[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US6217904B1 - Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second CNS stimulant - Google Patents

Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second CNS stimulant Download PDF

Info

Publication number
US6217904B1
US6217904B1 US09/544,382 US54438200A US6217904B1 US 6217904 B1 US6217904 B1 US 6217904B1 US 54438200 A US54438200 A US 54438200A US 6217904 B1 US6217904 B1 US 6217904B1
Authority
US
United States
Prior art keywords
dosage form
dosage
amphetamine
methylphenidate
threo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/544,382
Inventor
Kamal K. Midha
Martin H. Teicher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MCLEAN HOSPTIAL
Pharmaquest Ltd
Original Assignee
Pharmaquest Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pharmaquest Ltd filed Critical Pharmaquest Ltd
Priority to US09/544,382 priority Critical patent/US6217904B1/en
Assigned to PHARMAQUEST LTD. reassignment PHARMAQUEST LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIDHA, KAMAL K.
Assigned to MCLEAN HOSPTIAL reassignment MCLEAN HOSPTIAL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEICHER, MARTIN H.
Application granted granted Critical
Publication of US6217904B1 publication Critical patent/US6217904B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4458Non condensed piperidines, e.g. piperocaine only substituted in position 2, e.g. methylphenidate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4808Preparations in capsules, e.g. of gelatin, of chocolate characterised by the form of the capsule or the structure of the filling; Capsules containing small tablets; Capsules with outer layer for immediate drug release
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5084Mixtures of one or more drugs in different galenical forms, at least one of which being granules, microcapsules or (coated) microparticles according to A61K9/16 or A61K9/50, e.g. for obtaining a specific release pattern or for combining different drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/26Psychostimulants, e.g. nicotine, cocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2009Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/2853Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core

Definitions

  • the present invention relates generally to drug delivery, and more specifically relates to novel pharmaceutical dosage forms that provide pulsatile delivery of d-threo-methylphenidate in combination with a second CNS stimulant.
  • the invention additionally relates to methods for administering methylphenidate using the novel dosage forms.
  • compositions which provide a variety of drug release profiles, including immediate release, sustained release, and delayed release. That is, it may be desirable, for a particular drug, to prevent drug release after drug administration until a certain amount of time has passed (so-called “timed release”), to provide substantially continuous release over a predetermined time period (so-called “sustained release”) or to provide release immediately following drug administration (i.e., “immediate release”).
  • Pulses For some types of drugs, it is preferred to release the drug in “pulses,” wherein a single dosage form provides for an initial dose of drug followed by a release-free interval, after which a second dose of drug is released, followed by one or more additional release-free intervals and drug release “pulses.”
  • Pulsatile drug delivery is useful, for example, with active agents that have short half-lives and must be administered two or three times daily, with active agents that are extensively metabolized presystemically, and with active agents which lose the desired therapeutic effect when constant blood levels are maintained.
  • a drug dosage form that provides a pulsatile drug release profile is also useful for minimizing the abuse potential of certain types of drugs, i.e., drugs for which tolerance, addiction and deliberate overdose can be problematic.
  • the present invention is directed in part to a novel pulsatile drug delivery system which is straightforward to manufacture and provides precisely timed drug release “pulses” at desired intervals.
  • Methylphenidate hydrochloride is a central nervous system stimulant that is used in the treatment of Attention Deficit Disorder (“ADD”), a commonly diagnosed nervous system illness in children that is characterized by both distractability and impulsivity.
  • ADD Attention Deficit Disorder
  • Methylphenidate HCl is also used to treat a related disorder, Attention Deficit Hyperactivity Disorder (“ADHD”), in which symptoms of hyperactivity are present along with the symptoms of ADD.
  • ADHD Attention Deficit Hyperactivity Disorder
  • the drug is additionally used in the symptomatic treatment of narcolepsy, depression, and the cognitive decline associated with Acquired Immunodeficiency Syndrome (“AIDS”) or AIDS-related conditions, as well as for mood elevation, particularly in terminally ill patients with diseases such as cancer.
  • AIDS Acquired Immunodeficiency Syndrome
  • Methylphenidate exists as four distinct isomers, as follows:
  • the drug as used in therapy is a racemic mixture of the d- and l-threo enantiomers, which have been acknowledged as more active than the erythro pair.
  • methylphenidate is a primary candidate for use in conjunction with the drug delivery systems of the invention.
  • l-threo methylphenidate not only makes no contribution to therapeutic efficacy, but in fact contributes to undesirable side effects associated with administration of racemic methylphenidate, e.g., insomnia, euphoria, development of tolerance to the drug, and potential for abuse. Accordingly, several researchers have proposed administering methylphenidate as the pure d-threo isomer rather than as the racemic mixture of d-threo and l-threo isomers. See, e.g., U.S. Pat. No. 5,908,850 to Zeitlin et al., U.S. Pat. No. 5,874,090 to Baker et al., and U.S. Pat. No.
  • a drawback of the prior art is that the disclosed dosage forms are ineffective for individuals who do not respond, or respond inadequately, to methylphenidate therapy or to a second central nervous system (“CNS”) stimulant (e.g., an analeptic agent such as d-amphetamine, as found in the commercial ADHD product Adderol®).
  • CNS central nervous system
  • methylphenidate, and particularly d-threo methylphenidate with a second CNS stimulant, particularly an analeptic agent such as d-amphetamine, gives rise to a therapeutically effective pharmaceutical formulation useful in treating individuals who do not respond, or respond inadequately, to methylphenidate therapy or to the second CNS stimulant, when administered as individual active agents.
  • the aforementioned combination of active agents can provide an increased therapeutic benefit to patients who do respond to methylphenidate therapy or to the second CNS stimulant, e.g., to an analeptic agent such as d-amphetamine.
  • the present invention provides novel pharmaceutical dosage forms for the administration of d-threo methylphenidate along with at least one additional active agent comprising a second CNS stimulant.
  • the novel dosage forms provide for pulsatile drug release, thereby maximizing efficacy (i.e., the loss of clinical efficacy over time), reducing the potential for abuse or noncompliance.
  • the dosage forms also provide for therapeutic efficacy in individuals who do not respond, or respond inadequately, to methylphenidate or to the second CNS stimulant when these agents are administered alone, and provide enhanced therapeutic efficacy in individuals who are responsive to methylphenidate and other CNS stimulants such as d-amphetamine. No art of which applicants are aware describes drug delivery systems as now provided herein.
  • a primary object of the invention to address the above-mentioned need in the art by providing a pharmaceutical dosage form for pulsatile delivery of d-threo methylphenidate, wherein the dosage form contains a second CNS stimulant as an additional active agent.
  • an active agent includes mixtures of active agents
  • a second agent includes more than one “second” agent
  • reference to “a pharmaceutical carrier” includes combinations of two or more carriers, and the like.
  • active agent drug
  • drug pharmacologically active agent
  • an effective amount or “pharmaceutically effective amount” of an agent as provided herein are meant a nontoxic but sufficient amount of the agent to provide the desired therapeutic effect.
  • the exact amount required will vary from subject to subject, depending on age, general condition of the subject, the severity of the condition being treated, and the particular active agent administered, and the like. Thus, it is not possible to specify an exact “effective amount.” However, an appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
  • carrier a carrier comprised of a material that is not biologically or otherwise undesirable, i.e., the material may be administered to an individual along with the selected active agent without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained.
  • carrier is used generically herein to refer to any components present in the pharmaceutical formulations other than the active agent or agents, and thus includes diluents, binders, lubricants, disintegrants, fillers, coloring agents, wetting or emulsifying agents, pH buffering agents, preservatives, and the like.
  • a “pharmaceutically acceptable” salt or a “pharmaceutically acceptable” ester of a compound as provided herein is a salt or ester which is not biologically or otherwise undesirable.
  • the invention features pharmaceutical dosage forms that provide for pulsatile delivery of d-threo-methylphenidate, with a second CNS stimulant co-administered with the d-threo-methylphenidate in at least one of the drug release “pulses.”
  • pulsatile is meant that a plurality of drug doses are released at spaced apart time intervals.
  • release of the initial dose is substantially immediate, i.e., the first drug release “pulse” occurs within 1-2 hours of ingestion. This initial pulse is followed by a first time interval during which substantially no drug is released from the dosage form, after which a second dose is then released.
  • the second dose is released on the order of 3-5 hours following ingestion of the dosage form.
  • release of the second dose is followed by a second non-release interval, which is again followed by a “pulse” of drug release.
  • release of a third dose occurs on the order of 7-9 hours following ingestion.
  • either two or three release pulses are provided.
  • the invention is also intended to encompass dosage forms that provide more than three pulses, with non-release intervals therebetween of approximately 2-6 hours, preferably 3-5 hours.
  • each dosage unit comprises a compressed or molded tablet, wherein each of the tablets within the capsule provides a different drug release profile. That is, for an exemplary dosage form, a first tablet releases drug substantially immediately following ingestion of the dosage form, while a second tablet in the capsule releases drug approximately 3-5 hours following ingestion, and an optional third tablet provides drug release after approximately 7-9 hours. While the dosage form will not generally include more than three tablets, dosage forms housing four or more tablets are within the scope of the present invention.
  • each dosage unit comprises a drug-containing particle or bead
  • drug-containing “beads” refer to drug-coated inert supports, e.g., lactose beads coated with drug.
  • a first group of these particles or beads releases drug substantially immediately following ingestion of the dosage form, a second group releases drug approximately 3-5 hours following ingestion, and an optional third group provides drug release after approximately 7-9 hours.
  • the individual dosage units are compacted in a single tablet, and represent integral but discrete segments thereof (e.g., layers).
  • drug-containing particles or drug-containing beads can be compressed together into a single tablet using conventional tabletting means.
  • Such methods include coating a drug or drug-containing composition, increasing the drug's particle size, placing the drug within a matrix, and forming complexes of the drug with a suitable complexing agent.
  • the delayed release dosage units in the present capsules can be prepared, for example, by coating a drug or a drug-containing composition with a selected membrane coating material, typically although not necessarily a polymeric material.
  • a coating is used to provide delayed release dosage units, particularly preferred coating materials comprise bioerodible, gradually hydrolyzable and/or gradually water-soluble polymers.
  • the “coating weight,” or relative amount of coating material per dosage unit generally dictates the time interval between ingestion and drug release.
  • Suitable membrane coating materials for effecting delayed release include, but are not limited to: cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate, hydroxypropylmethyl cellulose phthalate, cellulose ester-ether phthalate, hydroxypropylcellulose phthalate, alkali salts of cellulose acetate phthalate, alkaline earth salts of cellulose acetate phthalate, hydroxypropylmethyl cellulose hexahydrophthalate, cellulose acetate hexahydrophthalate, and carboxymethylcellulose sodium; acrylic acid polymers and copolymers preferably formed from acrylic acid, methacrylic acid, acrylic acid alkyl esters, methacrylic acid alkyl esters, and the like, e.g.
  • the third tablet or bead or particle fraction may be desirable for the third tablet or bead or particle fraction to provide for release of the active agent in the colon, in which case polymeric or other materials are used that enable drug release within the colon.
  • polymeric or other materials may be used as will be known to those skilled in the art of pharmaceutical formulation and drug delivery.
  • hydrocolloid gums may be effective to provide for colonic delivery, e.g., guar gum, locust gum, bena gum, gum tragacanth, and karaya gum (see, e.g., U.S. Pat. No. 5,656,294 to Friend).
  • Other materials suitable for effecting colonic drug delivery include polysaccharides, mucopolysaccharides, and related compounds, e.g., pectin, arabinogalactose, chitosan, chondroitin sulfate, dextran, galactomannan, and xylan.
  • polysaccharides e.g., pectin, arabinogalactose, chitosan, chondroitin sulfate, dextran, galactomannan, and xylan.
  • Combinations of different coating materials may also be used to coat a single dosage unit.
  • the first tablet is provided with little or no coating material
  • the second tablet is provided with some degree of coating material
  • the coating weight of a third tablet is still higher, and so on.
  • a first fraction of beads or particles is provided with little or no coating material
  • a second fraction is provided with some degree of coating material
  • the coating weight of a third fraction is still higher, etc.
  • the first tablet when the dosage form contains three tablets (or, analogously, three groups of drug-containing particles or beads), the first tablet, which releases drug substantially immediately, may have a total coating weight of less than about 10%, preferably less than about 8%, the second tablet may have a total coating weight in the range of approximately 10% to 30%, preferably 15% to 25%, and the third tablet, if present, may have a total coating weight in the range of approximately 15% to 65%, preferably 20% to 65%.
  • the preferred coating weights for particular coating materials may be readily determined by those skilled in the art by evaluating individual release profiles for dosage units prepared with different quantities of various coating materials.
  • the delayed release dosage units i.e., tablets or drug-containing particles
  • a suitable material such as an insoluble plastic, a hydrophilic polymer, or a fatty compound.
  • the insoluble plastic matrices may be comprised of, for example, polyvinyl chloride or polyethylene.
  • Hydrophilic polymers useful for providing a matrix for a delayed release dosage unit include, but are not limited to, those described above as suitable coating materials.
  • Fatty compounds for use as a matrix material include, but are not limited to, waxes generally (e.g., carnauba wax) and glyceryl tristearate.
  • the individual dosage units may be provided with colored coatings, with a single color used to identify a tablet or bead or particle fraction having a corresponding delayed release profile. That is, for example, a blue coating may be used for the immediate release tablet or bead or particle fraction, a red coating may be used for the “medium” release tablet or bead or particle fraction, and the like. In this way, errors during manufacture can be easily avoided.
  • the color is introduced by incorporating a pharmaceutically acceptable colorant into the coating during coating preparation.
  • the colorant may be either natural or synthetic.
  • Natural colorants include pigments such as chlorophyll, anattenes, beta-carotene, alizarin, indigo, rutin, hesperidin, quercitin, carminic acid, and 6,6′-dibromoindigo.
  • Synthetic colorants are dyes, including both acidic dyes and basic dyes, such as nitroso dyes, nitro dyes, azo dyes, oxazines, thiazines, pyrazolones, xanthenes, indigoids, anthraquinones, acridines, rosanilines, phthaleins, quinolines. e.g., a dye or pigment, during preparation of the coating solution.
  • the weight of each individual tablet in the capsule is typically in the range of about 10 mg to 150 mg, preferably in the range of about 25 mg to about 100 mg, and most preferably is in the range of about 40 mg to 80 mg.
  • the individual tablets are prepared using conventional means.
  • a preferred method for forming tablets herein is by direct compression of a powdered, crystalline or granular drug-containing composition, alone or in combination with diluents, binders, lubricants, disintegrants, colorants or the like.
  • compressed tablets can be prepared using wet-granulation or dry-granulation processes. Tablets may also be molded rather than compressed, starting with a moist material containing a suitable water-soluble lubricant.
  • Preferred tablets herein are manufactured using compression rather than molding, however.
  • Drug-containing particles or beads are also prepared using conventional means, typically from a fluid dispersion.
  • a delayed release coating composition may be applied using a coating pan, an airless spray technique, fluidized bed coating equipment, or the like.
  • Optional components present in the individual drug-containing dosage units include, but are not limited to, diluents, binders, lubricants, disintegrants, stabilizers, surfactants, coloring agents, and the like.
  • Diluents also termed “fillers,” are typically necessary to increase the bulk of a tablet so that a practical size is provided for compression.
  • Suitable diluents include, for example, dicalcium phosphate dihydrate, calcium sulfate, lactose, cellulose, kaolin, mannitol, sodium chloride, dry starch, hydrolyzed starches, silicon dioxide, titanium oxide, alumina, talc, microcrystalline cellulose, and powdered sugar.
  • Binders are used to impart cohesive qualities to a tablet formulation, and thus ensure that a tablet remains intact after compression.
  • Suitable binder materials include, but are not limited to, starch (including corn starch and pregelatinized starch), gelatin, sugars (including sucrose, glucose, dextrose, lactose and sorbitol), polyethylene glycol, waxes, natural and synthetic gums, e.g., acacia, tragacanth, sodium alginate, polyvinylpyrrolidone, celluloses, and Veegum, and synthetic polymers such as polymethacrylates and polyvinylpyrrolidone.
  • Lubricants are used to facilitate tablet manufacture; examples of suitable lubricants include, for example, magnesium stearate, calcium stearate, stearic acid, glyceryl behenate, and polyethylene glycol, and are preferably present at no more than approximately 1 wt. % relative to tablet weight.
  • Disintegrants are used to facilitate tablet disintegration or “breakup” after administration, and are generally starches, clays, celluloses, algins, gums or crosslinked polymers.
  • Stabilizers are used to inhibit or retard drug decomposition reactions which include, by way of example, oxidative reactions.
  • Surfactants may be anionic, cationic, amphoteric or nonionic surface active agents, with anionic surfactants preferred.
  • Suitable anionic surfactants include, but are not limited to, those containing carboxylate, sulfonate and sulfate ions, associated with cations such as sodium, potassium and ammonium ions.
  • Particularly preferred surfactants include, but are not limited to: long alkyl chain sulfonates and alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium bis-(2-ethylhexyl)-sulfosuccinate; and alkyl sulfates such as sodium lauryl sulfate.
  • the tablets may also contain minor amounts of nontoxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, preservatives, and the like.
  • the individual drug tablets, beads or particles are contained within a closed capsule.
  • the capsule material may be either hard or soft, and as will be appreciated by those skilled in the art of pharmaceutical science, typically comprises a tasteless, easily administered and water soluble compound such as gelatin, starch or cellulose.
  • a preferred capsule material is gelatin.
  • the capsules are preferably sealed, such as with gelatin bands or the like. See, for example, Remington: The Science and Practice of Pharmacy , Nineteenth Edition (Easton, Pa.: Mack Publishing Co., 1995), which describes materials and methods for preparing encapsulated pharmaceuticals designed to dissolve shortly after ingestion.
  • novel dosage forms provided herein are used to administer d-threo-methylphenidate in a pulsatile release manner.
  • the drug is administered along with a second CNS stimulant.
  • the second CNS stimulant which may potentiate the effect of the d-threo-methylphenidate, or vice versa, is generally an analeptic agent or psychostimulant.
  • Preferred CNS stimulants include, but are not limited to: amphetamine (racemic), d-amphetamine, amphetamine and d-amphetamine phosphate, amphetamine and d-amphetamine sulfate, amphetamine and d-amphetamine hydrochloride, amphetamine and d-amphetamine saccharate, and amphetamine and d-amphetamine aspartate, amphetaminil, bemegride, benzphetamine, benzphetamine hydrochloride, brucine, chlorphentermine, clofenciclan, clortermine, deanol acetamidobenzoate, demanyl phosphate, dexoxadrol, diethpropion, doxapram hydrochloride, N-ethylamphetamine, ethamivan, etifelmin, etryptamine, fencamfamine, fenethyl
  • the additional active agent or agents may be combined with the d-threo-methylphenidate in a single tablet or bead or particle fraction within the capsule, or one or more tablets or bead fractions within the capsule may comprise the additional active agent without any methylphenidate.
  • the various active agents may be present as an admixture in a single dosage unit (e.g., a tablet), or the agents may be physically segregated as in a bilayer tablet, a tablet having two or more active agent-containing coatings, or the like.
  • the additional CNS stimulant such as d-amphetamine will be included in the first, immediate release tablet or bead or particle fraction, will optionally be present in the second tablet or bead or particle fraction (and if present, at a lower dose than in the first tablet or bead or particle fraction), and will not be included in the third tablet or bead or particle fraction.
  • the relative amounts of the active agents in the dosage forms of the invention are as follows:
  • First tablet or bead (or particle) fraction Contains a dose “X” of d-threo-methylphenidate and a dose “Y” of a second CNS stimulant (e.g., an analeptic agent such as d-amphetamine), wherein the molar ratio of X:Y is in the range of approximately 2:1 to 1:2.
  • the dose “X” represents approximately half of that which would be appropriate for dosage of d,l-threo-methylphenidate, and is typically in the range of approximately 1 mg to 20 mg, preferably 1 mg to 10 mg.
  • “Y” is typically in the range of approximately 1 mg to 20 mg, preferably 1 mg to 10 mg.
  • Second tablet or bead (or particle) fraction Contains a dose of d-threo-methylphenidate in the range of approximately 0.5X to 2X, preferably 1X to 2X, and a dose of the second CNS stimulant in the range of zero to 0.5Y.
  • Third tablet or bead (or particle) fraction if present: Contains a dose of d-threo-methylphenidate in the range of approximately 0.25X to 1X, optimally about 0.5X to 1X, and contains none of the second CNS stimulant.
  • the second CNS stimulant, present in the first pulse is optionally included in the second pulse, and if present, is at a lower dose (up to half) of the amount in the first pulse.
  • the third tablet or bead or particle fraction should contain a lower dose of d-threo-methylphenidate than either the first or second pulses, and should not contain any of the second CNS stimulant. In this way, the potential for sleep disruption is minimized.
  • Salts of the active agents used in conjunction with the present dosage forms may be obtained commercially or can be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure , 4th Ed. (New York: Wiley-Interscience, 1992).
  • Suitable acids for preparing acid addition salts may be weak acids, medium acids, or strong acids, and include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, aspartic acid, saccharic acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • organic acids e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic
  • esters are prepared using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, magnesium hydroxide, trimethylamine, or the like.
  • a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, magnesium hydroxide, trimethylamine, or the like.
  • esters involves finctionalization of hydroxyl and/or carboxyl groups which may be present. These esters are typically acyl-substituted derivatives of free alcohol groups, i.e., moieties which are derived from carboxylic acids of the formula RCOOH where R is alkyl, and preferably is lower alkyl.
  • Pharmaceutically acceptable esters may be prepared using methods known to those skilled in the art and/or described in the pertinent literature. Amides, prodrugs, and other analogs and derivatives can be readily prepared as well, using conventional means.
  • novel drug dosage forms are to be administered orally to a mammalian individual and can be used to administer d-threo-methylphenidate to treat or prevent a variety of disorders, conditions and diseases.
  • administration of d-threo-methylphenidate along with the second CNS stimulant may be carried out in order to treat any disorder, condition or disease for which methylphenidate is generally indicated.
  • disorders, conditions and diseases include, for example, ADD, ADHD, narcolepsy, and acute depression; methylphenidate may also be used in the treatment of individuals suffering from cognitive decline associated with AIDS or AIDS-related conditions, and for mood elevation in terminally ill patients suffering from a disease such as cancer.
  • the typical daily dose is in the range of approximately 2.5 mg to 50 mg, preferably 5 mg to 60 mg, although the exact dosage regimen will depend on a number of factors, including age, the general condition of the patient, the particular condition or disorder being treated, the severity of the patient's condition or disorder, and the like.
  • a pulsatile release dosage form for administration of d-threo-methylphenidate and d-amphetamine is prepared by (1) formulating three individual compressed tablets, each having a different release profile, followed by (2) encapsulating the three tablets into a gelatin capsule and then closing and sealing the capsule.
  • the components of the three tablets are as follows.
  • the tablets are prepared by wet granulation of the individual drug particles and other core components as may be done using a fluid-bed granulator, or are prepared by direct compression of the admixture of components.
  • Tablet 1 is an immediate release dosage form, releasing the active agents within 1-2 hours following administration.
  • Tablets 2 and 3 are coated with the delayed release coating material as may be carried out using conventional coating techniques such as spray-coating or the like.
  • the specific components listed in the above tables may be replaced with other functionally equivalent components, e.g., diluents, binders, lubricants, fillers, coatings, and the like.
  • Oral administration of the capsule to a patient will result in a release profile having three pulses, with initial release of the d-threo-methylphenidate and d-amphetamine from the first tablet being substantially immediate, release of the d-threo-methylphenidate and d-amphetamine from the second tablet occurring 3-5 hours following administration, and release of the d-threo-methylphenidate from the third tablet occurring 7-9 hours following administration. Because Tablet 3 contains a lower dosage of d-threo-methylphenidate than Tablets 1 or 2, and no d-amphetamine, the likelihood of sleep disruption is substantially reduced.
  • a first fraction of beads may be prepared by coating an inert support material such as lactose with the drug which provides the first (immediate release) pulse.
  • a second fraction of beads is prepared by coating immediate release beads with an amount of enteric coating material sufficient to provide a drug release-free period of 3-5 hours.
  • a third fraction of beads is prepared by coating immediate release beads having half the methylphenidate dose of the first fraction of beads with a greater amount of enteric coating material, sufficient to provide a drug release-free period of 7-9 hours.
  • the three groups of beads may be encapsulated as in Example 1, or compressed, in the presence of a cushioning agent, into a single pulsatile release tablet.
  • three groups of drug particles may be provided and coated as above, in lieu of the drug-coated lactose beads.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Virology (AREA)
  • Emergency Medicine (AREA)
  • Psychology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • AIDS & HIV (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Novel pharmaceutical dosage forms provide for pulsatile delivery of d-threo-methylphenidate and a second CNS stimulant, i.e., release encapsulated drug in spaced apart "pulses." The second CNS stimulant may be an analeptic agent or a psychostimulant, with analeptic agents preferred. The dosage forms may comprise capsules housing compressed tablets or drug-containing beads or particles, or may comprise a tablet with the first, second and optionally third dosage units each representing an integral and discrete segment thereof. Methods of treatment using the pharmaceutical dosage forms are provided as well.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent Application Serial No. 60/127,984, filed Apr. 6, 1999.
TECHNICAL FIELD
The present invention relates generally to drug delivery, and more specifically relates to novel pharmaceutical dosage forms that provide pulsatile delivery of d-threo-methylphenidate in combination with a second CNS stimulant. The invention additionally relates to methods for administering methylphenidate using the novel dosage forms.
BACKGROUND
Pharmaceutical dosage forms are known which provide a variety of drug release profiles, including immediate release, sustained release, and delayed release. That is, it may be desirable, for a particular drug, to prevent drug release after drug administration until a certain amount of time has passed (so-called “timed release”), to provide substantially continuous release over a predetermined time period (so-called “sustained release”) or to provide release immediately following drug administration (i.e., “immediate release”). For some types of drugs, it is preferred to release the drug in “pulses,” wherein a single dosage form provides for an initial dose of drug followed by a release-free interval, after which a second dose of drug is released, followed by one or more additional release-free intervals and drug release “pulses.” Pulsatile drug delivery is useful, for example, with active agents that have short half-lives and must be administered two or three times daily, with active agents that are extensively metabolized presystemically, and with active agents which lose the desired therapeutic effect when constant blood levels are maintained. These types of agents have pharmacokinetic-pharmacodynamic relationships that are best described by a clockwise “hysteresis loop.” A drug dosage form that provides a pulsatile drug release profile is also useful for minimizing the abuse potential of certain types of drugs, i.e., drugs for which tolerance, addiction and deliberate overdose can be problematic.
Because a precise and effective pulsatile drug delivery system is difficult to formulate and manufacture, there are few such dosage forms that have been commercialized. There are, however, several patents and literature references pertaining to pulsatile drug delivery. See, for example, U.S. Pat. No. 5,413,777 to Sheth et al., directed to a pulsatile once-a-day delivery system for the administration of minocycline; U.S. Pat. No. 5,260,068 to Chen, directed to a multiparticulate pulsatile drug delivery system; U.S. Pat. No. 4,777,049 to Magruder et al., directed to an osmotic delivery system for constant release of a drug with intermittent release “pulses”; U.S. Pat. No. 5,391,381 to Wong et al., directed to a drug dispenser for delivering individual drug-containing units in a “pulsatile” manner; PCT Publication No. WO 98/32424, pertaining to pulsatile delivery of diltiazem hydrochloride; U.S. Pat. Nos. 5,472,708 and 5,260,069 to Chen; Ishino et al. (1992) “Design and Preparation of Pulsatile Release Tablet as a New Oral Drug Delivery System,” Chem. Pharm. Bull. 40(11):3036-3041; Cohen et al. (1994), “Pulsatile Release from Microencapsulated Liposomes,” J. Liposome Res. 349-360; and Gazzaniga et al. (1994), “Chronotopic Drug Delivery Systems for Pulsatile and/or Site-Specific Release,” 21st . Proc. Int. Symp. Controlled Release Bioact. Mater., pp. 744-745.
The present invention is directed in part to a novel pulsatile drug delivery system which is straightforward to manufacture and provides precisely timed drug release “pulses” at desired intervals.
Methylphenidate hydrochloride (HCl), the hydrochloride salt of α-phenyl-2-piperidine-acetic acid methyl ester (available commercially as Ritalin®), is a central nervous system stimulant that is used in the treatment of Attention Deficit Disorder (“ADD”), a commonly diagnosed nervous system illness in children that is characterized by both distractability and impulsivity. Methylphenidate HCl is also used to treat a related disorder, Attention Deficit Hyperactivity Disorder (“ADHD”), in which symptoms of hyperactivity are present along with the symptoms of ADD. The drug is additionally used in the symptomatic treatment of narcolepsy, depression, and the cognitive decline associated with Acquired Immunodeficiency Syndrome (“AIDS”) or AIDS-related conditions, as well as for mood elevation, particularly in terminally ill patients with diseases such as cancer. Methylphenidate exists as four distinct isomers, as follows:
Figure US06217904-20010417-C00001
The drug as used in therapy is a racemic mixture of the d- and l-threo enantiomers, which have been acknowledged as more active than the erythro pair.
Because of its potential for tolerance (loss of clinical efficacy when constant blood levels are maintained), short-half life and potential for abuse, methylphenidate is a primary candidate for use in conjunction with the drug delivery systems of the invention.
It has recently been found that the d-threo enantiomer of methylphenidate, rather than the l-threo enantiomer, is primarily responsible for the therapeutic effectiveness of methylphenidate, particularly in ADHD. See Srinivas et al. (1992), “Enantioselective Pharmacokinetics and Pharmacodynamics of d,l-threo-Methylphenidate in Children with Attention Deficit Hyperactivity Disorder,” Clin. Pharmacol. Ther. 52:561-568, who compared the results of administering dl-threo, d-threo, and l-threo methylphenidate to children suffering from ADHD, and determined that the pharmacodynamic activity of methylphenidate resides in the d-threo isomer. Ding et al. (1997), “Chiral Drugs: Comparison of the Pharmacokinetics of [11C]d-threo and l-threo-Methylphenidate in the Human and Baboon Brain,” Psychopharmacology 131:71-78, and Eckerman et al. (1991), “Enantioselective Behavioral Effects of threo Methylphenidate in Rats,” Pharmacology Biochemistry & Behavior 40:875-880, also studied the relative therapeutic efficacy of the d-threo and l-threo isomers, concluding that d-threo-methylphenidate was responsible for the therapeutic efficacy of the racemate.
It has also been suggested that l-threo methylphenidate not only makes no contribution to therapeutic efficacy, but in fact contributes to undesirable side effects associated with administration of racemic methylphenidate, e.g., insomnia, euphoria, development of tolerance to the drug, and potential for abuse. Accordingly, several researchers have proposed administering methylphenidate as the pure d-threo isomer rather than as the racemic mixture of d-threo and l-threo isomers. See, e.g., U.S. Pat. No. 5,908,850 to Zeitlin et al., U.S. Pat. No. 5,874,090 to Baker et al., and U.S. Pat. No. 5,922,736 to Dariani et al. Also see U.S. Pat. No. 5,837,284 to Mehta et al., which describes a pulsatile drug delivery system for administration of d-threo methylphenidate.
A drawback of the prior art, however, is that the disclosed dosage forms are ineffective for individuals who do not respond, or respond inadequately, to methylphenidate therapy or to a second central nervous system (“CNS”) stimulant (e.g., an analeptic agent such as d-amphetamine, as found in the commercial ADHD product Adderol®). It has now been discovered that co-administering methylphenidate, and particularly d-threo methylphenidate, with a second CNS stimulant, particularly an analeptic agent such as d-amphetamine, gives rise to a therapeutically effective pharmaceutical formulation useful in treating individuals who do not respond, or respond inadequately, to methylphenidate therapy or to the second CNS stimulant, when administered as individual active agents. It has also been found that the aforementioned combination of active agents can provide an increased therapeutic benefit to patients who do respond to methylphenidate therapy or to the second CNS stimulant, e.g., to an analeptic agent such as d-amphetamine.
Accordingly, the present invention provides novel pharmaceutical dosage forms for the administration of d-threo methylphenidate along with at least one additional active agent comprising a second CNS stimulant. The novel dosage forms provide for pulsatile drug release, thereby maximizing efficacy (i.e., the loss of clinical efficacy over time), reducing the potential for abuse or noncompliance. The dosage forms also provide for therapeutic efficacy in individuals who do not respond, or respond inadequately, to methylphenidate or to the second CNS stimulant when these agents are administered alone, and provide enhanced therapeutic efficacy in individuals who are responsive to methylphenidate and other CNS stimulants such as d-amphetamine. No art of which applicants are aware describes drug delivery systems as now provided herein.
To the best of applicants' knowledge, the pharmaceutical dosage forms of the invention are previously unknown and completely unsuggested by the art.
SUMMARY OF THE INVENTION
Accordingly, it is a primary object of the invention to address the above-mentioned need in the art by providing a pharmaceutical dosage form for pulsatile delivery of d-threo methylphenidate, wherein the dosage form contains a second CNS stimulant as an additional active agent.
It is another object of the invention to provide such a dosage form comprising at least two individual drug-containing dosage units, each of which has a different drug release profile.
It is another object of the invention to provide such a dosage form wherein the dosage units are housed in a closed capsule.
It is still another object of the invention to provide such a dosage form wherein the dosage units are compressed tablets.
It is yet another object of the invention to provide such a dosage form wherein the dosage units are drug-containing particles or beads.
It is a further object of the invention to provide such a dosage form comprised of a single tablet of which the drug-containing dosage units represent integral and discrete segments.
It is still a further object of the invention to provide such a dosage form wherein the second CNS stimulant is an analeptic agent or psychostimulant.
It is an additional object of the invention to provide methods for administering methylphenidate using the novel dosage forms.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Definitions and Nomenclature:
Before the present formulations and methods of use are disclosed and described, it is to be understood that unless otherwise indicated this invention is not limited to specific pharmacologically active agents, specific pharmaceutical carriers, or to particular administration regimens, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an active agent” includes mixtures of active agents, “a second agent” includes more than one “second” agent, reference to “a pharmaceutical carrier” includes combinations of two or more carriers, and the like.
In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:
“Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not.
The terms “active agent,” “drug” and “pharmacologically active agent” are used interchangeably herein to refer to a chemical material or compound which, when administered to an organism (human or animal, generally human) induces a desired pharmacologic effect. In the context of the present invention, the terms refer to a compound that is capable of being delivered orally.
By the terms “effective amount” or “pharmaceutically effective amount” of an agent as provided herein are meant a nontoxic but sufficient amount of the agent to provide the desired therapeutic effect. The exact amount required will vary from subject to subject, depending on age, general condition of the subject, the severity of the condition being treated, and the particular active agent administered, and the like. Thus, it is not possible to specify an exact “effective amount.” However, an appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
By “pharmaceutically acceptable” carrier is meant a carrier comprised of a material that is not biologically or otherwise undesirable, i.e., the material may be administered to an individual along with the selected active agent without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained. The term “carrier” is used generically herein to refer to any components present in the pharmaceutical formulations other than the active agent or agents, and thus includes diluents, binders, lubricants, disintegrants, fillers, coloring agents, wetting or emulsifying agents, pH buffering agents, preservatives, and the like.
Similarly, a “pharmaceutically acceptable” salt or a “pharmaceutically acceptable” ester of a compound as provided herein is a salt or ester which is not biologically or otherwise undesirable.
In the chemical structures drawn herein, the use of bold and dashed lines to denote particular conformation of substituents follows IUPAC convention. The symbols “α” and “β” indicate the specific stereochemical configuration of a substituent at an asymmetric carbon atom in a chemical structure as drawn. Thus “α,” denoted by a broken line, indicates that the group in question is below the general plane of the molecule as drawn, and “β,” denoted by a bold line, indicates that the group at the position in question is above the general plane of the molecule as drawn.
“Pulsatile Release” Dosage Forms:
In a first embodiment, the invention features pharmaceutical dosage forms that provide for pulsatile delivery of d-threo-methylphenidate, with a second CNS stimulant co-administered with the d-threo-methylphenidate in at least one of the drug release “pulses.” By “pulsatile” is meant that a plurality of drug doses are released at spaced apart time intervals. Generally, upon ingestion of the dosage form, release of the initial dose is substantially immediate, i.e., the first drug release “pulse” occurs within 1-2 hours of ingestion. This initial pulse is followed by a first time interval during which substantially no drug is released from the dosage form, after which a second dose is then released. Typically, the second dose is released on the order of 3-5 hours following ingestion of the dosage form. Preferably, release of the second dose is followed by a second non-release interval, which is again followed by a “pulse” of drug release. Ideally, release of a third dose occurs on the order of 7-9 hours following ingestion. In a preferred embodiment herein, either two or three release pulses are provided. However, the invention is also intended to encompass dosage forms that provide more than three pulses, with non-release intervals therebetween of approximately 2-6 hours, preferably 3-5 hours.
The aforementioned pulsatile release profile is achieved with dosage forms that, in one embodiment, are closed and preferably sealed capsules housing two or more drug-containing “dosage units.” In a preferred embodiment, each dosage unit comprises a compressed or molded tablet, wherein each of the tablets within the capsule provides a different drug release profile. That is, for an exemplary dosage form, a first tablet releases drug substantially immediately following ingestion of the dosage form, while a second tablet in the capsule releases drug approximately 3-5 hours following ingestion, and an optional third tablet provides drug release after approximately 7-9 hours. While the dosage form will not generally include more than three tablets, dosage forms housing four or more tablets are within the scope of the present invention.
In an alternative embodiment, each dosage unit comprises a drug-containing particle or bead (drug-containing “beads” refer to drug-coated inert supports, e.g., lactose beads coated with drug). A first group of these particles or beads releases drug substantially immediately following ingestion of the dosage form, a second group releases drug approximately 3-5 hours following ingestion, and an optional third group provides drug release after approximately 7-9 hours.
In a further alternative embodiment, the individual dosage units are compacted in a single tablet, and represent integral but discrete segments thereof (e.g., layers). For example, drug-containing particles or drug-containing beads can be compressed together into a single tablet using conventional tabletting means.
As will be appreciated by those skilled in the art and as described in the pertinent texts and literature, a number of methods are available for preparing drug-containing tablets or other dosage units which provide a variety of drug release profiles. Such methods include coating a drug or drug-containing composition, increasing the drug's particle size, placing the drug within a matrix, and forming complexes of the drug with a suitable complexing agent.
The delayed release dosage units in the present capsules can be prepared, for example, by coating a drug or a drug-containing composition with a selected membrane coating material, typically although not necessarily a polymeric material. When a coating is used to provide delayed release dosage units, particularly preferred coating materials comprise bioerodible, gradually hydrolyzable and/or gradually water-soluble polymers. The “coating weight,” or relative amount of coating material per dosage unit, generally dictates the time interval between ingestion and drug release.
Suitable membrane coating materials for effecting delayed release include, but are not limited to: cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate, hydroxypropylmethyl cellulose phthalate, cellulose ester-ether phthalate, hydroxypropylcellulose phthalate, alkali salts of cellulose acetate phthalate, alkaline earth salts of cellulose acetate phthalate, hydroxypropylmethyl cellulose hexahydrophthalate, cellulose acetate hexahydrophthalate, and carboxymethylcellulose sodium; acrylic acid polymers and copolymers preferably formed from acrylic acid, methacrylic acid, acrylic acid alkyl esters, methacrylic acid alkyl esters, and the like, e.g. copolymers of acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate and/or ethyl methacrylate, with a terpolymer of ethyl acrylate, methyl methacrylate and trimethylammonioethyl methacrylate chloride (sold under the tradename Eudragit RS) particularly preferred; vinyl polymers and copolymers such as polyvinyl pyrrolidone, polyvinyl acetate, polyvinylacetate phthalate, vinylacetate crotonic acid copolymer, and ethylene-vinyl acetate copolymers; and shellac, ammoniated shellac, shellac-acetyl alcohol, and shellac n-butyl stearate.
In some cases, it may be desirable for the third tablet or bead or particle fraction to provide for release of the active agent in the colon, in which case polymeric or other materials are used that enable drug release within the colon. These may be selected from the aforementioned list, or other materials may be used as will be known to those skilled in the art of pharmaceutical formulation and drug delivery. For example, hydrocolloid gums may be effective to provide for colonic delivery, e.g., guar gum, locust gum, bena gum, gum tragacanth, and karaya gum (see, e.g., U.S. Pat. No. 5,656,294 to Friend). Other materials suitable for effecting colonic drug delivery include polysaccharides, mucopolysaccharides, and related compounds, e.g., pectin, arabinogalactose, chitosan, chondroitin sulfate, dextran, galactomannan, and xylan.
Combinations of different coating materials may also be used to coat a single dosage unit.
To bring about the desired pulsatile release profile for a dosage form comprised of encapsulated tablets, the first tablet is provided with little or no coating material, the second tablet is provided with some degree of coating material, the coating weight of a third tablet is still higher, and so on. Analogously, for encapsulated dosage forms in which the drug-containing dosage units are beads or particles, a first fraction of beads or particles is provided with little or no coating material, a second fraction is provided with some degree of coating material, the coating weight of a third fraction is still higher, etc. For example, when the dosage form contains three tablets (or, analogously, three groups of drug-containing particles or beads), the first tablet, which releases drug substantially immediately, may have a total coating weight of less than about 10%, preferably less than about 8%, the second tablet may have a total coating weight in the range of approximately 10% to 30%, preferably 15% to 25%, and the third tablet, if present, may have a total coating weight in the range of approximately 15% to 65%, preferably 20% to 65%. The preferred coating weights for particular coating materials may be readily determined by those skilled in the art by evaluating individual release profiles for dosage units prepared with different quantities of various coating materials.
Alternatively, the delayed release dosage units, i.e., tablets or drug-containing particles, may be formulated by dispersing the drug within a matrix of a suitable material such as an insoluble plastic, a hydrophilic polymer, or a fatty compound. The insoluble plastic matrices may be comprised of, for example, polyvinyl chloride or polyethylene. Hydrophilic polymers useful for providing a matrix for a delayed release dosage unit include, but are not limited to, those described above as suitable coating materials. Fatty compounds for use as a matrix material include, but are not limited to, waxes generally (e.g., carnauba wax) and glyceryl tristearate. Once the active ingredient is mixed with the matrix material, the mixture can be compressed into tablets or processed into individual drug-containing particles.
The individual dosage units may be provided with colored coatings, with a single color used to identify a tablet or bead or particle fraction having a corresponding delayed release profile. That is, for example, a blue coating may be used for the immediate release tablet or bead or particle fraction, a red coating may be used for the “medium” release tablet or bead or particle fraction, and the like. In this way, errors during manufacture can be easily avoided. The color is introduced by incorporating a pharmaceutically acceptable colorant into the coating during coating preparation. The colorant may be either natural or synthetic. Natural colorants include pigments such as chlorophyll, anattenes, beta-carotene, alizarin, indigo, rutin, hesperidin, quercitin, carminic acid, and 6,6′-dibromoindigo. Synthetic colorants are dyes, including both acidic dyes and basic dyes, such as nitroso dyes, nitro dyes, azo dyes, oxazines, thiazines, pyrazolones, xanthenes, indigoids, anthraquinones, acridines, rosanilines, phthaleins, quinolines. e.g., a dye or pigment, during preparation of the coating solution.
For encapsulated tablets, the weight of each individual tablet in the capsule is typically in the range of about 10 mg to 150 mg, preferably in the range of about 25 mg to about 100 mg, and most preferably is in the range of about 40 mg to 80 mg. The individual tablets are prepared using conventional means. A preferred method for forming tablets herein is by direct compression of a powdered, crystalline or granular drug-containing composition, alone or in combination with diluents, binders, lubricants, disintegrants, colorants or the like. As an alternative to direct compression, compressed tablets can be prepared using wet-granulation or dry-granulation processes. Tablets may also be molded rather than compressed, starting with a moist material containing a suitable water-soluble lubricant. Preferred tablets herein are manufactured using compression rather than molding, however. Drug-containing particles or beads are also prepared using conventional means, typically from a fluid dispersion.
Conventional coating procedures and equipment may then be used to coat the dosage units, i.e., the drug-containing tablets, beads or particles. For example, a delayed release coating composition may be applied using a coating pan, an airless spray technique, fluidized bed coating equipment, or the like. For detailed information concerning materials, equipment and processes for preparing tablets, beads and delayed release dosage forms, reference may be had to Pharmaceutical Dosage Forms: Tablets, eds. Lieberman et al. (New York: Marcel Dekker, Inc., 1989), and to Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, 6th Ed. (Media, Pa.: Williams & Wilkins, 1995).
Optional components present in the individual drug-containing dosage units include, but are not limited to, diluents, binders, lubricants, disintegrants, stabilizers, surfactants, coloring agents, and the like. Diluents, also termed “fillers,” are typically necessary to increase the bulk of a tablet so that a practical size is provided for compression. Suitable diluents include, for example, dicalcium phosphate dihydrate, calcium sulfate, lactose, cellulose, kaolin, mannitol, sodium chloride, dry starch, hydrolyzed starches, silicon dioxide, titanium oxide, alumina, talc, microcrystalline cellulose, and powdered sugar. Binders are used to impart cohesive qualities to a tablet formulation, and thus ensure that a tablet remains intact after compression. Suitable binder materials include, but are not limited to, starch (including corn starch and pregelatinized starch), gelatin, sugars (including sucrose, glucose, dextrose, lactose and sorbitol), polyethylene glycol, waxes, natural and synthetic gums, e.g., acacia, tragacanth, sodium alginate, polyvinylpyrrolidone, celluloses, and Veegum, and synthetic polymers such as polymethacrylates and polyvinylpyrrolidone. Lubricants are used to facilitate tablet manufacture; examples of suitable lubricants include, for example, magnesium stearate, calcium stearate, stearic acid, glyceryl behenate, and polyethylene glycol, and are preferably present at no more than approximately 1 wt. % relative to tablet weight. Disintegrants are used to facilitate tablet disintegration or “breakup” after administration, and are generally starches, clays, celluloses, algins, gums or crosslinked polymers. Stabilizers are used to inhibit or retard drug decomposition reactions which include, by way of example, oxidative reactions. Surfactants may be anionic, cationic, amphoteric or nonionic surface active agents, with anionic surfactants preferred. Suitable anionic surfactants include, but are not limited to, those containing carboxylate, sulfonate and sulfate ions, associated with cations such as sodium, potassium and ammonium ions. Particularly preferred surfactants include, but are not limited to: long alkyl chain sulfonates and alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium bis-(2-ethylhexyl)-sulfosuccinate; and alkyl sulfates such as sodium lauryl sulfate. If desired, the tablets may also contain minor amounts of nontoxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, preservatives, and the like.
As noted earlier herein, the individual drug tablets, beads or particles are contained within a closed capsule. The capsule material may be either hard or soft, and as will be appreciated by those skilled in the art of pharmaceutical science, typically comprises a tasteless, easily administered and water soluble compound such as gelatin, starch or cellulose. A preferred capsule material is gelatin. The capsules are preferably sealed, such as with gelatin bands or the like. See, for example, Remington: The Science and Practice of Pharmacy, Nineteenth Edition (Easton, Pa.: Mack Publishing Co., 1995), which describes materials and methods for preparing encapsulated pharmaceuticals designed to dissolve shortly after ingestion.
The novel dosage forms provided herein are used to administer d-threo-methylphenidate in a pulsatile release manner. As noted earlier herein, the drug is administered along with a second CNS stimulant. The second CNS stimulant, which may potentiate the effect of the d-threo-methylphenidate, or vice versa, is generally an analeptic agent or psychostimulant.
Preferred CNS stimulants include, but are not limited to: amphetamine (racemic), d-amphetamine, amphetamine and d-amphetamine phosphate, amphetamine and d-amphetamine sulfate, amphetamine and d-amphetamine hydrochloride, amphetamine and d-amphetamine saccharate, and amphetamine and d-amphetamine aspartate, amphetaminil, bemegride, benzphetamine, benzphetamine hydrochloride, brucine, chlorphentermine, clofenciclan, clortermine, deanol acetamidobenzoate, demanyl phosphate, dexoxadrol, diethpropion, doxapram hydrochloride, N-ethylamphetamine, ethamivan, etifelmin, etryptamine, fencamfamine, fenethylline, fenosolone, fenfluramine, flurothyl, hexacyclonate sodium, homocamfin, mazindol, megexamide, methamphetamine, nicotinic agonists, nikethamide, pemoline, pentylenetetrazole, phenidimetrazine, phendimetrazine tartrate, phenmetrazine, phenmetrazine hydrochloride, phentermine, picrotoxin, pipradrol, pipradrol hydrochloride, prolintane, pyrovalerone, racephedrine, racephedrine hydrochloride, and tetrahydrobenzothienopyridines. Pemoline, amphetamine, d-amphetamine and salts thereof are particularly preferred additional active agents.
The additional active agent or agents may be combined with the d-threo-methylphenidate in a single tablet or bead or particle fraction within the capsule, or one or more tablets or bead fractions within the capsule may comprise the additional active agent without any methylphenidate. In the former case, the various active agents may be present as an admixture in a single dosage unit (e.g., a tablet), or the agents may be physically segregated as in a bilayer tablet, a tablet having two or more active agent-containing coatings, or the like. Generally, the additional CNS stimulant such as d-amphetamine will be included in the first, immediate release tablet or bead or particle fraction, will optionally be present in the second tablet or bead or particle fraction (and if present, at a lower dose than in the first tablet or bead or particle fraction), and will not be included in the third tablet or bead or particle fraction. Ideally, the relative amounts of the active agents in the dosage forms of the invention are as follows:
First tablet or bead (or particle) fraction: Contains a dose “X” of d-threo-methylphenidate and a dose “Y” of a second CNS stimulant (e.g., an analeptic agent such as d-amphetamine), wherein the molar ratio of X:Y is in the range of approximately 2:1 to 1:2. The dose “X” represents approximately half of that which would be appropriate for dosage of d,l-threo-methylphenidate, and is typically in the range of approximately 1 mg to 20 mg, preferably 1 mg to 10 mg. When the second CNS stimulant is d-amphetamine, “Y” is typically in the range of approximately 1 mg to 20 mg, preferably 1 mg to 10 mg.
Second tablet or bead (or particle) fraction: Contains a dose of d-threo-methylphenidate in the range of approximately 0.5X to 2X, preferably 1X to 2X, and a dose of the second CNS stimulant in the range of zero to 0.5Y.
Third tablet or bead (or particle) fraction, if present: Contains a dose of d-threo-methylphenidate in the range of approximately 0.25X to 1X, optimally about 0.5X to 1X, and contains none of the second CNS stimulant.
Thus, the second CNS stimulant, present in the first pulse, is optionally included in the second pulse, and if present, is at a lower dose (up to half) of the amount in the first pulse. The third tablet or bead or particle fraction should contain a lower dose of d-threo-methylphenidate than either the first or second pulses, and should not contain any of the second CNS stimulant. In this way, the potential for sleep disruption is minimized.
Salts of the active agents used in conjunction with the present dosage forms may be obtained commercially or can be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 4th Ed. (New York: Wiley-Interscience, 1992). Suitable acids for preparing acid addition salts may be weak acids, medium acids, or strong acids, and include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, aspartic acid, saccharic acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Preparation of basic salts of acid moieties which may be present (e.g., carboxylic acid groups) are prepared using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, magnesium hydroxide, trimethylamine, or the like. Preparation of esters involves finctionalization of hydroxyl and/or carboxyl groups which may be present. These esters are typically acyl-substituted derivatives of free alcohol groups, i.e., moieties which are derived from carboxylic acids of the formula RCOOH where R is alkyl, and preferably is lower alkyl. Pharmaceutically acceptable esters may be prepared using methods known to those skilled in the art and/or described in the pertinent literature. Amides, prodrugs, and other analogs and derivatives can be readily prepared as well, using conventional means.
Utility:
The novel drug dosage forms are to be administered orally to a mammalian individual and can be used to administer d-threo-methylphenidate to treat or prevent a variety of disorders, conditions and diseases. In accordance with the present invention, administration of d-threo-methylphenidate along with the second CNS stimulant may be carried out in order to treat any disorder, condition or disease for which methylphenidate is generally indicated. Such disorders, conditions and diseases include, for example, ADD, ADHD, narcolepsy, and acute depression; methylphenidate may also be used in the treatment of individuals suffering from cognitive decline associated with AIDS or AIDS-related conditions, and for mood elevation in terminally ill patients suffering from a disease such as cancer.
For administration of d-threo-methylphenidate, the typical daily dose is in the range of approximately 2.5 mg to 50 mg, preferably 5 mg to 60 mg, although the exact dosage regimen will depend on a number of factors, including age, the general condition of the patient, the particular condition or disorder being treated, the severity of the patient's condition or disorder, and the like.
It is to be understood that while the invention has been described in conjunction with the preferred specific embodiments thereof, that the description above as well as the examples which follow are intended to illustrate and not limit the scope of the invention. Other aspects, advantages and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.
Experimental:
The practice of the present invention will employ, unless otherwise indicated, conventional techniques of pharmaceutical formulation, medicinal chemistry, biological testing, and the like, which are within the skill of the art. Such techniques are explained fully in the literature. Preparation of various types of pharmaceutical formulations are described, for example, in Lieberman et al., cited supra; synthesis of chiral drugs is described, inter alia, in Wilson and Gisvold, Textbook of Organic, Medicinal and Pharmaceutical Chemistry (Lippincott-Raven Publishers, 1991); and Gibaldi and Perrier, Pharmacokinetics (Marcel Dekker, 1982), provides a description of the biological testing procedures useful to evaluate compounds such as those described and claimed herein. All patents, patent applications, and publications mentioned herein, both supra and infra, are hereby incorporated by reference.
In the following examples, efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental error and deviation should be accounted for. Unless indicated otherwise, temperature is in degrees C and pressure is at or near atmospheric. All reagents were obtained commercially unless otherwise indicated.
EXAMPLE 1 Pulsatile Delivery System for Oral Administration of d-threo Methylphenidate and d-Amphetamine
A pulsatile release dosage form for administration of d-threo-methylphenidate and d-amphetamine is prepared by (1) formulating three individual compressed tablets, each having a different release profile, followed by (2) encapsulating the three tablets into a gelatin capsule and then closing and sealing the capsule. The components of the three tablets are as follows.
Component Function Amount per tablet
TABLET 1 (IMMEDIATE RELEASE):
d-threo-methylphenidate Active agent 2.5 mg
d-amphetamine Active agent 2.5 mg
Dicalcium phosphate dihydrate Diluent 26.6 mg
Microcrystalline cellulose Diluent 26.6 mg
Sodium starch glycolate Disintegrant 1.2 mg
Magnesium Stearate Lubricant 0.6 mg
TABLET 2 (RELEASE
DELAYED 3-5 HOURS FOLLOWING ADMINISTRATION):
d-threo methylphenidate Active agent 2.5 mg
d-amphetamine Active agent 1.25 mg
Dicalcium phosphate dihydrate Diluent 26.6 mg
Microcrystalline cellulose Diluent 26.6 mg
Sodium starch glycolate Disintegrant 1.2 mg
Magnesium Stearate Lubricant 0.6 mg
Eudragit RS30D Delayed release 4.76 mg
coating material
Talc Coating component 3.3 mg
Triethyl citrate Coating component 0.95 mg
TABLET 3 (RELEASE
DELAYED 7-9 HOURS FOLLOWING ADMINISTRATION):
d-threo methylphenidate Active agent 2.5 mg
Dicalcium phosphate dihydrate Diluent 26.6 mg
Microcrystalline cellulose Diluent 26.6 mg
Sodium starch glycolate Disintegrant 1.2 mg
Magnesium Stearate Lubricant 0.6 mg
Eudragit RS30D Delayed release 6.34 mg
coating material
Talc Coating component 4.4 mg
Triethyl citrate Coating component 1.27 mg
The tablets are prepared by wet granulation of the individual drug particles and other core components as may be done using a fluid-bed granulator, or are prepared by direct compression of the admixture of components. Tablet 1 is an immediate release dosage form, releasing the active agents within 1-2 hours following administration. Tablets 2 and 3 are coated with the delayed release coating material as may be carried out using conventional coating techniques such as spray-coating or the like. As will be appreciated by those skilled in the art, the specific components listed in the above tables may be replaced with other functionally equivalent components, e.g., diluents, binders, lubricants, fillers, coatings, and the like.
Oral administration of the capsule to a patient will result in a release profile having three pulses, with initial release of the d-threo-methylphenidate and d-amphetamine from the first tablet being substantially immediate, release of the d-threo-methylphenidate and d-amphetamine from the second tablet occurring 3-5 hours following administration, and release of the d-threo-methylphenidate from the third tablet occurring 7-9 hours following administration. Because Tablet 3 contains a lower dosage of d-threo-methylphenidate than Tablets 1 or 2, and no d-amphetamine, the likelihood of sleep disruption is substantially reduced.
EXAMLE 2
The method of Example 1 is repeated, except that drug-containing beads are used in place of tablets. A first fraction of beads may be prepared by coating an inert support material such as lactose with the drug which provides the first (immediate release) pulse. A second fraction of beads is prepared by coating immediate release beads with an amount of enteric coating material sufficient to provide a drug release-free period of 3-5 hours. A third fraction of beads is prepared by coating immediate release beads having half the methylphenidate dose of the first fraction of beads with a greater amount of enteric coating material, sufficient to provide a drug release-free period of 7-9 hours. The three groups of beads may be encapsulated as in Example 1, or compressed, in the presence of a cushioning agent, into a single pulsatile release tablet.
Alternatively, three groups of drug particles may be provided and coated as above, in lieu of the drug-coated lactose beads.

Claims (38)

What is claimed is:
1. A pulsatile release dosage form for oral administration of methylphenidate, comprising:
(a) a first dosage unit comprising a first d-threo-methylphenidate dose X and a first dose Y of a CNS stimulant other than d-threo-methylphenidate that are released substantially immediately following oral administration of the dosage form to a patient;
(b) a second dosage unit comprising a second d-threo-methylphenidate dose and optionally a second dose of the CNS stimulant, and a means for delaying release of the second doses until approximately 3 to 5 hours following administration of the dosage form to a patient; and optionally
(c) a third dosage unit comprising a third d-threo-methylphenidate dose without the CNS stimulant, and a means for delaying release of the third dose until approximately 7 to 9 hours following oral administration of the dosage form to a patient.
2. The dosage form of claim 1, wherein said X and said Y have a molar ratio in the range of approximately 1:2 to 2:1.
3. The dosage form of claim 2, wherein said X is in the range of approximately 1 mg to 20 mg.
4. The dosage form of claim 3, wherein said X is in the range of approximately 1 mg to 10 mg.
5. The dosage form of claim 3, wherein the second dose of d-threo-methylphenidate is approximately 0.5X to 2X, and the second dose of the CNS stimulant is in the range of zero to approximately 0.5Y.
6. The dosage form of claim 1, wherein the third dosage unit is present.
7. The dosage form of claim 5, wherein the third dosage unit is present.
8. The dosage form of claim 7, wherein the third dose of d-threo-methylphenidate is approximately 0.25X to 1X.
9. The dosage form of claim 6, wherein the first, second and third dosage units are housed in a closed capsule.
10. The dosage form of claim 6, wherein the first, second and third dosage units represent integral and discrete segments of a single tablet.
11. The dosage form of claim 9, wherein each dosage unit comprises a compressed tablet.
12. The dosage form of claim 9, wherein each dosage unit comprises a plurality of drug-containing beads.
13. The dosage form of claim 9, wherein each dosage unit comprises a plurality of drug-containing particles.
14. The dosage form of claim 6, wherein the third dosage unit releases the third d-threo-methylphenidate dose in the colon.
15. The dosage form of claim 1, wherein the CNS stimulant is an analeptic agent.
16. The dosage form of claim 1, wherein the CNS stimulant is selected from the group consisting of amphetamine, d-amphetamine, amphetaminil, bemegride, benzphetamine, benzphetamine, brucine, chlorphentermine, clofenciclan, clortermine, deanol acetamidobenzoate, demanyl, dexoxadrol, diethpropion, doxapram, N-ethylamphetamine, ethamivan, etifelmin, etryptamine, fencamfamine, fenethylline, fenosolone, fenfluramine, flurothyl, hexacyclonate, homocamfin, mazindol, megexamide, methamphetamine, nicotinic agonists, nikethamide, pemoline, pentylenetetrazole, phenidimetrazine, phendimetrazine, phenmetrazine, phenmetrazine, phentermine, picrotoxin, pipradrol, prolintane, pyrovalerone, racephedrine, tetrahydrobenzothienopyridines, and pharmacologically acceptable salts thereof.
17. The dosage form of claim 16, wherein the CNS stimulant is selected from the group consisting of amphetamine, d-amphetamine, and pharmacologically acceptable salts thereof.
18. The dosage form of claim 17, wherein the CNS stimulant is selected from the group consisting of amphetamine, d-amphetamine, amphetamine phosphate, d-amphetamine phosphate, amphetamine sulfate, d-amphetamine sulfate, amphetamine hydrochloride, d-amphetamine hydrochloride, amphetamine saccharate, d-amphetamine saccharate, amphetamine aspartate, d-amphetamine aspartate, and combinations thereof.
19. The dosage form of claim 16, wherein the CNS stimulant is pemoline.
20. The dosage form of claim 1, wherein the means for delaying release comprises a coating of a delayed release membrane material.
21. The dosage form of claim 20, wherein the delayed release membrane material is comprised of a bioerodible, hydrolyzable and/or gradually water-soluble polymer.
22. The dosage form of claim 21, wherein the delayed release membrane material is an acrylic resin.
23. The dosage form of claim 22, wherein the delayed release membrane material is a copolymer of acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, and/or derivatives thereof.
24. The dosage form of claim 22, wherein the delayed release membrane material is a terpolymer of ethyl acrylate, methyl methacrylate and trimethylammonioethyl methacrylate chloride.
25. The dosage form of claim 1, wherein at least one of the first, second and third dosage units further comprises a diluent.
26. The dosage form of claim 25, wherein the diluent is selected from the group consisting of dicalcium phosphate dihydrate, calcium sulfate, lactose, cellulose, kaolin, mannitol, dry starch, hydrolyzed starches, silicon dioxide, titanium oxide, alumina, talc, microcrystalline cellulose, powdered sugar, and mixtures thereof.
27. The dosage form of claim of claim 1, wherein at least one of the first, second and third dosage units further comprises a lubricant.
28. The dosage form of claim 27, wherein the lubricant is selected from the group consisting of magnesium stearate, calcium stearate, stearic acid, glyceryl behenate, polyethylene glycol, and mixtures thereof.
29. The dosage from of claim 28, wherein the lubricant is magnesium stearate.
30. The dosage form of claim 1, wherein at least one of the first, second and third dosage units further comprises a disintegrant.
31. The dosage form of claim 30, wherein the disintegrant is sodium starch glycolate.
32. The dosage form of claim 1, wherein each dosage unit has a different color.
33. A method for treating an individual suffering from ADD, comprising administering to the individual, once daily, the dosage form of claim 1.
34. A method for treating an individual suffering from ADHD, comprising administering to the individual, once daily, the dosage form of claim 1.
35. A method for treating an individual suffering from narcolepsy, comprising administering to the individual, once daily, the dosage form of claim 1.
36. A method for treating an individual suffering from acute depression, comprising administering to the individual, once daily, the dosage form of claim 1.
37. A method for treating an individual suffering from cognitive decline associated with Acquired Immunodeficiency Syndrome (“AIDS”) or AIDS-related conditions, comprising administering to the individual, once daily, the dosage form of claim 1.
38. A method for elevating the mood of a terminally ill patient, comprising administering to the patient, once daily, the dosage form of claim 1.
US09/544,382 1999-04-06 2000-04-06 Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second CNS stimulant Expired - Fee Related US6217904B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/544,382 US6217904B1 (en) 1999-04-06 2000-04-06 Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second CNS stimulant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12798499P 1999-04-06 1999-04-06
US09/544,382 US6217904B1 (en) 1999-04-06 2000-04-06 Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second CNS stimulant

Publications (1)

Publication Number Publication Date
US6217904B1 true US6217904B1 (en) 2001-04-17

Family

ID=22433001

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/544,732 Expired - Fee Related US6340476B1 (en) 1999-04-06 2000-04-06 Pharmaceutical dosage form for pulsatile delivery of methylphenidate
US09/544,382 Expired - Fee Related US6217904B1 (en) 1999-04-06 2000-04-06 Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second CNS stimulant
US09/992,353 Expired - Fee Related US6555136B2 (en) 1999-04-06 2001-11-13 Pharmaceutical dosage form for pulsatile delivery of methylphenidate
US10/426,138 Abandoned US20030194439A1 (en) 1999-04-06 2003-04-28 Pharmaceutical dosage form for pulsatile delivery of methylphenidate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/544,732 Expired - Fee Related US6340476B1 (en) 1999-04-06 2000-04-06 Pharmaceutical dosage form for pulsatile delivery of methylphenidate

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09/992,353 Expired - Fee Related US6555136B2 (en) 1999-04-06 2001-11-13 Pharmaceutical dosage form for pulsatile delivery of methylphenidate
US10/426,138 Abandoned US20030194439A1 (en) 1999-04-06 2003-04-28 Pharmaceutical dosage form for pulsatile delivery of methylphenidate

Country Status (6)

Country Link
US (4) US6340476B1 (en)
EP (2) EP1165054A4 (en)
JP (2) JP2002541092A (en)
AU (2) AU4334700A (en)
CA (2) CA2368367A1 (en)
WO (2) WO2000059481A1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384020B1 (en) * 1999-07-14 2002-05-07 Shire Laboratories, Inc. Rapid immediate release oral dosage form
US20020102291A1 (en) * 1997-12-15 2002-08-01 Noven Pharmaceuticals, Inc. Compositions and method for treatment of attention deficit disorder and attention deficit/hyperactivity disorder with methylphenidate
WO2002100346A2 (en) * 2001-06-11 2002-12-19 Vela Pharmaceuticals, Inc. (r, r'),(r',s')-amphetaminil, compositions and uses thereof
WO2002100342A2 (en) * 2001-06-11 2002-12-19 Vela Pharmaceuticals, Inc. (s, s'), (s, r')-amphetaminil, compositions and uses thereof
US20030049311A1 (en) * 2001-01-30 2003-03-13 Mcallister Stephen Mark Pharmaceutical formulation
GB2380937A (en) * 2001-10-18 2003-04-23 David Ian Slovick Method of dispensing a plurality of medical substances into capsules
US6555136B2 (en) * 1999-04-06 2003-04-29 Pharmaquest, Ltd. Pharmaceutical dosage form for pulsatile delivery of methylphenidate
US20030170304A1 (en) * 1998-11-02 2003-09-11 Devane John G. Multiparticulate modified release composition
US6638533B2 (en) 2002-01-03 2003-10-28 George Krsek Pulse dosage formulations of methylphenidate and method to prepare same
US20040059002A1 (en) * 2002-09-24 2004-03-25 Shire Laboratories, Inc. Sustained release delivery of amphetamine salts
US20040086562A1 (en) * 2001-01-12 2004-05-06 Shanghvi Dilip Shantilal Spaced drug delivery system
US20040091532A1 (en) * 1995-12-04 2004-05-13 Mehta Atul M. Delivery of multiple doses of medications
US20040115261A1 (en) * 2001-04-05 2004-06-17 Ashley Robert A. Controlled delivery of tetracycline compounds and tetracycline derivatives
US20040156900A1 (en) * 2001-04-10 2004-08-12 Shanghvi Dilip Shantilal Time pulsed release composition
US20040168739A1 (en) * 2001-04-20 2004-09-02 Bonney Stanley George Metering method for particulate material
US20060121112A1 (en) * 2004-12-08 2006-06-08 Elan Corporation, Plc Topiramate pharmaceutical composition
US20060127421A1 (en) * 2004-12-09 2006-06-15 Celgene Corporation Treatment using D-threo methylphenidate
US20060142583A1 (en) * 1997-05-22 2006-06-29 Vikram Khetani Processes and intermediates for resolving piperidyl acetamide stereoisomers
US20060210633A1 (en) * 2003-04-03 2006-09-21 Sun Pharmaceutical Industries Limited Programmed drug delivery system
US20060240105A1 (en) * 1998-11-02 2006-10-26 Elan Corporation, Plc Multiparticulate modified release composition
US20070112075A1 (en) * 2005-10-14 2007-05-17 Forest Laboratories, Inc. Stable pharmaceutical formulations containing escitalopram and bupropion
US20070203231A1 (en) * 2005-10-14 2007-08-30 Forest Laboratories, Inc. Methods of treating central nervous system disorders with a low dose combination of escitalopram and bupropion
US20080069870A1 (en) * 2005-04-12 2008-03-20 Elan Corporation Pic Controlled Release Compositions Comprising a Cephalosporin for the Treatment of a Bacterial Infection
US20080220074A1 (en) * 2002-10-04 2008-09-11 Elan Corporation Plc Gamma radiation sterilized nanoparticulate docetaxel compositions and methods of making same
US20080299197A1 (en) * 2005-12-29 2008-12-04 Osmotica Corp. Triple Combination Release Multi-Layered Tablet
US20090011006A1 (en) * 2003-04-07 2009-01-08 Supernus Pharmaceuticals, Inc. Once daily formulations of tetracyclines
US20090062336A1 (en) * 2004-04-26 2009-03-05 Celgene Corporation Methods of Diminishing Co-Abuse Potential
US20090088455A1 (en) * 1995-12-04 2009-04-02 Celgene Corporation Chronic, Bolus Adminstration Of D-Threo Methylphenidate
US20090136593A1 (en) * 2006-04-11 2009-05-28 Eric Konofal Mazindol combination in the treatment of attention deficit/hyperactivity
US20090149479A1 (en) * 1998-11-02 2009-06-11 Elan Pharma International Limited Dosing regimen
US20090325999A1 (en) * 2008-06-27 2009-12-31 Jie Du Personalized pharmaceutical kits, packaging and compositions for the treatment of allergic conditions
US20100136106A1 (en) * 2005-06-08 2010-06-03 Gary Liversidge Modified Release Famciclovir Compositions
US20100166858A1 (en) * 2006-03-16 2010-07-01 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US20100272799A1 (en) * 2009-04-27 2010-10-28 Joshi Hemant N Coating technology to produce a combination solid dosage form
US20100278888A1 (en) * 2008-08-25 2010-11-04 Byung-Ho Park Composition for cosmetic raw material containing cellulose dyed with natural coloring matter having improved photostability, and visual carrier system comprising the same
US20110208437A1 (en) * 2008-08-01 2011-08-25 The Mclean Hospital Corporation Method and apparatus for identifying a safe and efficacious dosing regimen
US20120207824A1 (en) * 2011-02-15 2012-08-16 Tris Pharma, Inc. Orally effective methylphenidate extended release powder and aqueous suspension product
US8951555B1 (en) 2000-10-30 2015-02-10 Purdue Pharma L.P. Controlled release hydrocodone formulations
US8975273B2 (en) 1999-10-29 2015-03-10 Purdue Pharma L.P. Controlled release hydrocodone formulations
US8999386B2 (en) 2012-08-15 2015-04-07 Tris Pharma, Inc. Methylphenidate extended release chewable tablet
WO2016138440A1 (en) 2015-02-27 2016-09-01 Cingulate Therapeutics LLC Tripulse release stimulant formulations
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10519175B2 (en) 2017-10-09 2019-12-31 Compass Pathways Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11278506B2 (en) 2015-10-09 2022-03-22 Rb Health (Us) Llc Pharmaceutical formulation
US11564935B2 (en) 2019-04-17 2023-01-31 Compass Pathfinder Limited Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin
US11590081B1 (en) 2017-09-24 2023-02-28 Tris Pharma, Inc Extended release amphetamine tablets
US11590228B1 (en) 2015-09-08 2023-02-28 Tris Pharma, Inc Extended release amphetamine compositions

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9802973D0 (en) 1998-09-03 1998-09-03 Astra Ab Immediate release tablet
US6322819B1 (en) * 1998-10-21 2001-11-27 Shire Laboratories, Inc. Oral pulsed dose drug delivery system
US8545880B2 (en) 1999-02-26 2013-10-01 Andrx Pharmaceuticals, Llc Controlled release oral dosage form
US20030170181A1 (en) * 1999-04-06 2003-09-11 Midha Kamal K. Method for preventing abuse of methylphenidate
US20040258750A1 (en) * 1999-06-28 2004-12-23 Gerard Alaux Timed dual release dosage forms comprising a short acting hypnotic or a salt thereof
DK1248594T3 (en) * 2000-01-19 2006-02-06 Mannkind Corp Multi-tip release formulation for drug delivery
US7674480B2 (en) * 2000-06-23 2010-03-09 Teva Pharmaceutical Industries Ltd. Rapidly expanding composition for gastric retention and controlled release of therapeutic agents, and dosage forms including the composition
GB0025208D0 (en) 2000-10-13 2000-11-29 Euro Celtique Sa Delayed release pharmaceutical formulations
US6344215B1 (en) * 2000-10-27 2002-02-05 Eurand America, Inc. Methylphenidate modified release formulations
US7619005B2 (en) 2000-11-01 2009-11-17 Cognition Pharmaceuticals Llc Methods for treating cognitive impairment in humans with Multiple Sclerosis
JP2004534724A (en) 2000-11-01 2004-11-18 センション,インコーポレイテッド Methods and compositions for regulating memory consolidation
US20030232890A1 (en) 2000-11-01 2003-12-18 Sention, Inc. Methods for treating an impairment in memory consolidation
US6645946B1 (en) 2001-03-27 2003-11-11 Pro-Pharmaceuticals, Inc. Delivery of a therapeutic agent in a formulation for reduced toxicity
JP4744782B2 (en) 2001-03-27 2011-08-10 プロ−ファーマシューティカルズ,インク. Simultaneous administration of polysaccharides with chemotherapeutic agents for the treatment of cancer
US20030049272A1 (en) * 2001-08-30 2003-03-13 Yatindra Joshi Pharmaceutical composition which produces irritation
EP1517678A2 (en) * 2002-06-24 2005-03-30 Ranbaxy Laboratories Limited Process for the preparation of robust formulations of valacyclovir hydrochloride tablets
US20060003004A1 (en) * 2002-10-25 2006-01-05 Collegium Pharmaceutical, Inc. Pulsatile release compositions of milnacipran
US20040132826A1 (en) * 2002-10-25 2004-07-08 Collegium Pharmaceutical, Inc. Modified release compositions of milnacipran
US20060024366A1 (en) * 2002-10-25 2006-02-02 Collegium Pharmaceutical, Inc. Modified release compositions of milnacipran
AU2003301762B2 (en) * 2002-10-25 2006-02-09 Collegium Pharmaceutical, Inc. Pulsatile release compositions of milnacipran
US20050038042A1 (en) * 2002-11-15 2005-02-17 Jenet Codd Modified release composition comprising a short-acting hypnotic for treatment of sleep disorders
US7988993B2 (en) 2002-12-09 2011-08-02 Andrx Pharmaceuticals, Inc. Oral controlled release dosage form
US8110223B2 (en) * 2002-12-31 2012-02-07 University Of Maryland, Baltimore Methods for making pharmaceutical dosage forms containing active cushioning components
US20040131672A1 (en) * 2003-01-07 2004-07-08 Nilobon Podhipleux Direct compression pharmaceutical composition containing a pharmaceutically active ingredient with poor flowing properties
EP1626709B1 (en) * 2003-02-10 2007-09-05 Shire Biochem Inc. Enantiomeric amphetamine compositions for the treatment of adhd
WO2005007110A2 (en) * 2003-07-11 2005-01-27 Pro-Pharmaceuticals, Inc. Compositions and methods for hydrophobic drug delivery
AU2003264002B2 (en) * 2003-08-08 2010-09-02 Valeant International Bermuda Modified-release tablet of bupropion hydrochloride
US20050053664A1 (en) * 2003-09-08 2005-03-10 Eliezer Zomer Co-administration of a polysaccharide with a chemotherapeutic agent for the treatment of cancer
US20070078109A1 (en) * 2004-02-13 2007-04-05 David Platt Compositions and methods used to treat acne and candida
US7213816B2 (en) * 2004-06-23 2007-05-08 Wal-Mart Stores, Inc. Cart for stocking inventory and methods for making same
US20080286251A1 (en) * 2004-08-02 2008-11-20 Propharmaceuticals, Inc. Compositions and Methods for the Enhancement of Chemotherapy with Microbial Cytotoxins
CA2617941C (en) * 2004-08-23 2012-07-24 Pejo Iserlohn Heilmittel Und Diaet Gmbh & Co. Kg Psychostimulant containing pharmaceutical composition
WO2006091725A1 (en) * 2005-02-23 2006-08-31 The Silvan S. Tomkins Institute Treatment of anhedonia
US8722650B1 (en) 2005-06-24 2014-05-13 Medicis Pharmaceutical Corporation Extended-release minocycline dosage forms
US7919483B2 (en) * 2005-06-24 2011-04-05 Medicis Pharmaceutical Corporation Method for the treatment of acne
US20080242642A1 (en) * 2007-04-02 2008-10-02 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
US9192615B2 (en) 2008-08-06 2015-11-24 Medicis Pharmaceutical Corporation Method for the treatment of acne and certain dosage forms thereof
US7541347B2 (en) * 2007-04-02 2009-06-02 Medicis Pharmaceutical Coropration Minocycline oral dosage forms for the treatment of acne
US20080241235A1 (en) * 2007-04-02 2008-10-02 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
US8252776B2 (en) * 2007-04-02 2012-08-28 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
US7544373B2 (en) * 2007-04-02 2009-06-09 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
DE102005031577A1 (en) * 2005-07-06 2007-01-11 Bayer Healthcare Ag Pharmaceutical dosage forms containing a combination of nifedipine and / or nisoldipine and an angiotensin II antagonist
US8865197B2 (en) * 2005-09-06 2014-10-21 Israel Oceanographic And Limnological Research Ltd. Food formulation for aquatic animals with integrated targeted delivery of bioactive agents
US20070087055A1 (en) * 2005-10-14 2007-04-19 David Jan Directly compressible extended release alprazolam formulation
WO2008140461A1 (en) * 2007-05-16 2008-11-20 Fmc Corporation Solid form
US20080286344A1 (en) * 2007-05-16 2008-11-20 Olivia Darmuzey Solid form
WO2009127210A1 (en) * 2008-04-14 2009-10-22 Soerensen Kurt Virring Vasodilating agents for the treatment of sleep attacks
DE102008059206A1 (en) 2008-11-27 2010-06-10 Bayer Schering Pharma Aktiengesellschaft Pharmaceutical dosage form containing nifedipine or nisoldipine and an angiotensin II antagonist and / or a diuretic
WO2011020032A2 (en) * 2009-08-13 2011-02-17 Kudco Ireland, Ltd. Pharmaceutical dosage form
WO2012031125A2 (en) * 2010-09-01 2012-03-08 The General Hospital Corporation Reversal of general anesthesia by administration of methylphenidate, amphetamine, modafinil, amantadine, and/or caffeine
US9453020B2 (en) 2011-05-04 2016-09-27 Balance Therapeutics, Inc. Substituted pentylenetetrazoles as GABA receptor activity modulators
US9561241B1 (en) 2011-06-28 2017-02-07 Medicis Pharmaceutical Corporation Gastroretentive dosage forms for minocycline
WO2013003622A1 (en) 2011-06-28 2013-01-03 Neos Therapeutics, Lp Dosage forms for oral administration and methods of treatment using the same
JP5914701B2 (en) 2012-02-22 2016-05-11 デュシネイ・インコーポレイテッド Formulation of doxylamine and pyridoxine and / or metabolites or salts thereof
ES2612532T3 (en) 2012-05-07 2017-05-17 Bayer Pharma Aktiengesellschaft Method of manufacturing a pharmaceutical dosage form comprising nifedipine and candesartan cilexetil
US8999393B1 (en) * 2013-01-09 2015-04-07 Edgemont Pharmaceuticals Llc Sustained release formulations of lorazepam
WO2014159582A1 (en) * 2013-03-14 2014-10-02 Noven Pharmaceuticals, Inc Amphetamine transdermal compositions with acrylic block copolymer
SG11201600122RA (en) 2013-07-22 2016-02-26 Duchesnay Inc Composition for the management of nausea and vomiting
EP3102189B1 (en) * 2014-02-06 2019-09-04 Lan Bo Chen Composition and method for aiding sleep
GB201506755D0 (en) 2015-04-21 2015-06-03 Reckitt Benckiser Llc Novel pharmaceutical formulation
CA2936746C (en) 2014-10-31 2017-06-27 Purdue Pharma Methods and compositions particularly for treatment of attention deficit disorder
EP3222717B1 (en) 2014-11-18 2020-04-22 OriCiro Genomics, Inc. Method of amplifying circular dna
WO2017042582A1 (en) 2015-09-11 2017-03-16 Andrew Guise An oral particulate composition
CN108348775B (en) 2015-09-15 2021-07-02 普瑞西斯生物学研究有限责任公司 Prodrugs of fenkafamine
US20170296476A1 (en) * 2016-04-15 2017-10-19 Grünenthal GmbH Modified release abuse deterrent dosage forms
ES2641308B1 (en) * 2016-05-05 2018-09-11 Products & Technology, S.L. Delayed-release methylphenidate tablets
US10722473B2 (en) 2018-11-19 2020-07-28 Purdue Pharma L.P. Methods and compositions particularly for treatment of attention deficit disorder
AU2022272918A1 (en) * 2021-05-11 2023-11-30 Cingulate Therapeutics LLC Trimodal, precision-timed pulsatile release tablet
KR20240150485A (en) * 2022-02-16 2024-10-15 싱귤레이트 테라퓨틱스 엘엘씨 Sambong, Precision-Timed Release Tablets

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627850A (en) 1983-11-02 1986-12-09 Alza Corporation Osmotic capsule
US4713247A (en) 1983-06-15 1987-12-15 Shionogi & Co., Ltd. Long-acting formulation of cefaclor
US4728512A (en) 1985-05-06 1988-03-01 American Home Products Corporation Formulations providing three distinct releases
US4777049A (en) 1983-12-01 1988-10-11 Alza Corporation Constant release system with pulsed release
US4874388A (en) 1987-06-25 1989-10-17 Alza Corporation Multi-layer delivery system
US4957494A (en) 1987-06-25 1990-09-18 Alza Corporation Multi-layer delivery system
US4971805A (en) 1987-12-23 1990-11-20 Teysan Pharmaceuticals Co., Ltd. Slow-releasing granules and long acting mixed granules comprising the same
US5023088A (en) 1987-06-25 1991-06-11 Alza Corporation Multi-unit delivery system
US5110597A (en) 1987-06-25 1992-05-05 Alza Corporation Multi-unit delivery system
US5204116A (en) 1991-05-01 1993-04-20 Alza Corporation Dosage form providing immediate therapy followed by prolonged therapy
US5209746A (en) 1992-02-18 1993-05-11 Alza Corporation Osmotically driven delivery devices with pulsatile effect
US5221278A (en) 1992-03-12 1993-06-22 Alza Corporation Osmotically driven delivery device with expandable orifice for pulsatile delivery effect
US5236689A (en) 1987-06-25 1993-08-17 Alza Corporation Multi-unit delivery system
US5260069A (en) 1992-11-27 1993-11-09 Anda Sr Pharmaceuticals Inc. Pulsatile particles drug delivery system
US5260068A (en) 1992-05-04 1993-11-09 Anda Sr Pharmaceuticals Inc. Multiparticulate pulsatile drug delivery system
US5300304A (en) 1989-09-21 1994-04-05 American Cyanamid Company Pulsatile once-a-day delivery systems for minocycline
US5308348A (en) 1992-02-18 1994-05-03 Alza Corporation Delivery devices with pulsatile effect
US5312390A (en) 1992-01-10 1994-05-17 Alza Corporation Osmotic device with delayed activation of drug delivery
US5340590A (en) 1987-06-25 1994-08-23 Alza Corporation Delivery system with bilayer osmotic engine
US5348748A (en) 1992-03-02 1994-09-20 American Cyanamid Company Pulsatile once-a-day delivery systems for minocycline
US5391381A (en) 1987-06-25 1995-02-21 Alza Corporation Dispenser capable of delivering plurality of drug units
US5407686A (en) 1991-11-27 1995-04-18 Sidmak Laboratories, Inc. Sustained release composition for oral administration of active ingredient
US5445828A (en) 1990-07-04 1995-08-29 Zambon Group S.P.A. Programmed release oral solid pharmaceutical dosage form
US5456679A (en) 1992-02-18 1995-10-10 Alza Corporation Delivery devices with pulsatile effect
US5498255A (en) 1993-08-17 1996-03-12 Alza Corporation Osmotic device for protracted pulsatile delivery of agent
US5499979A (en) 1987-06-25 1996-03-19 Alza Corporation Delivery system comprising kinetic forces
US5531736A (en) 1991-01-30 1996-07-02 Alza Corporation Osmotic device for delayed delivery of agent
WO1998006380A2 (en) 1996-08-16 1998-02-19 Alza Corporation Dosage form for providing ascending dose of drug
US5773478A (en) 1995-07-14 1998-06-30 Medeva Europe Limited Composition comprising methylphenidate and another drug
US5801271A (en) 1997-04-02 1998-09-01 Takasago International Corporation 7-(n-substituted amino)-2-phenylheptanoic acid derivative and process for manufacturing the same
US5837284A (en) 1995-12-04 1998-11-17 Mehta; Atul M. Delivery of multiple doses of medications
US5859249A (en) 1997-02-19 1999-01-12 Takasago International Corporation 2-phenyl-2-(2'-piperidinylidene)acetate derivative, process for manufacturing the same, and process for manufacturing optically active 2-phenyl-2-(2'-piperidinyl)acetate derivative by asymmetrically hydrogenating the same
US5874090A (en) 1995-07-14 1999-02-23 Medeva Europe Limited Sustained-release formulation of methylphenidate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211278A (en) * 1990-01-31 1993-05-18 Lamb-Weston, Inc. Food transport chain conveyor system
US5914129A (en) * 1996-07-23 1999-06-22 Mauskop; Alexander Analgesic composition for treatment of migraine headaches
US6150376A (en) * 1998-08-05 2000-11-21 Georgetown University Bi- and tri-cyclic aza compounds and their uses
CA2368367A1 (en) * 1999-04-06 2000-10-12 Pharmaquest Ltd. Pharmaceutical dosage form for pulsatile delivery of methylphenidate

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713247A (en) 1983-06-15 1987-12-15 Shionogi & Co., Ltd. Long-acting formulation of cefaclor
US4627850A (en) 1983-11-02 1986-12-09 Alza Corporation Osmotic capsule
US4777049A (en) 1983-12-01 1988-10-11 Alza Corporation Constant release system with pulsed release
US4728512A (en) 1985-05-06 1988-03-01 American Home Products Corporation Formulations providing three distinct releases
US5110597A (en) 1987-06-25 1992-05-05 Alza Corporation Multi-unit delivery system
US5499979A (en) 1987-06-25 1996-03-19 Alza Corporation Delivery system comprising kinetic forces
US5340590A (en) 1987-06-25 1994-08-23 Alza Corporation Delivery system with bilayer osmotic engine
US5023088A (en) 1987-06-25 1991-06-11 Alza Corporation Multi-unit delivery system
US5391381A (en) 1987-06-25 1995-02-21 Alza Corporation Dispenser capable of delivering plurality of drug units
US4874388A (en) 1987-06-25 1989-10-17 Alza Corporation Multi-layer delivery system
US5236689A (en) 1987-06-25 1993-08-17 Alza Corporation Multi-unit delivery system
US4957494A (en) 1987-06-25 1990-09-18 Alza Corporation Multi-layer delivery system
US4971805A (en) 1987-12-23 1990-11-20 Teysan Pharmaceuticals Co., Ltd. Slow-releasing granules and long acting mixed granules comprising the same
US5300304A (en) 1989-09-21 1994-04-05 American Cyanamid Company Pulsatile once-a-day delivery systems for minocycline
US5445828A (en) 1990-07-04 1995-08-29 Zambon Group S.P.A. Programmed release oral solid pharmaceutical dosage form
US5531736A (en) 1991-01-30 1996-07-02 Alza Corporation Osmotic device for delayed delivery of agent
US5204116A (en) 1991-05-01 1993-04-20 Alza Corporation Dosage form providing immediate therapy followed by prolonged therapy
US5407686A (en) 1991-11-27 1995-04-18 Sidmak Laboratories, Inc. Sustained release composition for oral administration of active ingredient
US5312390A (en) 1992-01-10 1994-05-17 Alza Corporation Osmotic device with delayed activation of drug delivery
US5308348A (en) 1992-02-18 1994-05-03 Alza Corporation Delivery devices with pulsatile effect
US5456679A (en) 1992-02-18 1995-10-10 Alza Corporation Delivery devices with pulsatile effect
US5209746A (en) 1992-02-18 1993-05-11 Alza Corporation Osmotically driven delivery devices with pulsatile effect
US5348748A (en) 1992-03-02 1994-09-20 American Cyanamid Company Pulsatile once-a-day delivery systems for minocycline
US5221278A (en) 1992-03-12 1993-06-22 Alza Corporation Osmotically driven delivery device with expandable orifice for pulsatile delivery effect
US5508040A (en) 1992-05-04 1996-04-16 Andrx Pharmaceuticals, Inc. Multiparticulate pulsatile drug delivery system
US5260068A (en) 1992-05-04 1993-11-09 Anda Sr Pharmaceuticals Inc. Multiparticulate pulsatile drug delivery system
US5472708A (en) * 1992-11-27 1995-12-05 Andrx Pharmaceuticals Inc. Pulsatile particles drug delivery system
US5260069A (en) 1992-11-27 1993-11-09 Anda Sr Pharmaceuticals Inc. Pulsatile particles drug delivery system
US5498255A (en) 1993-08-17 1996-03-12 Alza Corporation Osmotic device for protracted pulsatile delivery of agent
US5773478A (en) 1995-07-14 1998-06-30 Medeva Europe Limited Composition comprising methylphenidate and another drug
US5874090A (en) 1995-07-14 1999-02-23 Medeva Europe Limited Sustained-release formulation of methylphenidate
US5837284A (en) 1995-12-04 1998-11-17 Mehta; Atul M. Delivery of multiple doses of medications
WO1998006380A2 (en) 1996-08-16 1998-02-19 Alza Corporation Dosage form for providing ascending dose of drug
US5859249A (en) 1997-02-19 1999-01-12 Takasago International Corporation 2-phenyl-2-(2'-piperidinylidene)acetate derivative, process for manufacturing the same, and process for manufacturing optically active 2-phenyl-2-(2'-piperidinyl)acetate derivative by asymmetrically hydrogenating the same
US5801271A (en) 1997-04-02 1998-09-01 Takasago International Corporation 7-(n-substituted amino)-2-phenylheptanoic acid derivative and process for manufacturing the same

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
Aoyama et al. (1990), Kinetic Analysis of Enantiomers of threo -Methylphenidate and Its Metabolite in Two Healthy Subjects After Oral Administration as Determined by a Gas Chromatographic-Mass Spectrometric Method, Journal of Pharmaceutical Sciences 79(6):465-469.
Aoyama et al. (1993), "Nonlinear Kinetics of threo-Methylphenidate Enantiomers in a Patient with Narcolepsy and in Healthy Volunteers," European Journal of Clinical Pharmacology 44:79-84.
Aoyama et al. (1994), "Pharmacokinetics and Pharmacodynamics of (+)-threo-Methylphenidate Enantiomer in Patients with Hypersomnia," Clinical Pharmacology & Therapeutics 55(3):270-276
Aoyama et al. (1994), "Stereospecific Distribution of Methylphenidate Enantiomers in Rat Brain: Specific Binding to Dopamine Reuptake Sites," Pharmaceutical Research 11(3):407-411.
Conte et al. (2000), "A Flexible Technology for the Linear, Pulsatile and Delayed Release of Drugs, Allowing for Easy Accommodation of Difficult In Vitro Targets," Journal of Controlled Release 64:263-268.
Ding et al. (1994), "Pharmacokinetics and In Vivo Specificity of [11C]dl-threo-Methylphenidate for the Presynaptic Dopaminergic Neuron," Synapse 18:152-160.
Ding et al. (1995), "Carbon-11-d-threo-Methylphenidate Binding to Dopamine Transporter in Baboon Brain," The Journal of Nuclear Medicine 36(12):2298-2305.
Ferris et al. (1978), "Comparison of the Effects of the Isomers of Amphetamine, Methylphenidate and Deoxypipradrol on the Uptake of l-[3H] Norepinephrine and [3H] Dopamine by Synaptic Vesicles from Rat Whole Brain, Striatum and Hypothalamus,"The Journal of Pharmacology and Experimental Therapeutics210(3):422-428.
Gatley et al. (1995), "Binding of d-threo-[11C] Methylphenidate to the Dopamine Transporter in Vivo: Insensitivity to Synaptic Dopamine," European Journal of Pharmacology 281:141-149.
Hubbard et al. (1989), "Enantioselective Aspects of the Disposition of dl-threo-Methylphenidate After the Administration of a Sustained-Release Formulation to Children with Attention Deficit-Hyperactivity Disorder," Journal of Pharmaceutical Sciences , 78(11):944-947.
Janowsky et al. (1985), "The Effects of Surgical and Chemical Lesions on Striatal [3H]threo-(±)-Methylphenidate Binding: Correlation with [3H]Dopamine Uptake," European Journal of Pharmacology108:187-191.
Jonkman et al. (1998), "Differences in Plasma Concentrations of the D-and L-threo Methylphenidate Enantiomers in Responding and Non-Responding Children with Attention Deficit Hyperactivity Disorder," Psychiatry Research, 78:115-118.
Patrick et al. (1981)) "Synthesis and Pharmacology of Hydroxylated Metabolites of Methylphenidate ,"Journal of Medicinal Chemistry, 24(10):1237-1240.
Patrick et al. (1987), "Pharmacology of the Enantiomers of threo-Methylphenidate," The Journal of Pharmacology and Experimental Therapeutics 24(10):152-158.
Schweri et al. (1985), "[3H] Threo-(±)-Methylphenidate Binding to 3,4-Dihydroxyphenylethylamine Uptake Sites in Corpus Striatum: Correlation with the Stimulant Properties of Ritalinic Acid Esters," Journal of Neurochemistry45(4):1062-1070.
Srinivas et al. (1991), "Extensive and Enantioselective Presystemic Metabolism of DL-threo-Methylphenidate in Humans," Progress in Neuro-Psychopharmacology & Biological Psychiatry 15:213-220.
Srinivas et al. (1992), "Enantioselective Pharmacokinetics and Pharmacodynamics of dl-threo-Methylphenidate in Children with Attention Deficit Hyperactivity Disorder," Clinical Pharmacology & Therapeutics, 52(5):561-568.
Srinivas et al. (1992), "Stereoselective Urinary Pharmacokinetics of dl-threo-Methylphenidate and Its Major Metabolite in Humans," Journal of Pharmaceutical Sciences, 81(8):747-749.
Srinivas et al. (1993), "Enantioselective Pharmacokinetics of dl-threo-Methylphenidate in Humans," Pharmaceutical Research10(1):14-21.
Wong et al. (1998), "Single-Dose Pharmacokinetics of Modafinil and Methylphenidate Given Alone or in Comibation in Healthy Male Volunteers," The Journal of Clinical Pharmacology, 38(3):276-282.

Cited By (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431944B2 (en) 1995-12-04 2008-10-07 Celgene Corporation Delivery of multiple doses of medications
US20040091532A1 (en) * 1995-12-04 2004-05-13 Mehta Atul M. Delivery of multiple doses of medications
US20090088455A1 (en) * 1995-12-04 2009-04-02 Celgene Corporation Chronic, Bolus Adminstration Of D-Threo Methylphenidate
US20060142583A1 (en) * 1997-05-22 2006-06-29 Vikram Khetani Processes and intermediates for resolving piperidyl acetamide stereoisomers
US7459560B2 (en) 1997-05-22 2008-12-02 Celgene Corporation Processes and intermediates for resolving piperidyl acetamide stereoisomers
US20110160245A1 (en) * 1997-12-15 2011-06-30 Noven Pharmaceuticals, Inc. Compositions and methods for treatment of attention deficit disorder and attention deficit/hyperactivity disorder with methylphenidate
US20020102291A1 (en) * 1997-12-15 2002-08-01 Noven Pharmaceuticals, Inc. Compositions and method for treatment of attention deficit disorder and attention deficit/hyperactivity disorder with methylphenidate
US20070059349A1 (en) * 1997-12-15 2007-03-15 Noven Pharmaceuticals, Inc. Compositions and method for treatment of attention deficit disorder and attention deficit/hyperactivity disorder with methylphenidate
US20040197405A1 (en) * 1998-11-02 2004-10-07 Elan Corporation, Plc Multiparticulate modified release composition
US20030170304A1 (en) * 1998-11-02 2003-09-11 Devane John G. Multiparticulate modified release composition
US20060240105A1 (en) * 1998-11-02 2006-10-26 Elan Corporation, Plc Multiparticulate modified release composition
US20090149479A1 (en) * 1998-11-02 2009-06-11 Elan Pharma International Limited Dosing regimen
US6793936B2 (en) 1998-11-02 2004-09-21 Elan Corporation, Plc Multiparticulate modified release composition
US20080279929A1 (en) * 1998-11-02 2008-11-13 Elan Corproation Plc Nanoparticulate and Controlled Release Compositions Comprising Cefditoren
US8119163B2 (en) 1998-11-02 2012-02-21 Alkermes Pharma Ireland Limited Nanoparticulate and controlled release compositions comprising cefditoren
US20030194439A1 (en) * 1999-04-06 2003-10-16 Midha Kamal K. Pharmaceutical dosage form for pulsatile delivery of methylphenidate
US6555136B2 (en) * 1999-04-06 2003-04-29 Pharmaquest, Ltd. Pharmaceutical dosage form for pulsatile delivery of methylphenidate
US6384020B1 (en) * 1999-07-14 2002-05-07 Shire Laboratories, Inc. Rapid immediate release oral dosage form
US9278074B2 (en) 1999-10-29 2016-03-08 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9669022B2 (en) 1999-10-29 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9669024B2 (en) 1999-10-29 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9320717B2 (en) 1999-10-29 2016-04-26 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9056107B1 (en) 1999-10-29 2015-06-16 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9675611B1 (en) 1999-10-29 2017-06-13 Purdue Pharma L.P. Methods of providing analgesia
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10076516B2 (en) 1999-10-29 2018-09-18 Purdue Pharma L.P. Methods of manufacturing oral dosage forms
US8980291B2 (en) 1999-10-29 2015-03-17 Purdue Pharma L.P. Controlled release hydrocodone formulations
US8975273B2 (en) 1999-10-29 2015-03-10 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9517236B2 (en) 2000-10-30 2016-12-13 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9205056B2 (en) 2000-10-30 2015-12-08 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10022368B2 (en) 2000-10-30 2018-07-17 Purdue Pharma L.P. Methods of manufacturing oral formulations
US9682077B2 (en) 2000-10-30 2017-06-20 Purdue Pharma L.P. Methods of providing analgesia
US8951555B1 (en) 2000-10-30 2015-02-10 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9023401B1 (en) 2000-10-30 2015-05-05 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9056052B1 (en) 2000-10-30 2015-06-16 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9060940B2 (en) 2000-10-30 2015-06-23 Purdue Pharma L.P. Controlled release hydrocodone
US9198863B2 (en) 2000-10-30 2015-12-01 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9205055B2 (en) 2000-10-30 2015-12-08 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9669023B2 (en) 2000-10-30 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9289391B2 (en) 2000-10-30 2016-03-22 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9504681B2 (en) 2000-10-30 2016-11-29 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9526724B2 (en) 2000-10-30 2016-12-27 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9572804B2 (en) 2000-10-30 2017-02-21 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9572805B2 (en) 2000-10-30 2017-02-21 Purdue Pharma L.P. Controlled release hydrocodone formulations
US20040086562A1 (en) * 2001-01-12 2004-05-06 Shanghvi Dilip Shantilal Spaced drug delivery system
US7964216B2 (en) * 2001-01-12 2011-06-21 Sun Pharma Advanced Research Company Limited Spaced drug delivery system
US20030049311A1 (en) * 2001-01-30 2003-03-13 Mcallister Stephen Mark Pharmaceutical formulation
WO2002060385A3 (en) * 2001-01-30 2003-11-27 Smithkline Beecham Plc Pharmaceutical formulation
US20040115261A1 (en) * 2001-04-05 2004-06-17 Ashley Robert A. Controlled delivery of tetracycline compounds and tetracycline derivatives
US20040156900A1 (en) * 2001-04-10 2004-08-12 Shanghvi Dilip Shantilal Time pulsed release composition
US20040168739A1 (en) * 2001-04-20 2004-09-02 Bonney Stanley George Metering method for particulate material
WO2002100346A3 (en) * 2001-06-11 2003-04-03 Vela Pharmaceuticals Inc (r, r'),(r',s')-amphetaminil, compositions and uses thereof
WO2002100346A2 (en) * 2001-06-11 2002-12-19 Vela Pharmaceuticals, Inc. (r, r'),(r',s')-amphetaminil, compositions and uses thereof
WO2002100342A3 (en) * 2001-06-11 2003-05-15 Vela Pharmaceuticals Inc (s, s'), (s, r')-amphetaminil, compositions and uses thereof
WO2002100342A2 (en) * 2001-06-11 2002-12-19 Vela Pharmaceuticals, Inc. (s, s'), (s, r')-amphetaminil, compositions and uses thereof
GB2380937A (en) * 2001-10-18 2003-04-23 David Ian Slovick Method of dispensing a plurality of medical substances into capsules
US6638533B2 (en) 2002-01-03 2003-10-28 George Krsek Pulse dosage formulations of methylphenidate and method to prepare same
US20040059002A1 (en) * 2002-09-24 2004-03-25 Shire Laboratories, Inc. Sustained release delivery of amphetamine salts
CN1684668B (en) * 2002-09-24 2010-05-26 希拉有限责任公司 Sustained release delivery of amphetamine salts
AU2003272619B2 (en) * 2002-09-24 2008-10-09 Shire Llc Sustained released delivery of amphetamine salts
US6913768B2 (en) * 2002-09-24 2005-07-05 Shire Laboratories, Inc. Sustained release delivery of amphetamine salts
AP2030A (en) * 2002-09-24 2009-08-24 Shire Llc Sustained released delivery of amphetamine salts
WO2004028509A1 (en) * 2002-09-24 2004-04-08 Shire Laboratories, Inc. Sustained released delivery of amphetamine salts
EA018082B1 (en) * 2002-09-24 2013-05-30 Шайэ Элэлси Preparative formulation for treating attention deficit hyperactivity disorder, pharmaceutical composition based thereon and method for treating attention deficit hyperactivity disorder
US20050158384A1 (en) * 2002-09-24 2005-07-21 Couch Richard A. Sustained release delivery of amphetamine salts
US20080220074A1 (en) * 2002-10-04 2008-09-11 Elan Corporation Plc Gamma radiation sterilized nanoparticulate docetaxel compositions and methods of making same
US20060210633A1 (en) * 2003-04-03 2006-09-21 Sun Pharmaceutical Industries Limited Programmed drug delivery system
US20090011006A1 (en) * 2003-04-07 2009-01-08 Supernus Pharmaceuticals, Inc. Once daily formulations of tetracyclines
US8709478B2 (en) 2003-04-07 2014-04-29 Supernus Pharmaceuticals, Inc. Once daily formulations of tetracyclines
US8470364B2 (en) 2003-04-07 2013-06-25 Supernus Pharmaceuticals, Inc. Once daily formulations of tetracyclines
US8394405B2 (en) 2003-04-07 2013-03-12 Supernus Pharmaceuticals, Inc. Once daily formulations of tetracyclines
US8206740B2 (en) 2003-04-07 2012-06-26 Supernus Pharmaceuticals, Inc. Once daily formulations of tetracyclines
US8394406B2 (en) 2003-04-07 2013-03-12 Supernus Pharmaceuticals, Inc. Once daily formulations of tetracyclines
US20090062336A1 (en) * 2004-04-26 2009-03-05 Celgene Corporation Methods of Diminishing Co-Abuse Potential
US20060121112A1 (en) * 2004-12-08 2006-06-08 Elan Corporation, Plc Topiramate pharmaceutical composition
US20060127421A1 (en) * 2004-12-09 2006-06-15 Celgene Corporation Treatment using D-threo methylphenidate
US20080069870A1 (en) * 2005-04-12 2008-03-20 Elan Corporation Pic Controlled Release Compositions Comprising a Cephalosporin for the Treatment of a Bacterial Infection
US20100136106A1 (en) * 2005-06-08 2010-06-03 Gary Liversidge Modified Release Famciclovir Compositions
US7569605B2 (en) 2005-10-14 2009-08-04 Forest Laboratories Holdings Limited Methods of treating central nervous system disorders with a low dose combination of escitalopram and bupropion
US20070203231A1 (en) * 2005-10-14 2007-08-30 Forest Laboratories, Inc. Methods of treating central nervous system disorders with a low dose combination of escitalopram and bupropion
US20070112075A1 (en) * 2005-10-14 2007-05-17 Forest Laboratories, Inc. Stable pharmaceutical formulations containing escitalopram and bupropion
US8685451B2 (en) 2005-12-29 2014-04-01 Osmotica Kereskedelmi és Szolgáltató KFT Triple combination release multi-layered tablet
US9833412B2 (en) 2005-12-29 2017-12-05 Osmotica Kereskedelmi Es Szolgaltato Kft Triple combination release multi-layered tablet
US20080299197A1 (en) * 2005-12-29 2008-12-04 Osmotica Corp. Triple Combination Release Multi-Layered Tablet
US20100166858A1 (en) * 2006-03-16 2010-07-01 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US8883217B2 (en) 2006-03-16 2014-11-11 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US8491935B2 (en) 2006-03-16 2013-07-23 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US9675703B2 (en) 2006-03-16 2017-06-13 Tris Pharma, Inc Modified release formulations containing drug - ion exchange resin complexes
US10172958B2 (en) 2006-03-16 2019-01-08 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US10086087B2 (en) 2006-03-16 2018-10-02 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US8337890B2 (en) 2006-03-16 2012-12-25 Tris Pharma Inc Modified release formulations containing drug-ion exchange resin complexes
US9198864B2 (en) 2006-03-16 2015-12-01 Tris Pharma, Inc Modified release formulations containing drug-ion exchange resin complexes
US10668163B2 (en) 2006-03-16 2020-06-02 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US9675704B2 (en) 2006-03-16 2017-06-13 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US8597684B2 (en) 2006-03-16 2013-12-03 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US8747902B2 (en) 2006-03-16 2014-06-10 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US9549989B2 (en) 2006-03-16 2017-01-24 Tris Pharma, Inc Modified release formulations containing drug-ion exchange resin complexes
US10933143B2 (en) 2006-03-16 2021-03-02 Tris Pharma, Inc Modified release formulations containing drug-ion exchange resin complexes
US9522191B2 (en) 2006-03-16 2016-12-20 Tris Pharma, Inc. Modified release formulations containing drug—ion exchange resin complexes
US8790700B2 (en) 2006-03-16 2014-07-29 Tris Pharma, Inc. Modified release formulations containing drug-ion exchange resin complexes
US20110223260A2 (en) * 2006-04-11 2011-09-15 Eric Konofal Mazindol Combindation In The Treatment Of Attention Deficit/Hyperactivity
US20120308668A1 (en) * 2006-04-11 2012-12-06 Assistance Publique-Hopitaux De Paris Mazindol combination in the treatment of attention deficit/hyperactivity
US20190328714A1 (en) * 2006-04-11 2019-10-31 Nls-1 Pharma Ag Mazindol combination in the treatment of attention-deficit/hyperactivity
US8293779B2 (en) * 2006-04-11 2012-10-23 Assistance Publique-Hopitaux De Paris Mazindol combination in the treatment of attention deficit/hyperactivity
US20170216258A1 (en) * 2006-04-11 2017-08-03 Nls-1 Pharma Ag Mazindol combination in the treatment of attention-deficit/hyperactivity
US20110183009A1 (en) * 2006-04-11 2011-07-28 Assistance Publique-Hopitaux De Paris Mazindol Combination In The Treatment Of Attention-Deficit/Hyperactivity
AU2007235860B2 (en) * 2006-04-11 2012-05-24 Nls-1 Pharma Ag Mazindol combination in the treatment of attention deficit/hyperactivity
US20210093614A1 (en) * 2006-04-11 2021-04-01 Nls Pharmaceutics Ag Mazindol combination in the treatment of attention-deficit/hyperactivity
US20090136593A1 (en) * 2006-04-11 2009-05-28 Eric Konofal Mazindol combination in the treatment of attention deficit/hyperactivity
US20090325999A1 (en) * 2008-06-27 2009-12-31 Jie Du Personalized pharmaceutical kits, packaging and compositions for the treatment of allergic conditions
US20110208437A1 (en) * 2008-08-01 2011-08-25 The Mclean Hospital Corporation Method and apparatus for identifying a safe and efficacious dosing regimen
US8932612B2 (en) * 2008-08-25 2015-01-13 Kpt Ltd. Composition for cosmetic raw material containing cellulose dyed with natural coloring matter having improved photostability, and visual carrier system comprising the same
US20100278888A1 (en) * 2008-08-25 2010-11-04 Byung-Ho Park Composition for cosmetic raw material containing cellulose dyed with natural coloring matter having improved photostability, and visual carrier system comprising the same
US20100272799A1 (en) * 2009-04-27 2010-10-28 Joshi Hemant N Coating technology to produce a combination solid dosage form
US20120207824A1 (en) * 2011-02-15 2012-08-16 Tris Pharma, Inc. Orally effective methylphenidate extended release powder and aqueous suspension product
US8465765B2 (en) * 2011-02-15 2013-06-18 Tris Pharma, Inc. Orally effective methylphenidate extended release powder and aqueous suspension product
US8563033B1 (en) 2011-02-15 2013-10-22 Tris Pharma Inc. Orally effective methylphenidate extended release powder and aqueous suspension product
US8778390B2 (en) * 2011-02-15 2014-07-15 Tris Pharma, Inc. Orally effective methylphenidate extended release powder and aqueous suspension product
US8956649B2 (en) 2011-02-15 2015-02-17 Tris Pharma, Inc Orally effective methylphenidate extended release powder and aqueous suspension product
US9040083B2 (en) 2011-02-15 2015-05-26 Tris Pharma, Inc Orally effective methylphenidate extended release powder and aqueous suspension product
US8287903B2 (en) * 2011-02-15 2012-10-16 Tris Pharma Inc Orally effective methylphenidate extended release powder and aqueous suspension product
US11103494B2 (en) 2012-08-15 2021-08-31 Tris Pharma, Inc Methylphenidate extended release chewable tablet
US11633389B2 (en) 2012-08-15 2023-04-25 Tris Pharma, Inc Methylphenidate extended release chewable tablet
US9295642B2 (en) 2012-08-15 2016-03-29 Tris Pharma, Inc. Methylphenidate extended release chewable tablet
US8999386B2 (en) 2012-08-15 2015-04-07 Tris Pharma, Inc. Methylphenidate extended release chewable tablet
US10507203B2 (en) 2012-08-15 2019-12-17 Tris Pharma, Inc Methylphenidate extended release chewable tablet
US9545399B2 (en) 2012-08-15 2017-01-17 Tris Pharma, Inc. Methylphenidate extended release chewable tablet
US9844544B2 (en) 2012-08-15 2017-12-19 Tris Pharma, Inc Methylphenidate extended release chewable tablet
US10857143B2 (en) 2012-08-15 2020-12-08 Tris Pharma, Inc Methylphenidate extended release chewable tablet
US9844545B2 (en) 2012-08-15 2017-12-19 Tris Pharma, Inc. Methylphenidate extended release chewable tablet
US9180100B2 (en) 2012-08-15 2015-11-10 Tris Pharma, Inc. Methylphenidate extended release chewable tablet
US11103495B2 (en) 2012-08-15 2021-08-31 Tris Pharma, Inc Methylphenidate extended release chewable tablet
WO2016138440A1 (en) 2015-02-27 2016-09-01 Cingulate Therapeutics LLC Tripulse release stimulant formulations
AU2016225052B2 (en) * 2015-02-27 2021-07-08 Cingulate Therapeutics LLC Tripulse release stimulant formulations
EP3261625B1 (en) * 2015-02-27 2024-08-14 Cingulate Therapeutics LLC Tripulse release stimulant formulations
AU2021245179B2 (en) * 2015-02-27 2024-03-07 Cingulate Therapeutic LLC Tripulse release stimulant formulations
IL254159B2 (en) * 2015-02-27 2023-02-01 Cingulate Therapeutics LLC Tripulse release stimulant formulations
IL254159B (en) * 2015-02-27 2022-10-01 Cingulate Therapeutics LLC Tripulse release stimulant formulations
US11590228B1 (en) 2015-09-08 2023-02-28 Tris Pharma, Inc Extended release amphetamine compositions
US11278506B2 (en) 2015-10-09 2022-03-22 Rb Health (Us) Llc Pharmaceutical formulation
US12076441B2 (en) 2017-09-24 2024-09-03 Tris Pharma, Inc. Extended release amphetamine tablets
US11590081B1 (en) 2017-09-24 2023-02-28 Tris Pharma, Inc Extended release amphetamine tablets
US10947257B2 (en) 2017-10-09 2021-03-16 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11505564B2 (en) 2017-10-09 2022-11-22 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11447510B2 (en) 2017-10-09 2022-09-20 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11629159B2 (en) 2017-10-09 2023-04-18 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11180517B2 (en) 2017-10-09 2021-11-23 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11851451B2 (en) 2017-10-09 2023-12-26 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11149044B2 (en) 2017-10-09 2021-10-19 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11939346B2 (en) 2017-10-09 2024-03-26 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US10954259B1 (en) 2017-10-09 2021-03-23 Compass Pathfinder Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US10519175B2 (en) 2017-10-09 2019-12-31 Compass Pathways Limited Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use
US11564935B2 (en) 2019-04-17 2023-01-31 Compass Pathfinder Limited Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin
US11738035B2 (en) 2019-04-17 2023-08-29 Compass Pathfinder Limited Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin
US11865126B2 (en) 2019-04-17 2024-01-09 Compass Pathfinder Limited Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin

Also Published As

Publication number Publication date
CA2366791A1 (en) 2000-10-12
US20020058061A1 (en) 2002-05-16
CA2368367A1 (en) 2000-10-12
US6340476B1 (en) 2002-01-22
EP1191924A1 (en) 2002-04-03
EP1191924A4 (en) 2005-02-09
WO2000059481A1 (en) 2000-10-12
EP1165054A4 (en) 2005-02-09
EP1165054A1 (en) 2002-01-02
JP2002541093A (en) 2002-12-03
AU4334700A (en) 2000-10-23
US20030194439A1 (en) 2003-10-16
JP2002541092A (en) 2002-12-03
WO2000059479A1 (en) 2000-10-12
US6555136B2 (en) 2003-04-29
AU4221300A (en) 2000-10-23

Similar Documents

Publication Publication Date Title
US6217904B1 (en) Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second CNS stimulant
US20030170181A1 (en) Method for preventing abuse of methylphenidate
AU2020227021B2 (en) Methods and compositions particularly for treatment of attention deficit disorder
CA2718639C (en) Methylphenidate extended release therapeutic drug delivery system
DK2884961T3 (en) METHYLPHENIDATE TABLE WITH EXTENDED RELEASE
AU782059B2 (en) Multiparticulate controlled release selective serotonin reuptake inhibitor formulations
US7465462B1 (en) Multiparticulate controlled release selective serotonin reuptake inhibitor formulations
EP2023906A2 (en) Delayed-release compositions of extended release forms of venlafaxine
NZ508532A (en) Method for promoting smoking cessation or reduction or preventing relapse smoking
AU2021201351B1 (en) Dosage form providing prolonged release of a salt of Tapentadol with L-(+)-tartaric acid

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: PHARMAQUEST LTD., BERMUDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIDHA, KAMAL K.;REEL/FRAME:011280/0583

Effective date: 20001228

AS Assignment

Owner name: MCLEAN HOSPTIAL, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEICHER, MARTIN H.;REEL/FRAME:011332/0675

Effective date: 20010108

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
SULP Surcharge for late payment
REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20130417