US6433336B1 - Device for varying the energy of a particle beam extracted from an accelerator - Google Patents
Device for varying the energy of a particle beam extracted from an accelerator Download PDFInfo
- Publication number
- US6433336B1 US6433336B1 US09/868,461 US86846101A US6433336B1 US 6433336 B1 US6433336 B1 US 6433336B1 US 86846101 A US86846101 A US 86846101A US 6433336 B1 US6433336 B1 US 6433336B1
- Authority
- US
- United States
- Prior art keywords
- energy
- degrader
- steps
- particle beam
- variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/10—Scattering devices; Absorbing devices; Ionising radiation filters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
Definitions
- the present invention relates to a device for varying the energy of a particle beam extracted from a particle accelerator.
- the present invention also relates to the use of said device.
- one solution consists in using an accelerator capable of producing, intrinsically, an extracted particle beam whose energy is variable.
- an accelerator such as a synchrotron capable of producing within this accelerator itself a particle beam, the energy of which is variable.
- this type of accelerator is relatively complex to produce, and is accordingly more expensive and less reliable than particle accelerators which produce beams of fixed energy such as cyclotrons.
- the present invention aims to provide a device which would make it possible to vary the energy of the beam extracted from a particle accelerator, in particular from a fixed-energy particle accelerator.
- the present invention aims to provide a device which would make it possible to vary almost continuously the energy of a beam extracted from a particle accelerator.
- the present invention relates to a process and a device for varying the energy of a particle beam extracted from a fixed-energy particle accelerator.
- an energy degrader is inserted in the path of the particle beam extracted from the accelerator, this degrader substantially consisting of a block of material, the thickness of which is discretely variable by steps. The thickness is defined as the distance between the entry face and the exit face on the block of material.
- the energy difference between the steps is variable and is determined such that the variation in the intensity of the beam reaches, at the limit between two consecutive steps, a maximum of 15% and typically 10% of the maximum intensity obtained at the exit of each of the two successive steps under consideration. This makes it possible to obtain a continuous variation of the energy despite the fact that the thickness varies discretely. Indeed, this is due to the combination of the way of calculating the energy difference between the steps with the association of an analysis element.
- this degrader is positioned at the point at which there is a narrowing (“waist”) of the beam envelope.
- the curvature of the entry and exit faces of the degrader defined by the height of the discrete levels or steps, is designed such that the “waist” is always for each step or level at the ideal position relative to the entry and exit faces without requiring the modification of the beam transport control parameters, and in particular the position of the “waist”, from one step to the next.
- the energy degrader preferably has steps or levels of variable width, the width of a step being defined as the distance between two successive steps. This width should be adjusted such that it is slightly larger than the diameter of the beam entering or exiting the degrader, which means that the width of said steps or levels of large thickness will be greater than the width of said steps or levels of small thickness.
- the material of which the energy degrader is made should have a high density and a low atomic mass.
- Examples may be diamond, aggregated diamond powder or graphite.
- An analysis magnet may also conventionally be combined with this energy degrader.
- FIGS. 1 a and 1 b represent, respectively, a perspective view and a top view of an energy degrader used in the process for varying the energy of a particle beam according to the present invention, while FIG. 1 c represents an enlargement of a portion of FIG. 1 b.
- FIG. 2 represents the variation in current density as a function of the energy for a proton beam.
- FIG. 3 represents an overall view of the device according to the present invention used in proton therapy.
- FIGS. 1 a and 1 b represent a degrader used in the device according to the present invention, substantially consisting of a block of material, the thickness of which is discretely variable by steps.
- This energy degrader will make it possible to roughly determine the desired energy value.
- an analysis magnet will be added to this energy degrader downstream said degrader, so as to allow finer adjustment of the desired energy value.
- the energy degrader according to the invention is of “staircase” shape, for which each level or “step” has a different thickness corresponding to a given energy variation, the thickness E 1 +E 2 being defined as the distance between the entry face and the exit face of the particle beam. Moreover, the width L of the successive steps is variable, and increases as a function of the thickness of said steps.
- the third parameter is the height H from one level or step to another.
- This block of variable thickness is preferably in the form of a ring arranged on a wheel. This makes it possible to dispense with the discrete nature of the degrader while at the same time keeping parallel the entry and exit faces of said degrader, thereby minimizing the energy dispersion of the beam.
- the step of the energy variation is determined such that the reduction in the intensity of the beam reaches a maximum of x% (typically 10%) at the edges of each step. Imposing this constraint allows to calculate the upper energy limit Es for a given step, which is also the lower energy limit for the next step (FIG. 2 ). An iterative calculation thus defines the number of “steps” required to obtain a continuous variation in energy between the maximum value (that of the beam extracted from the accelerator) and the minimum value (the lowest energy which will be used in the context of the application under consideration).
- a continuous energy variation is obtained according to the present invention by placing, according to one preferred embodiment of the invention, an analysis magnet downstream the degrader, despite the fact that the thickness of the degrader varies in discrete steps.
- the principle is that, on account of the large energy dispersion associated with the “straggling”, the degrader will define the energy only roughly, the fine adjustment being made downstream, by means of the analysis magnet.
- variable-thickness degrader in order to minimize the contribution of the divergence induced by the degrader on the emittance of the beam on exiting, the variable-thickness degrader will be located at exactly the position at which the beam envelope shows a narrowing (that is to say the position at which the beam has the smallest spatial extension, this position being known as the “waist”).
- each variable-thickness portion of the degrader that is to say each “step” corresponding to a given energy decrease, is located at a position such that the distance between the entry face of the step and the position where the beam focuses (that is to say the waist) corresponds exactly to the distance which minimizes the exit emittance of the beam as calculated by the transport equations and the scattering theory.
- An important aspect of the present invention is therefore that the optics of the beam are not changed, and in particular the position of the waist, as a function of the energy variation which it is desired to produce.
- the waist By means of appropriate curvature of the entry and exit faces (that is to say by means of the shape of the entry and exit “staircases”), the waist remains spatially static and always occupies, for each step, the ideal position relative to the entry and exit faces of the step.
- E 1 is not necessarily equal to E 2 as represented in FIG. 1 c.
- the degrader is advantageously composed of a material of very low atomic mass and of high density in order to reduce the effects of multiple scattering.
- This wheel is automated and remote-controlled so as to place, in the path of the incident beam, the part of the degrader (the “step”), the thickness of which corresponds to the energy loss one desires to bring about.
- FIG. 3 represents a diagram of the device for the purpose of using it in proton therapy. It has been sized so as to allow continuous variation, in the range 70 MeV-230 MeV, of the energy of a fixed-energy proton beam (about 230 MeV) produced by a cyclotron.
- the device comprises the degrader 1 mounted on an automated wheel and made of graphite. It is composed of 154 “steps”. Elements for controlling the characteristics of the beam, such as beam profile monitors 4 and beam stops 3 , will also be found on this wheel.
- the assembly also comprises the supporting structure 6 , correcting magnets (“steering” magnets, 5 ) and supply cables 2 , in addition to a number of connectors.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Particle Accelerators (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
A device for varying the energy of a particle beam extracted from a fixed-energy particle accelerator includes a block of energy degrading material positioned in the path of the particle beam. The block of energy degrading material is preferably in the form of a ring arranged on a wheel. The ring is of a staircase configuration, having discrete steps defining a thickness between parallel entry and exit faces. According to one aspect of the invention, the block is configured so that the particle beam energy variation reaches a maximum at the edges of each step. This upper limit is also the lower limit of the next step. Thus, continuous energy variation is possible despite the fact that the thickness of the block varies in discrete steps.
Description
This is the U.S. national phase of International Patent Application No. PCT/BE99/00166 filed Dec. 20, 1999, which claims priority of Belgian Patent Application No. 9800913, filed Dec. 21, 1998.
1. Field of the Invention
The present invention relates to a device for varying the energy of a particle beam extracted from a particle accelerator.
The present invention also relates to the use of said device.
2. State of the Art
Certain applications involving the use of beams of charged particles also require the energy of these particles to be rapidly varied.
To do this, one solution consists in using an accelerator capable of producing, intrinsically, an extracted particle beam whose energy is variable. In this regard, it may be proposed to use an accelerator such as a synchrotron capable of producing within this accelerator itself a particle beam, the energy of which is variable. Nevertheless, this type of accelerator is relatively complex to produce, and is accordingly more expensive and less reliable than particle accelerators which produce beams of fixed energy such as cyclotrons.
As a result, it has been proposed to equip such fixed-energy accelerators with a device whose function is to modify the energy characteristics of the beam, and to do so over the trajectory of said beam extracted from the accelerator. These devices are based on the well-known principle according to which any particle passing through a block of material undergoes a decrease in its energy by an amount which is, for particles of a given type, a function of the intrinsic characteristics of the material passed through and its thickness.
Nevertheless, the main drawback of such devices, which are also known as energy degraders, lies in the fact that the block of material deteriorates the energy resolution of the degraded beam. This is due to a phenomenon which is also known as “straggling”, which generates a static energy variation of more or less 1.5%. By proposing an entry face and an exit face that are parallel within the energy degrader, this phenomenon tends to be reduced.
In addition, it is observed that the optical characteristics of the beam passing through the energy degrader are also altered. In particular, a parallel incident beam becomes divergent when leaving the degrader because of the multiple scattering within the degrader. These drawbacks (increase in divergence and in energy dispersion) may lead to a situation in which the emittance of the beam is too high to meet the entry emittance constraints set by the optical elements of the beam which are located downstream along the beam transport line.
In order to solve these problems, it has also been proposed to use an analysis magnet placed after the degrader device, which is intended to accept only the energy desired for a predetermined resolution, with the aid of slits and collimators provided to improve the optical characteristics of the degraded beam. Nevertheless, by using such elements, it is observed that the intensity of the beam is further reduced, also causing a large activation of the various elements.
The document “Three-dimensional Beam Scanning for Proton Therapy” from Kanai et al. published in Nuclear Instruments and Methods in Physic Research (Sep. 1, 1983), The Netherlands, Vol. 214, No. 23, pp. 491-496 discloses the use of a synchrotron which produces a beam of protons controlled by means of scanning magnets, which is then directed towards an energy degrader having as function to modify the energy characteristics of the proton beam. This degrader substantially consists of a block of material whose thickness is discretely variable. Nevertheless, this application does not propose to perform a continuous variation of the energy of the beam extracted from a particle accelerator, and in particular a fixed-energy particle accelerator.
The present invention aims to provide a device which would make it possible to vary the energy of the beam extracted from a particle accelerator, in particular from a fixed-energy particle accelerator.
More particularly, the present invention aims to provide a device which would make it possible to vary almost continuously the energy of a beam extracted from a particle accelerator.
The present invention relates to a process and a device for varying the energy of a particle beam extracted from a fixed-energy particle accelerator. With this aim, an energy degrader is inserted in the path of the particle beam extracted from the accelerator, this degrader substantially consisting of a block of material, the thickness of which is discretely variable by steps. The thickness is defined as the distance between the entry face and the exit face on the block of material.
The energy difference between the steps is variable and is determined such that the variation in the intensity of the beam reaches, at the limit between two consecutive steps, a maximum of 15% and typically 10% of the maximum intensity obtained at the exit of each of the two successive steps under consideration. This makes it possible to obtain a continuous variation of the energy despite the fact that the thickness varies discretely. Indeed, this is due to the combination of the way of calculating the energy difference between the steps with the association of an analysis element.
According to one preferred embodiment, this degrader is positioned at the point at which there is a narrowing (“waist”) of the beam envelope. In addition, the curvature of the entry and exit faces of the degrader, defined by the height of the discrete levels or steps, is designed such that the “waist” is always for each step or level at the ideal position relative to the entry and exit faces without requiring the modification of the beam transport control parameters, and in particular the position of the “waist”, from one step to the next.
This advantageously allows to keep the characteristics in energy dispersion and the optical qualities of the beam.
The energy degrader preferably has steps or levels of variable width, the width of a step being defined as the distance between two successive steps. This width should be adjusted such that it is slightly larger than the diameter of the beam entering or exiting the degrader, which means that the width of said steps or levels of large thickness will be greater than the width of said steps or levels of small thickness.
The material of which the energy degrader is made should have a high density and a low atomic mass. Examples may be diamond, aggregated diamond powder or graphite.
An analysis magnet may also conventionally be combined with this energy degrader.
FIGS. 1a and 1 b represent, respectively, a perspective view and a top view of an energy degrader used in the process for varying the energy of a particle beam according to the present invention, while FIG. 1c represents an enlargement of a portion of FIG. 1b.
FIG. 2 represents the variation in current density as a function of the energy for a proton beam.
FIG. 3 represents an overall view of the device according to the present invention used in proton therapy.
The present invention will be described in greater detail with reference to the figures which represent one particularly preferred embodiment of the present invention.
FIGS. 1a and 1 b represent a degrader used in the device according to the present invention, substantially consisting of a block of material, the thickness of which is discretely variable by steps. This energy degrader will make it possible to roughly determine the desired energy value. Usually, an analysis magnet will be added to this energy degrader downstream said degrader, so as to allow finer adjustment of the desired energy value.
As represented in FIG. 1c, the energy degrader according to the invention is of “staircase” shape, for which each level or “step” has a different thickness corresponding to a given energy variation, the thickness E1+E2 being defined as the distance between the entry face and the exit face of the particle beam. Moreover, the width L of the successive steps is variable, and increases as a function of the thickness of said steps. The third parameter is the height H from one level or step to another.
This block of variable thickness is preferably in the form of a ring arranged on a wheel. This makes it possible to dispense with the discrete nature of the degrader while at the same time keeping parallel the entry and exit faces of said degrader, thereby minimizing the energy dispersion of the beam.
In this way, it is possible to construct a twin-“staircase” degrader, the thickness of which varies discretely, thus making it possible to keep the entry and exit faces parallel so as to minimize the energy dispersion.
When a mono-energetic proton beam passes through a material with fixed thickness, the energy dispersion resulting therefrom is reflected, as the beam leaves the block of material, by an energy spectrum of Gaussian distribution, characterizing the variation in current density (value In represented in FIG. 2 for the “step” n) as a function of the energy. This Gaussian distribution is centred on an energy value (value En represented in FIG. 2, for the “step” n) which corresponds to the initial energy minus the amount of the energy lost in the material, as may be calculated using path tables (known as “range tables”).
According to one embodiment, the step of the energy variation is determined such that the reduction in the intensity of the beam reaches a maximum of x% (typically 10%) at the edges of each step. Imposing this constraint allows to calculate the upper energy limit Es for a given step, which is also the lower energy limit for the next step (FIG. 2). An iterative calculation thus defines the number of “steps” required to obtain a continuous variation in energy between the maximum value (that of the beam extracted from the accelerator) and the minimum value (the lowest energy which will be used in the context of the application under consideration).
Advantageously, a continuous energy variation is obtained according to the present invention by placing, according to one preferred embodiment of the invention, an analysis magnet downstream the degrader, despite the fact that the thickness of the degrader varies in discrete steps. The principle is that, on account of the large energy dispersion associated with the “straggling”, the degrader will define the energy only roughly, the fine adjustment being made downstream, by means of the analysis magnet.
The positioning of the degrader in the path of the beam is also of great importance in this regard. With this aim, in order to minimize the contribution of the divergence induced by the degrader on the emittance of the beam on exiting, the variable-thickness degrader will be located at exactly the position at which the beam envelope shows a narrowing (that is to say the position at which the beam has the smallest spatial extension, this position being known as the “waist”). The beam must thus be focused in the degrader, and each variable-thickness portion of the degrader, that is to say each “step” corresponding to a given energy decrease, is located at a position such that the distance between the entry face of the step and the position where the beam focuses (that is to say the waist) corresponds exactly to the distance which minimizes the exit emittance of the beam as calculated by the transport equations and the scattering theory.
An important aspect of the present invention is therefore that the optics of the beam are not changed, and in particular the position of the waist, as a function of the energy variation which it is desired to produce. By means of appropriate curvature of the entry and exit faces (that is to say by means of the shape of the entry and exit “staircases”), the waist remains spatially static and always occupies, for each step, the ideal position relative to the entry and exit faces of the step.
It is thus observed that E1 is not necessarily equal to E2 as represented in FIG. 1c.
The degrader is advantageously composed of a material of very low atomic mass and of high density in order to reduce the effects of multiple scattering.
This wheel is automated and remote-controlled so as to place, in the path of the incident beam, the part of the degrader (the “step”), the thickness of which corresponds to the energy loss one desires to bring about.
FIG. 3 represents a diagram of the device for the purpose of using it in proton therapy. It has been sized so as to allow continuous variation, in the range 70 MeV-230 MeV, of the energy of a fixed-energy proton beam (about 230 MeV) produced by a cyclotron.
The device comprises the degrader 1 mounted on an automated wheel and made of graphite. It is composed of 154 “steps”. Elements for controlling the characteristics of the beam, such as beam profile monitors 4 and beam stops 3, will also be found on this wheel. The assembly also comprises the supporting structure 6, correcting magnets (“steering” magnets, 5) and supply cables 2, in addition to a number of connectors.
Claims (13)
1. Device for varying the energy of a particle beam extracted from a particle accelerator, comprising an energy degrader substantially consisting of a block of material, the thickness of which (E1+E2) is discretely variable by steps, characterized in that the energy difference between the steps is variable and is determined such that the variation in the intensity of the beam reaches, at the limit between two consecutive steps, a maximum of 15%, and preferably a maximum of 10%, of the maximum intensity obtained at the exit of each of the two adjacent steps under consideration.
2. Device according to claim 1 , characterized in that the entry and exit faces for each discrete step of the energy degrader are parallel.
3. Device according to claim 1 , characterized in that the particle beam is defined in a direction generally perpendicular to the path of the particle beam by a beam envelope and the degrader is located at a point at which the beam envelope presents a waist.
4. Device according to claim 3 , characterized in that the curvature of the faces constituting the height (H) of the discrete steps of the degrader for the degrader entry and exit is designed such that the point at which the beam envelope has a waist is ideally positioned for each step relative to the entry and exit faces, so that the beam emittance is minimised.
5. Device according to claim 1 , characterized in that the degrader has steps of variable width (L), the width of each step being determined so as to be slightly larger than the diameter of the beam entering or exiting the degrader.
6. Device according to claim 5 , characterized in that the width (L) of the steps increases as a function of the thickness of said steps.
7. Device according to claim 1 , characterized in that the degrader is made of a material of high density and low atomic mass selected from the group consisting of diamond, aggregated diamond powder, and graphite.
8. Device according to claim 1 , characterized in that the degrader is mounted on an automated wheel.
9. Device according to claim 8 , characterized in that the wheel on which the degrader is mounted has beam diagnosis elements comprising beam profile monitors or beam stops.
10. Device according to claim 1 , further comprising an analysis magnet.
11. Device according to claim 1 , wherein the degrader is made of a material of high density and low atomic mass.
12. A method for producing substantially continuous variation of the energy of a particle beam extracted from a fixed energy particle accelerator comprising the steps of:
positioning a block of energy degrading material in the path of the particle beam, said block having a thickness between parallel entry and exit faces which is variable in discrete steps to define a staircase configuration in which each step imparts a variable energy difference to the particle beam and said variable energy difference reaches a maximum energy difference at a limit of each step, so that the maximum energy difference of a step is approximately equal to a minimum energy difference of a succeeding step; and
rotating said block to position successive steps in the path of the particle beam.
13. The method of claim 12 , wherein said fixed energy particle accelerator is a cyclotron.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9800913A BE1012358A5 (en) | 1998-12-21 | 1998-12-21 | Process of changes of energy of particle beam extracted of an accelerator and device for this purpose. |
BE9800913 | 1998-12-21 | ||
PCT/BE1999/000166 WO2000038486A1 (en) | 1998-12-21 | 1999-12-20 | Device for varying the energy of a particle beam extracted from an accelerator |
Publications (1)
Publication Number | Publication Date |
---|---|
US6433336B1 true US6433336B1 (en) | 2002-08-13 |
Family
ID=3891579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/868,461 Expired - Fee Related US6433336B1 (en) | 1998-12-21 | 1999-12-20 | Device for varying the energy of a particle beam extracted from an accelerator |
Country Status (10)
Country | Link |
---|---|
US (1) | US6433336B1 (en) |
EP (1) | EP1145605B1 (en) |
JP (1) | JP2002533888A (en) |
CN (1) | CN1203730C (en) |
AT (1) | ATE295062T1 (en) |
AU (1) | AU1850700A (en) |
BE (1) | BE1012358A5 (en) |
CA (1) | CA2354071C (en) |
DE (1) | DE69925165T2 (en) |
WO (1) | WO2000038486A1 (en) |
Cited By (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040061066A1 (en) * | 2001-03-28 | 2004-04-01 | Ken Harada | Magnetic field applying sample observing system |
US6838676B1 (en) * | 2003-07-21 | 2005-01-04 | Hbar Technologies, Llc | Particle beam processing system |
US20050143945A1 (en) * | 2003-12-12 | 2005-06-30 | Ibm Corporation | Automatic exchange of degraders in accelerated testing of computer chips |
US20060145088A1 (en) * | 2003-06-02 | 2006-07-06 | Fox Chase Cancer Center | High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers |
US20070171015A1 (en) * | 2006-01-19 | 2007-07-26 | Massachusetts Institute Of Technology | High-Field Superconducting Synchrocyclotron |
DE102007032025A1 (en) | 2007-07-10 | 2008-12-18 | Siemens Ag | Particle therapy installation for treating patients with cancer comprises a cylindrical gantry rotating about a rotary axis with a rotating beam generator and a beam channel for guiding the particle beam produced |
US7656258B1 (en) | 2006-01-19 | 2010-02-02 | Massachusetts Institute Of Technology | Magnet structure for particle acceleration |
US20100059687A1 (en) * | 2008-05-22 | 2010-03-11 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US7728311B2 (en) | 2005-11-18 | 2010-06-01 | Still River Systems Incorporated | Charged particle radiation therapy |
US20100207552A1 (en) * | 2008-05-22 | 2010-08-19 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US20110136075A1 (en) * | 2008-08-12 | 2011-06-09 | Megagen Implant Co., Ltd. | Dental instrument for cutting soft tissue |
US20110133699A1 (en) * | 2004-10-29 | 2011-06-09 | Medtronic, Inc. | Lithium-ion battery |
US20110184221A1 (en) * | 2008-07-14 | 2011-07-28 | Vladimir Balakin | Elongated lifetime x-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US8129694B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US20120056098A1 (en) * | 2010-05-27 | 2012-03-08 | Mitsubishi Electric Corporation | Particle beam irradiation system and method for controlling the particle beam irradiation system |
US8144832B2 (en) | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8198607B2 (en) | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8288742B2 (en) | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US8373146B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373143B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US8378321B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8384053B2 (en) | 2008-05-22 | 2013-02-26 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US8415643B2 (en) | 2008-05-22 | 2013-04-09 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8436327B2 (en) | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8487278B2 (en) | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US20130299721A1 (en) * | 2011-01-18 | 2013-11-14 | Sumitomo Heavy Industries, Ltd. | Energy degrader and charged particle irradiation system including the same |
US8598543B2 (en) | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8688197B2 (en) | 2008-05-22 | 2014-04-01 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8766217B2 (en) | 2008-05-22 | 2014-07-01 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8791435B2 (en) | 2009-03-04 | 2014-07-29 | Vladimir Egorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US8841866B2 (en) | 2008-05-22 | 2014-09-23 | Vladimir Yegorovich Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US8901509B2 (en) | 2008-05-22 | 2014-12-02 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US8952634B2 (en) | 2004-07-21 | 2015-02-10 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US8957396B2 (en) | 2008-05-22 | 2015-02-17 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US9058910B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9155186B2 (en) | 2012-09-28 | 2015-10-06 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US9185789B2 (en) | 2012-09-28 | 2015-11-10 | Mevion Medical Systems, Inc. | Magnetic shims to alter magnetic fields |
US9269467B2 (en) | 2011-06-02 | 2016-02-23 | Nigel Raymond Stevenson | General radioisotope production method employing PET-style target systems |
US9289624B2 (en) | 2009-10-23 | 2016-03-22 | Ion Beam Aplications, S.A. | Gantry comprising beam analyser for use in particle therapy |
US9301384B2 (en) | 2012-09-28 | 2016-03-29 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US9336916B2 (en) | 2010-05-14 | 2016-05-10 | Tcnet, Llc | Tc-99m produced by proton irradiation of a fluid target system |
EP3035777A1 (en) | 2014-12-16 | 2016-06-22 | Ion Beam Applications S.A. | Rotating energy degrader |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
CN106406216A (en) * | 2016-10-24 | 2017-02-15 | 合肥中科离子医学技术装备有限公司 | Control device applied to particle beam energy reducer and control method thereof |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US9622335B2 (en) | 2012-09-28 | 2017-04-11 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
US9630021B2 (en) | 2001-08-30 | 2017-04-25 | Hbar Technologies Llc | Antiproton production and delivery for imaging and termination of undesirable cells |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
US9681531B2 (en) | 2012-09-28 | 2017-06-13 | Mevion Medical Systems, Inc. | Control system for a particle accelerator |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US9723705B2 (en) | 2012-09-28 | 2017-08-01 | Mevion Medical Systems, Inc. | Controlling intensity of a particle beam |
US9728280B2 (en) | 2013-05-17 | 2017-08-08 | Martin A. Stuart | Dielectric wall accelerator utilizing diamond or diamond like carbon |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
US9962560B2 (en) * | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US10029124B2 (en) | 2010-04-16 | 2018-07-24 | W. Davis Lee | Multiple beamline position isocenterless positively charged particle cancer therapy apparatus and method of use thereof |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10646728B2 (en) | 2015-11-10 | 2020-05-12 | Mevion Medical Systems, Inc. | Adaptive aperture |
US10653892B2 (en) | 2017-06-30 | 2020-05-19 | Mevion Medical Systems, Inc. | Configurable collimator controlled using linear motors |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US10925147B2 (en) | 2016-07-08 | 2021-02-16 | Mevion Medical Systems, Inc. | Treatment planning |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
US11291861B2 (en) | 2019-03-08 | 2022-04-05 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US12150235B2 (en) | 2021-02-12 | 2024-11-19 | Mevion Medical Systems, Inc. | Treatment planning |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7282721B2 (en) * | 2001-08-30 | 2007-10-16 | Varian Semiconductor Equipment Associates, Inc. | Method and apparatus for tuning ion implanters |
JP5726644B2 (en) * | 2011-06-06 | 2015-06-03 | 住友重機械工業株式会社 | Energy degrader and charged particle beam irradiation system including the same |
JP5917322B2 (en) * | 2012-07-12 | 2016-05-11 | 住友重機械工業株式会社 | Charged particle beam irradiation equipment |
EP3178522B1 (en) | 2015-12-11 | 2018-02-14 | Ion Beam Applications S.A. | Particle therapy system with parallel control of energy variation and beam position variation |
EP3203815A1 (en) | 2016-02-04 | 2017-08-09 | Ion Beam Applications | Rotating energy degrader |
RU2617689C1 (en) * | 2016-04-19 | 2017-04-26 | Иван Васильевич Трифанов | Energy recovery of positively charged ions |
CN106304606A (en) * | 2016-07-29 | 2017-01-04 | 中国原子能科学研究院 | A kind of double in line plug-in type degrader and using method thereof |
CN106267584B (en) * | 2016-07-29 | 2018-12-28 | 中国原子能科学研究院 | A kind of Double-disk rotation type compact degrader and its application method |
CN107737411B (en) * | 2017-10-13 | 2018-11-02 | 华中科技大学 | A kind of more wedge-shaped mixing material degraders of varied angle |
CN108449859B (en) * | 2018-03-08 | 2019-12-06 | 西北核技术研究所 | energy reducing device and method for wheel axle type particle accelerator in vacuum |
CN112911783A (en) * | 2021-03-25 | 2021-06-04 | 四川大学 | Film energy degrader suitable for high-power beam |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6268610B1 (en) * | 1997-10-20 | 2001-07-31 | Mitsubishi Denki Kabushiki Kaisha | Charged-particle beam irradiation apparatus, charged-particle beam rotary irradiation system, and charged-particle beam irradiation method |
-
1998
- 1998-12-21 BE BE9800913A patent/BE1012358A5/en not_active IP Right Cessation
-
1999
- 1999-12-20 EP EP99961998A patent/EP1145605B1/en not_active Expired - Lifetime
- 1999-12-20 JP JP2000590440A patent/JP2002533888A/en active Pending
- 1999-12-20 CN CNB998148547A patent/CN1203730C/en not_active Expired - Fee Related
- 1999-12-20 AU AU18507/00A patent/AU1850700A/en not_active Abandoned
- 1999-12-20 CA CA002354071A patent/CA2354071C/en not_active Expired - Fee Related
- 1999-12-20 DE DE69925165T patent/DE69925165T2/en not_active Expired - Lifetime
- 1999-12-20 WO PCT/BE1999/000166 patent/WO2000038486A1/en active IP Right Grant
- 1999-12-20 AT AT99961998T patent/ATE295062T1/en not_active IP Right Cessation
- 1999-12-20 US US09/868,461 patent/US6433336B1/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6268610B1 (en) * | 1997-10-20 | 2001-07-31 | Mitsubishi Denki Kabushiki Kaisha | Charged-particle beam irradiation apparatus, charged-particle beam rotary irradiation system, and charged-particle beam irradiation method |
Non-Patent Citations (10)
Title |
---|
Berg, R.E., "Rotating Wedge Cyclotron Beam Degrader", Proc. 7th Int. Conf. on Cyclotrons and their Applications (Birkhauser, Basel, 1975), p. 315-316. |
Berg, R.E.: "Rotating wedge cyclotron beam degrader" 7th INTERNATIONAL CONFERENCE ON CYCLOTRONS AND THEIR APPLICATIONS, ZURICH, SWITZERLAND, 10-22 aGU. 1975, pp. 315-316. |
Constantinescu, V. et al, "Radiation Damage and Surface Deformation Effects on Stainless Steel Produced by Helium-Ion Bombardment", Journal of Nuclear Materials, (1985), p. 105-109. |
Constantinesque, B. et al.: "Radiation damage and surface deformation effects on stainless steel produced by helium-ion bombardment", JOURNAL OF NUCLEAR MATERIALS, JUN. 1985, Netherlands, vol. 132, No. 2, pp. 105-109. |
Kanai, T. et al, "Three-Dimensional Beam Scanning for Proton Therapy", Nuclear Instruments and Methods 214 (1983), p. 491-496. |
Kanai, T. et al: "Three-dimensional beam scanning for proton therapy"; Nuclear Instruments and Methods in Physics Research, Sep 1, 1983; Netherlands; vol. 214, No. 2-3, pp. 491-496. |
Shimoda, T. et al, "Design study of the secondary-beam line at RCNP", Nuclear Instruments and Methods in Physics Research B70 (1992), p. 320-330. |
Shimoda, T. et al.: "Design study of the secondary-beam line at RCNP" TWELFTH INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC ISOTOPE SEPARATORS AND TECHNIQUES RELATED TO THEIR APPLICATIONS, SENDAI, JAPAN 2-6 Sep. 1991, vol. B70, No. 1-4, pp. 320-330. |
Werbeck, R.D. et al, "Performance of the High-Energy Pion Beam at LAMPF", IEEE Transactions on Nuclear Science, vol. NS-22, No. 3, Jun. 1975. |
Werbeck, R.D. et al.: "Performance of the high-energy pion beam at LAMPF" 1975 Particle Accelerator Conference, Washington, DC, USA; 12-14 Mar. 1975, vol. ns-22, No. 3, pp. 1598-1600. |
Cited By (184)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040061066A1 (en) * | 2001-03-28 | 2004-04-01 | Ken Harada | Magnetic field applying sample observing system |
US9630021B2 (en) | 2001-08-30 | 2017-04-25 | Hbar Technologies Llc | Antiproton production and delivery for imaging and termination of undesirable cells |
US7317192B2 (en) | 2003-06-02 | 2008-01-08 | Fox Chase Cancer Center | High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers |
US20060145088A1 (en) * | 2003-06-02 | 2006-07-06 | Fox Chase Cancer Center | High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers |
US6838676B1 (en) * | 2003-07-21 | 2005-01-04 | Hbar Technologies, Llc | Particle beam processing system |
US20050017193A1 (en) * | 2003-07-21 | 2005-01-27 | Jackson Gerald P. | Particle beam processing system |
US7183758B2 (en) * | 2003-12-12 | 2007-02-27 | International Business Machines Corporation | Automatic exchange of degraders in accelerated testing of computer chips |
US20050143945A1 (en) * | 2003-12-12 | 2005-06-30 | Ibm Corporation | Automatic exchange of degraders in accelerated testing of computer chips |
USRE48047E1 (en) | 2004-07-21 | 2020-06-09 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US8952634B2 (en) | 2004-07-21 | 2015-02-10 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US20110133699A1 (en) * | 2004-10-29 | 2011-06-09 | Medtronic, Inc. | Lithium-ion battery |
US8344340B2 (en) | 2005-11-18 | 2013-01-01 | Mevion Medical Systems, Inc. | Inner gantry |
US9452301B2 (en) | 2005-11-18 | 2016-09-27 | Mevion Medical Systems, Inc. | Inner gantry |
US10279199B2 (en) | 2005-11-18 | 2019-05-07 | Mevion Medical Systems, Inc. | Inner gantry |
US7728311B2 (en) | 2005-11-18 | 2010-06-01 | Still River Systems Incorporated | Charged particle radiation therapy |
US10722735B2 (en) | 2005-11-18 | 2020-07-28 | Mevion Medical Systems, Inc. | Inner gantry |
US8916843B2 (en) | 2005-11-18 | 2014-12-23 | Mevion Medical Systems, Inc. | Inner gantry |
US8907311B2 (en) | 2005-11-18 | 2014-12-09 | Mevion Medical Systems, Inc. | Charged particle radiation therapy |
US9925395B2 (en) | 2005-11-18 | 2018-03-27 | Mevion Medical Systems, Inc. | Inner gantry |
US20070171015A1 (en) * | 2006-01-19 | 2007-07-26 | Massachusetts Institute Of Technology | High-Field Superconducting Synchrocyclotron |
US7696847B2 (en) | 2006-01-19 | 2010-04-13 | Massachusetts Institute Of Technology | High-field synchrocyclotron |
US7656258B1 (en) | 2006-01-19 | 2010-02-02 | Massachusetts Institute Of Technology | Magnet structure for particle acceleration |
US20090206967A1 (en) * | 2006-01-19 | 2009-08-20 | Massachusetts Institute Of Technology | High-Field Synchrocyclotron |
US7541905B2 (en) | 2006-01-19 | 2009-06-02 | Massachusetts Institute Of Technology | High-field superconducting synchrocyclotron |
DE102007032025A1 (en) | 2007-07-10 | 2008-12-18 | Siemens Ag | Particle therapy installation for treating patients with cancer comprises a cylindrical gantry rotating about a rotary axis with a rotating beam generator and a beam channel for guiding the particle beam produced |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8941083B2 (en) | 2007-10-11 | 2015-01-27 | Mevion Medical Systems, Inc. | Applying a particle beam to a patient |
USRE48317E1 (en) | 2007-11-30 | 2020-11-17 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8970137B2 (en) | 2007-11-30 | 2015-03-03 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US8373146B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373143B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US8373145B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8378321B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8384053B2 (en) | 2008-05-22 | 2013-02-26 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US8415643B2 (en) | 2008-05-22 | 2013-04-09 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8421041B2 (en) | 2008-05-22 | 2013-04-16 | Vladimir Balakin | Intensity control of a charged particle beam extracted from a synchrotron |
US8436327B2 (en) | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8487278B2 (en) | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US8581215B2 (en) | 2008-05-22 | 2013-11-12 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8288742B2 (en) | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US20100059687A1 (en) * | 2008-05-22 | 2010-03-11 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8598543B2 (en) | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US8614554B2 (en) | 2008-05-22 | 2013-12-24 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8614429B2 (en) | 2008-05-22 | 2013-12-24 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US8637818B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8688197B2 (en) | 2008-05-22 | 2014-04-01 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8766217B2 (en) | 2008-05-22 | 2014-07-01 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8129694B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100207552A1 (en) * | 2008-05-22 | 2010-08-19 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8841866B2 (en) | 2008-05-22 | 2014-09-23 | Vladimir Yegorovich Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US8901509B2 (en) | 2008-05-22 | 2014-12-02 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US8198607B2 (en) | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8941084B2 (en) | 2008-05-22 | 2015-01-27 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8957396B2 (en) | 2008-05-22 | 2015-02-17 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US8144832B2 (en) | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US9018601B2 (en) | 2008-05-22 | 2015-04-28 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US9058910B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US9314649B2 (en) | 2008-05-22 | 2016-04-19 | Vladimir Balakin | Fast magnet method and apparatus used in conjunction with a charged particle cancer therapy system |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US9543106B2 (en) | 2008-05-22 | 2017-01-10 | Vladimir Balakin | Tandem charged particle accelerator including carbon ion beam injector and carbon stripping foil |
US9757594B2 (en) | 2008-05-22 | 2017-09-12 | Vladimir Balakin | Rotatable targeting magnet apparatus and method of use thereof in conjunction with a charged particle cancer therapy system |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US20110184221A1 (en) * | 2008-07-14 | 2011-07-28 | Vladimir Balakin | Elongated lifetime x-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8229072B2 (en) | 2008-07-14 | 2012-07-24 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US20110136075A1 (en) * | 2008-08-12 | 2011-06-09 | Megagen Implant Co., Ltd. | Dental instrument for cutting soft tissue |
US8791435B2 (en) | 2009-03-04 | 2014-07-29 | Vladimir Egorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US20160199671A1 (en) * | 2009-10-23 | 2016-07-14 | Ion Beam Applications S.A. | Gantry comprising beam analyser for use in particle therapy |
US20190151677A1 (en) * | 2009-10-23 | 2019-05-23 | Ion Beam Applications S.A. | Gantry comprising beam analyser for use in particle therapy |
US10052498B2 (en) * | 2009-10-23 | 2018-08-21 | Ion Beam Applications S.A. | Gantry comprising beam analyser for use in particle therapy |
US9289624B2 (en) | 2009-10-23 | 2016-03-22 | Ion Beam Aplications, S.A. | Gantry comprising beam analyser for use in particle therapy |
US10799714B2 (en) * | 2009-10-23 | 2020-10-13 | Ion Beam Applications, S.A. | Gantry comprising beam analyser for use in particle therapy |
US10357666B2 (en) | 2010-04-16 | 2019-07-23 | W. Davis Lee | Fiducial marker / cancer imaging and treatment apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10029124B2 (en) | 2010-04-16 | 2018-07-24 | W. Davis Lee | Multiple beamline position isocenterless positively charged particle cancer therapy apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US9336916B2 (en) | 2010-05-14 | 2016-05-10 | Tcnet, Llc | Tc-99m produced by proton irradiation of a fluid target system |
US8232536B2 (en) * | 2010-05-27 | 2012-07-31 | Mitsubishi Electric Corporation | Particle beam irradiation system and method for controlling the particle beam irradiation system |
US20120056098A1 (en) * | 2010-05-27 | 2012-03-08 | Mitsubishi Electric Corporation | Particle beam irradiation system and method for controlling the particle beam irradiation system |
US9006693B2 (en) * | 2011-01-18 | 2015-04-14 | Sumitomo Heavy Industries, Ltd. | Energy degrader and charged particle irradiation system including the same |
US20130299721A1 (en) * | 2011-01-18 | 2013-11-14 | Sumitomo Heavy Industries, Ltd. | Energy degrader and charged particle irradiation system including the same |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US9269467B2 (en) | 2011-06-02 | 2016-02-23 | Nigel Raymond Stevenson | General radioisotope production method employing PET-style target systems |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
US10155124B2 (en) | 2012-09-28 | 2018-12-18 | Mevion Medical Systems, Inc. | Controlling particle therapy |
US9185789B2 (en) | 2012-09-28 | 2015-11-10 | Mevion Medical Systems, Inc. | Magnetic shims to alter magnetic fields |
US9155186B2 (en) | 2012-09-28 | 2015-10-06 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
US9723705B2 (en) | 2012-09-28 | 2017-08-01 | Mevion Medical Systems, Inc. | Controlling intensity of a particle beam |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
US9706636B2 (en) | 2012-09-28 | 2017-07-11 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US10368429B2 (en) | 2012-09-28 | 2019-07-30 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
US9622335B2 (en) | 2012-09-28 | 2017-04-11 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
US9301384B2 (en) | 2012-09-28 | 2016-03-29 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US9681531B2 (en) | 2012-09-28 | 2017-06-13 | Mevion Medical Systems, Inc. | Control system for a particle accelerator |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US10490310B2 (en) | 2013-05-17 | 2019-11-26 | Martin A. Stuart | Dielectric wall accelerator utilizing diamond or diamond like carbon |
US10529455B2 (en) | 2013-05-17 | 2020-01-07 | Martin A. Stuart | Dielectric wall accelerator and applications and methods of use |
US9728280B2 (en) | 2013-05-17 | 2017-08-08 | Martin A. Stuart | Dielectric wall accelerator utilizing diamond or diamond like carbon |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
US10456591B2 (en) | 2013-09-27 | 2019-10-29 | Mevion Medical Systems, Inc. | Particle beam scanning |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
US9962560B2 (en) * | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US11717700B2 (en) | 2014-02-20 | 2023-08-08 | Mevion Medical Systems, Inc. | Scanning system |
US10434331B2 (en) | 2014-02-20 | 2019-10-08 | Mevion Medical Systems, Inc. | Scanning system |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
EP3035777A1 (en) | 2014-12-16 | 2016-06-22 | Ion Beam Applications S.A. | Rotating energy degrader |
EP3035776A1 (en) | 2014-12-16 | 2016-06-22 | Ion Beam Applications S.A. | Energy degrader |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
US11786754B2 (en) | 2015-11-10 | 2023-10-17 | Mevion Medical Systems, Inc. | Adaptive aperture |
US10646728B2 (en) | 2015-11-10 | 2020-05-12 | Mevion Medical Systems, Inc. | Adaptive aperture |
US11213697B2 (en) | 2015-11-10 | 2022-01-04 | Mevion Medical Systems, Inc. | Adaptive aperture |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
US10925147B2 (en) | 2016-07-08 | 2021-02-16 | Mevion Medical Systems, Inc. | Treatment planning |
CN106406216A (en) * | 2016-10-24 | 2017-02-15 | 合肥中科离子医学技术装备有限公司 | Control device applied to particle beam energy reducer and control method thereof |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
US10653892B2 (en) | 2017-06-30 | 2020-05-19 | Mevion Medical Systems, Inc. | Configurable collimator controlled using linear motors |
US11311746B2 (en) | 2019-03-08 | 2022-04-26 | Mevion Medical Systems, Inc. | Collimator and energy degrader for a particle therapy system |
US11291861B2 (en) | 2019-03-08 | 2022-04-05 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
US11717703B2 (en) | 2019-03-08 | 2023-08-08 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
US12150235B2 (en) | 2021-02-12 | 2024-11-19 | Mevion Medical Systems, Inc. | Treatment planning |
Also Published As
Publication number | Publication date |
---|---|
JP2002533888A (en) | 2002-10-08 |
DE69925165D1 (en) | 2005-06-09 |
CN1331903A (en) | 2002-01-16 |
BE1012358A5 (en) | 2000-10-03 |
AU1850700A (en) | 2000-07-12 |
EP1145605B1 (en) | 2005-05-04 |
CA2354071C (en) | 2008-02-19 |
EP1145605A1 (en) | 2001-10-17 |
CN1203730C (en) | 2005-05-25 |
DE69925165T2 (en) | 2006-01-12 |
CA2354071A1 (en) | 2000-06-29 |
WO2000038486A1 (en) | 2000-06-29 |
ATE295062T1 (en) | 2005-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6433336B1 (en) | Device for varying the energy of a particle beam extracted from an accelerator | |
Balakin et al. | Focusing of submicron beams for TeV-scale e+ e− linear colliders | |
CN101002978B (en) | Particle-beam exposure apparatus and particle-beam therapeutic apparatus | |
Hotchi et al. | Beam loss reduction by injection painting in the 3-GeV rapid cycling synchrotron<? format?> of the Japan Proton Accelerator Research Complex | |
Rizzoglio et al. | Evolution of a beam dynamics model for the transport line in a proton therapy facility | |
CN114072204B (en) | Non-achromatic compact gantry | |
Hwang et al. | Top-up operation at pohang light source-II | |
Flanz et al. | Operation of an isochronous beam recirculation system | |
Bosch et al. | Modeling two-stage bunch compression with wakefields:<? format?> Macroscopic properties and microbunching instability | |
Ostroumov et al. | Simultaneous acceleration of multiply charged ions through a superconducting linac | |
Kubo | Towards an International Linear Collider: Experiments at ATF2 | |
Seeman et al. | Special SLC linac developments | |
McAteer | Linear optics measurements in the fermilab booster and the CERN PS booster | |
Abrams | Fast energy and energy spectrum feedback in the SLC Linac | |
Seeman et al. | Experimental Beam Dynamics in the SLC Linac | |
Decking | Optical layout of the TESLA 5 GeV damping ring | |
Lee et al. | Bends and momentum dispersion during final compression in heavy ion fusion drivers | |
Faatz et al. | Field accuracy requirements for the undulator systems of the X-ray FEL's at TESLA | |
Benedetto et al. | Review and comparison of simulation codes modeling electron-cloud build up and instabilities | |
Tiefenback et al. | Matching the Transport of Beams in a Continuously Twisted Quadrupole Channel | |
Krinsky | Accelerator physics challenges for the NSLS-II Project | |
Seeman | Observation and cures of wakefield effects in the SLC linac | |
MEIGO et al. | Beam Commissioning at JSNS of J-PARC | |
Ghasem et al. | Lattice design for the Diamond-II light source storage ring | |
Ruggiero | Sharp edge effects of the magnets of a FFAG accelerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ION BEAM APPLICATIONS S.A., BELGIUM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JONGEN, YVES;POREYE, VINCENT;REEL/FRAME:011971/0795 Effective date: 20010425 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100813 |