitoring and redundancy | |
US6876669B2 (en) | Packet fragmentation with nested interruptions | |
US7167443B1 (en) | System and method for packet level restoration of IP traffic using overhead signaling in a fiber optic ring network | |
US5317562A (en) | Method and apparatus for routing cell messages using delay | |
US7072296B2 (en) | Methods and apparatus for network signal aggregation and bandwidth reduction | |
US6865158B2 (en) | ATM switch with OAM functions | |
US6804257B1 (en) | System and method for framing and protecting variable-lenght packet streams | |
US6532088B1 (en) | System and method for packet level distributed routing in fiber optic rings | |
JP3525656B2 (en) | Packet switch and congestion notification method | |
US7248588B2 (en) | Method for transmitting data packets and network element for carrying out the method | |
EP1137225B1 (en) | A switch and a switching method | |
US7720094B2 (en) | Methods and apparatus for low latency signal aggregation and bandwidth reduction | |
US5796720A (en) | Control method of asynchronous data communications | |
US7542425B2 (en) | Traffic management using in-band flow control and multiple-rate traffic shaping | |
EP1613018B1 (en) | Update of header compression state in packet communications using bit-stealing | |
Hoberecht | A layered network protocol for packet voice and data integration | |
US20020055365A1 (en) | Radio communication system using timeout control with flexible timeout interval setting | |
EP2371100B1 (en) | Radio link aggregation | |
US6718419B1 (en) | System and method for extending the number of addressable physical devices on a data bus | |
US20050281253A1 (en) | Method for transporting data in telecommunication system, and network element | |
KR100408044B1 (en) | Traffic control system and method in atm switch | |
US5974458A (en) | Data transfer accounting device and method for performing an accounting process including an accounting information collecting process | |
US8000238B2 (en) | System and method for detecting and regulating congestion in a communications environment | |
US7218608B1 (en) | Random early detection algorithm using an indicator bit to detect congestion in a computer network | |
US7944823B1 (en) | System and method for addressing dynamic congestion abatement for GSM suppression/compression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NORTEL NETWORKS LIMITED, CANADA Free format text: CHANGE OF NAME;ASSIGNOR:NORTEL NETWORKS CORPORATION;REEL/FRAME:011195/0706 Effective date: 20000830 Owner name: NORTEL NETWORKS LIMITED,CANADA Free format text: CHANGE OF NAME;ASSIGNOR:NORTEL NETWORKS CORPORATION;REEL/FRAME:011195/0706 Effective date: 20000830 |
|
AS | Assignment |
Owner name: NORTEL NETWORKS LIMITED, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SENEVIRATHNE, TISSA;HUNTER, VAN;REDDY, SRI;REEL/FRAME:013179/0961;SIGNING DATES FROM 20000720 TO 20000812 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT,NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC.;REEL/FRAME:023892/0500 Effective date: 20100129 Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC.;REEL/FRAME:023892/0500 Effective date: 20100129 |
|
AS | Assignment |
Owner name: CITICORP USA, INC., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC.;REEL/FRAME:023905/0001 Effective date: 20100129 Owner name: CITICORP USA, INC., AS ADMINISTRATIVE AGENT,NEW YO Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC.;REEL/FRAME:023905/0001 Effective date: 20100129 Owner name: CITICORP USA, INC., AS ADMINISTRATIVE AGENT, NEW Y Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC.;REEL/FRAME:023905/0001 Effective date: 20100129 |
|
AS | Assignment |
Owner name: AVAYA INC.,NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTEL NETWORKS LIMITED;REEL/FRAME:023998/0878 Effective date: 20091218 Owner name: AVAYA INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTEL NETWORKS LIMITED;REEL/FRAME:023998/0878 Effective date: 20091218 |
|
AS | Assignment |
Owner name: BANK OF NEW YORK MELLON TRUST, NA, AS NOTES COLLATERAL AGENT, THE, PENNSYLVANIA Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC., A DELAWARE CORPORATION;REEL/FRAME:025863/0535 Effective date: 20110211 Owner name: BANK OF NEW YORK MELLON TRUST, NA, AS NOTES COLLAT Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC., A DELAWARE CORPORATION;REEL/FRAME:025863/0535 Effective date: 20110211 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE, PENNSYLVANIA Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA, INC.;REEL/FRAME:030083/0639 Effective date: 20130307 Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE, Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA, INC.;REEL/FRAME:030083/0639 Effective date: 20130307 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS INC.;OCTEL COMMUNICATIONS CORPORATION;AND OTHERS;REEL/FRAME:041576/0001 Effective date: 20170124 |
|
AS | Assignment |
Owner name: OCTEL COMMUNICATIONS LLC (FORMERLY KNOWN AS OCTEL COMMUNICATIONS CORPORATION), CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: AVAYA INTEGRATED CABINET SOLUTIONS INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: AVAYA INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 025863/0535;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST, NA;REEL/FRAME:044892/0001 Effective date: 20171128 Owner name: AVAYA INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 023892/0500;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044891/0564 Effective date: 20171128 Owner name: OCTEL COMMUNICATIONS LLC (FORMERLY KNOWN AS OCTEL Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: VPNET TECHNOLOGIES, INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: AVAYA INTEGRATED CABINET SOLUTIONS INC., CALIFORNI Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: AVAYA INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: AVAYA INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 030083/0639;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:045012/0666 Effective date: 20171128 |
|
AS | Assignment |
Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045034/0001 Effective date: 20171215 Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW Y Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045034/0001 Effective date: 20171215 |
|
AS | Assignment |
Owner name: SIERRA HOLDINGS CORP., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP USA, INC.;REEL/FRAME:045045/0564 Effective date: 20171215 Owner name: AVAYA, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP USA, INC.;REEL/FRAME:045045/0564 Effective date: 20171215 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045124/0026 Effective date: 20171215 |
|
AS | Assignment |
Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001 Effective date: 20230403 Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001 Effective date: 20230403 Owner name: AVAYA INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001 Effective date: 20230403 Owner name: AVAYA HOLDINGS CORP., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001 Effective date: 20230403 |
|
AS | Assignment |
Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: CAAS TECHNOLOGIES, LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: HYPERQUALITY II, LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: HYPERQUALITY, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: ZANG, INC. (FORMER NAME OF AVAYA CLOUD INC.), NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: VPNET TECHNOLOGIES, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: OCTEL COMMUNICATIONS LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: INTELLISIST, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: AVAYA INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 |