[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US6246286B1 - Adaptive linearization of power amplifiers - Google Patents

Adaptive linearization of power amplifiers Download PDF

Info

Publication number
US6246286B1
US6246286B1 US09/427,773 US42777399A US6246286B1 US 6246286 B1 US6246286 B1 US 6246286B1 US 42777399 A US42777399 A US 42777399A US 6246286 B1 US6246286 B1 US 6246286B1
Authority
US
United States
Prior art keywords
power amplifier
distortion
input
distortion characteristic
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/427,773
Inventor
Jonas Persson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fingerprint Cards AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to US09/427,773 priority Critical patent/US6246286B1/en
Assigned to TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) reassignment TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PERSSON, JONAS
Priority to PCT/EP2000/010139 priority patent/WO2001031778A1/en
Priority to AT00971382T priority patent/ATE271277T1/en
Priority to JP2001533620A priority patent/JP2003513498A/en
Priority to CN008148643A priority patent/CN1218475C/en
Priority to AU10254/01A priority patent/AU1025401A/en
Priority to DE60012209T priority patent/DE60012209T2/en
Priority to EP00971382A priority patent/EP1224733B1/en
Publication of US6246286B1 publication Critical patent/US6246286B1/en
Application granted granted Critical
Assigned to FINGERPRINT CARDS AB reassignment FINGERPRINT CARDS AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits

Definitions

  • the present invention relates in general to the field of communication systems, and in particular, to adaptive linearization of power amplifiers in such communication systems.
  • linear modulation schemes such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), and recently 3 ⁇ /8-8PSK used in the Enhanced Data Rates for GSM Evolution (EDGE) system.
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • EDGE Enhanced Data Rates for GSM Evolution
  • envelope and phase offer two degrees of freedom
  • digital baseband data may be mapped into four more possible RF carrier signals, enabling the transmission of more information within the same channel bandwidth than if just the envelope or phase were varied alone.
  • linear modulation schemes provide significant gains in spectrum utilization, and have become an attractive alternative to conventional digital modulation techniques.
  • linear modulation schemes require a linear power amplifier with a constant gain and phase-shift for all operating power levels.
  • Feedforward networks cannot adaptively compensate for variations in distortion characteristics due to the fixed nature of the feedforward network, and require precise matching and scaling of components in order to avoid inadvertently introducing additional nonlinear distortion.
  • Conventional predistortion techniques similarly fail to adaptively compensate for variations in nonlinear characteristics due to the use of a fixed set of predistortion coefficients.
  • adaptive predistortion One existing approach that adaptively compensates for variations in nonlinear distortion is an approach known as adaptive predistortion.
  • traditional adaptive predistortion periodically senses the output of the power amplifier and updates the predistortion coefficients for time-varying nonlinearities in the forward path. These updated predistortion coefficients are then used to predistort the input signal in such a manner that a linear amplified signal is produced at the output of the power amplifier.
  • the traditional adaptive predistortion technique places significant processing demands on the digital signal processor used to implement this technique.
  • the look-up table that stores the predistortion coefficients must be updated several times per symbol (e.g., five times per symbol) depending on the oversampling rate.
  • a typical “burst” in a Time Division Multiple Access (TDMA) system may include as many as 100-200 symbols.
  • TDMA Time Division Multiple Access
  • this example would require the digital signal processor to update the lookup table 500-1000 times per burst. This places a significant burden on the precessing requirements (and corresponding cost) of the digital signal processor and increases current consumption.
  • a further disadvantage of the traditional adaptive predistortion technique is that it requires a quadrature demodulator in the feedback loop.
  • This quadrature demodulator is required in order to enable the digital signal processor to compare the data stream detected at the output of the power amplifier with the input data stream.
  • the quadrature demodulator can also introduce errors which will be reflected in the updated predistortion coefficients and will adversely affect the ability to compensate for nonlinear distortion in the power amplifier. Therefore, in view of the deficiencies of existing approaches, there is a need for an adaptive linearization technique that can effectively compensate for time-varying nonlinearities of the power amplifier and at the same time relax the processing requirements of the digital signal processor and decrease current consumption.
  • the distortion detection signal comprises, for example, a ramp-up signal or ramp-down signal.
  • the distortion detection signal comprises a burst up-ramp or burst down-ramp signal commonly used before or after a communication burst in a Time Division Multiple Access (TDMA) system.
  • TDMA Time Division Multiple Access
  • a predistortion lookup table is updated in accordance with this calculated relationship, and may then be applied to an input data stream to produce a linear amplified output when the predistorted input is amplified by the power amplifier.
  • phase distortion across the power amplifier is measured during amplification of the distortion detection signal. This measurement may be performed, for example, by comparing the phase of the input and the phase of the output over the operating power range of the distortion detection signal. A relationship between the measured phase distortion and input power is calculated based on the measured phase distortion and known characteristics of the distortion detection signal. A predistortion lookup table is updated in accordance with this calculated relationship, and may then be applied to an input data stream to adaptively compensate for non-constant phaseshift in the power amplifier.
  • the envelope (amplitude) distortion across the power amplifier is measured during the amplification of the distortion detection signal. This measurement may be performed, for example, by comparing the amplitude of the input and the amplitude of the output over the operating power range of the distortion detection signal. A relationship between the measured envelope distortion and input power is calculated based on the measured envelope distortion and known characteristics of the distortion detection signal. A predistortion lookup table is updated in accordance with this calculated relationship, and may then be applied to an input data stream to adaptively compensate for nonlinear gain in the power amplifier.
  • both envelope (amplitude) and phase distortion are measured during amplification of the distortion detection signal. Based on the measured envelope and phase distortion and known characteristics of the distortion detection signal, relationships between the input power and the measured envelope and phase distortion are calculated. A predistortion lookup table is updated in accordance with these calculated relationships, and may then be applied to an input data stream to adaptively compensate for both nonlinear gain and non-constant phase-shift in the power amplifier.
  • the predistortion lookup table is updated only once per communication burst in order to relax the processing demands on and power consumption of a digital signal processor.
  • detectors used to measure the distortion characteristics are configured in pairs with similar input signal levels in order to reduce the impact of non-ideal detection components.
  • mixers are utilized to down-convert the input and output signals of the power amplifier from RF frequencies to an intermediate frequency to allow the detection components to operate at a lower frequency.
  • An important technical advantage of the present invention is the ability to adaptively compensate for time-varying nonlinearities of a power amplifier.
  • Another important technical advantage of the present invention is that it improves the power efficiency of the power amplifier because the linearity requirements on the power amplifier itself are relaxed.
  • Yet another important technical advantage of the present invention is that it enables the phase and gain distortion characteristics of the power amplifier to be measured only for those input power levels that will be used when the modulated signal is amplified.
  • Yet another important technical advantage of the present invention is that it relaxes the processing requirements of the digital signal processor by requiring the predistortion lookup table to be updated only once per communication burst.
  • Yet another important technical advantage of the present invention is that is reduces current consumption of the digital signal processor since it is only used for a small fraction of the communication burst.
  • Yet still another important technical advantage of the present invention is that the “balanced” configuration of the distortion detectors reduces the impact of non-ideal detection components.
  • FIG. 1 illustrates a portion of an exemplary wireless system with which the present invention may be advantageously practiced
  • FIG. 2 illustrates an exemplary schematic block diagram of a transmitter in accordance with the present invention
  • FIG. 3 illustrates operating principles of an exemplary predistortion technique practiced by one aspect of the present invention
  • FIGS. 4 ( a )- 4 ( c ) illustrate an exemplary conversion of a measured phase distortion characteristic to a function of the input power level in accordance with the present invention
  • FIGS. 5 ( a )- 5 ( c ) illustrate an exemplary conversion of a measured amplitude (envelope) distortion characteristic to a function of the input power level in accordance with the present invention
  • FIG. 6 illustrates an exemplary schematic block diagram of a transmitter in accordance with a first embodiment of the present invention
  • FIG. 7 illustrates an exemplary schematic block diagram of the transmitter in accordance with the first embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency;
  • FIG. 8 illustrates an exemplary schematic block diagram of a transmitter in accordance with a second embodiment of the present invention
  • FIG. 9 illustrates an exemplary schematic block diagram of the transmitter in accordance the second embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency;
  • FIG. 10 illustrates an exemplary schematic block diagram of a transmitter in accordance with a third embodiment of the present invention.
  • FIG. 11 illustrates an exemplary schematic block diagram of the transmitter in accordance with the third embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency
  • FIG. 12 illustrates an exemplary method in flow chart form by which an embodiment the present invention may be advantageously practiced.
  • FIG. 1 a portion of an exemplary wireless system with which the present invention may be advantageously practiced is depicted generally at 1 .
  • a mobile station 10 communicates with a base station 30 over an air interface 40 .
  • a data terminal 20 such as a personal computer, may also communicate with the base station 30 over the same air interface 40 using, for example, a cellular modem. Because the base station 30 is a part of a cellular network (not shown), the base station 30 enables the mobile station 10 and data terminal 20 to communicate with one another and with other terminals within the telecommunication system.
  • the digital modulation technique employed may include conventional techniques, such as Phase Shift Keying (PSK) or Amplitude Modulation (AM), or more spectrally efficient techniques, such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), and recently 3 ⁇ /8-8PSK used in the Enhanced Data Rates for GSM Evolution (EDGE) system.
  • PSK Phase Shift Keying
  • AM Amplitude Modulation
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • EDGE Enhanced Data Rates for GSM Evolution
  • Each of these techniques imposes certain requirements on the power amplifier within the transmitter in order to prevent distortion of the modulated signal.
  • these requirements may include a constant gain, a constant phase-shift or both a constant gain and a constant phase shift.
  • FIG. 2 an exemplary schematic block diagram of a transmitter in accordance with the present invention is illustrated. It should be emphasized that although the transmitter illustrated in FIG. 2 utilizes a quadrature modulator, the present invention is not limited to quadrature modulation techniques. Rather, the principles of the present invention are equally applicable to other digital modulation techniques where nonlinear distortion is a concern, such as PSK and AM. Therefore, the following discussion is provided by way of explanation, and not limitation.
  • predistortion block 110 contains predistortion calculations and predistortion coefficients which are used to predistort the digital information 100 in such a manner that a linear amplified signal is produced at the output of the power amplifier 190 .
  • the predistortion coefficients are stored in, for example, a predistortion lookup table 111 within the predistortion block 110 and are periodically updated to compensate for time-varying nonlinearities of the power amplifier 190 . The manner by which the predistortion coefficients are periodically updated will be described in further detail below.
  • the forward transmission path of a transmitter 99 includes a non-linear element 60 , such as a power amplifier 190 , and a predistortion element, such as a predistortion block 110 . If the input signal is perfectly predistorted at the predistortion element 50 by the inverse non-linear characteristic(s) of the non-linear element 60 , then a linear input-output relationship results as depicted at 70 .
  • one aspect of the present invention measures the non-linear distortion characteristic(s) of the power amplifier 190 and predistorts the digital information 100 at the predistortion block 110 by the inverse distortion characteristic(s) to produce a linear input-output relationship.
  • the output of the predistortion block 110 is applied to a wave form generator (WFG) 120 which generates separate in-phase (I) and quadrature (Q) signals.
  • WFG wave form generator
  • Each digital I and Q signal is then passed through a digital-to-analog converter (DAC) 130 and a low pass filter (LPF) 140 to convert the digital I and Q signals to analog signals.
  • DAC digital-to-analog converter
  • LPF low pass filter
  • the analog I and Q signals are then combined in an linear modulator, such as an I/Q modulator 150 , and up-converted to RF frequencies via a local oscillator 160 .
  • the output of the I/Q modulator 150 is then amplified by a variable gain amplifier (VGA) 170 and filtered by a band pass filter (BPF) 180 in order to attenuate out-of-band power.
  • VGA variable gain amplifier
  • BPF band pass filter
  • PA power amplifier
  • an embodiment of the present invention measures distortion characteristic(s) across the power amplifier 190 , such as a nonlinear phase-shift or non-linear gain, by monitoring the input and output of the power amplifier 190 during the amplification of a distortion detection signal.
  • This distortion detection signal preferably has a well defined time-variant relationship over the operating power range of the power amplifier 190 , enabling the measured distortion characteristics to be easily converted to a function of the input power level.
  • Examples of a preferred distortion detection signal include an up-ramp signal or down-ramp signal.
  • the distortion detection signal comprises the burst ramp-up signal or burst ramp-down signal commonly used in TDMA systems before or after transmission of a communication burst. Utilizing the burst ramp-up or burst ramp-down signals has the added advantage of allowing the preferred embodiment of the present invention to be easily implemented within existing TDMA systems.
  • the distortion detection signal applied to the power amplifier 190 comprises an up-ramp signal which has an input power versus time relationship as depicted generally at 500 . If the phase difference ( ⁇ ) across the power amplifier 190 is measured during the same time period (T1-T2) that the distortion detection signal is applied, the phase difference versus time relationship may have a measured phase distortion characteristic as depicted generally at 510 .
  • the relationship between the phase difference and the input power can be calculated as depicted generally at 520 . This calculated relationship is then used to update the predistortion coefficients in the predistortion block 110 to compensate for phase distortion of the power amplifier 190 .
  • FIG. 4 illustrates the conversion of phase distortion characteristics using an up-ramp signal, the principles of the present invention are equally applicable for a down-ramp signal or other distortion detection signals, especially those having a well-defined or “known” power versus time relationship.
  • FIG. 5 illustrates an exemplary conversion of a measured envelope (amplitude) distortion characteristic to a function of the input power level in accordance with the present invention.
  • the distortion detection signal applied to the power amplifier 190 also comprises an up-ramp signal and has an input power versus time relationship as depicted generally at 600 . If the output power (P out ) of the power amplifier 190 is measured during the same time period (T1-T2) that the distortion detection signal is applied, the output power versus time relationship may have a measured envelope (amplitude) distortion characteristic as depicted generally at 610 . From the two relationships 600 and 610 , the relationship between the output power and the input power can be calculated as depicted generally at 620 .
  • FIG. 5 illustrates the conversion of envelope distortion characteristics using an up-ramp signal, the principles are equally applicable for a down-ramp signal or other distortion detection signals, especially those having a well-defined or “known” input power versus time relationship.
  • one advantageous aspect of the preferred embodiment of the present invention updates the predistortion coefficients only once per communication burst.
  • This aspect of the preferred embodiment relaxes the processing requirements of the digital signal processor depicted generally at 101 (along with other associated functional or memory elements) or other device which updates the predistortion lookup table 111 .
  • Current consumption is also reduced because only a small part of the communication burst is needed to calculate the predistortion.
  • the updated predistortion coefficients can be applied on the same communication burst, assuming the predistortion lookup table 111 can be updated fast enough.
  • the distortion characteristics of the power amplifier 190 are only measured over the dynamic range that is used in the modulated signal. For example, only a part of the distortion detection signal may be needed. Consequently, the distortion characteristics of the power amplifier 190 only have to be measured for those input power levels that will be used when the power amplifier is modulated.
  • a distortion characteristic across the power amplifier 190 is measured by feeding a portion of the output signal and a portion of the input signal to two corresponding detectors 220 , 221 after and before, respectively, amplification of the distortion detection signal.
  • an attenuation mechanism 210 attenuates the output signal by a factor approximating the nominal gain G of the power amplifier 190 . Attenuating the output signal causes the input signals of the two detectors 220 , 221 to have roughly the same amplitude, which helps cancel distortion caused by the detectors 220 , 221 .
  • the pair of distortion detectors 220 , 221 utilized by the embodiment of FIG. 2 creates a “balanced” configuration which reduces the impact of non-ideal detection components.
  • the pair of detectors 220 , 221 measure at least one signal characteristic of the output and input, such as the amplitude, phase or both amplitude and phase, and pass their output to an error detector 230 .
  • the error detector 230 compares the measured signal characteristic corresponding to the input signal and output signal, and generates an error signal corresponding to the amount of nonlinear distortion.
  • a distortion detection block 250 After the error signal is converted to the digital domain using an analog-to-digital converter (ADC) 240 , a distortion detection block 250 accumulates the error signals during the amplification of the distortion detection signal and calculates a relationship between the measured distortion characteristic and input power as described above. This relationship is then used to update the predistortion coefficients in the predistortion block 110 , enabling the predistortion block 110 to compensate for nonlinearities of the power amplifier 190 .
  • ADC analog-to-digital converter
  • FIG. 6 illustrates an exemplary schematic block diagram of a transmitter in accordance with a first embodiment of the present invention.
  • the first embodiment of the present invention utilizes the same forward transmission path as the embodiment of FIG. 2 described above, but compensates for a non-constant phase-shift in the power amplifier 190 using different detectors in the feedback path.
  • a part of the output signal and a part of the input signal are limited in two separate limiters 320 , 321 after and before, respectively, amplification of the distortion detection signal.
  • the output signal is attenuated by a factor approximating the nominal gain G of the power amplifier 190 .
  • Attenuating the output signal allows that the input signals to the two limiters 320 , 321 to have roughly the same amplitude, which helps cancel AM/PM distortion caused by the limiters 320 , 321 .
  • Two phase-detectors 330 , 331 detect the phase of the output and the phase of the input of the power amplifier 190 .
  • the local oscillator 160 used to up-convert the original input signal serves as a reference frequency to the two phase detectors 330 , 331 .
  • the outputs of the phase detectors 330 , 331 are filtered by low-pass filters 340 , 341 to suppress high frequencies, such as harmonic frequencies of the local oscillator 160 .
  • a measurement of the phase-shift through the power amplifier is detected by an error detector 230 and is sent to an analog-to-digital converter 240 .
  • the relationship between the input power level and the phase-shift is calculated in the distortion detection block 250 using the principles described above with respect to the embodiment of FIG. 2 .
  • This relationship is then used to update the predistortion lookup table 111 contained within the predistortion block 110 , enabling the predistortion block 110 to adaptively compensate for non-constant phase shift across the power amplifier 190 .
  • the first embodiment may be modified to down-convert the RF input and output signals of the power amplifier 190 .
  • FIG. 7 illustrates an exemplary schematic block diagram of the transmitter in accordance with the first embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency.
  • two mixers 350 , 351 are placed between the power amplifier 190 and the two limiters 320 , 321 .
  • a first local oscillator 352 enables the mixers 350 , 351 to down-convert the output and input signals of the power amplifier 190 from RF frequencies to a lower intermediate frequency.
  • a second local oscillator 353 serves as the reference frequency for the phase detectors 330 , 331 .
  • two additional mixers 350 , 351 and two additional local oscillators 352 , 353 are required, the advantage of this approach is that components in the feedback path may operate at a lower frequency.
  • FIG. 8 illustrates an exemplary schematic block diagram of a transmitter in accordance with a second embodiment of the present invention.
  • the second embodiment utilizes the same forward transmission path as described in the embodiment of FIG. 2, but compensates for amplitude distortion in the power amplifier 190 using different detectors in the feedback path.
  • a part of the output signal and a part of the input signal of the power amplifier 190 are applied to two separate envelope detectors 420 , 421 after and before, respectively, amplification of the distortion detection signal.
  • the output of the power amplifier 190 is attenuated by a factor approximating the nominal gain G of the power amplifier 190 , enabling the inputs to the two envelope detectors 420 , 421 to have roughly the same amplitude level.
  • a measurement of the amplitude difference between the output of the power amplifier 190 and input of the power amplifier 190 is detected by an error detector 230 and sent to an analog-to-digital converter 240 .
  • the relationship between the envelope distortion and the input power is calculated using the principles described above with respect to the embodiment of FIG. 2 . This relationship is then used to update the predistortion lookup table 111 contained within the predistortion block 110 , enabling the predistortion block 110 to adaptively compensate for non-constant gain of the power amplifier 190 .
  • FIG. 9 illustrates an exemplary schematic block diagram of the transmitter in accordance with the second embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency.
  • two mixers 430 , 431 are placed between the power amplifier 190 and the envelope detectors 420 , 421 .
  • a local oscillator 432 enables the mixers 430 , 431 to down-convert the output and input signals of the power amplifier 190 from RF frequencies to a lower intermediate frequency.
  • two additional mixers 430 , 431 and one additional local oscillators 432 are required, the advantage of this approach is that components in the feedback path may operate at a lower frequency.
  • FIG. 10 illustrates an exemplary schematic block diagram of a transmitter in accordance with a third embodiment of the present invention.
  • the third embodiment utilizes the same forward transmission path as described in the embodiment of FIG. 2, but compensates for both phase and envelope (amplitude) distortion in the power amplifier 190 using different combinations of detectors in the feedback path.
  • a part of the output signal and a part of the input signal of the power amplifier 190 are applied to two separate limiters 320 , 321 and two separate envelope detectors 420 , 421 after and before, respectively, amplification of the distortion detection signal.
  • the output of the power amplifier 190 is first attenuated by a factor approximating the nominal gain G of the power amplifier 190 , enabling the inputs to the two limiters 320 , 321 and two envelope detectors 420 , 421 to have roughly the same amplitude level.
  • a measurement of the phase and amplitude difference between the output of the power amplifier 190 and the input of the power amplifier 190 is detected by two corresponding error detectors 230 , 231 and sent to analog-to-digital converters 240 .
  • the relationships between the input power and (i) the measured envelope distortion and (ii) the measured phase distortion are calculated using the principles described above with respect to the embodiment of FIG. 2 .
  • the third embodiment may be modified to down-convert the RF input and output signals of the power amplifier 190 .
  • FIG. 11 illustrates an exemplary schematic block diagram of the transmitter in accordance with the third embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency.
  • two mixers 450 , 451 are placed between the power amplifier 190 and both the limiters 320 , 321 and the envelope detectors 420 , 421 .
  • a first local oscillator 452 enables the mixers 450 , 451 to down-convert the output and input signals of the power amplifier 190 from RF frequencies to a lower intermediate frequency.
  • a second local oscillator 453 serves as the reference frequency for the phase detectors 330 , 331 .
  • two additional mixers 450 , 451 and two additional local oscillators 452 , 453 are required, the advantage of this approach is that components in the feedback path may operate at a lower frequency.
  • a distortion detection signal such as a ramp-up signal, ramp-down signal, or preferably a burst ramp-up signal or burst ramp-down signal
  • a distortion detection signal is generated at step 1000 .
  • the generated distortion detection signal is applied to a power amplifier 190 , and distortion characteristic(s) across the power amplifier 190 is (are) measured at step 1020 during application of the distortion detection signal to the power amplifier 190 .
  • a relationship between the distortion detection signal and input power is calculated at step 1030 using the principles described above with respect to the embodiment of, for example, FIG. 2 .
  • This calculated relationship is then utilized to update predistortion coefficients stored in a predistortion lookup table 111 at step 1040 .
  • These updated coefficients are then applied to input data to predistort digital information 100 in such a manner that a linear input-output relationship is maintained at the output of the power amplifier 190 .
  • steps 1000 - 1040 are repeated for each communication burst (e.g., as indicated at step 1050 ).
  • the predistortion lookup table 111 is up dated only once per communication burst. This aspect of the preferred embodiment relaxes the processing requirements of the digital signal processor depicted generally at 101 (along with other associated functional or memory elements) or other device which updates the predistortion lookup table 111 . Furthermore, if a burst up-ramp signal is used as the distortion detection signal, the updated predistortion coefficients can be applied on the same communication burst, assuming the predistortion lookup table 111 can be updated fast enough.
  • the distortion characteristics of the power amplifier 190 are only measured over the dynamic range that is used in the modulated signal. For example, only a part of the distortion detection signal may be needed. Consequently, the distortion characteristics of the power amplifier 190 only have to be measured for those input power levels that will be used when the power amplifier is modulated.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

A method and apparatus adaptively compensates for nonlinearities of a power amplifier by measuring a distortion characteristic across the power amplifier during amplification of a distortion detection signal. The distortion detection signal has a well-defined input power versus time relationship, such as ramp-up signal or ramp-down signal. Due to this well-defined relationship, the distortion characteristic can be calculated as a function of the input power level. This calculated function is then utilized to update a predistortion lookup table.

Description

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates in general to the field of communication systems, and in particular, to adaptive linearization of power amplifiers in such communication systems.
2. Description of Related Art
In order to keep pace with the ever increasing demand for higher capacity wireless and personal communication services, modern digital communication systems have become increasingly reliant upon spectrally efficient linear modulation schemes, such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), and recently 3π/8-8PSK used in the Enhanced Data Rates for GSM Evolution (EDGE) system. Unlike conventional digital modulation techniques which utilize a constant envelope, linear modulation schemes exploit the fact that digital baseband data may be modulated by varying both the envelope (e.g., amplitude) and phase of an RF carrier. Because the envelope and phase offer two degrees of freedom, digital baseband data may be mapped into four more possible RF carrier signals, enabling the transmission of more information within the same channel bandwidth than if just the envelope or phase were varied alone. As a result, linear modulation schemes provide significant gains in spectrum utilization, and have become an attractive alternative to conventional digital modulation techniques.
The variation of both the envelope and phase of the RF carrier, however, causes linear modulation schemes to be highly susceptible to the inherent nonlinear distortion associated with power amplifiers. Although conventional digital modulation techniques are less susceptible to such distortion due the use of a constant envelope, the non-constant envelope utilized by linear modulation schemes causes the gain and phase-shift of the power amplifier to vary as a function of the input signal. This non-constant gain and phase-shift, in turn, causes two types of nonlinear distortion. The first type of nonlinear distortion, known as AM/AM distortion, occurs when the input power and the output power depart from a linear relationship. The second type, known as AM/PM distortion, occurs when the phase-shift of the power amplifier varies as a function of the input power level.
If the power amplifier used to amplify linearly modulated signals fails to compensate for both types of nonlinear distortion, the power amplifier will generate unwanted intermodulation products and cause an accompanying degradation in the quality of the communications. When intermodulation products occur outside the channel bandwidth, for example, an effect known as spectral regrowth or widening causes increased interference with communications in adjacent channels. Furthermore, intermodulation products occurring within the channel bandwidth may distort the modulated signal to such an extent that it cannot be properly reconstructed or detected at the receiver, resulting in increased bit error rates. Therefore, in order to prevent unwanted intermodulation products and avoid the accompanying degradation in the quality of communications, linear modulation schemes require a linear power amplifier with a constant gain and phase-shift for all operating power levels.
Unfortunately, because power amplifiers are inherently nonlinear devices, the gain and phase-shift of power amplifiers vary in a complex, nonlinear manner depending on such variables as component aging, component variation, channel switching, power supply variation, component drift, temperature fluctuations, and the input signal itself. Existing approaches, such as continuous feedback, feedforward networks and conventional predistortion techniques, have attempted to compensate for these nonlinear characteristics by utilizing some form of continuous feedback loop or fixed pre-processing or post-processing network. These approaches, however, either fail to adaptively compensate for time-varying fluctuations in nonlinear characteristics or prove difficult to implement at RF frequencies. For example, continuous feedback approaches, such as negative feedback or Cartesian feedback, typically require a high loop bandwidth and could cause stability problems when operated at high frequencies. Feedforward networks, on the other hand, cannot adaptively compensate for variations in distortion characteristics due to the fixed nature of the feedforward network, and require precise matching and scaling of components in order to avoid inadvertently introducing additional nonlinear distortion. Conventional predistortion techniques similarly fail to adaptively compensate for variations in nonlinear characteristics due to the use of a fixed set of predistortion coefficients.
One existing approach that adaptively compensates for variations in nonlinear distortion is an approach known as adaptive predistortion. In contrast to the conventional predistortion technique mentioned earlier, traditional adaptive predistortion periodically senses the output of the power amplifier and updates the predistortion coefficients for time-varying nonlinearities in the forward path. These updated predistortion coefficients are then used to predistort the input signal in such a manner that a linear amplified signal is produced at the output of the power amplifier.
Although traditional adaptive predistortion provides adequate linearization of a power amplifier, the traditional adaptive predistortion technique places significant processing demands on the digital signal processor used to implement this technique. Typically, the look-up table that stores the predistortion coefficients must be updated several times per symbol (e.g., five times per symbol) depending on the oversampling rate. Moreover, a typical “burst” in a Time Division Multiple Access (TDMA) system may include as many as 100-200 symbols. As a result, this example would require the digital signal processor to update the lookup table 500-1000 times per burst. This places a significant burden on the precessing requirements (and corresponding cost) of the digital signal processor and increases current consumption.
A further disadvantage of the traditional adaptive predistortion technique is that it requires a quadrature demodulator in the feedback loop. This quadrature demodulator is required in order to enable the digital signal processor to compare the data stream detected at the output of the power amplifier with the input data stream. In addition to the increased costs and current consumption, the quadrature demodulator can also introduce errors which will be reflected in the updated predistortion coefficients and will adversely affect the ability to compensate for nonlinear distortion in the power amplifier. Therefore, in view of the deficiencies of existing approaches, there is a need for an adaptive linearization technique that can effectively compensate for time-varying nonlinearities of the power amplifier and at the same time relax the processing requirements of the digital signal processor and decrease current consumption.
SUMMARY OF THE INVENTION
The deficiencies of the prior art are overcome by the method and apparatus of the present invention. For example, as heretofore unrecognized, it would be beneficial to measure distortion characteristic(s) across a power amplifier during amplification of a distortion detection signal. This distortion detection signal comprises, for example, a ramp-up signal or ramp-down signal. Preferably, however, the distortion detection signal comprises a burst up-ramp or burst down-ramp signal commonly used before or after a communication burst in a Time Division Multiple Access (TDMA) system. Using a burst up-ramp or burst down-ramp signal offers the added advantage of allowing the principles of the present invention to be easily incorporated into existing TDMA communication systems.
Based on the measured distortion characteristic(s) and known characteristics of the distortion detection signal, a relationship between the measured distortion characteristic(s) and input power is calculated. A predistortion lookup table is updated in accordance with this calculated relationship, and may then be applied to an input data stream to produce a linear amplified output when the predistorted input is amplified by the power amplifier.
In a first embodiment of the present invention, phase distortion across the power amplifier is measured during amplification of the distortion detection signal. This measurement may be performed, for example, by comparing the phase of the input and the phase of the output over the operating power range of the distortion detection signal. A relationship between the measured phase distortion and input power is calculated based on the measured phase distortion and known characteristics of the distortion detection signal. A predistortion lookup table is updated in accordance with this calculated relationship, and may then be applied to an input data stream to adaptively compensate for non-constant phaseshift in the power amplifier.
In a second embodiment, the envelope (amplitude) distortion across the power amplifier is measured during the amplification of the distortion detection signal. This measurement may be performed, for example, by comparing the amplitude of the input and the amplitude of the output over the operating power range of the distortion detection signal. A relationship between the measured envelope distortion and input power is calculated based on the measured envelope distortion and known characteristics of the distortion detection signal. A predistortion lookup table is updated in accordance with this calculated relationship, and may then be applied to an input data stream to adaptively compensate for nonlinear gain in the power amplifier.
In a third embodiment, both envelope (amplitude) and phase distortion are measured during amplification of the distortion detection signal. Based on the measured envelope and phase distortion and known characteristics of the distortion detection signal, relationships between the input power and the measured envelope and phase distortion are calculated. A predistortion lookup table is updated in accordance with these calculated relationships, and may then be applied to an input data stream to adaptively compensate for both nonlinear gain and non-constant phase-shift in the power amplifier.
In one aspect of the present invention, the predistortion lookup table is updated only once per communication burst in order to relax the processing demands on and power consumption of a digital signal processor. In another aspect, detectors used to measure the distortion characteristics are configured in pairs with similar input signal levels in order to reduce the impact of non-ideal detection components. In yet another aspect, mixers are utilized to down-convert the input and output signals of the power amplifier from RF frequencies to an intermediate frequency to allow the detection components to operate at a lower frequency.
The technical advantages of the present invention include, but are not limited to the following. It should be understood that particular embodiments may not involve any, much less all, of the following exemplary technical advantages.
An important technical advantage of the present invention is the ability to adaptively compensate for time-varying nonlinearities of a power amplifier.
Another important technical advantage of the present invention is that it improves the power efficiency of the power amplifier because the linearity requirements on the power amplifier itself are relaxed.
Yet another important technical advantage of the present invention is that it enables the phase and gain distortion characteristics of the power amplifier to be measured only for those input power levels that will be used when the modulated signal is amplified.
Yet another important technical advantage of the present invention is that it relaxes the processing requirements of the digital signal processor by requiring the predistortion lookup table to be updated only once per communication burst.
Yet another important technical advantage of the present invention is that is reduces current consumption of the digital signal processor since it is only used for a small fraction of the communication burst.
Yet still another important technical advantage of the present invention is that the “balanced” configuration of the distortion detectors reduces the impact of non-ideal detection components.
The above-described and other features of the present invention are explained in detail hereinafter with reference to the illustrative examples shown in the accompanying drawings. Those skilled in the art will appreciate that the described embodiments are provided for purposes of illustration and understanding and that numerous equivalent embodiments are contemplated herein.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the method and apparatus of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
FIG. 1 illustrates a portion of an exemplary wireless system with which the present invention may be advantageously practiced;
FIG. 2 illustrates an exemplary schematic block diagram of a transmitter in accordance with the present invention;
FIG. 3 illustrates operating principles of an exemplary predistortion technique practiced by one aspect of the present invention;
FIGS. 4(a)-4(c) illustrate an exemplary conversion of a measured phase distortion characteristic to a function of the input power level in accordance with the present invention;
FIGS. 5(a)-5(c) illustrate an exemplary conversion of a measured amplitude (envelope) distortion characteristic to a function of the input power level in accordance with the present invention;
FIG. 6 illustrates an exemplary schematic block diagram of a transmitter in accordance with a first embodiment of the present invention;
FIG. 7 illustrates an exemplary schematic block diagram of the transmitter in accordance with the first embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency;
FIG. 8 illustrates an exemplary schematic block diagram of a transmitter in accordance with a second embodiment of the present invention;
FIG. 9 illustrates an exemplary schematic block diagram of the transmitter in accordance the second embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency;
FIG. 10 illustrates an exemplary schematic block diagram of a transmitter in accordance with a third embodiment of the present invention;
FIG. 11 illustrates an exemplary schematic block diagram of the transmitter in accordance with the third embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency; and
FIG. 12 illustrates an exemplary method in flow chart form by which an embodiment the present invention may be advantageously practiced.
DETAILED DESCRIPTION OF THE DRAWINGS
In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular circuits, logic modules (implemented in, for example, software, hardware, firmware, some combination thereof, etc.), techniques, etc. in order to provide a thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known methods, devices, logical code (e.g., hardware, software, firmware, etc.), etc. are omitted so as not to obscure the description of the present invention with unnecessary detail.
A preferred embodiment of the present invention and its advantages are best understood by referring to FIGS. 1-12 of the drawings, like numerals being used for like and corresponding parts of the various drawings. Referring to FIG. 1, a portion of an exemplary wireless system with which the present invention may be advantageously practiced is depicted generally at 1. In this exemplary wireless system, a mobile station 10 communicates with a base station 30 over an air interface 40. A data terminal 20, such as a personal computer, may also communicate with the base station 30 over the same air interface 40 using, for example, a cellular modem. Because the base station 30 is a part of a cellular network (not shown), the base station 30 enables the mobile station 10 and data terminal 20 to communicate with one another and with other terminals within the telecommunication system.
In order for the mobile station 10, base station 30, and the data terminal 20 to communicate digital information, however, transmitters associated with each device must modulate the digital information utilizing some form of digital modulation technique. The digital modulation technique employed may include conventional techniques, such as Phase Shift Keying (PSK) or Amplitude Modulation (AM), or more spectrally efficient techniques, such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), and recently 3π/8-8PSK used in the Enhanced Data Rates for GSM Evolution (EDGE) system. Each of these techniques imposes certain requirements on the power amplifier within the transmitter in order to prevent distortion of the modulated signal. Depending on the type of modulation technique employed, these requirements may include a constant gain, a constant phase-shift or both a constant gain and a constant phase shift.
The flexible approach offered by the various embodiments of the present invention enables each of these requirements to be either collectively or independently satisfied in an efficient and cost effective manner. Referring to FIG. 2, an exemplary schematic block diagram of a transmitter in accordance with the present invention is illustrated. It should be emphasized that although the transmitter illustrated in FIG. 2 utilizes a quadrature modulator, the present invention is not limited to quadrature modulation techniques. Rather, the principles of the present invention are equally applicable to other digital modulation techniques where nonlinear distortion is a concern, such as PSK and AM. Therefore, the following discussion is provided by way of explanation, and not limitation.
Beginning with the forward transmission path of the transmitter depicted generally at 99, digital information 100 is applied to a predistortion block 110. This predistortion block 110 contains predistortion calculations and predistortion coefficients which are used to predistort the digital information 100 in such a manner that a linear amplified signal is produced at the output of the power amplifier 190. The predistortion coefficients are stored in, for example, a predistortion lookup table 111 within the predistortion block 110 and are periodically updated to compensate for time-varying nonlinearities of the power amplifier 190. The manner by which the predistortion coefficients are periodically updated will be described in further detail below.
Referring for the moment to FIG. 3, operating principles of an exemplary predistortion technique practiced by one aspect of the present invention is illustrated. As shown, the forward transmission path of a transmitter 99 includes a non-linear element 60, such as a power amplifier 190, and a predistortion element, such as a predistortion block 110. If the input signal is perfectly predistorted at the predistortion element 50 by the inverse non-linear characteristic(s) of the non-linear element 60, then a linear input-output relationship results as depicted at 70. Thus, one aspect of the present invention measures the non-linear distortion characteristic(s) of the power amplifier 190 and predistorts the digital information 100 at the predistortion block 110 by the inverse distortion characteristic(s) to produce a linear input-output relationship.
Continuing with the forward path of the transmitter 99 depicted in FIG. 2, the output of the predistortion block 110 is applied to a wave form generator (WFG) 120 which generates separate in-phase (I) and quadrature (Q) signals. Each digital I and Q signal is then passed through a digital-to-analog converter (DAC) 130 and a low pass filter (LPF) 140 to convert the digital I and Q signals to analog signals. The analog I and Q signals are then combined in an linear modulator, such as an I/Q modulator 150, and up-converted to RF frequencies via a local oscillator 160. The output of the I/Q modulator 150 is then amplified by a variable gain amplifier (VGA) 170 and filtered by a band pass filter (BPF) 180 in order to attenuate out-of-band power. In the final stage, the output of the band pass filter 180 is amplified by a power amplifier (PA) 190 and transmitted via antenna 200.
In the feedback path, an embodiment of the present invention measures distortion characteristic(s) across the power amplifier 190, such as a nonlinear phase-shift or non-linear gain, by monitoring the input and output of the power amplifier 190 during the amplification of a distortion detection signal. This distortion detection signal preferably has a well defined time-variant relationship over the operating power range of the power amplifier 190, enabling the measured distortion characteristics to be easily converted to a function of the input power level. Examples of a preferred distortion detection signal include an up-ramp signal or down-ramp signal. Preferably, however, the distortion detection signal comprises the burst ramp-up signal or burst ramp-down signal commonly used in TDMA systems before or after transmission of a communication burst. Utilizing the burst ramp-up or burst ramp-down signals has the added advantage of allowing the preferred embodiment of the present invention to be easily implemented within existing TDMA systems.
Before describing the feedback path illustrated in FIG. 2, an exemplary process by which the preferred embodiment of the present invention converts the measured distortion characteristic to a function of the input power will be described. Referring to FIG. 4, an exemplary conversion of a measured phase distortion characteristic to a function of the input power level in accordance with the present invention is illustrated. In this example, the distortion detection signal applied to the power amplifier 190 comprises an up-ramp signal which has an input power versus time relationship as depicted generally at 500. If the phase difference (Δφ) across the power amplifier 190 is measured during the same time period (T1-T2) that the distortion detection signal is applied, the phase difference versus time relationship may have a measured phase distortion characteristic as depicted generally at 510. From the two relationships 500 and 510, the relationship between the phase difference and the input power can be calculated as depicted generally at 520. This calculated relationship is then used to update the predistortion coefficients in the predistortion block 110 to compensate for phase distortion of the power amplifier 190. It should be emphasized that although FIG. 4 illustrates the conversion of phase distortion characteristics using an up-ramp signal, the principles of the present invention are equally applicable for a down-ramp signal or other distortion detection signals, especially those having a well-defined or “known” power versus time relationship.
Similarly, FIG. 5 illustrates an exemplary conversion of a measured envelope (amplitude) distortion characteristic to a function of the input power level in accordance with the present invention. In this example, the distortion detection signal applied to the power amplifier 190 also comprises an up-ramp signal and has an input power versus time relationship as depicted generally at 600. If the output power (Pout) of the power amplifier 190 is measured during the same time period (T1-T2) that the distortion detection signal is applied, the output power versus time relationship may have a measured envelope (amplitude) distortion characteristic as depicted generally at 610. From the two relationships 600 and 610, the relationship between the output power and the input power can be calculated as depicted generally at 620. This calculated relationship is then used to update the predistortion coefficients in the predistortion block 110 to compensate for amplitude distortion of the power amplifier 190. Again, it should be emphasized that although FIG. 5 illustrates the conversion of envelope distortion characteristics using an up-ramp signal, the principles are equally applicable for a down-ramp signal or other distortion detection signals, especially those having a well-defined or “known” input power versus time relationship.
Because a relationship between distortion characteristics and input power is calculated for all possible input power levels, one advantageous aspect of the preferred embodiment of the present invention updates the predistortion coefficients only once per communication burst. This aspect of the preferred embodiment relaxes the processing requirements of the digital signal processor depicted generally at 101 (along with other associated functional or memory elements) or other device which updates the predistortion lookup table 111. Current consumption is also reduced because only a small part of the communication burst is needed to calculate the predistortion. Furthermore, if a burst up-ramp signal is used as the distortion detection signal, the updated predistortion coefficients can be applied on the same communication burst, assuming the predistortion lookup table 111 can be updated fast enough. Alternatively, if the power amplifier 190 characteristics do not vary much between bursts, the distortion characteristics can be measured at one burst and applied at a later or subsequent burst. Another alternative is to determine the distortion characteristics based on measurements from several distortion detection signals (e.g, and determine some kind of mean). Finally, in another aspect of the embodiment of FIG. 2, the distortion characteristics of the power amplifier 190 are only measured over the dynamic range that is used in the modulated signal. For example, only a part of the distortion detection signal may be needed. Consequently, the distortion characteristics of the power amplifier 190 only have to be measured for those input power levels that will be used when the power amplifier is modulated.
Referring again to FIG. 2, a distortion characteristic across the power amplifier 190 is measured by feeding a portion of the output signal and a portion of the input signal to two corresponding detectors 220, 221 after and before, respectively, amplification of the distortion detection signal. Preferably, before the output signal is measured by its corresponding detector 220, an attenuation mechanism 210 attenuates the output signal by a factor approximating the nominal gain G of the power amplifier 190. Attenuating the output signal causes the input signals of the two detectors 220, 221 to have roughly the same amplitude, which helps cancel distortion caused by the detectors 220, 221. Furthermore, although a different type of detector configuration can be used to measure the signal characteristics of the output and input, the pair of distortion detectors 220, 221 utilized by the embodiment of FIG. 2 creates a “balanced” configuration which reduces the impact of non-ideal detection components. The pair of detectors 220, 221 measure at least one signal characteristic of the output and input, such as the amplitude, phase or both amplitude and phase, and pass their output to an error detector 230. The error detector 230 compares the measured signal characteristic corresponding to the input signal and output signal, and generates an error signal corresponding to the amount of nonlinear distortion. After the error signal is converted to the digital domain using an analog-to-digital converter (ADC) 240, a distortion detection block 250 accumulates the error signals during the amplification of the distortion detection signal and calculates a relationship between the measured distortion characteristic and input power as described above. This relationship is then used to update the predistortion coefficients in the predistortion block 110, enabling the predistortion block 110 to compensate for nonlinearities of the power amplifier 190.
FIG. 6 illustrates an exemplary schematic block diagram of a transmitter in accordance with a first embodiment of the present invention. The first embodiment of the present invention utilizes the same forward transmission path as the embodiment of FIG. 2 described above, but compensates for a non-constant phase-shift in the power amplifier 190 using different detectors in the feedback path. In the first embodiment, a part of the output signal and a part of the input signal are limited in two separate limiters 320, 321 after and before, respectively, amplification of the distortion detection signal. Preferably, before the output signal is limited, the output signal is attenuated by a factor approximating the nominal gain G of the power amplifier 190. Attenuating the output signal allows that the input signals to the two limiters 320, 321 to have roughly the same amplitude, which helps cancel AM/PM distortion caused by the limiters 320, 321. Two phase- detectors 330, 331 detect the phase of the output and the phase of the input of the power amplifier 190. The local oscillator 160 used to up-convert the original input signal serves as a reference frequency to the two phase detectors 330, 331. The outputs of the phase detectors 330, 331 are filtered by low- pass filters 340, 341 to suppress high frequencies, such as harmonic frequencies of the local oscillator 160. A measurement of the phase-shift through the power amplifier is detected by an error detector 230 and is sent to an analog-to-digital converter 240. In the digital domain, the relationship between the input power level and the phase-shift is calculated in the distortion detection block 250 using the principles described above with respect to the embodiment of FIG. 2. This relationship is then used to update the predistortion lookup table 111 contained within the predistortion block 110, enabling the predistortion block 110 to adaptively compensate for non-constant phase shift across the power amplifier 190.
Optionally, in order to relax the requirements on the components in the feedback path of the first embodiment, the first embodiment may be modified to down-convert the RF input and output signals of the power amplifier 190. FIG. 7 illustrates an exemplary schematic block diagram of the transmitter in accordance with the first embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency. As illustrated, two mixers 350, 351 are placed between the power amplifier 190 and the two limiters 320, 321. A first local oscillator 352 enables the mixers 350, 351 to down-convert the output and input signals of the power amplifier 190 from RF frequencies to a lower intermediate frequency. A second local oscillator 353 serves as the reference frequency for the phase detectors 330, 331. Although two additional mixers 350, 351 and two additional local oscillators 352, 353 are required, the advantage of this approach is that components in the feedback path may operate at a lower frequency.
FIG. 8 illustrates an exemplary schematic block diagram of a transmitter in accordance with a second embodiment of the present invention. The second embodiment utilizes the same forward transmission path as described in the embodiment of FIG. 2, but compensates for amplitude distortion in the power amplifier 190 using different detectors in the feedback path. In the second embodiment, a part of the output signal and a part of the input signal of the power amplifier 190 are applied to two separate envelope detectors 420, 421 after and before, respectively, amplification of the distortion detection signal. Preferably, before the envelope of the output signal is detected, the output of the power amplifier 190 is attenuated by a factor approximating the nominal gain G of the power amplifier 190, enabling the inputs to the two envelope detectors 420, 421 to have roughly the same amplitude level. A measurement of the amplitude difference between the output of the power amplifier 190 and input of the power amplifier 190 is detected by an error detector 230 and sent to an analog-to-digital converter 240. In the digital domain, the relationship between the envelope distortion and the input power is calculated using the principles described above with respect to the embodiment of FIG. 2. This relationship is then used to update the predistortion lookup table 111 contained within the predistortion block 110, enabling the predistortion block 110 to adaptively compensate for non-constant gain of the power amplifier 190.
Optionally, in order to relax the requirements on the components in the feedback path of the second embodiment, the second embodiment may be modified to down-convert the RF input and output signals of the power amplifier 190. FIG. 9 illustrates an exemplary schematic block diagram of the transmitter in accordance with the second embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency. As illustrated, two mixers 430, 431 are placed between the power amplifier 190 and the envelope detectors 420, 421. A local oscillator 432 enables the mixers 430, 431 to down-convert the output and input signals of the power amplifier 190 from RF frequencies to a lower intermediate frequency. Although two additional mixers 430, 431 and one additional local oscillators 432 are required, the advantage of this approach is that components in the feedback path may operate at a lower frequency.
FIG. 10 illustrates an exemplary schematic block diagram of a transmitter in accordance with a third embodiment of the present invention. The third embodiment utilizes the same forward transmission path as described in the embodiment of FIG. 2, but compensates for both phase and envelope (amplitude) distortion in the power amplifier 190 using different combinations of detectors in the feedback path. In the third embodiment, a part of the output signal and a part of the input signal of the power amplifier 190 are applied to two separate limiters 320, 321 and two separate envelope detectors 420, 421 after and before, respectively, amplification of the distortion detection signal. Preferably, the output of the power amplifier 190 is first attenuated by a factor approximating the nominal gain G of the power amplifier 190, enabling the inputs to the two limiters 320, 321 and two envelope detectors 420, 421 to have roughly the same amplitude level. A measurement of the phase and amplitude difference between the output of the power amplifier 190 and the input of the power amplifier 190 is detected by two corresponding error detectors 230, 231 and sent to analog-to-digital converters 240. In the digital domain, the relationships between the input power and (i) the measured envelope distortion and (ii) the measured phase distortion are calculated using the principles described above with respect to the embodiment of FIG. 2. These relationships are then used to update the predistortion lookup table 111 contained within the predistortion block 110, enabling the predistortion block 110 to adaptively compensate for both non-constant gain and non-constant phase-shift of the power amplifier 190.
Optionally, in order to relax the requirements on the components in the feedback path of the third embodiment, the third embodiment may be modified to down-convert the RF input and output signals of the power amplifier 190. FIG. 11 illustrates an exemplary schematic block diagram of the transmitter in accordance with the third embodiment of the present invention implementing mixers to down-convert the RF input and output signals to an intermediate frequency. As illustrated, two mixers 450, 451 are placed between the power amplifier 190 and both the limiters 320, 321 and the envelope detectors 420, 421. A first local oscillator 452 enables the mixers 450, 451 to down-convert the output and input signals of the power amplifier 190 from RF frequencies to a lower intermediate frequency. A second local oscillator 453 serves as the reference frequency for the phase detectors 330, 331. Although two additional mixers 450, 451 and two additional local oscillators 452, 453 are required, the advantage of this approach is that components in the feedback path may operate at a lower frequency.
Referring to FIG. 12, an exemplary method in flow chart form by which the present invention may be advantageously practiced is illustrated generally at 999. As shown, a distortion detection signal, such as a ramp-up signal, ramp-down signal, or preferably a burst ramp-up signal or burst ramp-down signal, is generated at step 1000. At step 1010, the generated distortion detection signal is applied to a power amplifier 190, and distortion characteristic(s) across the power amplifier 190 is (are) measured at step 1020 during application of the distortion detection signal to the power amplifier 190. Based on the measured distortion characteristic(s) and characteristics of the distortion detection signal, a relationship between the distortion detection signal and input power is calculated at step 1030 using the principles described above with respect to the embodiment of, for example, FIG. 2. This calculated relationship is then utilized to update predistortion coefficients stored in a predistortion lookup table 111 at step 1040. These updated coefficients are then applied to input data to predistort digital information 100 in such a manner that a linear input-output relationship is maintained at the output of the power amplifier 190.
Optionally, steps 1000-1040 are repeated for each communication burst (e.g., as indicated at step 1050). In one advantageous aspect of the preferred embodiment of the present invention, the predistortion lookup table 111 is up dated only once per communication burst. This aspect of the preferred embodiment relaxes the processing requirements of the digital signal processor depicted generally at 101 (along with other associated functional or memory elements) or other device which updates the predistortion lookup table 111. Furthermore, if a burst up-ramp signal is used as the distortion detection signal, the updated predistortion coefficients can be applied on the same communication burst, assuming the predistortion lookup table 111 can be updated fast enough. Alternatively, if the power amplifier 190 characteristics do not vary much between bursts, the distortion characteristics can be measured at one burst and applied at a later or subsequent burst. Another alternative is to determine the distortion characteristics based on measurements from several distortion detection signals (e.g, after determining some kind of average). Finally, in another aspect of the embodiment of FIG. 2, the distortion characteristics of the power amplifier 190 are only measured over the dynamic range that is used in the modulated signal. For example, only a part of the distortion detection signal may be needed. Consequently, the distortion characteristics of the power amplifier 190 only have to be measured for those input power levels that will be used when the power amplifier is modulated.
Although preferred embodiments of the method and apparatus of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the present invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications, and substitutions without departing from the spirit and scope of the present invention as set forth and defined by the following claims.

Claims (33)

What is claimed is:
1. A method for adaptively compensating for a distortion characteristic of a power amplifier, the method comprising the steps of:
measuring the distortion characteristic across the power amplifier during amplification of a distortion detection signal, the distortion detection signal having a defined input power characteristic;
calculating a relationship between the measured distortion characteristic and input power;
updating a predistortion lookup table in accordance with the calculated relationship; and
wherein the step of measuring is performed using a pair of detectors, a first detector of the pair of detectors connected to an input terminal of the power amplifier, and a second detector of the pair of detectors connected to an output terminal of the power amplifier.
2. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, wherein the distortion characteristic comprises phase distortion.
3. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, wherein the distortion characteristic comprises envelope distortion.
4. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, wherein the distortion detection signal comprises at least one of an up-ramp signal and a down-ramp signal.
5. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, wherein the distortion detection signal comprises at least one of a burst up-ramp signal and a burst down-ramp signal.
6. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, wherein the method is performed only once per communication burst.
7. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, wherein the method is performed during only a portion of a communication burst.
8. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, further comprising the step of applying the updated predistortion lookup table to an input data stream.
9. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 8, wherein the step of updating and the step of applying are performed in a same communication burst.
10. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 8, wherein the step of measuring is performed in a first communication burst, and the step of applying is performed in a subsequent communication burst.
11. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, wherein the step of calculating the relationship is performed, at least in part, using a mean distortion characteristic measured from two or more communication bursts.
12. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, further comprising the step of attenuating an output signal at the output terminal of the power amplifier by approximately a nominal gain of the power amplifier.
13. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, where in the step of measuring is performed only for input power levels that will be used by an input signal.
14. The method for adaptively compensating for a distortion characteristic of a power amplifier as in claim 1, wherein the method is performed in at least one of a mobile station, a base station and a data terminal.
15. An apparatus for linearizing a power amplifier, the apparatus comprising:
at least one detector adapted to measure a distortion characteristic across a power amplifier during amplification of a distortion detection signal, the distortion detection signal having a known input power characteristic;
a processor coupled to the at least one detector, the processor adapted to calculate a relationship between the measured distortion characteristic and input power of the power amplifier;
a predistortion lookup table storing predistortion coefficients, the processor being adapted to update the predistortion coefficients in accordance with the calculated relationship to adaptively compensate for the measured distortion characteristic; and
wherein the at least one detector comprises a pair of detectors, a first detector of the pair of detectors connected to an output of the power amplifier, and a second detector of the pair of detectors connected to an input of the power amplifier.
16. The apparatus for linearizing a power amplifier as in claim 15, wherein the distortion characteristic comprises phase distortion.
17. The apparatus for linearizing a power amplifier as in claim 15, wherein the distortion characteristic comprises amplitude distortion.
18. The apparatus for linearizing a power amplifier as in claim 15, wherein the distortion characteristic comprises phase distortion and amplitude distortion.
19. The apparatus for linearizing a power amplifier as in claim 15, wherein the distortion detection signal comprises at least one of an up-ramp signal and a down-ramp signal.
20. The apparatus for linearizing a power amplifier as in claim 15, wherein the distortion detection signal comprises at least one of a burst up-ramp signal and a burst down-ramp signal.
21. The apparatus for linearizing a power amplifier as in claim 15, wherein the processor updates the predistortion coefficients only once per communication burst.
22. The apparatus for linearizing a power amplifier as in claim 15, wherein the processor calculates the relationship between the measured distortion characteristic and input power based, at least in part, on a mean distortion characteristic measured from two or more communication bursts.
23. The apparatus for linearizing a power amplifier as in claim 15, wherein the at least one detector measures the distortion characteristic during only a portion of a communication burst.
24. The apparatus for linearizing a power amplifier as in claim 15, further comprising a predistortion unit that predistorts an input data stream in accordance with the predistortion coefficients.
25. The apparatus for linearizing a power amplifier as in claim 24, wherein the processor updates the predistortion coefficients in a first communication burst and the predistortion unit predistorts the input data stream using the updated predistortion coefficients in the first communication burst.
26. The apparatus for linearizing a power amplifier as in claim 24, wherein the at least one detector measures the distortion characteristic in a first communication burst and the predistortion unit predistorts the input data stream using the updated predistortion coefficients in a subsequent communication burst.
27. An apparatus for linearizing a power amplifier, the apparatus comprising:
at least one detector adapted to measure a distortion characteristic across a power amplifier during amplification of a distortion detection signal, the distortion detection signal having a known input power characteristic;
a processor coupled to the at least one detector, the processor adapted to calculate a relationship between the measured distortion characteristic and input power;
a predistortion lookup table storing predistortion coefficients, the processor being adapted to update the redistortion coefficients in accordance with the calculated relationship to adaptively compensate for the measured distortion characteristic; and
wherein the at least one detector comprises a pair of phase detectors, a first phase detector of the pair of phase detectors connected to an output of the power amplifier, and a second phase detector of the pair of detectors connected to an input of the power amplifier.
28. The apparatus for linearizing a power amplifier as in claim 27, wherein the output of the power amplifier is attenuated by approximately a nominal gain of the power amplifier before being applied to the first phase detector.
29. The apparatus for linearizing a power amplifier as in claim 27, further comprising a pair of mixers adapted to down-convert an input signal from an RF frequency to an intermediate frequency, a first mixer of the pair of mixers deposed between the output of the power amplifier and the first phase detector, and a second mixer of the pair of mixers deposed between the input of the power amplifier and the second phase detector.
30. An apparatus for linearizing a power amplifier, the apparatus comprising:
at least one detector adapted to measure a distortion characteristic across a power amplifier during amplification of a distortion detection signal, the distortion detection signal having a known input power characteristic;
a processor coupled to the at least one detector, the processor adapted to calculate a relationship between the measured distortion characteristic and input power;
a predistortion lookup table storing predistortion coefficients, the processor being adapted to update the predistortion coefficients in accordance with the calculated relationship to adaptively compensate for the measured distortion characteristic; and
wherein the at least one detector comprises a pair of envelope detectors, a first envelope detector of the pair of envelope detectors connected to an output of the power amplifier, and a second envelope detector of the pair of envelope detectors connected to an input of the power amplifier.
31. The apparatus for linearizing a power amplifier as in claim 30, wherein the output of the power amplifier is attenuated by approximately a nominal gain of the power amplifier before being applied to the first envelope detector.
32. The apparatus for linearizing a power amplifier as in claim 30, further comprising a pair of mixers adapted to down-convert an input signal from an RF frequency to an intermediate frequency, a first mixer of the pair of mixers deposed between the output of the power amplifier and the first envelope detector, and a second mixer of the pair of mixers deposed between the input of the power amplifier and the second envelope detector.
33. The apparatus for linearizing a power amplifier as in claim 15, wherein the apparatus is used in at least one of a mobile station, a base station and a data terminal.
US09/427,773 1999-10-26 1999-10-26 Adaptive linearization of power amplifiers Expired - Lifetime US6246286B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US09/427,773 US6246286B1 (en) 1999-10-26 1999-10-26 Adaptive linearization of power amplifiers
CN008148643A CN1218475C (en) 1999-10-26 2000-10-16 Adaptive linearization of power amplifiers
AT00971382T ATE271277T1 (en) 1999-10-26 2000-10-16 ADAPTIVE LINEARIZATION OF POWER AMPLIFIER
JP2001533620A JP2003513498A (en) 1999-10-26 2000-10-16 Adaptive linearization of power amplifiers
PCT/EP2000/010139 WO2001031778A1 (en) 1999-10-26 2000-10-16 Adaptive linearization of power amplifiers
AU10254/01A AU1025401A (en) 1999-10-26 2000-10-16 Adaptive linearization of power amplifiers
DE60012209T DE60012209T2 (en) 1999-10-26 2000-10-16 ADAPTIVE LINEARIZATION OF POWER AMPLIFIERS
EP00971382A EP1224733B1 (en) 1999-10-26 2000-10-16 Adaptive linearization of power amplifiers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/427,773 US6246286B1 (en) 1999-10-26 1999-10-26 Adaptive linearization of power amplifiers

Publications (1)

Publication Number Publication Date
US6246286B1 true US6246286B1 (en) 2001-06-12

Family

ID=23696216

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/427,773 Expired - Lifetime US6246286B1 (en) 1999-10-26 1999-10-26 Adaptive linearization of power amplifiers

Country Status (8)

Country Link
US (1) US6246286B1 (en)
EP (1) EP1224733B1 (en)
JP (1) JP2003513498A (en)
CN (1) CN1218475C (en)
AT (1) ATE271277T1 (en)
AU (1) AU1025401A (en)
DE (1) DE60012209T2 (en)
WO (1) WO2001031778A1 (en)

Cited By (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320463B1 (en) * 1999-06-15 2001-11-20 Alcatel Adaptive digital pre-correction of nonlinearities introduced by power amplifiers
US6342810B1 (en) * 1999-07-13 2002-01-29 Pmc-Sierra, Inc. Predistortion amplifier system with separately controllable amplifiers
US6369666B1 (en) * 1999-11-22 2002-04-09 Infineon Technologies Ag Modulator circuit configuration
US20020058486A1 (en) * 2000-10-17 2002-05-16 Jonas Persson Communications systems
US6421398B1 (en) * 2000-01-28 2002-07-16 Alcatel Canada Inc. Modulation system having on-line IQ calibration
US6421397B1 (en) * 2000-01-28 2002-07-16 Alcatel Canada Inc. Modulation system having on-line IQ calibration
US6449465B1 (en) * 1999-12-20 2002-09-10 Motorola, Inc. Method and apparatus for linear amplification of a radio frequency signal
US20020186713A1 (en) * 2000-03-21 2002-12-12 Dominique Brunel Communication system with frequency modulation and a single local oscillator
US20020191710A1 (en) * 2001-06-08 2002-12-19 Jeckeln Ernesto G. Adaptive predistortion device and method using digital receiver
US20020193078A1 (en) * 2001-06-19 2002-12-19 Macfarlane Shearer Daniel Davidson Remote power amplifier linearization
US6515712B1 (en) * 1999-07-31 2003-02-04 Lg Information & Communications, Ltd. Signal distortion compensating apparatus and method in digital TV translator
WO2003043183A1 (en) * 2001-11-12 2003-05-22 Telefonaktiebolaget Lm Ericsson Digital linearization circuit
WO2003043179A2 (en) * 2001-11-16 2003-05-22 Koninklijke Philips Electronics N.V. Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
US20030102911A1 (en) * 2001-11-30 2003-06-05 Gopal Raghavan Bipolar transistor-based linearizer with programmable gain and phase response system
US20030184374A1 (en) * 2002-03-26 2003-10-02 Xinping Huang Type-based baseband predistorter function estimation technique for non-linear circuits
US20030197558A1 (en) * 2002-04-18 2003-10-23 Agere Systems Inc. Adaptive predistortion system and a method of adaptively predistorting a signal
US20030215025A1 (en) * 2002-05-16 2003-11-20 Hietala Alexander Wayne AM to PM correction system for polar modulator
US20030215026A1 (en) * 2002-05-16 2003-11-20 Hietala Alexander Wayne AM to AM correction system for polar modulator
US6654426B2 (en) * 1999-03-26 2003-11-25 Nokia Networks Oy Correction of nonlinearity of I/Q modulator
US20030223508A1 (en) * 2002-05-31 2003-12-04 Lei Ding System and method for predistorting a signal using current and past signal samples
US20030223509A1 (en) * 2002-05-31 2003-12-04 Zhengxiang Ma system and method for predistorting a signal to reduce out-of-band error
US6687311B1 (en) * 2000-02-15 2004-02-03 General Instrument Corporation Direct QAM modulator with digital feedback control and complex pre-equalization for phase and amplitude distortion
US20040021514A1 (en) * 2000-02-17 2004-02-05 Ring Steven R Distortion detection for a power amplifier
US20040057533A1 (en) * 2002-09-23 2004-03-25 Kermalli Munawar Hussein System and method for performing predistortion at intermediate frequency
US20040072554A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Automatic-bias amplifier circuit
US20040070454A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Continuous bias circuit and method for an amplifier
US20040083409A1 (en) * 2002-10-28 2004-04-29 Skyworks Solutions, Inc. Fast closed-loop power control for non-constant envelope modulation
US20040085126A1 (en) * 2002-11-06 2004-05-06 Triquint Semiconductor, Inc. Accurate power detection for a multi-stage amplifier
US20040097213A1 (en) * 2002-11-14 2004-05-20 Nagle Pierce Joseph Apparatus, methods and articles of manufacture for linear signal modification
US20040105502A1 (en) * 2002-12-03 2004-06-03 M/A-Com, Inc. Apparatus, methods and articles of manufacture for wideband signal processing
US20040104768A1 (en) * 2002-12-02 2004-06-03 M/A-Com Eurotec Apparatus, methods and articles of manufacture for multiband signal processing
US20040109572A1 (en) * 2002-12-04 2004-06-10 M/A-Com, Inc. Apparatus, methods and articles of manufacture for noise reduction in electromagnetic signal processing
KR100438551B1 (en) * 2001-11-17 2004-07-03 엘지전자 주식회사 Apparatus and method for detecting a receive signal strength of base station receiver
KR100446500B1 (en) * 2001-03-19 2004-09-04 삼성전자주식회사 Compensating method and circuit of non-linear distortion
US20040183635A1 (en) * 2003-03-06 2004-09-23 Tyco Electronics Corporation Apparatus, methods and articles of manufacture for digital modification in electromagnetic signal processing
US20040189395A1 (en) * 2002-11-14 2004-09-30 M/A-Com, Eurotec Bv Apparatus, methods and articles of manufacture for processing an electromagnetic wave
US20040219944A1 (en) * 2000-10-23 2004-11-04 Ilan Barak Automatic level control
US20040232985A1 (en) * 2002-05-14 2004-11-25 Hiroshi Itahara Hybrid distortion compensation method and hybrid distortion compensation device
US6831954B1 (en) * 2000-02-01 2004-12-14 Nokia Corporation Apparatus, and associated method, for compensating for distortion introduced upon a send signal by an amplifier
US20040252784A1 (en) * 2003-06-13 2004-12-16 Walter Honcharenko Coefficient estimation method and apparatus
WO2005004323A1 (en) 2003-07-03 2005-01-13 Icefyre Semiconductor Corporation Adaptive predistortion for a transmit system
US6859098B2 (en) 2003-01-17 2005-02-22 M/A-Com, Inc. Apparatus, methods and articles of manufacture for control in an electromagnetic processor
US20050062531A1 (en) * 2003-09-22 2005-03-24 Schreyer George W. Digital predistortion for power amplifier
US20050064878A1 (en) * 2003-09-19 2005-03-24 O'meagher Brent Method and system for delivering virtual reference station data
US20050062529A1 (en) * 2003-09-19 2005-03-24 M/A-Com, Inc. Adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
US20050073360A1 (en) * 2003-10-06 2005-04-07 Andrew Corporation Architecture and implementation methods of digital predistortion circuitry
US20050077960A1 (en) * 2003-10-10 2005-04-14 Postech Foundation Digital feedback linearizing apparatus to linearize power amplifier and method used by the apparatus
US20050085198A1 (en) * 2003-10-21 2005-04-21 Kiomars Anvari Power boosting technique for wireless multi-carrier power amplifier
US6891432B2 (en) 2002-11-14 2005-05-10 Mia-Com, Inc. Apparatus, methods and articles of manufacture for electromagnetic processing
US20050124303A1 (en) * 2003-12-08 2005-06-09 M/A-Com, Inc. Compensating for load pull in electromagentic signal propagation using adaptive impedance matching
US20050185736A1 (en) * 2002-04-30 2005-08-25 Kari Pajukoski Method for limiting signal and transmitter
US20050185723A1 (en) * 2004-02-20 2005-08-25 Kiomars Anvari Peak suppression of multi-carrier signal with different modulation
US20050245211A1 (en) * 2002-10-01 2005-11-03 Akihiko Matsuoka Transmission device
DE102004019984A1 (en) * 2004-04-23 2005-11-17 Infineon Technologies Ag Device for processing radio transmission data with digital predistortion
US6999524B1 (en) * 1999-12-09 2006-02-14 Rohde & Schwarz Gmbh & Co. Kg Arrangement for controlling the output power of an HF transmitter
US20060046665A1 (en) * 2002-05-01 2006-03-02 Dali Yang System and method for digital memorized predistortion for wireless communication
US20060050810A1 (en) * 2004-07-29 2006-03-09 Interdigital Technology Corporation Hybrid transmitter architecture having high efficiency and large dynamic range
DE102004055934A1 (en) * 2004-11-19 2006-06-08 Siemens Ag Device for base point correction of envelope of high frequency (HF) pulse, containing input and output interfaces, at least one correction point memory and base point memory and specified logic circuit, for signal processor
US20060125560A1 (en) * 2003-07-03 2006-06-15 Aryan Saed Adaptive predistortion for a transmit system with gain, phase and delay adjustments
US20060217083A1 (en) * 2005-03-22 2006-09-28 Braithwaite Richard N Rf power amplifier system employing an analog predistortion module using zero crossings
US20060246856A1 (en) * 2003-08-07 2006-11-02 Matsushita Electric Industrial Co., Ltd Transmitter apparatus
US20060293000A1 (en) * 2004-10-22 2006-12-28 Parker Vision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a direct cartesian 2-branch embodiment
US20070015474A1 (en) * 2005-06-29 2007-01-18 Nokia Corporation Data processing method, transmitter, device, network element and base station
US20070030065A1 (en) * 2005-06-29 2007-02-08 Nokia Corporation Data processing method, pre-distortion arrangement, transmitter, network element and base station
US20070041470A1 (en) * 2005-08-17 2007-02-22 Intel Corporation Transmitter control
US7203262B2 (en) 2003-05-13 2007-04-10 M/A-Com, Inc. Methods and apparatus for signal modification in a fractional-N phase locked loop system
US20070190952A1 (en) * 2006-02-15 2007-08-16 Texas Instruments Incorporated Linearization of a transmit amplifier
EP1830479A1 (en) * 2004-12-21 2007-09-05 ZTE Corporation A signal nonlinear distortion magnitude detection method and device
US20070222513A1 (en) * 2006-03-09 2007-09-27 Kossor Michael G Apparatus and method for processing of amplifier linearization signals
US20070241812A1 (en) * 2002-05-01 2007-10-18 Dali Systems Co. Ltd. High efficiency linearization power amplifier for wireless communication
DE102006017515B3 (en) * 2006-04-13 2007-10-18 Infineon Technologies Ag Predistorter for use with power amplifier for pre-distorting input signal, has transmission units provided to reproduce nonlinear transmission characteristic of follower by using linear approximation
US20070258543A1 (en) * 2006-05-04 2007-11-08 Klaus Huber Controller for a radio-frequency amplifier
US20080082597A1 (en) * 2006-09-29 2008-04-03 Optichron, Inc. Low power and low complexity adaptive self-linearization
US20080096497A1 (en) * 2003-07-03 2008-04-24 Zarbana Digital Fund Llc Adaptive predistortion for a transmit system
US20080152037A1 (en) * 2006-12-26 2008-06-26 Dali System Co., Ltd. Method and System for Baseband Predistortion Linearization in Multi-Channel Wideband Communication Systems
US20080157869A1 (en) * 2006-12-28 2008-07-03 Rajan Bhandari Strategic predistortion function selection
US20080174365A1 (en) * 2002-05-01 2008-07-24 Dali Systems Co. Ltd. Power Amplifier Time-Delay Invariant Predistortion Methods and Apparatus
US7409193B2 (en) 2003-07-03 2008-08-05 Zarbana Digital Fund Llc Predistortion circuit for a transmit system
US20080265996A1 (en) * 2002-05-01 2008-10-30 Dali Systems Co., Ltd Digital Hybrid Mode Power Amplifier System
US20080270082A1 (en) * 2006-09-29 2008-10-30 Optichron, Inc. Low-power and low-cost adaptive self-linearization system with fast convergence
US7453952B2 (en) 2003-07-03 2008-11-18 Saed Aryan Predistortion circuit for a transmit system
US20080288199A1 (en) * 2006-09-29 2008-11-20 Optichron, Inc. Distortion cancellation using adaptive linearization
WO2008144049A1 (en) * 2007-05-18 2008-11-27 Optichron, Inc. Distortion cancellation using adaptive linearization
US20090028251A1 (en) * 2005-08-30 2009-01-29 Thales Method and device for controlling peak power and pulse width of a broadband gaussian pulse high-power rf transmitter
US20090096521A1 (en) * 2007-08-30 2009-04-16 Dali Systems Co. Ltd. Power amplifier predistortion methods and apparatus using envelope and phase detector
US7529523B1 (en) 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
US7545880B1 (en) 2004-06-23 2009-06-09 Rf Micro Devices, Inc. Multiple polynomial digital predistortion
US20090146736A1 (en) * 2007-12-07 2009-06-11 Dali System Co. Ltd. Baseband-Derived RF Digital Predistortion
US20100039100A1 (en) * 2008-08-18 2010-02-18 Fujitsu Limited Nonlinear Degree Measuring Apparatus And Method For A Power Amplifier, Predistortion Compensation Apparatus
US7689182B1 (en) 2006-10-12 2010-03-30 Rf Micro Devices, Inc. Temperature compensated bias for AM/PM improvement
CN1795627B (en) * 2003-04-03 2010-04-28 北方电讯网络有限公司 Method and system for compensation of non-linear effects in an optical communications system, and distortion compensator
US20100176885A1 (en) * 2007-04-23 2010-07-15 Dali System Co. Ltd. N-Way Doherty Distributed Power Amplifier with Power Tracking
US20100219889A1 (en) * 2009-03-02 2010-09-02 Fujitsu Limited Distortion compensation apparatus and method
US7805115B1 (en) * 2003-06-02 2010-09-28 Analog Devices, Inc. Variable filter systems and methods for enhanced data rate communication systems
US20100248658A1 (en) * 2007-10-18 2010-09-30 Freescale Semiconductor, Inc. Method and system of adaptive predistortion of a wireless transmitter
US20100271957A1 (en) * 2007-04-23 2010-10-28 Dali Systems Co. Ltd. Remotely Reconfigurable Power Amplifier System and Method
US7877060B1 (en) 2006-02-06 2011-01-25 Rf Micro Devices, Inc. Fast calibration of AM/PM pre-distortion
US7929989B2 (en) 2006-04-24 2011-04-19 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US7932776B2 (en) 2004-10-22 2011-04-26 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US7962108B1 (en) 2006-03-29 2011-06-14 Rf Micro Devices, Inc. Adaptive AM/PM compensation
US20110158081A1 (en) * 2009-12-21 2011-06-30 Dali Systems Ltd. Remote radio head unit system with wideband power amplifier and method
US20110193606A1 (en) * 2010-02-11 2011-08-11 Chih-Hao Sun Radio frequency modulator and method thereof
US8009762B1 (en) 2007-04-17 2011-08-30 Rf Micro Devices, Inc. Method for calibrating a phase distortion compensated polar modulated radio frequency transmitter
US8013675B2 (en) 2007-06-19 2011-09-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US8023588B1 (en) 2008-04-08 2011-09-20 Pmc-Sierra, Inc. Adaptive predistortion of non-linear amplifiers with burst data
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US20110304390A1 (en) * 2010-06-11 2011-12-15 Ming-Chung Huang Compensation device applied to power amplifier, method for determining pre-distortion of power amplifier, and method for compensating linearity of power amplifier thereof
US8224265B1 (en) 2005-06-13 2012-07-17 Rf Micro Devices, Inc. Method for optimizing AM/AM and AM/PM predistortion in a mobile terminal
US20120195392A1 (en) * 2011-02-02 2012-08-02 Provigent Ltd. Predistortion in split-mount wireless communication systems
US20120252382A1 (en) * 2007-07-31 2012-10-04 Texas Instruments Incorporated Predistortion calibration and built in self testing of a radio frequency power amplifier using subharmonic mixing
US8315336B2 (en) 2007-05-18 2012-11-20 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a switching stage embodiment
US20120306573A1 (en) * 2010-12-23 2012-12-06 Christian Mazzucco Signal processing arrangement and signal processing method
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
US8351877B2 (en) 2010-12-21 2013-01-08 Dali Systems Co. Ltfd. Multi-band wideband power amplifier digital predistorition system and method
US8410849B2 (en) 2007-06-19 2013-04-02 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US20130142284A1 (en) * 2011-10-20 2013-06-06 Manel Collados Asensio Predistortion circuit, wireless communication unit and method for coefficient estimation
US8472897B1 (en) 2006-12-22 2013-06-25 Dali Systems Co. Ltd. Power amplifier predistortion methods and apparatus
US8482349B2 (en) 2009-03-09 2013-07-09 Zte Wistron Telecom Ab Method and apparatus for linearizing a non-linear power amplifier
US8489042B1 (en) 2009-10-08 2013-07-16 Rf Micro Devices, Inc. Polar feedback linearization
US8542768B2 (en) 2009-12-21 2013-09-24 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US20130259154A1 (en) * 2012-03-30 2013-10-03 Fujitsu Limited Wireless apparatus and distortion compensating method
US20140118066A1 (en) * 2012-10-31 2014-05-01 Korea Advanced Institute Of Science And Technology Low-cost digital predistortion apparatus and method using envelope detection feedback
US8755454B2 (en) 2011-06-02 2014-06-17 Parkervision, Inc. Antenna control
US20140197885A1 (en) * 2013-01-17 2014-07-17 Fujitsu Limited Amplifying device, distortion compensating device, and amplifying method
US20140292404A1 (en) * 2013-03-27 2014-10-02 Qualcomm Incorporated Radio-frequency device calibration
US20150015327A1 (en) * 2013-07-12 2015-01-15 Stefan Glock Controller and Method for Controlling a Signal Processor
US9106316B2 (en) 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US9608677B2 (en) 2005-10-24 2017-03-28 Parker Vision, Inc Systems and methods of RF power transmission, modulation, and amplification
US9647717B2 (en) * 2013-12-26 2017-05-09 Datang Mobile Communications Equipment Co., Ltd. Digital pre-distortion parameter obtaining method and pre-distortion system
US9814053B2 (en) 2009-12-21 2017-11-07 Dali Systems Co. Ltd. Remote radio head unit system with wideband power amplifier
US9876657B1 (en) * 2017-03-06 2018-01-23 Xilinx, Inc. System and method for downlink processing in communication systems
US20180102796A1 (en) * 2016-10-07 2018-04-12 Rohde & Schwarz Gmbh & Co. Kg Predistortion system and method
US20180115288A1 (en) * 2016-10-24 2018-04-26 Fujitsu Limited Arithmetic method, base station device, and arithmetic circuit
US10278131B2 (en) 2013-09-17 2019-04-30 Parkervision, Inc. Method, apparatus and system for rendering an information bearing function of time
US10727788B2 (en) 2015-08-14 2020-07-28 Viasat, Inc. Digital dynamic bias circuit
US20200244509A1 (en) * 2019-01-28 2020-07-30 Qualcomm Incorporated In-phase and quadrature-phase estimation and correction using kernel analysis
US11022676B2 (en) * 2014-09-12 2021-06-01 Denso Corporation Filter apparatus and target detection apparatus
US20220295487A1 (en) 2010-09-14 2022-09-15 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046370A1 (en) * 2005-10-17 2007-04-26 Hitachi Kokusai Electric Inc. Non-linear distortion detection method and distortion compensation amplification device
JP4986737B2 (en) * 2007-06-26 2012-07-25 パナソニック株式会社 Predistortion type distortion compensation amplifier
JP2009278513A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Transmitter
CN101603992B (en) * 2008-06-12 2011-06-29 深圳富泰宏精密工业有限公司 Method for establishing output power comparison table of power amplifier
JP5383274B2 (en) * 2009-03-26 2014-01-08 三菱電機株式会社 Distortion compensation system
US8937762B2 (en) 2010-04-20 2015-01-20 Fujitsu Limited Level control circuit, level control method, and level control system
CN102882478B (en) * 2011-07-15 2016-03-16 瑞昱半导体股份有限公司 The compensation arrangement of power amplifier and correlation technique thereof
CN103401511A (en) * 2013-07-05 2013-11-20 华南理工大学 Power amplifier pre-distortion method used for real-time system
CN105577298B (en) * 2014-11-05 2018-10-16 辰芯科技有限公司 A kind of adaptive method for detecting phases and system
CN107046445B (en) * 2016-02-06 2020-07-28 富士通株式会社 Harmonic distortion separation method, nonlinear characteristic determination method, device and system
US10374838B2 (en) * 2017-06-30 2019-08-06 Futurewei Technologies, Inc. Image distortion correction in a wireless terminal
JP7193652B2 (en) * 2019-08-27 2022-12-20 株式会社日立国際電気 Distortion compensation circuit, wireless device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485349A (en) * 1983-04-08 1984-11-27 Varian Associates, Inc. Stabilized microwave power amplifier system
US4999583A (en) * 1990-02-28 1991-03-12 Hughes Aircraft Company Amplifier drive controller
US5049832A (en) * 1990-04-20 1991-09-17 Simon Fraser University Amplifier linearization by adaptive predistortion
EP0513402A1 (en) 1991-04-24 1992-11-19 Thomcast Ag Method of compensating for non-linearities in an amplifying circuit with strong signal passage time
US5381108A (en) * 1992-11-16 1995-01-10 Linear Modulation Technology Limited Automatic calibration of the quadrature balance within a cartesian amplifier
EP0638994A1 (en) 1993-08-13 1995-02-15 Philips Electronics Uk Limited Transmitter and power amplifier therefor
EP0658975A1 (en) 1993-12-14 1995-06-21 ALCATEL ITALIA S.p.A. Baseband predistortion system for the adaptive linearization of power amplifiers
US5732334A (en) * 1996-07-04 1998-03-24 Mitsubishi Denki Kabushiki Kaisha Radio transmitter and method of controlling transmission by radio transmitter
US5748037A (en) 1994-03-11 1998-05-05 Motorola, Inc. Radio transmitter power amplifier calibration
US5748038A (en) 1994-03-09 1998-05-05 Motorola, Inc. Method for amplifier training in a linear power amplifier
US5760646A (en) * 1996-03-29 1998-06-02 Spectrian Feed-forward correction loop with adaptive predistortion injection for linearization of RF power amplifier
US5850162A (en) * 1997-02-20 1998-12-15 Harris Corporation Linearization of an amplifier employing modified feedforward correction
US5870668A (en) * 1995-08-18 1999-02-09 Fujitsu Limited Amplifier having distortion compensation and base station for radio communication using the same
US5892397A (en) 1996-03-29 1999-04-06 Spectrian Adaptive compensation of RF amplifier distortion by injecting predistortion signal derived from respectively different functions of input signal amplitude
US5898338A (en) * 1996-09-20 1999-04-27 Spectrian Adaptive digital predistortion linearization and feed-forward correction of RF power amplifier
US5903611A (en) 1996-03-22 1999-05-11 Matra Communication Method of correcting nonlinearities of an amplifier, and radio transmitter employing a method of this type
US6081698A (en) * 1995-09-19 2000-06-27 Fujitsu Limited Radio apparatus and offset compensating method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462001A (en) * 1982-02-22 1984-07-24 Canadian Patents & Development Limited Baseband linearizer for wideband, high power, nonlinear amplifiers
JPS6278902A (en) * 1985-10-01 1987-04-11 Nec Corp High output amplifier with linearized circuit
JPH05218752A (en) * 1992-02-03 1993-08-27 Hitachi Ltd Linear power amplifier device
JP3268135B2 (en) * 1994-09-06 2002-03-25 株式会社日立国際電気 transceiver
JP3560398B2 (en) * 1995-08-31 2004-09-02 富士通株式会社 Amplifier with distortion compensation
JP3865336B2 (en) * 1997-10-21 2007-01-10 株式会社ケンウッド High frequency power amplifier
JPH11136302A (en) * 1997-10-29 1999-05-21 Fujitsu Ltd Distortion compensation circuit
JPH11243430A (en) * 1998-02-25 1999-09-07 Sumitomo Electric Ind Ltd Quadrature modulator
US6275685B1 (en) * 1998-12-10 2001-08-14 Nortel Networks Limited Linear amplifier arrangement

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485349A (en) * 1983-04-08 1984-11-27 Varian Associates, Inc. Stabilized microwave power amplifier system
US4999583A (en) * 1990-02-28 1991-03-12 Hughes Aircraft Company Amplifier drive controller
US5049832A (en) * 1990-04-20 1991-09-17 Simon Fraser University Amplifier linearization by adaptive predistortion
EP0513402A1 (en) 1991-04-24 1992-11-19 Thomcast Ag Method of compensating for non-linearities in an amplifying circuit with strong signal passage time
US5381108A (en) * 1992-11-16 1995-01-10 Linear Modulation Technology Limited Automatic calibration of the quadrature balance within a cartesian amplifier
EP0638994A1 (en) 1993-08-13 1995-02-15 Philips Electronics Uk Limited Transmitter and power amplifier therefor
EP0658975A1 (en) 1993-12-14 1995-06-21 ALCATEL ITALIA S.p.A. Baseband predistortion system for the adaptive linearization of power amplifiers
US5748038A (en) 1994-03-09 1998-05-05 Motorola, Inc. Method for amplifier training in a linear power amplifier
US5748037A (en) 1994-03-11 1998-05-05 Motorola, Inc. Radio transmitter power amplifier calibration
US5870668A (en) * 1995-08-18 1999-02-09 Fujitsu Limited Amplifier having distortion compensation and base station for radio communication using the same
US6081698A (en) * 1995-09-19 2000-06-27 Fujitsu Limited Radio apparatus and offset compensating method
US6091941A (en) * 1995-09-19 2000-07-18 Fujitsu Limited Radio apparatus
US5903611A (en) 1996-03-22 1999-05-11 Matra Communication Method of correcting nonlinearities of an amplifier, and radio transmitter employing a method of this type
US5760646A (en) * 1996-03-29 1998-06-02 Spectrian Feed-forward correction loop with adaptive predistortion injection for linearization of RF power amplifier
US5892397A (en) 1996-03-29 1999-04-06 Spectrian Adaptive compensation of RF amplifier distortion by injecting predistortion signal derived from respectively different functions of input signal amplitude
US5732334A (en) * 1996-07-04 1998-03-24 Mitsubishi Denki Kabushiki Kaisha Radio transmitter and method of controlling transmission by radio transmitter
US5898338A (en) * 1996-09-20 1999-04-27 Spectrian Adaptive digital predistortion linearization and feed-forward correction of RF power amplifier
US5850162A (en) * 1997-02-20 1998-12-15 Harris Corporation Linearization of an amplifier employing modified feedforward correction

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
R. S. Narayanaswami, The Design Of A 1.9GHz 250mW CMOS Power Amplifier For DECT., http://kabuki.eecs.berkeley.edu/~rsn/Theses/MS/master.full.html; printed May 16, 1999, pp. 1-42.
R. S. Narayanaswami, The Design Of A 1.9GHz 250mW CMOS Power Amplifier For DECT., http://kabuki.eecs.berkeley.edu/˜rsn/Theses/MS/master.full.html; printed May 16, 1999, pp. 1-42.
S. Andreoli, H. McClure, P. Banelli, S. Cacopardi, "Linearizing Digital RF Amplifier", IEEE-46th Broadcast Symposium, http://www.itelco-usa.com/ieee/Intro.htm; printed May 10, 1999, pp. 1-12.
S. Andreoli, H. McClure, P. Banelli, S. Cacopardi, "Linearizing Digital RF Amplifier", IEEE—46th Broadcast Symposium, http://www.itelco-usa.com/ieee/Intro.htm; printed May 10, 1999, pp. 1-12.
Standard Search Report for RS 104147US Completed Apr. 4, 2000.
T. Matsuoka, M. Orihashi, M. Sagawa, H. Ikeda, and K. Misaizu, "Compensation of Nonlinear Distortion During Transmission Based on the Adaptive Predistortion Method," IEICE Trans. Electron., vol. E80-C, No. 6, Jun., 1997, pp. 782-787.
T. Rahkonen and T. Kankaala, "An Analog Predistortion Integrated Circuit for Linearizing Power Amplifiers", 1998 Midwest Symposium on Systems and Circuits, South Bend, Indiana, Aug. 9-12, 1998, pp. 1-4.
W. H. Pierce, P. Aronhime, and J. Deng, "A Simple Predistortion Algorithm and Limits of Predistortion", 1998 Midwest Symposium on Systems and Circuits, South Bend, Indiana, Aug. 9-12, 1998, pp. 1-4.

Cited By (317)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654426B2 (en) * 1999-03-26 2003-11-25 Nokia Networks Oy Correction of nonlinearity of I/Q modulator
US6320463B1 (en) * 1999-06-15 2001-11-20 Alcatel Adaptive digital pre-correction of nonlinearities introduced by power amplifiers
US6342810B1 (en) * 1999-07-13 2002-01-29 Pmc-Sierra, Inc. Predistortion amplifier system with separately controllable amplifiers
US6515712B1 (en) * 1999-07-31 2003-02-04 Lg Information & Communications, Ltd. Signal distortion compensating apparatus and method in digital TV translator
US6369666B1 (en) * 1999-11-22 2002-04-09 Infineon Technologies Ag Modulator circuit configuration
US6999524B1 (en) * 1999-12-09 2006-02-14 Rohde & Schwarz Gmbh & Co. Kg Arrangement for controlling the output power of an HF transmitter
US6449465B1 (en) * 1999-12-20 2002-09-10 Motorola, Inc. Method and apparatus for linear amplification of a radio frequency signal
US6421397B1 (en) * 2000-01-28 2002-07-16 Alcatel Canada Inc. Modulation system having on-line IQ calibration
US6574286B2 (en) 2000-01-28 2003-06-03 Alcatel Canada Inc. Modulation system having on-line IQ calibration
US6421398B1 (en) * 2000-01-28 2002-07-16 Alcatel Canada Inc. Modulation system having on-line IQ calibration
US6831954B1 (en) * 2000-02-01 2004-12-14 Nokia Corporation Apparatus, and associated method, for compensating for distortion introduced upon a send signal by an amplifier
US6687311B1 (en) * 2000-02-15 2004-02-03 General Instrument Corporation Direct QAM modulator with digital feedback control and complex pre-equalization for phase and amplitude distortion
US20040021514A1 (en) * 2000-02-17 2004-02-05 Ring Steven R Distortion detection for a power amplifier
US6949975B2 (en) * 2000-02-17 2005-09-27 Andrew Corporation Distortion detection for a power amplifier
US20020186713A1 (en) * 2000-03-21 2002-12-12 Dominique Brunel Communication system with frequency modulation and a single local oscillator
US7333554B2 (en) * 2000-03-21 2008-02-19 Nxp B.V. Communication system with frequency modulation and a single local oscillator
US20020058486A1 (en) * 2000-10-17 2002-05-16 Jonas Persson Communications systems
US7072420B2 (en) * 2000-10-17 2006-07-04 Telefonaktiebolaget L M Ericsson (Publ) Communications systems
US7471935B2 (en) 2000-10-23 2008-12-30 Intel Corporation Automatic level control
US20040219944A1 (en) * 2000-10-23 2004-11-04 Ilan Barak Automatic level control
KR100446500B1 (en) * 2001-03-19 2004-09-04 삼성전자주식회사 Compensating method and circuit of non-linear distortion
US7035345B2 (en) * 2001-06-08 2006-04-25 Polyvalor S.E.C. Adaptive predistortion device and method using digital receiver
US20020191710A1 (en) * 2001-06-08 2002-12-19 Jeckeln Ernesto G. Adaptive predistortion device and method using digital receiver
US7088958B2 (en) * 2001-06-19 2006-08-08 Intersil Americas Inc. Remote power amplifier linearization
US20020193078A1 (en) * 2001-06-19 2002-12-19 Macfarlane Shearer Daniel Davidson Remote power amplifier linearization
WO2003043183A1 (en) * 2001-11-12 2003-05-22 Telefonaktiebolaget Lm Ericsson Digital linearization circuit
US20040247042A1 (en) * 2001-11-12 2004-12-09 Karl-Gosta Sahlman Digital linearization circuit
US7460613B2 (en) 2001-11-12 2008-12-02 Telefonaktiebolaget Lm Ericsson (Publ) Digital linearization circuit
US20030095608A1 (en) * 2001-11-16 2003-05-22 Koninklijke Philips Electronics N.V. Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
US7058139B2 (en) * 2001-11-16 2006-06-06 Koninklijke Philips Electronics N.V. Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
WO2003043179A2 (en) * 2001-11-16 2003-05-22 Koninklijke Philips Electronics N.V. Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
WO2003043179A3 (en) * 2001-11-16 2003-11-27 Koninkl Philips Electronics Nv Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
CN100423447C (en) * 2001-11-16 2008-10-01 Nxp股份有限公司 Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
KR100438551B1 (en) * 2001-11-17 2004-07-03 엘지전자 주식회사 Apparatus and method for detecting a receive signal strength of base station receiver
US20030102911A1 (en) * 2001-11-30 2003-06-05 Gopal Raghavan Bipolar transistor-based linearizer with programmable gain and phase response system
US6750709B2 (en) * 2001-11-30 2004-06-15 The Boeing Company Bipolar transistor-based linearizer with programmable gain and phase response system
US20030184374A1 (en) * 2002-03-26 2003-10-02 Xinping Huang Type-based baseband predistorter function estimation technique for non-linear circuits
US6885241B2 (en) * 2002-03-26 2005-04-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Type-based baseband predistorter function estimation technique for non-linear circuits
US20030197558A1 (en) * 2002-04-18 2003-10-23 Agere Systems Inc. Adaptive predistortion system and a method of adaptively predistorting a signal
US6853246B2 (en) * 2002-04-18 2005-02-08 Agere Systems Inc. Adaptive predistortion system and a method of adaptively predistorting a signal
US20050185736A1 (en) * 2002-04-30 2005-08-25 Kari Pajukoski Method for limiting signal and transmitter
US7940857B2 (en) * 2002-04-30 2011-05-10 Nokia Corporation Method for limiting signal and transmitter
US9077297B2 (en) 2002-05-01 2015-07-07 Dali Systems Co., Ltd. Power amplifier time-delay invariant predistortion methods and apparatus
US9374196B2 (en) 2002-05-01 2016-06-21 Dali Systems Co. Ltd. System and method for digital memorized predistortion for wireless communication
US8380143B2 (en) 2002-05-01 2013-02-19 Dali Systems Co. Ltd Power amplifier time-delay invariant predistortion methods and apparatus
US8326238B2 (en) 2002-05-01 2012-12-04 Dali Systems Co, Ltd. System and method for digital memorized predistortion for wireless communication
US8620234B2 (en) 2002-05-01 2013-12-31 Dali Systems Co., Ltd. High efficiency linearization power amplifier for wireless communication
US20080174365A1 (en) * 2002-05-01 2008-07-24 Dali Systems Co. Ltd. Power Amplifier Time-Delay Invariant Predistortion Methods and Apparatus
US20080265996A1 (en) * 2002-05-01 2008-10-30 Dali Systems Co., Ltd Digital Hybrid Mode Power Amplifier System
US20070241812A1 (en) * 2002-05-01 2007-10-18 Dali Systems Co. Ltd. High efficiency linearization power amplifier for wireless communication
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US11418155B2 (en) 2002-05-01 2022-08-16 Dali Wireless, Inc. Digital hybrid mode power amplifier system
US9031521B2 (en) 2002-05-01 2015-05-12 Dali Systems Co. Ltd. System and method for digital memorized predistortion for wireless communication
US9054758B2 (en) 2002-05-01 2015-06-09 Dali Systems Co. Ltd. High efficiency linearization power amplifier for wireless communication
US8064850B2 (en) 2002-05-01 2011-11-22 Dali Systems Co., Ltd. High efficiency linearization power amplifier for wireless communication
US20060046665A1 (en) * 2002-05-01 2006-03-02 Dali Yang System and method for digital memorized predistortion for wireless communication
US11159129B2 (en) 2002-05-01 2021-10-26 Dali Wireless, Inc. Power amplifier time-delay invariant predistortion methods and apparatus
US10985965B2 (en) 2002-05-01 2021-04-20 Dali Wireless, Inc. System and method for digital memorized predistortion for wireless communication
US10693425B2 (en) 2002-05-01 2020-06-23 Dali Wireless, Inc. Power amplifier time-delay invariant predistortion methods and apparatus
US9742446B2 (en) 2002-05-01 2017-08-22 Dali Wireless, Inc. High efficiency linearization power amplifier for wireless communication
US10305521B2 (en) 2002-05-01 2019-05-28 Dali Wireless, Inc. High efficiency linearization power amplifier for wireless communication
US10097142B2 (en) 2002-05-01 2018-10-09 Dali Wireless, Inc. Power amplifier time-delay invariant predistortion methods and apparatus
US20040232985A1 (en) * 2002-05-14 2004-11-25 Hiroshi Itahara Hybrid distortion compensation method and hybrid distortion compensation device
US7248112B2 (en) 2002-05-14 2007-07-24 Matsushita Electric Industrial Co., Ltd. Hybrid distortion compensation method and hybrid distortion compensation device
US7801244B2 (en) 2002-05-16 2010-09-21 Rf Micro Devices, Inc. Am to AM correction system for polar modulator
US7991071B2 (en) 2002-05-16 2011-08-02 Rf Micro Devices, Inc. AM to PM correction system for polar modulator
US20030215026A1 (en) * 2002-05-16 2003-11-20 Hietala Alexander Wayne AM to AM correction system for polar modulator
US20030215025A1 (en) * 2002-05-16 2003-11-20 Hietala Alexander Wayne AM to PM correction system for polar modulator
US7194043B2 (en) * 2002-05-31 2007-03-20 Lucent Technologies Inc. System and method for predistorting a signal to reduce out-of-band error
US20030223509A1 (en) * 2002-05-31 2003-12-04 Zhengxiang Ma system and method for predistorting a signal to reduce out-of-band error
US20030223508A1 (en) * 2002-05-31 2003-12-04 Lei Ding System and method for predistorting a signal using current and past signal samples
US7269231B2 (en) * 2002-05-31 2007-09-11 Lucent Technologies Inc. System and method for predistorting a signal using current and past signal samples
US20040057533A1 (en) * 2002-09-23 2004-03-25 Kermalli Munawar Hussein System and method for performing predistortion at intermediate frequency
US7289776B2 (en) * 2002-10-01 2007-10-30 Matsushita Electric Industrial Co., Ltd. Nonlinear distortion compensation circuit with feedback and baseband reference signal that are phase and amplitude controllable
US20050245211A1 (en) * 2002-10-01 2005-11-03 Akihiko Matsuoka Transmission device
US20040070454A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Continuous bias circuit and method for an amplifier
US20040072554A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Automatic-bias amplifier circuit
US7277678B2 (en) * 2002-10-28 2007-10-02 Skyworks Solutions, Inc. Fast closed-loop power control for non-constant envelope modulation
US20040083409A1 (en) * 2002-10-28 2004-04-29 Skyworks Solutions, Inc. Fast closed-loop power control for non-constant envelope modulation
US20040174214A1 (en) * 2002-11-06 2004-09-09 Triquint Semiconductor, Inc. Accurate power detection for a multi-stage amplifier
US6989712B2 (en) 2002-11-06 2006-01-24 Triquint Semiconductor, Inc. Accurate power detection for a multi-stage amplifier
US7010284B2 (en) * 2002-11-06 2006-03-07 Triquint Semiconductor, Inc. Wireless communications device including power detector circuit coupled to sample signal at interior node of amplifier
US20040085126A1 (en) * 2002-11-06 2004-05-06 Triquint Semiconductor, Inc. Accurate power detection for a multi-stage amplifier
US7526260B2 (en) 2002-11-14 2009-04-28 M/A-Com Eurotec, B.V. Apparatus, methods and articles of manufacture for linear signal modification
US20040097213A1 (en) * 2002-11-14 2004-05-20 Nagle Pierce Joseph Apparatus, methods and articles of manufacture for linear signal modification
US20050206448A1 (en) * 2002-11-14 2005-09-22 M/A-Com Eurotec, B.V. Apparatus, methods and articles of manufacture for electromagnetic processing
US20040189395A1 (en) * 2002-11-14 2004-09-30 M/A-Com, Eurotec Bv Apparatus, methods and articles of manufacture for processing an electromagnetic wave
US7245183B2 (en) 2002-11-14 2007-07-17 M/A-Com Eurotec Bv Apparatus, methods and articles of manufacture for processing an electromagnetic wave
US20070103236A9 (en) * 2002-11-14 2007-05-10 M/A-Com, Eurotec Bv Apparatus, methods and articles of manufacture for processing an electromagnetic wave
US6891432B2 (en) 2002-11-14 2005-05-10 Mia-Com, Inc. Apparatus, methods and articles of manufacture for electromagnetic processing
US20040104768A1 (en) * 2002-12-02 2004-06-03 M/A-Com Eurotec Apparatus, methods and articles of manufacture for multiband signal processing
US7187231B2 (en) 2002-12-02 2007-03-06 M/A-Com, Inc. Apparatus, methods and articles of manufacture for multiband signal processing
US20040105502A1 (en) * 2002-12-03 2004-06-03 M/A-Com, Inc. Apparatus, methods and articles of manufacture for wideband signal processing
US7545865B2 (en) 2002-12-03 2009-06-09 M/A-Com, Inc. Apparatus, methods and articles of manufacture for wideband signal processing
US20040109572A1 (en) * 2002-12-04 2004-06-10 M/A-Com, Inc. Apparatus, methods and articles of manufacture for noise reduction in electromagnetic signal processing
US7298854B2 (en) 2002-12-04 2007-11-20 M/A-Com, Inc. Apparatus, methods and articles of manufacture for noise reduction in electromagnetic signal processing
US6859098B2 (en) 2003-01-17 2005-02-22 M/A-Com, Inc. Apparatus, methods and articles of manufacture for control in an electromagnetic processor
US20040183635A1 (en) * 2003-03-06 2004-09-23 Tyco Electronics Corporation Apparatus, methods and articles of manufacture for digital modification in electromagnetic signal processing
US6924699B2 (en) 2003-03-06 2005-08-02 M/A-Com, Inc. Apparatus, methods and articles of manufacture for digital modification in electromagnetic signal processing
CN1795627B (en) * 2003-04-03 2010-04-28 北方电讯网络有限公司 Method and system for compensation of non-linear effects in an optical communications system, and distortion compensator
US7203262B2 (en) 2003-05-13 2007-04-10 M/A-Com, Inc. Methods and apparatus for signal modification in a fractional-N phase locked loop system
US7805115B1 (en) * 2003-06-02 2010-09-28 Analog Devices, Inc. Variable filter systems and methods for enhanced data rate communication systems
US20040252784A1 (en) * 2003-06-13 2004-12-16 Walter Honcharenko Coefficient estimation method and apparatus
US7720171B2 (en) * 2003-06-13 2010-05-18 Alcatel-Lucent Usa Inc. Coefficient estimation method and apparatus
US7423484B2 (en) 2003-07-03 2008-09-09 Zarbana Digital Fund Llc Adaptive predistortion for a transmit system with gain, phase and delay adjustments
US7953378B2 (en) 2003-07-03 2011-05-31 Zarbana Digital Fund Llc Predistortion circuit for a transmit system
US7737778B2 (en) 2003-07-03 2010-06-15 Aryan Saed Adaptive predistortion for a transmit system
US20100214018A1 (en) * 2003-07-03 2010-08-26 Saed Aryan Adaptive predistortion for a transmit system
WO2005004323A1 (en) 2003-07-03 2005-01-13 Icefyre Semiconductor Corporation Adaptive predistortion for a transmit system
US20060125560A1 (en) * 2003-07-03 2006-06-15 Aryan Saed Adaptive predistortion for a transmit system with gain, phase and delay adjustments
US20060158255A1 (en) * 2003-07-03 2006-07-20 Aryan Saed Adaptive predistortion for a transmit system with gain, phase and delay adjustments
US20080268795A1 (en) * 2003-07-03 2008-10-30 Zarbana Digital Fund, Llc Predistortion circuit for a transmit system
US7327192B2 (en) 2003-07-03 2008-02-05 Zarbana Digital Fund Llc Adaptive predistortion for a transmit system with gain, phase and delay adjustments
US7312656B2 (en) 2003-07-03 2007-12-25 Zarbana Digital Fund Llc Adaptive predistortion for a transmit system with gain, phase and delay adjustments
US7409193B2 (en) 2003-07-03 2008-08-05 Zarbana Digital Fund Llc Predistortion circuit for a transmit system
KR101122985B1 (en) * 2003-07-03 2012-03-16 자바나 디지털 펀드 엘엘씨 Adaptive predistortion for a transmit system
US20080096497A1 (en) * 2003-07-03 2008-04-24 Zarbana Digital Fund Llc Adaptive predistortion for a transmit system
US20070080749A1 (en) * 2003-07-03 2007-04-12 Aryan Saed Adaptive predistortion for a transmit system with gain, phase and delay adjustments
US7453952B2 (en) 2003-07-03 2008-11-18 Saed Aryan Predistortion circuit for a transmit system
US8248160B2 (en) 2003-07-03 2012-08-21 Zarbana Digital Fund Llc Adaptive predistortion for a transmit system
US7379715B2 (en) * 2003-08-07 2008-05-27 Matsushita Electric Industrial Co., Ltd. Transmitter apparatus and method using polar modulation with signal timing adjustment
US20060246856A1 (en) * 2003-08-07 2006-11-02 Matsushita Electric Industrial Co., Ltd Transmitter apparatus
US20050064878A1 (en) * 2003-09-19 2005-03-24 O'meagher Brent Method and system for delivering virtual reference station data
US7091778B2 (en) 2003-09-19 2006-08-15 M/A-Com, Inc. Adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
US20050062529A1 (en) * 2003-09-19 2005-03-24 M/A-Com, Inc. Adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
US6882221B2 (en) * 2003-09-22 2005-04-19 Northrop Grumman Corporation Digital predistortion for power amplifier
US20050062531A1 (en) * 2003-09-22 2005-03-24 Schreyer George W. Digital predistortion for power amplifier
US7023273B2 (en) * 2003-10-06 2006-04-04 Andrew Corporation Architecture and implementation methods of digital predistortion circuitry
US20050073360A1 (en) * 2003-10-06 2005-04-07 Andrew Corporation Architecture and implementation methods of digital predistortion circuitry
US7129777B2 (en) 2003-10-10 2006-10-31 Postech Foundation Digital feedback linearizing apparatus to linearize power amplifier and method used by the apparatus
EP1523102A3 (en) * 2003-10-10 2006-01-04 Postech Foundation Digital feedback linearizing apparatuses and methods
US20050077960A1 (en) * 2003-10-10 2005-04-14 Postech Foundation Digital feedback linearizing apparatus to linearize power amplifier and method used by the apparatus
US20050085198A1 (en) * 2003-10-21 2005-04-21 Kiomars Anvari Power boosting technique for wireless multi-carrier power amplifier
US7146138B2 (en) * 2003-10-21 2006-12-05 Kiomars Anvari Power boosting technique for wireless multi-carrier power amplifier
US20050124303A1 (en) * 2003-12-08 2005-06-09 M/A-Com, Inc. Compensating for load pull in electromagentic signal propagation using adaptive impedance matching
US7343138B2 (en) 2003-12-08 2008-03-11 M/A-Com, Inc. Compensating for load pull in electromagentic signal propagation using adaptive impedance matching
US7305041B2 (en) * 2004-02-20 2007-12-04 Kiomars Anvari Peak suppression of multi-carrier signal with different modulation
US20050185723A1 (en) * 2004-02-20 2005-08-25 Kiomars Anvari Peak suppression of multi-carrier signal with different modulation
US8155238B2 (en) 2004-04-23 2012-04-10 Intel Mobile Communications GmbH Device for processing radio transmission data with digital predistortion
DE102004019984B4 (en) * 2004-04-23 2006-06-29 Infineon Technologies Ag Device for processing radio transmission data with digital predistortion
DE102004019984A1 (en) * 2004-04-23 2005-11-17 Infineon Technologies Ag Device for processing radio transmission data with digital predistortion
US7545880B1 (en) 2004-06-23 2009-06-09 Rf Micro Devices, Inc. Multiple polynomial digital predistortion
US7551686B1 (en) 2004-06-23 2009-06-23 Rf Micro Devices, Inc. Multiple polynomial digital predistortion
US20060050810A1 (en) * 2004-07-29 2006-03-09 Interdigital Technology Corporation Hybrid transmitter architecture having high efficiency and large dynamic range
US7529523B1 (en) 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
US8626093B2 (en) 2004-10-22 2014-01-07 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US7945224B2 (en) 2004-10-22 2011-05-17 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including waveform distortion compensation embodiments
US20100119010A1 (en) * 2004-10-22 2010-05-13 Parkervision, Inc. Control Modules
US9143088B2 (en) 2004-10-22 2015-09-22 Parkervision, Inc. Control modules
US9166528B2 (en) 2004-10-22 2015-10-20 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US9197163B2 (en) 2004-10-22 2015-11-24 Parkvision, Inc. Systems, and methods of RF power transmission, modulation, and amplification, including embodiments for output stage protection
US8428527B2 (en) 2004-10-22 2013-04-23 Parkervision, Inc. RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments
US8233858B2 (en) 2004-10-22 2012-07-31 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments, including control circuitry for controlling power amplifier output stages
US20060293000A1 (en) * 2004-10-22 2006-12-28 Parker Vision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a direct cartesian 2-branch embodiment
US8913974B2 (en) 2004-10-22 2014-12-16 Parkervision, Inc. RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments
US9197164B2 (en) 2004-10-22 2015-11-24 Parkervision, Inc. RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments
US20070026822A1 (en) * 2004-10-22 2007-02-01 Sorrells David F Systems and methods of RF power transmission, modulation, and amplification, including multiple input single output (MISO) amplifiers
US8280321B2 (en) 2004-10-22 2012-10-02 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including Cartesian-Polar-Cartesian-Polar (CPCP) embodiments
US9768733B2 (en) 2004-10-22 2017-09-19 Parker Vision, Inc. Multiple input single output device with vector signal and bias signal inputs
US8781418B2 (en) 2004-10-22 2014-07-15 Parkervision, Inc. Power amplification based on phase angle controlled reference signal and amplitude control signal
US8433264B2 (en) 2004-10-22 2013-04-30 Parkervision, Inc. Multiple input single output (MISO) amplifier having multiple transistors whose output voltages substantially equal the amplifier output voltage
US8406711B2 (en) 2004-10-22 2013-03-26 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a Cartesian-Polar-Cartesian-Polar (CPCP) embodiment
US8351870B2 (en) 2004-10-22 2013-01-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including cartesian 4-branch embodiments
US7932776B2 (en) 2004-10-22 2011-04-26 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US8447248B2 (en) 2004-10-22 2013-05-21 Parkervision, Inc. RF power transmission, modulation, and amplification, including power control of multiple input single output (MISO) amplifiers
US8639196B2 (en) 2004-10-22 2014-01-28 Parkervision, Inc. Control modules
US20070178859A1 (en) * 2004-10-22 2007-08-02 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including cartesian 4-branch embodiments
US8577313B2 (en) 2004-10-22 2013-11-05 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including output stage protection circuitry
DE102004055934A1 (en) * 2004-11-19 2006-06-08 Siemens Ag Device for base point correction of envelope of high frequency (HF) pulse, containing input and output interfaces, at least one correction point memory and base point memory and specified logic circuit, for signal processor
US20100007415A1 (en) * 2004-12-21 2010-01-14 Zte Corporation Signal nonlinear distoration magnitude detection method and device
US7839214B2 (en) * 2004-12-21 2010-11-23 Zte Corporation Signal nonlinear distoration magnitude detection method and device
EP1830479A4 (en) * 2004-12-21 2012-06-06 Zte Corp A signal nonlinear distortion magnitude detection method and device
EP1830479A1 (en) * 2004-12-21 2007-09-05 ZTE Corporation A signal nonlinear distortion magnitude detection method and device
US20060217083A1 (en) * 2005-03-22 2006-09-28 Braithwaite Richard N Rf power amplifier system employing an analog predistortion module using zero crossings
US7193462B2 (en) 2005-03-22 2007-03-20 Powerwave Technologies, Inc. RF power amplifier system employing an analog predistortion module using zero crossings
US8224265B1 (en) 2005-06-13 2012-07-17 Rf Micro Devices, Inc. Method for optimizing AM/AM and AM/PM predistortion in a mobile terminal
US20070030065A1 (en) * 2005-06-29 2007-02-08 Nokia Corporation Data processing method, pre-distortion arrangement, transmitter, network element and base station
US20070015474A1 (en) * 2005-06-29 2007-01-18 Nokia Corporation Data processing method, transmitter, device, network element and base station
US7796959B2 (en) * 2005-06-29 2010-09-14 Nokia Siemens Networks Oy Data processing method, transmitter, device, network element and base station
US7653147B2 (en) * 2005-08-17 2010-01-26 Intel Corporation Transmitter control
US20070041470A1 (en) * 2005-08-17 2007-02-22 Intel Corporation Transmitter control
US20090028251A1 (en) * 2005-08-30 2009-01-29 Thales Method and device for controlling peak power and pulse width of a broadband gaussian pulse high-power rf transmitter
US8149908B2 (en) * 2005-08-30 2012-04-03 Thales Method and device for controlling peak power and pulse width of a broadband gaussian pulse high-power RF transmitter
US9419692B2 (en) 2005-10-24 2016-08-16 Parkervision, Inc. Antenna control
US9608677B2 (en) 2005-10-24 2017-03-28 Parker Vision, Inc Systems and methods of RF power transmission, modulation, and amplification
US9614484B2 (en) 2005-10-24 2017-04-04 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including control functions to transition an output of a MISO device
US9705540B2 (en) 2005-10-24 2017-07-11 Parker Vision, Inc. Control of MISO node
US9106316B2 (en) 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US9094085B2 (en) 2005-10-24 2015-07-28 Parkervision, Inc. Control of MISO node
US7877060B1 (en) 2006-02-06 2011-01-25 Rf Micro Devices, Inc. Fast calibration of AM/PM pre-distortion
US20070190952A1 (en) * 2006-02-15 2007-08-16 Texas Instruments Incorporated Linearization of a transmit amplifier
US20120263256A1 (en) * 2006-02-15 2012-10-18 Khurram Waheed Linearization of a transmit amplifier
US8195103B2 (en) * 2006-02-15 2012-06-05 Texas Instruments Incorporated Linearization of a transmit amplifier
US9020454B2 (en) * 2006-02-15 2015-04-28 Texas Instruments Incorporated Linearization and calibration predistortion of a digitally controlled power amplifier
US20070222513A1 (en) * 2006-03-09 2007-09-27 Kossor Michael G Apparatus and method for processing of amplifier linearization signals
US7856105B2 (en) 2006-03-09 2010-12-21 Andrew Llc Apparatus and method for processing of amplifier linearization signals
US7962108B1 (en) 2006-03-29 2011-06-14 Rf Micro Devices, Inc. Adaptive AM/PM compensation
DE102006017515B3 (en) * 2006-04-13 2007-10-18 Infineon Technologies Ag Predistorter for use with power amplifier for pre-distorting input signal, has transmission units provided to reproduce nonlinear transmission characteristic of follower by using linear approximation
US8036306B2 (en) 2006-04-24 2011-10-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification, including embodiments for compensating for waveform distortion
US8059749B2 (en) * 2006-04-24 2011-11-15 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US8026764B2 (en) 2006-04-24 2011-09-27 Parkervision, Inc. Generation and amplification of substantially constant envelope signals, including switching an output among a plurality of nodes
US9106500B2 (en) 2006-04-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for error correction
US8050353B2 (en) 2006-04-24 2011-11-01 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US7929989B2 (en) 2006-04-24 2011-04-19 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US7937106B2 (en) 2006-04-24 2011-05-03 ParkerVision, Inc, Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US7949365B2 (en) 2006-04-24 2011-05-24 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US20090085658A1 (en) * 2006-04-28 2009-04-02 Dali Systems Co. Ltd. Analog power amplifier predistortion methods and apparatus
US8693962B2 (en) 2006-04-28 2014-04-08 Dali Systems Co. Ltd. Analog power amplifier predistortion methods and apparatus
US20070258543A1 (en) * 2006-05-04 2007-11-08 Klaus Huber Controller for a radio-frequency amplifier
US7778353B2 (en) 2006-05-04 2010-08-17 Siemens Aktiengesellschaft Controller for a radio-frequency amplifier
US8913691B2 (en) 2006-08-24 2014-12-16 Parkervision, Inc. Controlling output power of multiple-input single-output (MISO) device
US20080270082A1 (en) * 2006-09-29 2008-10-30 Optichron, Inc. Low-power and low-cost adaptive self-linearization system with fast convergence
US20080288199A1 (en) * 2006-09-29 2008-11-20 Optichron, Inc. Distortion cancellation using adaptive linearization
US8620981B2 (en) 2006-09-29 2013-12-31 Netlogic Microsystems, Inc. Low power and low complexity adaptive self-linearization
US8032336B2 (en) * 2006-09-29 2011-10-04 Netlogic Microsystems, Inc. Distortion cancellation using adaptive linearization
US8660820B2 (en) * 2006-09-29 2014-02-25 Netlogic Microsystems, Inc. Distortion cancellation using adaptive linearization
US20080082597A1 (en) * 2006-09-29 2008-04-03 Optichron, Inc. Low power and low complexity adaptive self-linearization
US8370113B2 (en) 2006-09-29 2013-02-05 Netlogic Microsystems, Inc. Low-power and low-cost adaptive self-linearization system with fast convergence
US9197262B2 (en) 2006-09-29 2015-11-24 Broadcom Corporation Low-power and low-cost adaptive self-linearization system with fast convergence
US8041757B2 (en) 2006-09-29 2011-10-18 Netlogic Microsystems, Inc. Low power and low complexity adaptive self-linearization
US20120029881A1 (en) * 2006-09-29 2012-02-02 Netlogic Microsystems, Inc. Distortion cancellation using adaptive linearization
US7689182B1 (en) 2006-10-12 2010-03-30 Rf Micro Devices, Inc. Temperature compensated bias for AM/PM improvement
US8472897B1 (en) 2006-12-22 2013-06-25 Dali Systems Co. Ltd. Power amplifier predistortion methods and apparatus
US9246731B2 (en) 2006-12-26 2016-01-26 Dali Systems Co. Ltd. Method and system for baseband predistortion linearization in multi-channel wideband communication systems
US8149950B2 (en) 2006-12-26 2012-04-03 Dali Systems Co. Ltd. Method and system for baseband predistortion linearization in multi-channel wideband communication systems
US8509347B2 (en) 2006-12-26 2013-08-13 Dali Systems Co. Ltd. Method and system for baseband predistortion linearization in multi-channel wideband communication systems
US9913194B2 (en) 2006-12-26 2018-03-06 Dali Wireless, Inc. Method and system for baseband predistortion linearization in multi-channel wideband communication systems
US11129076B2 (en) 2006-12-26 2021-09-21 Dali Wireless, Inc. Method and system for baseband predistortion linearization in multi-channel wideband communication systems
US8855234B2 (en) 2006-12-26 2014-10-07 Dali Systems Co. Ltd. Method and system for baseband predistortion linearization in multi-channel wideband communications systems
US20080152037A1 (en) * 2006-12-26 2008-06-26 Dali System Co., Ltd. Method and System for Baseband Predistortion Linearization in Multi-Channel Wideband Communication Systems
US11818642B2 (en) 2006-12-26 2023-11-14 Dali Wireless, Inc. Distributed antenna system
US7627293B2 (en) * 2006-12-28 2009-12-01 Alcatel-Lucent Usa Inc. Strategic predistortion function selection
US20080157869A1 (en) * 2006-12-28 2008-07-03 Rajan Bhandari Strategic predistortion function selection
US8009762B1 (en) 2007-04-17 2011-08-30 Rf Micro Devices, Inc. Method for calibrating a phase distortion compensated polar modulated radio frequency transmitter
US8618883B2 (en) 2007-04-23 2013-12-31 Dali Systems Co. Ltd. N-way doherty distributed power amplifier with power tracking
US9026067B2 (en) 2007-04-23 2015-05-05 Dali Systems Co. Ltd. Remotely reconfigurable power amplifier system and method
US20100176885A1 (en) * 2007-04-23 2010-07-15 Dali System Co. Ltd. N-Way Doherty Distributed Power Amplifier with Power Tracking
US8274332B2 (en) 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
US20100271957A1 (en) * 2007-04-23 2010-10-28 Dali Systems Co. Ltd. Remotely Reconfigurable Power Amplifier System and Method
US10298177B2 (en) 2007-04-23 2019-05-21 Dali Systems Co. Ltd. N-way doherty distributed power amplifier with power tracking
US9184703B2 (en) 2007-04-23 2015-11-10 Dali Systems Co. Ltd. N-way doherty distributed power amplifier with power tracking
WO2008144049A1 (en) * 2007-05-18 2008-11-27 Optichron, Inc. Distortion cancellation using adaptive linearization
US8548093B2 (en) 2007-05-18 2013-10-01 Parkervision, Inc. Power amplification based on frequency control signal
US8315336B2 (en) 2007-05-18 2012-11-20 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a switching stage embodiment
US8766717B2 (en) 2007-06-19 2014-07-01 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including varying weights of control signals
US8502600B2 (en) 2007-06-19 2013-08-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US8461924B2 (en) 2007-06-19 2013-06-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for controlling a transimpedance node
US8013675B2 (en) 2007-06-19 2011-09-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US8410849B2 (en) 2007-06-19 2013-04-02 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
US8884694B2 (en) 2007-06-28 2014-11-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US20120252382A1 (en) * 2007-07-31 2012-10-04 Texas Instruments Incorporated Predistortion calibration and built in self testing of a radio frequency power amplifier using subharmonic mixing
US8463189B2 (en) * 2007-07-31 2013-06-11 Texas Instruments Incorporated Predistortion calibration and built in self testing of a radio frequency power amplifier using subharmonic mixing
US20090096521A1 (en) * 2007-08-30 2009-04-16 Dali Systems Co. Ltd. Power amplifier predistortion methods and apparatus using envelope and phase detector
US8224266B2 (en) * 2007-08-30 2012-07-17 Dali Systems Co., Ltd. Power amplifier predistortion methods and apparatus using envelope and phase detector
US20100248658A1 (en) * 2007-10-18 2010-09-30 Freescale Semiconductor, Inc. Method and system of adaptive predistortion of a wireless transmitter
US8238849B2 (en) * 2007-10-18 2012-08-07 Freescale Semiconductor, Inc. Method and system of adaptive predistortion of a wireless transmitter
US8213884B2 (en) 2007-12-07 2012-07-03 Dali System Co. Ltd. Baseband-derived RF digital predistortion
US8548403B2 (en) 2007-12-07 2013-10-01 Dali Systems Co., Ltd. Baseband-derived RF digital predistortion
US8401499B2 (en) 2007-12-07 2013-03-19 Dali Systems Co. Ltd. Baseband-derived RF digital predistortion
US20090146736A1 (en) * 2007-12-07 2009-06-11 Dali System Co. Ltd. Baseband-Derived RF Digital Predistortion
US9768739B2 (en) 2008-03-31 2017-09-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US8023588B1 (en) 2008-04-08 2011-09-20 Pmc-Sierra, Inc. Adaptive predistortion of non-linear amplifiers with burst data
US8350557B2 (en) * 2008-08-18 2013-01-08 Fujitsu Limited Nonlinear degree measuring apparatus and method for a power amplifier, predistortion compensation apparatus
US20100039100A1 (en) * 2008-08-18 2010-02-18 Fujitsu Limited Nonlinear Degree Measuring Apparatus And Method For A Power Amplifier, Predistortion Compensation Apparatus
US8571495B2 (en) * 2009-03-02 2013-10-29 Fujitsu Limited Distortion compensation apparatus and method
US20100219889A1 (en) * 2009-03-02 2010-09-02 Fujitsu Limited Distortion compensation apparatus and method
US8482349B2 (en) 2009-03-09 2013-07-09 Zte Wistron Telecom Ab Method and apparatus for linearizing a non-linear power amplifier
US8489042B1 (en) 2009-10-08 2013-07-16 Rf Micro Devices, Inc. Polar feedback linearization
US8804870B2 (en) 2009-12-21 2014-08-12 Dali Systems Co. Ltd. Modulation agnostic digital hybrid mode power amplifier system and method
US9048797B2 (en) 2009-12-21 2015-06-02 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US8903337B2 (en) 2009-12-21 2014-12-02 Dali Systems Co. Ltd. Multi-band wide band power amplifier digital predistortion system
US9106453B2 (en) 2009-12-21 2015-08-11 Dali Systems Co. Ltd. Remote radio head unit system with wideband power amplifier and method
US8730786B2 (en) 2009-12-21 2014-05-20 Dali Systems Co. Ltd. Remote radio head unit system with wideband power amplifier and method
US9866414B2 (en) 2009-12-21 2018-01-09 Dali Systems Co. Ltd. Modulation agnostic digital hybrid mode power amplifier system and method
US8542768B2 (en) 2009-12-21 2013-09-24 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US10153789B2 (en) 2009-12-21 2018-12-11 Dali Systems Co. Ltd. Remote radio head unit system with wideband power amplifier
US9948332B2 (en) 2009-12-21 2018-04-17 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US10728066B2 (en) 2009-12-21 2020-07-28 Dali Systems Co. Ltd. Modulation agnostic digital hybrid mode power amplifier system and method
US8824595B2 (en) 2009-12-21 2014-09-02 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US20110158081A1 (en) * 2009-12-21 2011-06-30 Dali Systems Ltd. Remote radio head unit system with wideband power amplifier and method
US9379745B2 (en) 2009-12-21 2016-06-28 Dali Systems Co. Ltd. Multi-band wide band power amplifier digital predistortion system
US9814053B2 (en) 2009-12-21 2017-11-07 Dali Systems Co. Ltd. Remote radio head unit system with wideband power amplifier
US20110193606A1 (en) * 2010-02-11 2011-08-11 Chih-Hao Sun Radio frequency modulator and method thereof
US8718576B2 (en) * 2010-02-11 2014-05-06 Mediatek Inc. Radio frequency modulator and method thereof
US20110304390A1 (en) * 2010-06-11 2011-12-15 Ming-Chung Huang Compensation device applied to power amplifier, method for determining pre-distortion of power amplifier, and method for compensating linearity of power amplifier thereof
US8417194B2 (en) * 2010-06-11 2013-04-09 Realtek Semiconductor Corp. Compensation device applied to power amplifier, method for determining pre-distortion of power amplifier, and method for compensating linearity of power amplifier thereof
US11805504B2 (en) 2010-09-14 2023-10-31 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US20220295487A1 (en) 2010-09-14 2022-09-15 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US8351877B2 (en) 2010-12-21 2013-01-08 Dali Systems Co. Ltfd. Multi-band wideband power amplifier digital predistorition system and method
AU2010364317B2 (en) * 2010-12-23 2014-02-06 Huawei Technologies Co., Ltd. Signal processing arrangement and signal processing method
US8410850B2 (en) * 2010-12-23 2013-04-02 Huawei Technologies Co., Ltd. Signal processing arrangement and signal processing method
US20120306573A1 (en) * 2010-12-23 2012-12-06 Christian Mazzucco Signal processing arrangement and signal processing method
US20120195392A1 (en) * 2011-02-02 2012-08-02 Provigent Ltd. Predistortion in split-mount wireless communication systems
US8755454B2 (en) 2011-06-02 2014-06-17 Parkervision, Inc. Antenna control
US9093958B2 (en) * 2011-10-20 2015-07-28 Mediatek Singapore Pte. Ltd. Predistortion circuit, wireless communication unit and method for coefficient estimation
US20130142284A1 (en) * 2011-10-20 2013-06-06 Manel Collados Asensio Predistortion circuit, wireless communication unit and method for coefficient estimation
US8831136B2 (en) * 2012-03-30 2014-09-09 Fujitsu Limited Wireless apparatus and distortion compensating method
US20130259154A1 (en) * 2012-03-30 2013-10-03 Fujitsu Limited Wireless apparatus and distortion compensating method
US9148093B2 (en) * 2012-10-31 2015-09-29 Korea Advanced Institute Of Science And Technology Low-cost digital predistortion apparatus and method using envelope detection feedback
US20140118066A1 (en) * 2012-10-31 2014-05-01 Korea Advanced Institute Of Science And Technology Low-cost digital predistortion apparatus and method using envelope detection feedback
US9263994B2 (en) * 2013-01-17 2016-02-16 Fujitsu Limited Amplifying device, distortion compensating device, and amplifying method
US20140197885A1 (en) * 2013-01-17 2014-07-17 Fujitsu Limited Amplifying device, distortion compensating device, and amplifying method
US20140292404A1 (en) * 2013-03-27 2014-10-02 Qualcomm Incorporated Radio-frequency device calibration
US9729110B2 (en) * 2013-03-27 2017-08-08 Qualcomm Incorporated Radio-frequency device calibration
US20150015327A1 (en) * 2013-07-12 2015-01-15 Stefan Glock Controller and Method for Controlling a Signal Processor
US9306507B2 (en) * 2013-07-12 2016-04-05 Intel Deutschland Gmbh Controller and method for controlling a signal processor
US10278131B2 (en) 2013-09-17 2019-04-30 Parkervision, Inc. Method, apparatus and system for rendering an information bearing function of time
US9647717B2 (en) * 2013-12-26 2017-05-09 Datang Mobile Communications Equipment Co., Ltd. Digital pre-distortion parameter obtaining method and pre-distortion system
US11022676B2 (en) * 2014-09-12 2021-06-01 Denso Corporation Filter apparatus and target detection apparatus
US10727788B2 (en) 2015-08-14 2020-07-28 Viasat, Inc. Digital dynamic bias circuit
US20180102796A1 (en) * 2016-10-07 2018-04-12 Rohde & Schwarz Gmbh & Co. Kg Predistortion system and method
US9973219B2 (en) * 2016-10-07 2018-05-15 Rohde & Schwarz Gmbh & Co. Kg Predistortion system and method
US20180115288A1 (en) * 2016-10-24 2018-04-26 Fujitsu Limited Arithmetic method, base station device, and arithmetic circuit
US9876657B1 (en) * 2017-03-06 2018-01-23 Xilinx, Inc. System and method for downlink processing in communication systems
US20200244509A1 (en) * 2019-01-28 2020-07-30 Qualcomm Incorporated In-phase and quadrature-phase estimation and correction using kernel analysis

Also Published As

Publication number Publication date
CN1384996A (en) 2002-12-11
WO2001031778A1 (en) 2001-05-03
AU1025401A (en) 2001-05-08
CN1218475C (en) 2005-09-07
EP1224733A1 (en) 2002-07-24
JP2003513498A (en) 2003-04-08
DE60012209T2 (en) 2005-08-18
ATE271277T1 (en) 2004-07-15
EP1224733B1 (en) 2004-07-14
DE60012209D1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US6246286B1 (en) Adaptive linearization of power amplifiers
US10727879B2 (en) Wide bandwidth digital predistortion system with reduced sampling rate
US8126036B2 (en) Predistortion and post-distortion correction of both a receiver and transmitter during calibration
US6934341B2 (en) Method and apparatus for plurality signal generation
US8594232B2 (en) System for predistortion and post-distortion correction of both a receiver and transmitter during calibration
US6314142B1 (en) Pre-distortion for a non-linear transmission path in the high frequency range
KR101107866B1 (en) An uncorrelated adaptive predistorter
US7409007B1 (en) Method and apparatus for reducing adjacent channel power in wireless communication systems
US7346122B1 (en) Direct modulation of a power amplifier with adaptive digital predistortion
US6677821B2 (en) Distortion compensating apparatus
US6947713B2 (en) Amplitude- and frequency- or phase-modulated radio frequency signal generator and the transmitter incorporating same
US20030184374A1 (en) Type-based baseband predistorter function estimation technique for non-linear circuits
US20050253652A1 (en) Digital predistortion apparatus and method in power amplifier
JPH1013160A (en) Method for correcting nonlinearity of amplifier and radio transmitter using the method
US11115068B2 (en) Data-based pre-distortion for nonlinear power amplifier
US6654426B2 (en) Correction of nonlinearity of I/Q modulator
US7248642B1 (en) Frequency-dependent phase pre-distortion for reducing spurious emissions in communication networks
KR100251385B1 (en) Apparatus and method for linearizing power amp with adaptive predistortion and modem error compensation
CN114338312B (en) Apparatus and method for linearizing transmission signals
Lee et al. Improved Transmitter Power Efficiency using Cartesian Feedback Loop Chip

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PERSSON, JONAS;REEL/FRAME:011145/0929

Effective date: 20000225

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: FINGERPRINT CARDS AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TELEFONAKTIEBOLAGET LM ERICSSON (PUBL);REEL/FRAME:031621/0426

Effective date: 20131106