US6183426B1 - Ultrasonic wave applying apparatus - Google Patents
Ultrasonic wave applying apparatus Download PDFInfo
- Publication number
- US6183426B1 US6183426B1 US09/147,391 US14739198A US6183426B1 US 6183426 B1 US6183426 B1 US 6183426B1 US 14739198 A US14739198 A US 14739198A US 6183426 B1 US6183426 B1 US 6183426B1
- Authority
- US
- United States
- Prior art keywords
- circuit
- vibration element
- detection signal
- voltage
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims abstract description 78
- 230000033001 locomotion Effects 0.000 claims abstract description 77
- 238000012544 monitoring process Methods 0.000 claims description 79
- 238000004804 winding Methods 0.000 claims description 76
- 230000010355 oscillation Effects 0.000 claims description 18
- 239000003990 capacitor Substances 0.000 claims description 13
- 230000001012 protector Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- 230000002159 abnormal effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009499 grossing Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6843—Monitoring or controlling sensor contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
- A61B8/546—Control of the diagnostic device involving monitoring or regulation of device temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H23/00—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
- A61H23/02—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H23/00—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
- A61H23/02—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
- A61H23/0245—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with ultrasonic transducers, e.g. piezoelectric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
- A61B2017/00119—Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
- A61B2017/00123—Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation and automatic shutdown
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/01—Constructive details
- A61H2201/0173—Means for preventing injuries
- A61H2201/0176—By stopping operation
Definitions
- the present invention is directed to an ultrasonic wave applying apparatus for applying ultrasonic waves to a human body.
- the conventional apparatus includes an applicator having a vibration element which is in contact with the human body to apply the ultrasonic waves, an oscillator circuit for providing ultrasonic waves to the vibration element, and a load detecting circuit which detect whether the vibration element is in contact with a load.
- an applicator having a vibration element which is in contact with the human body to apply the ultrasonic waves
- an oscillator circuit for providing ultrasonic waves to the vibration element
- a load detecting circuit which detect whether the vibration element is in contact with a load.
- the ultrasonic wave applying device of this kind has been developed mainly for diagnosis of internal organs of the human body by a specialist such as a doctor.
- the load detecting circuit is enough by the specialist for effectively applying the ultrasonic waves to the human body.
- the apparatus is utilized to apply the ultrasonic waves for the purpose of facial care or weight reduction, an user mostly of an amateur is difficult to utilize the apparatus in a safe and effective manner even with the load detecting circuit. Therefore, it becomes important to detect whether the apparatus is correctly moving along the skin. That is, in view of that there may arise a cold burn when the vibration element remains in contact with a portion over a long period, a measure is demanded to prevent the cold burn in addition to eliminating undue energy consumption at the no-load condition.
- the present invention has been accomplished in view of the above and has an object of providing an ultrasonic wave applying apparatus which is safe enough and convenient for use.
- the ultrasonic wave applying device in accordance with the present invention includes an hand-held applicator having a vibration element which is, in use, contact with a skin of a user to apply ultrasonic waves to the skin, a power source providing a DC voltage, an oscillator circuit which is energized by the DC voltage from the power source to generate an oscillating output for driving the vibration element, and a load detecting circuit which monitors whether the vibration element is loaded such as by contact with the skin and provides a load detection signal when the vibration element is so loaded. Further, a motion detecting circuit is provided to monitor whether the vibration element is moving and give a motion detection signal when the vibration element is so moving.
- a control circuit is connected to the load detecting circuit and the motion detecting circuit for controlling the driving circuit to lower the oscillating output being fed to the ultrasonic vibration element when the load detection signal is not received within a predetermined first time period or when the motion detection signal is not continuous over a critical time duration within a predetermined second time period even in the presence of the load detection signal being detected within the first time period.
- the apparatus can detect the motion of the vibration element whether it is moving in contact with the human body and is so made to apply the ultrasonic waves continuously only while the vibration element is so moving, thereby disabling to apply the ultrasonic waves to a portion of the human body over a long period which would otherwise incur cold burn.
- the apparatus may include a monitoring circuit which gives a single monitoring output indicative of the ultrasonic vibrations being effected by the vibration element and inclusive of a low frequency component which is caused by moving the vibration element and of which frequency is lower than that of the ultrasonic vibrations.
- the monitoring output is fed to the load detecting circuit as well as to the motion detecting circuit where it is processed to provide the load detection signal and the motion detection signal.
- the monitoring output including information as to the load condition as well as the motion of the vibration element can appear in a resonant system including the oscillator circuit for the vibration element. Therefore, simple electrical connection of the monitoring circuit to the resonant system can realize the load and motion detection in a simple circuit configuration without requiring an additional sensor for such detection.
- the monitoring circuit is arranged to detect an output of the oscillator circuit which includes a transformer with a primary winding and a secondary winding.
- the vibration element is in the form of a piezoelectric element connected across the secondary winding.
- the primary winding generates an oscillating voltage which in turn produces the oscillating output across the secondary winding for driving the vibration element.
- the monitoring circuit includes an auxiliary winding which is magnetically coupled to the transformer for providing the monitoring output in proportion to the output of the oscillator circuit.
- the monitoring circuit may be configured as a rectifier circuit which is connected in parallel with the vibration element across the secondary winding of the transformer to rectify the oscillating voltage into the monitoring output.
- the monitoring circuit may be configured to provide the monitoring output based on a current flowing through the oscillator circuit including a resonant circuit.
- the oscillator circuit includes the transformer with the primary winding and the secondary winding across which the vibration element in the form of a piezoelectric element is connected.
- a capacitor is connected across the primary winding to form a parallel resonant circuit with the primary winding.
- a switching element is connected in series with the parallel resonant circuit across a DC voltage source and is driven to turn on and off for causing the resonant circuit to provide an oscillating voltage which in turn induces the oscillating output across the secondary winding.
- the monitoring circuit includes a current sensing resistor which is connected in series with the switching element and the parallel resonant circuit to provide the monitoring output in the form of a voltage.
- the monitoring circuit has a transformer with a primary winding and a secondary winding.
- the primary winding is connected in series with the vibration element in the form of the piezoelectric element in an output path of the oscillator circuit so that the secondary winding provides the monitoring output.
- the load detecting circuit is preferred to have a comparator which compares an amplitude of the monitoring output with a predetermined level to provide the load detection signal when the amplitude deviates from the predetermined level by a certain extent.
- the motion detecting circuit is arranged to have a low-pass filter to derive the low frequency component from the monitoring output and a judging circuit which provides the motion detection signal to the control circuit when an amplitude of the low frequency component exceeds a predetermined level.
- the present invention discloses another arrangement which utilizes a sensor disk disposed adjacent the vibration element for making the load detection and the motion detection.
- the sensor disk is capable of deforming as a consequence of the vibration element being loaded and is made of pressure sensitive electroconductive rubber which varies its electrical resistance upon being deformed.
- the sensor disk is formed on its one surface with a single first electrode and on the opposite surface with a plurality of second electrodes.
- the control circuit is configured to analyze at least one of the monitoring outputs to give the load detection signal and to analyze all of the monitoring outputs with reference to each other in order to provide the motion detection signal.
- a control by use of a temperature sensor which senses a temperature of the vibration element.
- a protector circuit is included in the control circuit to produce a stop signal for disabling the oscillator from generating the oscillating output upon receiving the temperature output indicative of the temperature exceeding a critical level.
- the oscillator circuit is preferred to produce the oscillating output intermittently in such a manner as to leave a rest period between adjacent pulse series of the oscillating output. Within this rest period, the load detecting circuit and the motion detecting circuit transmit the load detection signal and the motion detection signal to said control circuit.
- the load and motion detection signals can be free from noises to give improved reliability of the judgement at the control circuit.
- the oscillator circuit and the power source are incorporated within the applicator together with a battery which supplies a source voltage to the power source, and that the applicator is physically detachable to a main housing which incorporates an inverter providing an AC voltage for charging the battery.
- the inverter includes a primary power winding across which the AC voltage developed.
- the applicator incorporates therein a secondary power winding which is magnetically coupled to the primary power winding to induce a corresponding voltage when the applicator is physically connected to the main housing.
- the secondary power winding is connected within the hand-held applicator to charge said battery by the voltage induced at the secondary power winding.
- FIG. 1 is a block diagram illustrating a circuit of an ultrasonic wave applying apparatus in accordance with a first embodiment of the present invention
- FIG. 2 is a schematic circuit diagram of the apparatus
- FIG. 3 is a circuit diagram illustrating an oscillator circuit, load detecting circuit, and a motion detecting circuit employed in the above apparatus;
- FIGS. 4A to 4 F are explanatory views illustrating operations of the load detecting circuit and the motion detecting circuit
- FIGS. 5A to 5 C are explanatory views illustrating a relation between an output of the oscillator circuit and an output of the load detecting circuit and the motion detecting circuit;
- FIG. 6 is a circuit diagram of a temperature sensing circuit employed in the above apparatus
- FIG. 7 is a flow chart illustrating operations of the above apparatus
- FIG. 8 is a circuit diagram of an ultrasonic wave applying apparatus in accordance with a second embodiment of the present invention.
- FIGS. 9A and 9B are explanatory views illustrating operations of the above apparatus.
- FIG. 10 is a circuit diagram of an ultrasonic wave applying apparatus in accordance with a third embodiment of the present invention.
- FIG. 11 is a circuit diagram of an ultrasonic wave applying apparatus in accordance with a fourth embodiment of the present invention.
- FIG. 12 is a circuit diagram of an ultrasonic wave applying apparatus in accordance with a fifth embodiment of the present invention.
- FIG. 13 is a sectional view of a sensor disk utilized for load detection and motion detection in an ultrasonic wave applying apparatus in accordance with a sixth embodiment of the present invention.
- FIGS. 14A and 14B are planar views illustrating arrangement of electrodes on opposite surfaces of the sensor disk
- FIG. 15 is a schematic view illustrating wiring connection for transmitting an oscillating output to the applicator and the detected output therefrom in the above apparatus.
- FIG. 16 is a circuit diagram of an ultrasonic wave applying apparatus in accordance with a seventh embodiment of the present invention.
- FIG. 1 illustrates a circuit diagram of an ultrasonic wave applying apparatus in accordance with one embodiment of the present invention.
- the apparatus is utilized for face cure or weight reduction and includes a hand-held applicator 10 provided at its one end thereof with a vibration plate 12 which is in use to be in contact with a skin of a human body for applying ultrasonic oscillations thereto.
- the vibration plate 12 is an aluminum-made thin plate and receives an ultrasonic wave produced at an vibration element 11 in the form of a piezoelectric element.
- the vibration plate 12 is coated with a gel in use.
- the gel is made of a substance containing a large amount of water for promoting the transmission of the ultrasonic wave.
- the applicator 10 includes an oscillator circuit 20 driving the piezoelectric element 11 , a power source 1 energizing the oscillator circuit 20 , a load detecting circuit 40 for detection a load condition of the vibration plate 12 , a motion detecting circuit 50 for detection of a motion of the applicator 10 , a temperature sensing circuit 60 for sensing a temperature of the piezoelectric element 11 , a display driver 7 for display of operating condition, and a control circuit 80 for control of the above circuits and the like.
- the applicator 10 is formed with a power switch 13 and a window 14 for display of the operating condition.
- the applicator 10 is required to produce the ultrasonic vibration with the vibration plate 12 kept in contact with the human body.
- the load detecting circuit 40 is provided to detect whether a suitable load is applied as a consequence of the vibration plate 12 being in contact with the skin of the human body.
- the load detection circuit 40 determines that the vibration plate is not loaded and restricts the generation of the ultrasonic wave. Further, it is desirable to move the vibration plate 12 slowly across the skin when applying the ultrasonic wave to the human body.
- the motion detecting circuit 50 is provided to enable the continuous oscillation when the vibration plate 12 is moving at a suitable rate and otherwise disable the oscillation.
- the control circuit 80 includes a timer which stops the oscillation after the applicator is utilized in a normal condition over a preset time.
- the timer will count a time only when the load detection signal from the load detecting circuit indicates that the vibration plate 12 is kept in contact with the skin and when the motion detection signal from the motion detecting circuit indicates that the vibration plate 12 does not stay at a portion over a long time, the timer operates counting to continue the ultrasonic vibration over the preset time.
- the temperature sensing circuit 60 is responsive to an output from a temperature sensor 15 located adjacent the vibration plate 12 for providing an output indicative of abnormal temperature rise to the control circuit 80 which in turn responds to stop the oscillator circuit 20 .
- the window 14 includes an array of light emitting diodes which are driven to turn on and off sequentially for representing the oscillation.
- the window 14 displays the normal operation being made, warning of no-load condition, warning of the vibration plate being stationary, warning of abnormal temperature of the vibration plate, remaining time counted by the timer, and erroneous function of the apparatus.
- a housing 16 of the applicator 10 accommodates a rechargeable battery 17 supplying an electric power to the power source 1 .
- the battery 17 is charged by an output from a charger circuit 91 mounted in a separate main housing 90 .
- the charger circuit 91 includes a rectifier 92 for rectification of an AC voltage from a commercial electric source, and an inverter which converts the DC output of the rectifier 92 into an AC output.
- the inverter includes a primary power winding 94 .
- a corresponding secondary power winding 18 is accommodated within the housing 16 of the applicator 10 so as to be magnetically coupled to the primary power winding 94 when a projection 19 at one end of the housing 16 fits into a recess 99 in the main housing 90 , thereby inducing across the secondary power winding 18 a voltage which is proportional to the output voltage of the inverter and is responsible for charging the battery 17 .
- the applicator 10 is detachably mounted to the main housing 90 and receives the electric power therefrom without relying upon electrical contacts.
- the housing 16 is made to be of a water-tight structure so that the applicator can be operated in a wet environment such as in a bathroom or washroom.
- the applicator can be free from water invasion trouble when utilized in the bathroom or washroom and can make the use of water available there for the vibration plate 12 instead of the gel.
- the power source 1 provides high and low DC voltages from the battery 17 selectively to oscillator circuit for varying magnitude of the oscillating output from the oscillator circuit 20 in accordance with the strength selected by the user. Also, after the preset time of the timer is elapsed, the control circuit 80 gives an instruction to stop providing the electric power to the oscillator circuit 20 .
- FIG. 2 includes motion detecting circuit 50 and load detecting circuit 40 .
- the oscillator circuit 20 includes an inverter which converts DC voltage from the power source 1 into an AC voltage having a frequency of about 1 MHz, and which is provided at its output end with a transformer T having a primary winding 21 and a secondary winding 22 .
- the primary winding 21 is connected in series with an FET 23 and a current sensing resistor 27 across the power source 1 , and is cooperative with a capacitor 24 connected across the primary winding 21 to form a parallel resonant circuit which provides a resonant voltage across the primary winding 21 upon turning off of FET 23 .
- the piezoelectric element 11 is connected across the secondary winding 22 so as to effect the ultrasonic vibration by the AC voltage induced at the secondary winding 22 .
- a feedback winding 25 is coupled to the primary winding 21 to feedback the output of the oscillator circuit to FET 23 .
- a bipolar transistor 26 is connected in a gate-emitter path of FET 23 for control of FET 23 .
- Connected across the power source 1 is a series combination of a starting resistor 28 and a capacitor 29 of which connection is connected through the feedback winding 25 to a gate of FET 23 to give a bias thereto.
- capacitor 29 is charged by the power source to develop a voltage reaching a threshold of FET 23 , FET becomes conductive to lower the drain voltage of FET 23 .
- the feedback winding 25 generates a feedback voltage applied to the gate of FET 23 , thereby increasing the current flowing through the FET.
- variable resistor 30 Connected between the base of transistor 26 and resistor 27 is a variable resistor 30 of which value is varied in order to vary a timing of turning on transistor 26 for adjustment of the resonant frequency. That is, varying the on-time period of FET can adjust the resonant frequency so as to match the resonant frequency of the resonant circuit with the natural frequency of piezoelectric element which may differ due to possible characteristic variation of the element available. It is noted in this connection that the resonant circuit is controlled by the control circuit 80 to give an intermittent oscillation having a rest period between adjacent pulse series Vp, as shown in FIGS. 4A and 4B.
- Transformer T includes an auxiliary winding 101 which is cooperative with a rectifier circuit of rectifying the output of auxiliary winding 101 to form a monitoring circuit 100 which gives a monitoring output indicative of a condition of the ultrasonic wave being applied to the load.
- the monitoring output Vx includes low frequency components which are caused as a result of moving the vibration element 12 and of which frequency is lower than that of the ultrasonic vibration. More precisely, the voltage appearing across auxiliary winding 101 includes low frequency components originating from impedance variation in the piezoelectric element upon contact with the load and from rubbing sounds appearing in response to the applicator moving across the skin of the human body, in addition to high frequency components indicative of the ultrasonic vibration.
- the monitoring output Vx obtained by rectification of voltage appearing across auxiliary winding 101 is fed to the load detection circuit 40 and the motion detecting circuit 50 for making the load detection and the motion detection.
- the load detection circuit 40 has a comparator 41 which compares the monitoring output Vx from the monitoring circuit 100 with a reference level Vref.
- the monitoring output Vx has a waveform pattern as shown in FIG. 4 B.
- the comparator 41 provides a H-level load detection signal SL to the control circuit 80 as indicative of that the vibration plate 12 is kept in suitable contact with the skin of the user.
- the control circuit 80 stops operating the oscillator circuit 20 or disables the power source 1 .
- the load detection signal SL is generated when the monitoring output Vx is lower than the reference level Vref in consideration of that the resonant voltage is lowered by the presence of the load.
- resonant circuit of different configuration may vary the characteristic of the piezoelectric element 11 to break the impedance matching with the resonant circuit, thereby causing the monitoring output to increase in the presence of the load. In this case, it is made to provide the load detection signal SL when the monitoring output Vx exceeds the reference level Vref.
- the monitoring output Vx is also fed through a capacitor 51 to the motion detecting circuit 50 in the form of an output Vx′, as shown in FIG. 4 D.
- the motion detecting circuit 50 includes a low-pass filter 52 and a judging circuit 53 .
- the output Vx′ is removed of high frequency component through the filter 52 to give a low frequency output VL free from the components not caused by the motion of the vibration plate 12 , as shown in FIG. 4 E.
- Thus obtained low frequency output VL is fed to two comparators 55 and 56 of the judging circuit 53 and compared respectively with individual thresholds TH 1 and TH 2 (TH 1 >TH 2 ) to provide to the control circuit 80 a H-level motion detection signal SM (shown in FIG.
- TH 1 and TH 2 can be adjusted by variable resistors 57 and 58 .
- the control circuit 80 counts the time period of the H-level motion detection signal SM within a predetermined duration Tc (for example, 15 seconds) and determines that the vibration plate 12 has moved suitably when the sum of the counted times within the duration Tc exceeds a predetermined reference. Otherwise, the control circuit 80 determines that no suitable motion has been made and provides a limit signal of limiting the oscillator circuit 20 .
- Tc for example, 15 seconds
- the oscillator circuit 20 includes a transistor 84 which is connected in parallel with transistor 26 across gate-source path of FET 23 and which is connected to the control circuit 80 through a photo-coupler 81 .
- the transistor 84 upon receiving the limit signal from the control circuit 80 , the transistor 84 is turned on to thereby turn off FET 23 for disabling the oscillator circuit 20 .
- the limit signal acts to stop the oscillator circuit 20 in this embodiment, the present invention is not limited to this feature and may be arranged to control the oscillator circuit 20 or power supply 1 to reduce the oscillation.
- the output from the oscillator circuit is issued intermittently by use of driving pulses of FIG. 5 B. It is within the rest period of the driving pulses that the data signal S including the load detection signal and the motion detection signal is transmitted to be processed at the control circuit 80 .
- the detection signals can be free from noises associated with the oscillation, thereby realizing reliable load and motion detection.
- the temperature sensing circuit 60 includes a first temperature sensing section 61 and a second temperature sensing section 62 both receiving an output from a thermistor 15 for temperature sensing.
- First temperature sensing section 61 has a temperature control 65 to which the output from thermistor 15 is fed through a resistor 63 and a capacitor 64 .
- the temperature control 65 issues a stop signal to the oscillator circuit 20 through a photo-coupler 66 .
- the photo-coupler 66 has a transistor 68 which is connected in a base-emitter path of the transistor 84 , so that the stop signal causes the transistor 84 to turn on for stopping the oscillation of the oscillator circuit 20 .
- a hysterics is given to the temperature control such that, after the temperature of the vibration plate 12 sensed by thermistor 15 goes high above the reference temperature, the oscillator circuit 20 is enabled to resume the oscillation only after the sensed temperature goes below a temperature level which is lower than the reference temperature. When the sensed temperature goes below the temperature level, the temperature control 62 responds not to issue the stop signal, thereby resuming the oscillation at the oscillator circuit 20 .
- the second temperature sensing section 62 includes a comparator 69 which operates to turn on a transistor 70 when the temperature sensed at thermistor 15 exceeds a predetermined reference, thereby turning on a transistor 73 of a photo-coupler 71 and consequently disabling the power source 1 connected to transistor 73 .
- the predetermined reference for the comparator 69 is set to be higher than the reference temperature of the temperature control 65 for stopping the ultrasonic oscillation as a safeguard in response to the vibration plate 12 being abnormally heated even if the temperature control 65 made of a microcomputer should fail to operate.
- FIG. 6 also depicts vibration element 11 .
- a no-load warning is displayed for a limited time period of 40 seconds, for example, urging the user to apply the gel coated vibration plate on the skin.
- a control is made to display a warning of stopping the operation and stop the timer and the oscillation.
- the motion detection is made in the presence of the load detection signal so that, when the motion detection signal is issued within, for example, 15 seconds, a display of normal operation is made and a count-down instruction is given to the timer.
- a predetermined operation time say, 10 minutes in this condition, the oscillator circuit is stopped.
- a pause button is pressed within 10 minutes, the oscillator circuit is stopped but with the timer operating continuously to count down.
- a restart button is pressed within this 10 minutes, the oscillator circuit resume the oscillation.
- the present invention is not limited to this feature and is designed to reduce the oscillation output from the oscillator circuit upon such detection.
- FIG. 8 illustrates an oscillator circuit 20 A and a monitoring circuit 100 A of the ultrasonic wave applying apparatus in accordance with a second embodiment of the present invention.
- the other configurations are identical to those of the first embodiment.
- the oscillator circuit 20 A has the basic configuration which is identical to that of the oscillator circuit 20 of the first embodiment, and therefore like parts are designated by like numerals with a suffix letter of “A”.
- secondary winding 22 A is analogous to element 22 of FIG. 3 and vibration element 11 A of FIG. 8 corresponds to element 11 of FIG. 3 .
- the monitoring circuit 100 A is configured to derive a monitoring output from a voltage appearing across a current sensing resistor 27 A, which monitoring output is fed to a load detecting circuit 40 A and a motion detecting circuit 50 A.
- a resonance voltage developed at the resonant circuit of a primary winding 21 A and a capacitor 24 A sees a corresponding voltage variation which appears across current sensing resistor 27 A. Based upon this voltage variation, the monitoring circuit 100 A provides the monitoring signal indicative of the load variation.
- the monitoring circuit 100 A is composed of a series combination of a diode 111 , a resistor 112 , and a resistor 113 connected across the resistor 27 A, and a capacitor 114 connected in parallel with resistor 111 so that, as shown in FIG. 9A, the voltage across resistor 27 A is smoothed into a voltage across capacitor 114 of which voltage is fed as the monitoring signal Vx to load detecting circuit 40 A and motion detecting circuit 50 A.
- Load detecting circuit 40 A issues load detection signal SL as shown in FIG. 9B when the level of monitoring signal Vx goes below a predetermined value.
- the motion detecting circuit 50 A is of the same circuit configuration as that employed in the first embodiment of FIG. 3 and makes the motion detection based upon the monitoring output Vx.
- FIG. 10 illustrates an oscillator circuit 20 B and a monitoring circuit 100 B of the ultrasonic wave applying apparatus in accordance with a third embodiment of the present invention.
- elements 1 B, 11 B, 40 and 50 correspond to a power source, a vibration element, a load detecting circuit, and a motion detecting circuit, respectively.
- the oscillator circuit 20 B has the basic configuration which is identical to that of the oscillator circuit 20 of the first embodiment, and therefore like parts are designated by like numerals with a suffix letter of “B”.
- the monitoring circuit 100 B comprises a series combination of a diode 121 , a resistor 122 , and a resistor 123 connected across a secondary winding 22 B of the oscillator circuit 20 , and a capacitor 125 connected in parallel with resistor 123 so that the voltage developed at secondary winding 22 B is rectified and smoothed into a voltage which is fed as the monitoring output to the load detecting circuit and the motion detecting circuit.
- the monitoring output thus obtained includes low frequency components representative of the load condition and the motion of the vibration plate ang gives a basis upon which the load and motion detection are made.
- FIG. 11 illustrates an oscillator circuit 20 C and a monitoring circuit 100 C of the ultrasonic wave applying apparatus in accordance with a fourth embodiment of the present invention.
- elements 1 C, 40 and 50 correspond to a power source, a load detecting circuit, and a motion detecting circuit, respectively.
- the other configurations are identical to those of the first embodiment.
- the oscillator circuit 20 C has the basic configuration which is identical to that of the oscillator circuit 20 of the first embodiment, and therefore like parts are designated by like numerals with a suffix letter of “C”.
- the monitoring circuit 100 C comprises a resistor 130 connected in series with the piezoelectric element 11 C across the secondary winding 22 C of the oscillator circuit 20 C, a series combination of a diode 131 , a resistor 132 , and a resistor 133 connected across resistor 130 , and a capacitor 134 connected across the resistor 133 .
- the output voltage developed at the secondary winding 22 C is rectified and smoothed to provide the resulting monitoring output to the load detecting circuit and the motion detecting circuit.
- FIG. 12 illustrates an oscillator circuit 20 D and a monitoring circuit 100 D of the ultrasonic wave applying apparatus in accordance with a fifth embodiment of the present invention.
- the other configurations are identical to those of the first embodiment.
- the oscillator circuit 20 D is of Colpitts oscillator to have the piezoelectric element 11 D connected in an output end of the circuit.
- the monitoring circuit 100 D comprises a transformer with a primary winding 141 connected in series with the piezoelectric element 11 D in the output path of the oscillator circuit 20 D and with a secondary winding 142 magnetically coupled to the primary winding, and a rectifier/smoothing circuit 144 for rectifying and smoothing the output of the secondary winding.
- the monitoring output corresponding to voltage applied to the piezoelectric element 11 D is fed to the load detecting circuit 40 D and the motion detecting circuit 50 D.
- FIGS. 13, 14 A and 14 B illustrate a monitoring circuit 100 E of the ultrasonic wave applying apparatus in accordance with a sixth embodiment of the present invention.
- Element 11 E of FIG. 13 denotes a vibration element.
- the other configurations are identical to those of the first embodiment.
- the monitoring circuit 100 E includes a ring-shaped sensor disk 150 made of pressure sensitive electroconductive rubber which deforms in response to a force applied to the vibration plate.
- the sensor disk 150 is fitted in a recess at one end of a housing 16 E of the applicator together with an end flange 151 of the vibration plate 12 E and is capable of deforming as a consequence of the lo vibration plate 12 E being subject to a force when the vibration plate 12 E comes into contact with the human body and is caused to move across the skin of the human body in contact therewith.
- the sensor disk 150 varies its electrical resistance as being deformed, and is formed on its one surface with a single annular electrode 152 , as shown in FIG. 14 B and on the opposite surface with a plurality of circumferentially spaced electrodes 153 , as shown in FIG. 14 A.
- Each electrode 153 is connected to each of voltage sources 154 as well as to a load/motion detecting circuit 160 so as to provide the monitoring output in the form of a voltage in accordance with a deformation extent (resistance) of the sensor disk 150 at a portion corresponding to each of the electrodes 153 .
- the load/motion detecting circuit 160 is composed of a microcomputer to make the load detection of determining whether the load is applied to the vibration plate based upon the monitoring signal from at least one of the electrodes 153 and to make the motion detection by analyzing the monitoring output from all of the electrodes 153 .
- the monitoring circuit 100 E accommodated in the applicator 10 E transmits its output to the load/motion detecting circuit in the main housing through a wiring network 172 separated from a wiring network 171 transmitting an oscillation output to the piezoelectric element 11 E.
- element 12 E corresponds to a vibration plate.
- FIG. 16 illustrates the ultrasonic wave applying device in accordance with a seventh embodiment of the present invention which has a basic configuration identical to that of the first embodiment of FIG. 2 and differs therefrom in that a sub unit 180 is provided in addition to the applicator 1 OF and the main housing 90 F.
- Element 91 F denotes a changer circuit.
- the sub unit 180 accommodates the power source 1 F, oscillator circuit 20 F, load detecting circuit 40 F, motion detecting circuit 50 F, control circuit 80 F all of the same configuration utilized in the first embodiment.
- the piezoelectric element and the vibrator plate are assembled in the applicator 10 F.
- the applicator 10 F has a water-tight housing and is connected to the sub unit 180 by way of a flexible cord 190 so that the vibration plate is driven by the oscillator circuit 20 F to vibrate ultrasonically.
- the applicator 10 F can be made more compact, in addition to that the applicator 10 F and the sub unit 180 can be easily designed to have water-tight structure suitable for use in a bathroom.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Percussion Or Vibration Massage (AREA)
Abstract
Description
Claims (14)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12607397 | 1997-05-15 | ||
JP9-126073 | 1997-05-15 | ||
JP9-256858 | 1997-09-22 | ||
JP25685897 | 1997-09-22 | ||
PCT/JP1998/002140 WO1998051255A1 (en) | 1997-05-15 | 1998-05-15 | Ultrasonic device |
Publications (1)
Publication Number | Publication Date |
---|---|
US6183426B1 true US6183426B1 (en) | 2001-02-06 |
Family
ID=26462314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/147,391 Expired - Lifetime US6183426B1 (en) | 1997-05-15 | 1998-05-15 | Ultrasonic wave applying apparatus |
Country Status (7)
Country | Link |
---|---|
US (1) | US6183426B1 (en) |
JP (1) | JP3816960B2 (en) |
KR (1) | KR100285388B1 (en) |
CN (1) | CN1154462C (en) |
DE (1) | DE19880830B4 (en) |
TW (1) | TW480172B (en) |
WO (1) | WO1998051255A1 (en) |
Cited By (243)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6469418B1 (en) * | 2001-06-27 | 2002-10-22 | Scitex Digital Printing, Inc. | Vibration monitoring system and method |
WO2002094375A1 (en) * | 2001-03-29 | 2002-11-28 | Sobet Ag | Hand-held device for pain relief |
US20020177792A1 (en) * | 2001-05-28 | 2002-11-28 | Takafumi Ooba | Ultrasonic wave cosmetic device |
GB2376890A (en) * | 2001-06-27 | 2002-12-31 | Andrew Timothy Sweeney | Massage device |
US6527721B1 (en) * | 2000-09-13 | 2003-03-04 | Koninklijke Philips Electronics, N.V. | Portable ultrasound system with battery backup for efficient shutdown and restart |
US6610011B2 (en) * | 2000-12-27 | 2003-08-26 | Siemens Medical Solutions Usa, Inc. | Method and system for control of probe heating using lens reflection pulse-echo feedback |
WO2004004560A1 (en) * | 2002-07-08 | 2004-01-15 | Heart Detector Limited | Portable heart monitor |
WO2004035138A1 (en) * | 2002-10-17 | 2004-04-29 | Mediventure Co., Ltd. | Ultrasonic generator with several probes for skin stimulus |
US20040249318A1 (en) * | 2003-06-06 | 2004-12-09 | Olympus Corporation | Ultrasonic surgical apparatus |
WO2004110558A1 (en) * | 2003-06-13 | 2004-12-23 | Matsushita Electric Works, Ltd. | Ultrasound applying skin care device |
US20050251045A1 (en) * | 2004-05-04 | 2005-11-10 | Macdonald Michael C | Method and apparatus for controlling power in an ultrasound system |
US7001355B2 (en) | 2002-01-21 | 2006-02-21 | The Procter & Gamble Company | Skin care device |
US20060058664A1 (en) * | 2004-09-16 | 2006-03-16 | Guided Therapy Systems, Inc. | System and method for variable depth ultrasound treatment |
US20060074314A1 (en) * | 2004-10-06 | 2006-04-06 | Guided Therapy Systems, L.L.C. | Method and system for noninvasive mastopexy |
US20060074313A1 (en) * | 2004-10-06 | 2006-04-06 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US20060079816A1 (en) * | 2004-10-06 | 2006-04-13 | Guided Therapy Systems, L.L.C. | Method and system for treating stretch marks |
US20060084891A1 (en) * | 2004-10-06 | 2006-04-20 | Guided Therapy Systems, L.L.C. | Method and system for ultra-high frequency ultrasound treatment |
US20060241442A1 (en) * | 2004-10-06 | 2006-10-26 | Guided Therapy Systems, L.L.C. | Method and system for treating photoaged tissue |
KR100717705B1 (en) * | 2005-12-09 | 2007-05-11 | 마츠시다 덴코 가부시키가이샤 | Ultrasound applying skin care device |
US20070162090A1 (en) * | 2006-01-10 | 2007-07-12 | Abraham Penner | Body attachable unit in wireless communication with implantable devices |
WO2007082072A2 (en) * | 2006-01-11 | 2007-07-19 | Sureshot Medical Device, Inc. | Treatment of warts and other dermatological conditions using topical ultrasonic applicator |
US20080103553A1 (en) * | 2000-10-16 | 2008-05-01 | Remon Medical Technologies Ltd. | Systems and methods for communicating with implantable devices |
US20080108915A1 (en) * | 2000-10-16 | 2008-05-08 | Remon Medical Technologies Ltd. | Acoustically powered implantable stimulating device |
US20080139943A1 (en) * | 2006-12-07 | 2008-06-12 | Industrial Technology Research Institute | Ultrasonic wave device |
US20080243210A1 (en) * | 2007-03-26 | 2008-10-02 | Eyal Doron | Biased acoustic switch for implantable medical device |
US20090143797A1 (en) * | 2007-12-03 | 2009-06-04 | Smith Kevin W | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US20090139972A1 (en) * | 2007-10-23 | 2009-06-04 | Psion Teklogix Inc. | Docking connector |
WO2009147615A1 (en) * | 2008-06-06 | 2009-12-10 | Koninklijke Philips Electronics N.V. | Determining contact with a body |
US20090312650A1 (en) * | 2008-06-12 | 2009-12-17 | Cardiac Pacemakers, Inc. | Implantable pressure sensor with automatic measurement and storage capabilities |
WO2009158062A1 (en) * | 2008-06-27 | 2009-12-30 | Cardiac Pacemakers, Inc. | Systems and methods of monitoring the acoustic coupling of medical devices |
US20100004668A1 (en) * | 2007-12-03 | 2010-01-07 | Smith Kevin W | Cordless Hand-Held Ultrasonic Cautery Cutting Device and Method |
US20100000074A1 (en) * | 2007-12-03 | 2010-01-07 | Smith Kevin W | Method of Assembling a Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US20100023091A1 (en) * | 2008-07-24 | 2010-01-28 | Stahmann Jeffrey E | Acoustic communication of implantable device status |
US20100106028A1 (en) * | 2008-10-27 | 2010-04-29 | Avi Penner | Methods and systems for recharging implantable devices |
US20100117484A1 (en) * | 2008-11-05 | 2010-05-13 | Texas Instruments Incorporated | Driver and driving method |
US20100217161A1 (en) * | 2009-02-25 | 2010-08-26 | Avi Shalgi | Delivery of therapeutic focused energy |
US20100286665A1 (en) * | 2002-07-11 | 2010-11-11 | Misonix Incorporated | Medical handpiece with automatic power switching means |
US20100315851A1 (en) * | 2007-11-02 | 2010-12-16 | Uwe Schober | Circuit arrangement and method for supplying a capacitive load |
US20110028867A1 (en) * | 2009-07-29 | 2011-02-03 | Seh-Eun Choo | Apparatus and method for non-invasive delivery and tracking of focused ultrasound generated from transducer |
EP1824440A4 (en) * | 2004-12-17 | 2011-03-02 | Electro-mechanical sexual stimulation device | |
EP2311427A1 (en) * | 2009-10-16 | 2011-04-20 | Reinhard Becker | Ultrasound treatment device and method for its operation |
US20110112405A1 (en) * | 2008-06-06 | 2011-05-12 | Ulthera, Inc. | Hand Wand for Ultrasonic Cosmetic Treatment and Imaging |
USRE42378E1 (en) | 2000-10-16 | 2011-05-17 | Remon Medical Technologies, Ltd. | Implantable pressure sensors and methods for making and using them |
US20110144476A1 (en) * | 2008-08-18 | 2011-06-16 | The Brigham And Women's Hospital, Inc. | Integrated Surgical Sampling Probe |
US20110239370A1 (en) * | 2010-03-31 | 2011-10-06 | Anthony Michael Turo | Systems for relieving pressure sores and methods therefor |
EP2428251A1 (en) * | 2006-09-18 | 2012-03-14 | Guided Therapy Systems, L.L.C. | System for non-ablative acne treatment and prevention |
US8166332B2 (en) | 2005-04-25 | 2012-04-24 | Ardent Sound, Inc. | Treatment system for enhancing safety of computer peripheral for use with medical devices by isolating host AC power |
EP2446823A1 (en) * | 2010-11-02 | 2012-05-02 | Samsung Medison Co., Ltd. | Ultrasonic diagnostic apparatus |
US8235909B2 (en) | 2004-05-12 | 2012-08-07 | Guided Therapy Systems, L.L.C. | Method and system for controlled scanning, imaging and/or therapy |
US8282554B2 (en) | 2004-10-06 | 2012-10-09 | Guided Therapy Systems, Llc | Methods for treatment of sweat glands |
US8334468B2 (en) | 2008-11-06 | 2012-12-18 | Covidien Ag | Method of switching a cordless hand-held ultrasonic cautery cutting device |
US8409097B2 (en) | 2000-12-28 | 2013-04-02 | Ardent Sound, Inc | Visual imaging system for ultrasonic probe |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US8480585B2 (en) | 1997-10-14 | 2013-07-09 | Guided Therapy Systems, Llc | Imaging, therapy and temperature monitoring ultrasonic system and method |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US8663112B2 (en) | 2004-10-06 | 2014-03-04 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
US8663262B2 (en) | 2007-12-03 | 2014-03-04 | Covidien Ag | Battery assembly for battery-powered surgical instruments |
US8665031B2 (en) | 2010-03-30 | 2014-03-04 | Covidien Lp | System and method for improved start-up of self-oscillating electro-mechanical surgical devices |
US8690779B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Noninvasive aesthetic treatment for tightening tissue |
US8715186B2 (en) | 2009-11-24 | 2014-05-06 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
US20140148704A1 (en) * | 2011-07-29 | 2014-05-29 | Olympus Corporation | Endoscope apparatus |
US8764687B2 (en) | 2007-05-07 | 2014-07-01 | Guided Therapy Systems, Llc | Methods and systems for coupling and focusing acoustic energy using a coupler member |
US8858471B2 (en) | 2011-07-10 | 2014-10-14 | Guided Therapy Systems, Llc | Methods and systems for ultrasound treatment |
US8857438B2 (en) | 2010-11-08 | 2014-10-14 | Ulthera, Inc. | Devices and methods for acoustic shielding |
US9011336B2 (en) | 2004-09-16 | 2015-04-21 | Guided Therapy Systems, Llc | Method and system for combined energy therapy profile |
US9011337B2 (en) | 2011-07-11 | 2015-04-21 | Guided Therapy Systems, Llc | Systems and methods for monitoring and controlling ultrasound power output and stability |
US9017355B2 (en) | 2007-12-03 | 2015-04-28 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US9066747B2 (en) | 2007-11-30 | 2015-06-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US9107690B2 (en) | 2007-12-03 | 2015-08-18 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US9114247B2 (en) | 2004-09-16 | 2015-08-25 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment with a multi-directional transducer |
US9132058B2 (en) | 2006-02-01 | 2015-09-15 | LELO Inc. | Rechargeable personal massager |
US9149658B2 (en) | 2010-08-02 | 2015-10-06 | Guided Therapy Systems, Llc | Systems and methods for ultrasound treatment |
US20150288401A1 (en) * | 2011-01-25 | 2015-10-08 | Seiko Epson Corporation | Ultrasonic sensor and electronic device |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9203288B2 (en) * | 2013-12-09 | 2015-12-01 | Mitsubishi Electric Corporation | Rotary electric machine with power converter |
US9216276B2 (en) | 2007-05-07 | 2015-12-22 | Guided Therapy Systems, Llc | Methods and systems for modulating medicants using acoustic energy |
US9220527B2 (en) | 2007-07-27 | 2015-12-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9232979B2 (en) | 2012-02-10 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Robotically controlled surgical instrument |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9241683B2 (en) | 2006-10-04 | 2016-01-26 | Ardent Sound Inc. | Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9263663B2 (en) | 2012-04-13 | 2016-02-16 | Ardent Sound, Inc. | Method of making thick film transducer arrays |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9314261B2 (en) | 2007-12-03 | 2016-04-19 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9414853B2 (en) | 2007-07-27 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Ultrasonic end effectors with increased active length |
US9427249B2 (en) | 2010-02-11 | 2016-08-30 | Ethicon Endo-Surgery, Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US9439669B2 (en) | 2007-07-31 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9445832B2 (en) | 2007-07-31 | 2016-09-20 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US20160270872A1 (en) * | 2013-11-14 | 2016-09-22 | Hera Med Ltd. | Moveable medical device configured to operate only within a specific range of acceleration |
US9474681B2 (en) | 2013-12-09 | 2016-10-25 | LELO, Inc. | Wearable massager for couples |
US9498245B2 (en) | 2009-06-24 | 2016-11-22 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9504855B2 (en) | 2008-08-06 | 2016-11-29 | Ethicon Surgery, LLC | Devices and techniques for cutting and coagulating tissue |
US9504483B2 (en) | 2007-03-22 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9504446B2 (en) | 2010-08-02 | 2016-11-29 | Guided Therapy Systems, Llc | Systems and methods for coupling an ultrasound source to tissue |
US9510850B2 (en) | 2010-02-11 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US9615994B2 (en) | 2011-07-06 | 2017-04-11 | LELO Inc. | Motion-based control for a personal massager |
US9623237B2 (en) | 2009-10-09 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9636135B2 (en) | 2007-07-27 | 2017-05-02 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9649126B2 (en) | 2010-02-11 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Seal arrangements for ultrasonically powered surgical instruments |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9707027B2 (en) | 2010-05-21 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Medical device |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9764164B2 (en) | 2009-07-15 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instruments |
US9801648B2 (en) | 2007-03-22 | 2017-10-31 | Ethicon Llc | Surgical instruments |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9848902B2 (en) | 2007-10-05 | 2017-12-26 | Ethicon Llc | Ergonomic surgical instruments |
US9848901B2 (en) | 2010-02-11 | 2017-12-26 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
US9962182B2 (en) | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10368898B2 (en) | 2016-05-05 | 2019-08-06 | Covidien Lp | Ultrasonic surgical instrument |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10420960B2 (en) | 2013-03-08 | 2019-09-24 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10561862B2 (en) | 2013-03-15 | 2020-02-18 | Guided Therapy Systems, Llc | Ultrasound treatment device and methods of use |
US10571435B2 (en) | 2017-06-08 | 2020-02-25 | Covidien Lp | Systems and methods for digital control of ultrasonic devices |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10582944B2 (en) | 2018-02-23 | 2020-03-10 | Covidien Lp | Ultrasonic surgical instrument with torque assist feature |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US10603521B2 (en) | 2014-04-18 | 2020-03-31 | Ulthera, Inc. | Band transducer ultrasound therapy |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10724857B1 (en) | 2018-11-09 | 2020-07-28 | Smart Wires Inc. | Real-time bolt monitoring system |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
US10856896B2 (en) | 2005-10-14 | 2020-12-08 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11224895B2 (en) | 2016-01-18 | 2022-01-18 | Ulthera, Inc. | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof |
US11229449B2 (en) | 2018-02-05 | 2022-01-25 | Covidien Lp | Ultrasonic horn, ultrasonic transducer assembly, and ultrasonic surgical instrument including the same |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US11241218B2 (en) | 2016-08-16 | 2022-02-08 | Ulthera, Inc. | Systems and methods for cosmetic ultrasound treatment of skin |
US11246621B2 (en) | 2018-01-29 | 2022-02-15 | Covidien Lp | Ultrasonic transducers and ultrasonic surgical instruments including the same |
US11246617B2 (en) | 2018-01-29 | 2022-02-15 | Covidien Lp | Compact ultrasonic transducer and ultrasonic surgical instrument including the same |
US11259832B2 (en) | 2018-01-29 | 2022-03-01 | Covidien Lp | Ultrasonic horn for an ultrasonic surgical instrument, ultrasonic surgical instrument including the same, and method of manufacturing an ultrasonic horn |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
US11446494B2 (en) | 2018-02-26 | 2022-09-20 | Amosense Co., Ltd | Skin care device and control method therefor |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US20220304887A1 (en) * | 2021-03-25 | 2022-09-29 | Biboting International Co., Ltd. | Massage device |
US11478268B2 (en) | 2019-08-16 | 2022-10-25 | Covidien Lp | Jaw members for surgical instruments and surgical instruments incorporating the same |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11617599B2 (en) | 2020-10-15 | 2023-04-04 | Covidien Lp | Ultrasonic surgical instrument |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11666357B2 (en) | 2019-09-16 | 2023-06-06 | Covidien Lp | Enclosure for electronics of a surgical instrument |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11717661B2 (en) | 2007-05-07 | 2023-08-08 | Guided Therapy Systems, Llc | Methods and systems for ultrasound assisted delivery of a medicant to tissue |
US11717312B2 (en) | 2021-10-01 | 2023-08-08 | Covidien Lp | Surgical system including blade visualization markings |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12004769B2 (en) | 2020-05-20 | 2024-06-11 | Covidien Lp | Ultrasonic transducer assembly for an ultrasonic surgical instrument |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12023065B2 (en) | 2019-09-03 | 2024-07-02 | Covidien Lp | Bi-stable spring-latch connector for ultrasonic surgical instruments |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US12076591B2 (en) | 2018-01-26 | 2024-09-03 | Ulthera, Inc. | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3816960B2 (en) | 1997-05-15 | 2006-08-30 | 松下電工株式会社 | Ultrasonic equipment |
JPH11375A (en) * | 1997-06-13 | 1999-01-06 | Matsushita Electric Works Ltd | Ultrasonic cosmetic implement |
JP3783339B2 (en) * | 1997-06-13 | 2006-06-07 | 松下電工株式会社 | Ultrasonic beauty device |
US7567232B2 (en) | 2001-03-09 | 2009-07-28 | Immersion Corporation | Method of using tactile feedback to deliver silent status information to a user of an electronic device |
KR20100057903A (en) | 2001-10-23 | 2010-06-01 | 임머숀 코퍼레이션 | Method of using tactile feedback to deliver silent status information to a user of an electronic device |
JP4467263B2 (en) * | 2002-09-20 | 2010-05-26 | 日本精密測器株式会社 | Electronic device for health index measurement and control method thereof |
CA2680675C (en) * | 2003-06-13 | 2012-05-15 | The Procter & Gamble Company | Sonophoresis skin care device |
US7815582B2 (en) * | 2006-02-01 | 2010-10-19 | Jimmyjane, Inc. | Networkable personal care device |
JP4850043B2 (en) * | 2006-11-29 | 2012-01-11 | 株式会社松風 | Vibration application equipment |
CN201308714Y (en) * | 2007-04-12 | 2009-09-16 | 深圳市东迪欣科技有限公司 | Load detection and prompt device for therapeutic apparatus |
KR100890359B1 (en) * | 2007-05-11 | 2009-03-25 | 진경수 | Ultrasonic Treatment Device |
CN102085411A (en) * | 2009-12-03 | 2011-06-08 | 林心一 | Intelligent use-safety defection method of ultrasonic treatment device |
WO2014187927A1 (en) * | 2013-05-23 | 2014-11-27 | Koninklijke Philips N.V. | Skin treatment apparatus with adaptive motion feedback |
CN104735949B (en) | 2013-12-19 | 2019-02-05 | 中兴通讯股份有限公司 | Driving device, radiator, method and the mobile terminal of Loudspeaker diaphragm coil |
KR101723163B1 (en) * | 2015-12-10 | 2017-04-04 | 주식회사 코러스트 | Device for generating ultrasounds of multiple frequencies |
CN107320860A (en) * | 2017-05-18 | 2017-11-07 | 北京宏强富瑞技术有限公司 | A kind for the treatment of head position detecting circuit |
KR102095222B1 (en) * | 2017-06-16 | 2020-04-01 | 이상봉 | Wireless endodontic treatment apparatus based on ultrasonics wave |
KR102187629B1 (en) * | 2018-01-19 | 2020-12-07 | 주식회사 아모센스 | Apparatus for controlling output of skin care device |
KR102187563B1 (en) * | 2018-01-19 | 2020-12-07 | 주식회사 아모센스 | Apparatus and method for controlling output of skin care device |
KR20200105757A (en) | 2020-08-20 | 2020-09-09 | 정승일 | Method and system for creating customized multiple search engines |
KR102566369B1 (en) * | 2021-04-15 | 2023-08-10 | 성균관대학교산학협력단 | Ultrasonic transducer, manufacturing method for the same, and ultrasonic stimulation device using the same |
KR102607111B1 (en) * | 2023-03-10 | 2023-11-30 | 제너럴바이오(주) | Ultrasound therapy device with automatic output adjustment function and its control method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4246792A (en) * | 1977-02-10 | 1981-01-27 | Terrance Matzuk | Self-contained ultrasonic scanner |
US4791915A (en) * | 1986-09-29 | 1988-12-20 | Dynawave Corporation | Ultrasound therapy device |
US4820152A (en) * | 1987-04-21 | 1989-04-11 | Dentsply Research & Development Corp. | Single multi-function handpiece for dental instruments |
US4866412A (en) * | 1986-08-14 | 1989-09-12 | The Microelectronics Applications Research Institute Limited | Tactile sensor device |
JPH0363054A (en) | 1989-08-02 | 1991-03-19 | Nitto Denko Corp | Ultrasonic instrument |
JPH0622518A (en) | 1992-05-21 | 1994-01-28 | Ford Motor Co | Field rotor of tandem-type alternating- current generator |
US5435304A (en) * | 1992-04-24 | 1995-07-25 | Siemens Aktiengesellschaft | Method and apparatus for therapeutic treatment with focussed acoustic waves switchable between a locating mode and a therapy mode |
US5460595A (en) * | 1993-06-01 | 1995-10-24 | Dynatronics Laser Corporation | Multi-frequency ultrasound therapy systems and methods |
JPH09248213A (en) | 1996-01-12 | 1997-09-22 | Hoomaa Ion Kenkyusho:Kk | Cosmetic and leaning device applying ultrasonic |
WO1998051255A1 (en) | 1997-05-15 | 1998-11-19 | Matsushita Electric Works, Ltd. | Ultrasonic device |
US5952814A (en) * | 1996-11-20 | 1999-09-14 | U.S. Philips Corporation | Induction charging apparatus and an electronic device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4708127A (en) * | 1985-10-24 | 1987-11-24 | The Birtcher Corporation | Ultrasonic generating system with feedback control |
JPH0622518B2 (en) * | 1986-07-07 | 1994-03-30 | 伊藤超短波株式会社 | Ultrasonic therapy device |
-
1998
- 1998-05-15 JP JP54905698A patent/JP3816960B2/en not_active Expired - Lifetime
- 1998-05-15 CN CNB988004917A patent/CN1154462C/en not_active Expired - Fee Related
- 1998-05-15 WO PCT/JP1998/002140 patent/WO1998051255A1/en active IP Right Grant
- 1998-05-15 DE DE19880830T patent/DE19880830B4/en not_active Expired - Fee Related
- 1998-05-15 KR KR1019997000210A patent/KR100285388B1/en not_active IP Right Cessation
- 1998-05-15 US US09/147,391 patent/US6183426B1/en not_active Expired - Lifetime
- 1998-05-15 TW TW087107567A patent/TW480172B/en not_active IP Right Cessation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4246792A (en) * | 1977-02-10 | 1981-01-27 | Terrance Matzuk | Self-contained ultrasonic scanner |
US4866412A (en) * | 1986-08-14 | 1989-09-12 | The Microelectronics Applications Research Institute Limited | Tactile sensor device |
US4791915A (en) * | 1986-09-29 | 1988-12-20 | Dynawave Corporation | Ultrasound therapy device |
US4820152A (en) * | 1987-04-21 | 1989-04-11 | Dentsply Research & Development Corp. | Single multi-function handpiece for dental instruments |
JPH0363054A (en) | 1989-08-02 | 1991-03-19 | Nitto Denko Corp | Ultrasonic instrument |
US5435304A (en) * | 1992-04-24 | 1995-07-25 | Siemens Aktiengesellschaft | Method and apparatus for therapeutic treatment with focussed acoustic waves switchable between a locating mode and a therapy mode |
JPH0622518A (en) | 1992-05-21 | 1994-01-28 | Ford Motor Co | Field rotor of tandem-type alternating- current generator |
US5460595A (en) * | 1993-06-01 | 1995-10-24 | Dynatronics Laser Corporation | Multi-frequency ultrasound therapy systems and methods |
JPH09248213A (en) | 1996-01-12 | 1997-09-22 | Hoomaa Ion Kenkyusho:Kk | Cosmetic and leaning device applying ultrasonic |
US5952814A (en) * | 1996-11-20 | 1999-09-14 | U.S. Philips Corporation | Induction charging apparatus and an electronic device |
WO1998051255A1 (en) | 1997-05-15 | 1998-11-19 | Matsushita Electric Works, Ltd. | Ultrasonic device |
Cited By (535)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8480585B2 (en) | 1997-10-14 | 2013-07-09 | Guided Therapy Systems, Llc | Imaging, therapy and temperature monitoring ultrasonic system and method |
US9272162B2 (en) | 1997-10-14 | 2016-03-01 | Guided Therapy Systems, Llc | Imaging, therapy, and temperature monitoring ultrasonic method |
US6527721B1 (en) * | 2000-09-13 | 2003-03-04 | Koninklijke Philips Electronics, N.V. | Portable ultrasound system with battery backup for efficient shutdown and restart |
US8577460B2 (en) | 2000-10-16 | 2013-11-05 | Remon Medical Technologies, Ltd | Acoustically powered implantable stimulating device |
US20080103553A1 (en) * | 2000-10-16 | 2008-05-01 | Remon Medical Technologies Ltd. | Systems and methods for communicating with implantable devices |
US7756587B2 (en) | 2000-10-16 | 2010-07-13 | Cardiac Pacemakers, Inc. | Systems and methods for communicating with implantable devices |
USRE42378E1 (en) | 2000-10-16 | 2011-05-17 | Remon Medical Technologies, Ltd. | Implantable pressure sensors and methods for making and using them |
US20080108915A1 (en) * | 2000-10-16 | 2008-05-08 | Remon Medical Technologies Ltd. | Acoustically powered implantable stimulating device |
US7930031B2 (en) | 2000-10-16 | 2011-04-19 | Remon Medical Technologies, Ltd. | Acoustically powered implantable stimulating device |
US8934972B2 (en) | 2000-10-16 | 2015-01-13 | Remon Medical Technologies, Ltd. | Acoustically powered implantable stimulating device |
US6610011B2 (en) * | 2000-12-27 | 2003-08-26 | Siemens Medical Solutions Usa, Inc. | Method and system for control of probe heating using lens reflection pulse-echo feedback |
US8409097B2 (en) | 2000-12-28 | 2013-04-02 | Ardent Sound, Inc | Visual imaging system for ultrasonic probe |
US9907535B2 (en) | 2000-12-28 | 2018-03-06 | Ardent Sound, Inc. | Visual imaging system for ultrasonic probe |
WO2002094375A1 (en) * | 2001-03-29 | 2002-11-28 | Sobet Ag | Hand-held device for pain relief |
US20020177792A1 (en) * | 2001-05-28 | 2002-11-28 | Takafumi Ooba | Ultrasonic wave cosmetic device |
US7022089B2 (en) * | 2001-05-28 | 2006-04-04 | Matsushita Electric Works, Ltd. | Ultrasonic wave cosmetic device |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US6469418B1 (en) * | 2001-06-27 | 2002-10-22 | Scitex Digital Printing, Inc. | Vibration monitoring system and method |
GB2376890A (en) * | 2001-06-27 | 2002-12-31 | Andrew Timothy Sweeney | Massage device |
GB2376890B (en) * | 2001-06-27 | 2004-11-10 | Andrew Timothy Sweeney | Massage device |
US7001355B2 (en) | 2002-01-21 | 2006-02-21 | The Procter & Gamble Company | Skin care device |
WO2004004560A1 (en) * | 2002-07-08 | 2004-01-15 | Heart Detector Limited | Portable heart monitor |
US9775666B2 (en) * | 2002-07-11 | 2017-10-03 | Misonix, Incorporated | Medical handpiece with automatic power switching means |
US8444629B2 (en) * | 2002-07-11 | 2013-05-21 | Misonix, Incorporated | Medical handpiece with automatic power switching means |
US20100286665A1 (en) * | 2002-07-11 | 2010-11-11 | Misonix Incorporated | Medical handpiece with automatic power switching means |
US20130267935A1 (en) * | 2002-07-11 | 2013-10-10 | Misonix Incorporated | Medical handpiece with automatic power switching means |
WO2004035138A1 (en) * | 2002-10-17 | 2004-04-29 | Mediventure Co., Ltd. | Ultrasonic generator with several probes for skin stimulus |
US8211132B2 (en) * | 2003-06-06 | 2012-07-03 | Olympus Corporation | Ultrasonic surgical apparatus |
US20040249318A1 (en) * | 2003-06-06 | 2004-12-09 | Olympus Corporation | Ultrasonic surgical apparatus |
US7981060B2 (en) | 2003-06-13 | 2011-07-19 | Panasonic Electric Works Co., Ltd. | Ultrasound applying skin care device |
WO2004110558A1 (en) * | 2003-06-13 | 2004-12-23 | Matsushita Electric Works, Ltd. | Ultrasound applying skin care device |
CN100460032C (en) * | 2003-06-13 | 2009-02-11 | 松下电工株式会社 | Ultrasound applying skin care device |
US20060149169A1 (en) * | 2003-06-13 | 2006-07-06 | Mahito Nunomura | Ultrasound applying skin care device |
US11730507B2 (en) | 2004-02-27 | 2023-08-22 | Cilag Gmbh International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US20050251045A1 (en) * | 2004-05-04 | 2005-11-10 | Macdonald Michael C | Method and apparatus for controlling power in an ultrasound system |
US7338446B2 (en) * | 2004-05-04 | 2008-03-04 | General Electric Company | Method and apparatus for controlling power in an ultrasound system |
US8235909B2 (en) | 2004-05-12 | 2012-08-07 | Guided Therapy Systems, L.L.C. | Method and system for controlled scanning, imaging and/or therapy |
US10039938B2 (en) | 2004-09-16 | 2018-08-07 | Guided Therapy Systems, Llc | System and method for variable depth ultrasound treatment |
US9011336B2 (en) | 2004-09-16 | 2015-04-21 | Guided Therapy Systems, Llc | Method and system for combined energy therapy profile |
US8708935B2 (en) | 2004-09-16 | 2014-04-29 | Guided Therapy Systems, Llc | System and method for variable depth ultrasound treatment |
US9114247B2 (en) | 2004-09-16 | 2015-08-25 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment with a multi-directional transducer |
US7824348B2 (en) | 2004-09-16 | 2010-11-02 | Guided Therapy Systems, L.L.C. | System and method for variable depth ultrasound treatment |
US20060058664A1 (en) * | 2004-09-16 | 2006-03-16 | Guided Therapy Systems, Inc. | System and method for variable depth ultrasound treatment |
US9095697B2 (en) | 2004-09-24 | 2015-08-04 | Guided Therapy Systems, Llc | Methods for preheating tissue for cosmetic treatment of the face and body |
US10328289B2 (en) | 2004-09-24 | 2019-06-25 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US9895560B2 (en) | 2004-09-24 | 2018-02-20 | Guided Therapy Systems, Llc | Methods for rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US11590370B2 (en) | 2004-09-24 | 2023-02-28 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US10888716B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, Llc | Energy based fat reduction |
US8690780B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Noninvasive tissue tightening for cosmetic effects |
US20060074314A1 (en) * | 2004-10-06 | 2006-04-06 | Guided Therapy Systems, L.L.C. | Method and system for noninvasive mastopexy |
US10525288B2 (en) | 2004-10-06 | 2020-01-07 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US10532230B2 (en) | 2004-10-06 | 2020-01-14 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US7758524B2 (en) | 2004-10-06 | 2010-07-20 | Guided Therapy Systems, L.L.C. | Method and system for ultra-high frequency ultrasound treatment |
US10265550B2 (en) | 2004-10-06 | 2019-04-23 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US10252086B2 (en) | 2004-10-06 | 2019-04-09 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10245450B2 (en) | 2004-10-06 | 2019-04-02 | Guided Therapy Systems, Llc | Ultrasound probe for fat and cellulite reduction |
US10238894B2 (en) | 2004-10-06 | 2019-03-26 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US9039619B2 (en) | 2004-10-06 | 2015-05-26 | Guided Therapy Systems, L.L.C. | Methods for treating skin laxity |
US7530356B2 (en) | 2004-10-06 | 2009-05-12 | Guided Therapy Systems, Inc. | Method and system for noninvasive mastopexy |
US11717707B2 (en) | 2004-10-06 | 2023-08-08 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US10603519B2 (en) | 2004-10-06 | 2020-03-31 | Guided Therapy Systems, Llc | Energy based fat reduction |
US10603523B2 (en) | 2004-10-06 | 2020-03-31 | Guided Therapy Systems, Llc | Ultrasound probe for tissue treatment |
US10610706B2 (en) | 2004-10-06 | 2020-04-07 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US11697033B2 (en) | 2004-10-06 | 2023-07-11 | Guided Therapy Systems, Llc | Methods for lifting skin tissue |
US10610705B2 (en) | 2004-10-06 | 2020-04-07 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US10046182B2 (en) | 2004-10-06 | 2018-08-14 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US10046181B2 (en) | 2004-10-06 | 2018-08-14 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US20060074313A1 (en) * | 2004-10-06 | 2006-04-06 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US10010726B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10010724B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US10010725B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, Llc | Ultrasound probe for fat and cellulite reduction |
US10010721B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US8066641B2 (en) | 2004-10-06 | 2011-11-29 | Guided Therapy Systems, L.L.C. | Method and system for treating photoaged tissue |
US8932224B2 (en) | 2004-10-06 | 2015-01-13 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US9283409B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, Llc | Energy based fat reduction |
US8920324B2 (en) | 2004-10-06 | 2014-12-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US8915854B2 (en) | 2004-10-06 | 2014-12-23 | Guided Therapy Systems, Llc | Method for fat and cellulite reduction |
US9974982B2 (en) | 2004-10-06 | 2018-05-22 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US7615016B2 (en) | 2004-10-06 | 2009-11-10 | Guided Therapy Systems, L.L.C. | Method and system for treating stretch marks |
US8915853B2 (en) | 2004-10-06 | 2014-12-23 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US20060079816A1 (en) * | 2004-10-06 | 2006-04-13 | Guided Therapy Systems, L.L.C. | Method and system for treating stretch marks |
US8282554B2 (en) | 2004-10-06 | 2012-10-09 | Guided Therapy Systems, Llc | Methods for treatment of sweat glands |
US20060084891A1 (en) * | 2004-10-06 | 2006-04-20 | Guided Therapy Systems, L.L.C. | Method and system for ultra-high frequency ultrasound treatment |
US9833639B2 (en) | 2004-10-06 | 2017-12-05 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US9833640B2 (en) | 2004-10-06 | 2017-12-05 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound treatment of skin |
US8333700B1 (en) | 2004-10-06 | 2012-12-18 | Guided Therapy Systems, L.L.C. | Methods for treatment of hyperhidrosis |
US9827450B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | System and method for fat and cellulite reduction |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US8366622B2 (en) | 2004-10-06 | 2013-02-05 | Guided Therapy Systems, Llc | Treatment of sub-dermal regions for cosmetic effects |
US20060241442A1 (en) * | 2004-10-06 | 2006-10-26 | Guided Therapy Systems, L.L.C. | Method and system for treating photoaged tissue |
US8915870B2 (en) | 2004-10-06 | 2014-12-23 | Guided Therapy Systems, Llc | Method and system for treating stretch marks |
US9283410B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, L.L.C. | System and method for fat and cellulite reduction |
US9320537B2 (en) | 2004-10-06 | 2016-04-26 | Guided Therapy Systems, Llc | Methods for noninvasive skin tightening |
US11400319B2 (en) | 2004-10-06 | 2022-08-02 | Guided Therapy Systems, Llc | Methods for lifting skin tissue |
US10888718B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US9713731B2 (en) | 2004-10-06 | 2017-07-25 | Guided Therapy Systems, Llc | Energy based fat reduction |
US10888717B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, Llc | Probe for ultrasound tissue treatment |
US9707412B2 (en) | 2004-10-06 | 2017-07-18 | Guided Therapy Systems, Llc | System and method for fat and cellulite reduction |
US10960236B2 (en) | 2004-10-06 | 2021-03-30 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US9700340B2 (en) | 2004-10-06 | 2017-07-11 | Guided Therapy Systems, Llc | System and method for ultra-high frequency ultrasound treatment |
US9694211B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US11338156B2 (en) | 2004-10-06 | 2022-05-24 | Guided Therapy Systems, Llc | Noninvasive tissue tightening system |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US9533175B2 (en) | 2004-10-06 | 2017-01-03 | Guided Therapy Systems, Llc | Energy based fat reduction |
US8460193B2 (en) | 2004-10-06 | 2013-06-11 | Guided Therapy Systems Llc | System and method for ultra-high frequency ultrasound treatment |
US9522290B2 (en) | 2004-10-06 | 2016-12-20 | Guided Therapy Systems, Llc | System and method for fat and cellulite reduction |
US11167155B2 (en) | 2004-10-06 | 2021-11-09 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US11179580B2 (en) | 2004-10-06 | 2021-11-23 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US11207547B2 (en) | 2004-10-06 | 2021-12-28 | Guided Therapy Systems, Llc | Probe for ultrasound tissue treatment |
US8506486B2 (en) | 2004-10-06 | 2013-08-13 | Guided Therapy Systems, Llc | Ultrasound treatment of sub-dermal tissue for cosmetic effects |
US8523775B2 (en) | 2004-10-06 | 2013-09-03 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US9421029B2 (en) | 2004-10-06 | 2016-08-23 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US8690778B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Energy-based tissue tightening |
US9440096B2 (en) | 2004-10-06 | 2016-09-13 | Guided Therapy Systems, Llc | Method and system for treating stretch marks |
US9427600B2 (en) | 2004-10-06 | 2016-08-30 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US8636665B2 (en) | 2004-10-06 | 2014-01-28 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of fat |
US8641622B2 (en) | 2004-10-06 | 2014-02-04 | Guided Therapy Systems, Llc | Method and system for treating photoaged tissue |
US8663112B2 (en) | 2004-10-06 | 2014-03-04 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
US11235180B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US9427601B2 (en) | 2004-10-06 | 2016-08-30 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US8672848B2 (en) | 2004-10-06 | 2014-03-18 | Guided Therapy Systems, Llc | Method and system for treating cellulite |
US7491171B2 (en) | 2004-10-06 | 2009-02-17 | Guided Therapy Systems, L.L.C. | Method and system for treating acne and sebaceous glands |
US8690779B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Noninvasive aesthetic treatment for tightening tissue |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US11006971B2 (en) | 2004-10-08 | 2021-05-18 | Ethicon Llc | Actuation mechanism for use with an ultrasonic surgical instrument |
US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
EP3047832A1 (en) * | 2004-12-17 | 2016-07-27 | Standard Innovation Corporation | Electro-mechanical sexual stimulation device |
US10231900B2 (en) | 2004-12-17 | 2019-03-19 | Standard Innovation Corporation | Electro-mechanical sexual stimulation device |
EP1824440A4 (en) * | 2004-12-17 | 2011-03-02 | Electro-mechanical sexual stimulation device | |
US20110124959A1 (en) * | 2004-12-17 | 2011-05-26 | Standard Innovation Corporation | Electro-Mechanical Sexual Stimulation Device |
EP1824440B1 (en) | 2004-12-17 | 2016-03-09 | Standard Innovation Corporation | Electro-mechanical sexual stimulation device |
US8868958B2 (en) | 2005-04-25 | 2014-10-21 | Ardent Sound, Inc | Method and system for enhancing computer peripheral safety |
US8166332B2 (en) | 2005-04-25 | 2012-04-24 | Ardent Sound, Inc. | Treatment system for enhancing safety of computer peripheral for use with medical devices by isolating host AC power |
US10856896B2 (en) | 2005-10-14 | 2020-12-08 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US11998229B2 (en) | 2005-10-14 | 2024-06-04 | Cilag Gmbh International | Ultrasonic device for cutting and coagulating |
KR100717705B1 (en) * | 2005-12-09 | 2007-05-11 | 마츠시다 덴코 가부시키가이샤 | Ultrasound applying skin care device |
US8078278B2 (en) | 2006-01-10 | 2011-12-13 | Remon Medical Technologies Ltd. | Body attachable unit in wireless communication with implantable devices |
US20070162090A1 (en) * | 2006-01-10 | 2007-07-12 | Abraham Penner | Body attachable unit in wireless communication with implantable devices |
US20080027359A1 (en) * | 2006-01-11 | 2008-01-31 | Thierman Jonathan S | Treatment of warts and other dermatological conditions using topical ultrasonic applicator |
WO2007082072A3 (en) * | 2006-01-11 | 2007-10-18 | Sureshot Medical Device Inc | Treatment of warts and other dermatological conditions using topical ultrasonic applicator |
WO2007082072A2 (en) * | 2006-01-11 | 2007-07-19 | Sureshot Medical Device, Inc. | Treatment of warts and other dermatological conditions using topical ultrasonic applicator |
US8753295B2 (en) | 2006-01-11 | 2014-06-17 | Sure-Shot Medical Devices | Treatment of warts and other dermatological conditions using topical ultrasonic applicator |
US12042168B2 (en) | 2006-01-20 | 2024-07-23 | Cilag Gmbh International | Ultrasound medical instrument having a medical ultrasonic blade |
US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
US9132058B2 (en) | 2006-02-01 | 2015-09-15 | LELO Inc. | Rechargeable personal massager |
EP2428251A1 (en) * | 2006-09-18 | 2012-03-14 | Guided Therapy Systems, L.L.C. | System for non-ablative acne treatment and prevention |
US9566454B2 (en) | 2006-09-18 | 2017-02-14 | Guided Therapy Systems, Llc | Method and sysem for non-ablative acne treatment and prevention |
US9241683B2 (en) | 2006-10-04 | 2016-01-26 | Ardent Sound Inc. | Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid |
US20080139943A1 (en) * | 2006-12-07 | 2008-06-12 | Industrial Technology Research Institute | Ultrasonic wave device |
US9801648B2 (en) | 2007-03-22 | 2017-10-31 | Ethicon Llc | Surgical instruments |
US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
US10828057B2 (en) | 2007-03-22 | 2020-11-10 | Ethicon Llc | Ultrasonic surgical instruments |
US10722261B2 (en) | 2007-03-22 | 2020-07-28 | Ethicon Llc | Surgical instruments |
US9504483B2 (en) | 2007-03-22 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9987033B2 (en) | 2007-03-22 | 2018-06-05 | Ethicon Llc | Ultrasonic surgical instruments |
US8340776B2 (en) | 2007-03-26 | 2012-12-25 | Cardiac Pacemakers, Inc. | Biased acoustic switch for implantable medical device |
US20080243210A1 (en) * | 2007-03-26 | 2008-10-02 | Eyal Doron | Biased acoustic switch for implantable medical device |
US11717661B2 (en) | 2007-05-07 | 2023-08-08 | Guided Therapy Systems, Llc | Methods and systems for ultrasound assisted delivery of a medicant to tissue |
US9216276B2 (en) | 2007-05-07 | 2015-12-22 | Guided Therapy Systems, Llc | Methods and systems for modulating medicants using acoustic energy |
US8764687B2 (en) | 2007-05-07 | 2014-07-01 | Guided Therapy Systems, Llc | Methods and systems for coupling and focusing acoustic energy using a coupler member |
US10531910B2 (en) | 2007-07-27 | 2020-01-14 | Ethicon Llc | Surgical instruments |
US11690641B2 (en) | 2007-07-27 | 2023-07-04 | Cilag Gmbh International | Ultrasonic end effectors with increased active length |
US9220527B2 (en) | 2007-07-27 | 2015-12-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9414853B2 (en) | 2007-07-27 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Ultrasonic end effectors with increased active length |
US11607268B2 (en) | 2007-07-27 | 2023-03-21 | Cilag Gmbh International | Surgical instruments |
US9636135B2 (en) | 2007-07-27 | 2017-05-02 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9913656B2 (en) | 2007-07-27 | 2018-03-13 | Ethicon Llc | Ultrasonic surgical instruments |
US9642644B2 (en) | 2007-07-27 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9707004B2 (en) | 2007-07-27 | 2017-07-18 | Ethicon Llc | Surgical instruments |
US10398466B2 (en) | 2007-07-27 | 2019-09-03 | Ethicon Llc | Ultrasonic end effectors with increased active length |
US10426507B2 (en) | 2007-07-31 | 2019-10-01 | Ethicon Llc | Ultrasonic surgical instruments |
US9439669B2 (en) | 2007-07-31 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US11877734B2 (en) | 2007-07-31 | 2024-01-23 | Cilag Gmbh International | Ultrasonic surgical instruments |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US11666784B2 (en) | 2007-07-31 | 2023-06-06 | Cilag Gmbh International | Surgical instruments |
US10420579B2 (en) | 2007-07-31 | 2019-09-24 | Ethicon Llc | Surgical instruments |
US9445832B2 (en) | 2007-07-31 | 2016-09-20 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9848902B2 (en) | 2007-10-05 | 2017-12-26 | Ethicon Llc | Ergonomic surgical instruments |
US10828059B2 (en) | 2007-10-05 | 2020-11-10 | Ethicon Llc | Ergonomic surgical instruments |
US20090139972A1 (en) * | 2007-10-23 | 2009-06-04 | Psion Teklogix Inc. | Docking connector |
US8456248B2 (en) * | 2007-11-02 | 2013-06-04 | Braun Gmbh | Circuit arrangement and method for supplying a capacitive load |
US20100315851A1 (en) * | 2007-11-02 | 2010-12-16 | Uwe Schober | Circuit arrangement and method for supplying a capacitive load |
US10433866B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
US9339289B2 (en) | 2007-11-30 | 2016-05-17 | Ehticon Endo-Surgery, LLC | Ultrasonic surgical instrument blades |
US9066747B2 (en) | 2007-11-30 | 2015-06-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US10463887B2 (en) | 2007-11-30 | 2019-11-05 | Ethicon Llc | Ultrasonic surgical blades |
US11690643B2 (en) | 2007-11-30 | 2023-07-04 | Cilag Gmbh International | Ultrasonic surgical blades |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US11766276B2 (en) | 2007-11-30 | 2023-09-26 | Cilag Gmbh International | Ultrasonic surgical blades |
US10888347B2 (en) | 2007-11-30 | 2021-01-12 | Ethicon Llc | Ultrasonic surgical blades |
US11439426B2 (en) | 2007-11-30 | 2022-09-13 | Cilag Gmbh International | Ultrasonic surgical blades |
US10265094B2 (en) | 2007-11-30 | 2019-04-23 | Ethicon Llc | Ultrasonic surgical blades |
US10433865B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
US10441308B2 (en) | 2007-11-30 | 2019-10-15 | Ethicon Llc | Ultrasonic surgical instrument blades |
US10245065B2 (en) | 2007-11-30 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical blades |
US11253288B2 (en) | 2007-11-30 | 2022-02-22 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US11266433B2 (en) | 2007-11-30 | 2022-03-08 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US10045794B2 (en) | 2007-11-30 | 2018-08-14 | Ethicon Llc | Ultrasonic surgical blades |
US20110167619A1 (en) * | 2007-12-03 | 2011-07-14 | Smith Kevin W | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US8403948B2 (en) | 2007-12-03 | 2013-03-26 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US10456158B2 (en) | 2007-12-03 | 2019-10-29 | Covidien Ag | Cordless hand-held ultrasonic surgical device |
US8444662B2 (en) | 2007-12-03 | 2013-05-21 | Covidien Lp | Cordless hand-held ultrasonic cautery cutting device |
US20100004668A1 (en) * | 2007-12-03 | 2010-01-07 | Smith Kevin W | Cordless Hand-Held Ultrasonic Cautery Cutting Device and Method |
US20110172689A1 (en) * | 2007-12-03 | 2011-07-14 | Smith Kevin W | Method of Maintaining Constant Movement of a Cutting Blade on an Ultrasonic Waveguide |
US9314261B2 (en) | 2007-12-03 | 2016-04-19 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8197502B2 (en) | 2007-12-03 | 2012-06-12 | Covidien Ag | Method of maintaining constant movement of a cutting blade on an ultrasonic waveguide |
US20090143799A1 (en) * | 2007-12-03 | 2009-06-04 | Smith Kevin W | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US8439939B2 (en) | 2007-12-03 | 2013-05-14 | Covidien Ag | Method of powering a surgical instrument |
US8435257B2 (en) | 2007-12-03 | 2013-05-07 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device and method |
US8425545B2 (en) | 2007-12-03 | 2013-04-23 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device and method |
US8418349B2 (en) | 2007-12-03 | 2013-04-16 | Covidien Ag | Method of assembling a cordless hand-held ultrasonic cautery cutting device |
US20090143805A1 (en) * | 2007-12-03 | 2009-06-04 | Palmer Matthew A | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US8419757B2 (en) | 2007-12-03 | 2013-04-16 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US20100000074A1 (en) * | 2007-12-03 | 2010-01-07 | Smith Kevin W | Method of Assembling a Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US8992555B2 (en) | 2007-12-03 | 2015-03-31 | Covidien Ag | Method of assembling a cordless hand-held ultrasonic cautery cutting device |
US8419758B2 (en) | 2007-12-03 | 2013-04-16 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US20090143797A1 (en) * | 2007-12-03 | 2009-06-04 | Smith Kevin W | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US8403949B2 (en) | 2007-12-03 | 2013-03-26 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US20090143800A1 (en) * | 2007-12-03 | 2009-06-04 | Derek Dee Deville | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US8403950B2 (en) | 2007-12-03 | 2013-03-26 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US20110178542A1 (en) * | 2007-12-03 | 2011-07-21 | Smith Kevin W | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US20090143801A1 (en) * | 2007-12-03 | 2009-06-04 | Derek Dee Deville | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US8377085B2 (en) | 2007-12-03 | 2013-02-19 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US9782180B2 (en) | 2007-12-03 | 2017-10-10 | Covidien Ag | Method of maintaining constant movement of a cutting blade of an ultrasonic waveguide |
US8061014B2 (en) | 2007-12-03 | 2011-11-22 | Covidien Ag | Method of assembling a cordless hand-held ultrasonic cautery cutting device |
US8372101B2 (en) | 2007-12-03 | 2013-02-12 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US11478820B2 (en) | 2007-12-03 | 2022-10-25 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8372099B2 (en) | 2007-12-03 | 2013-02-12 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US20090143804A1 (en) * | 2007-12-03 | 2009-06-04 | Palmer Matthew A | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US20090143802A1 (en) * | 2007-12-03 | 2009-06-04 | Derek Dee Deville | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US20090143803A1 (en) * | 2007-12-03 | 2009-06-04 | Palmer Matthew A | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US8333778B2 (en) | 2007-12-03 | 2012-12-18 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US9017355B2 (en) | 2007-12-03 | 2015-04-28 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US10426508B2 (en) | 2007-12-03 | 2019-10-01 | Covidien Ag | Cordless hand-held ultrasonic cautery device |
US8663262B2 (en) | 2007-12-03 | 2014-03-04 | Covidien Ag | Battery assembly for battery-powered surgical instruments |
US9861382B2 (en) | 2007-12-03 | 2018-01-09 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US9872696B2 (en) | 2007-12-03 | 2018-01-23 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US9084625B2 (en) | 2007-12-03 | 2015-07-21 | Covidien Ag | Battery assembly for battery-powered surgical instruments |
US8333779B2 (en) | 2007-12-03 | 2012-12-18 | Covidien Ag | Method of maintaining constant movement of a cutting blade of an ultrasonic waveguide |
US20090143798A1 (en) * | 2007-12-03 | 2009-06-04 | Smith Kevin W | Cordless Hand-Held Ultrasonic Cautery Cutting Device |
US9107690B2 (en) | 2007-12-03 | 2015-08-18 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US10799913B2 (en) | 2007-12-03 | 2020-10-13 | Covidien Lp | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8236020B2 (en) | 2007-12-03 | 2012-08-07 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
WO2009147615A1 (en) * | 2008-06-06 | 2009-12-10 | Koninklijke Philips Electronics N.V. | Determining contact with a body |
US20110112405A1 (en) * | 2008-06-06 | 2011-05-12 | Ulthera, Inc. | Hand Wand for Ultrasonic Cosmetic Treatment and Imaging |
US11123039B2 (en) | 2008-06-06 | 2021-09-21 | Ulthera, Inc. | System and method for ultrasound treatment |
US10537304B2 (en) | 2008-06-06 | 2020-01-21 | Ulthera, Inc. | Hand wand for ultrasonic cosmetic treatment and imaging |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
US11723622B2 (en) | 2008-06-06 | 2023-08-15 | Ulthera, Inc. | Systems for ultrasound treatment |
US20090312650A1 (en) * | 2008-06-12 | 2009-12-17 | Cardiac Pacemakers, Inc. | Implantable pressure sensor with automatic measurement and storage capabilities |
US20090326609A1 (en) * | 2008-06-27 | 2009-12-31 | Cardiac Pacemakers, Inc. | Systems and methods of monitoring the acoustic coupling of medical devices |
WO2009158062A1 (en) * | 2008-06-27 | 2009-12-30 | Cardiac Pacemakers, Inc. | Systems and methods of monitoring the acoustic coupling of medical devices |
US8798761B2 (en) | 2008-06-27 | 2014-08-05 | Cardiac Pacemakers, Inc. | Systems and methods of monitoring the acoustic coupling of medical devices |
US20100023091A1 (en) * | 2008-07-24 | 2010-01-28 | Stahmann Jeffrey E | Acoustic communication of implantable device status |
US10022567B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US10022568B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US9504855B2 (en) | 2008-08-06 | 2016-11-29 | Ethicon Surgery, LLC | Devices and techniques for cutting and coagulating tissue |
US9795808B2 (en) | 2008-08-06 | 2017-10-24 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US11890491B2 (en) | 2008-08-06 | 2024-02-06 | Cilag Gmbh International | Devices and techniques for cutting and coagulating tissue |
US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US20110144476A1 (en) * | 2008-08-18 | 2011-06-16 | The Brigham And Women's Hospital, Inc. | Integrated Surgical Sampling Probe |
US20100106028A1 (en) * | 2008-10-27 | 2010-04-29 | Avi Penner | Methods and systems for recharging implantable devices |
US8593107B2 (en) | 2008-10-27 | 2013-11-26 | Cardiac Pacemakers, Inc. | Methods and systems for recharging an implanted device by delivering a section of a charging device adjacent the implanted device within a body |
US9024582B2 (en) | 2008-10-27 | 2015-05-05 | Cardiac Pacemakers, Inc. | Methods and systems for recharging an implanted device by delivering a section of a charging device adjacent the implanted device within a body |
US20100117484A1 (en) * | 2008-11-05 | 2010-05-13 | Texas Instruments Incorporated | Driver and driving method |
US8040019B2 (en) * | 2008-11-05 | 2011-10-18 | Texas Instruments Incorporated | Driver and driving method |
US8742269B2 (en) | 2008-11-06 | 2014-06-03 | Covidien Ag | Two-stage switch for surgical device |
US8502091B2 (en) | 2008-11-06 | 2013-08-06 | Covidien Ag | Two-Stage Switch for Surgical Device |
US8334468B2 (en) | 2008-11-06 | 2012-12-18 | Covidien Ag | Method of switching a cordless hand-held ultrasonic cautery cutting device |
US8487199B2 (en) | 2008-11-06 | 2013-07-16 | Covidien Ag | Method of switching a surgical device |
US8497437B2 (en) | 2008-11-06 | 2013-07-30 | Covidien Ag | Method of switching a surgical device |
US8497436B2 (en) | 2008-11-06 | 2013-07-30 | Covidien Ag | Two-stage switch for surgical device |
US20100217161A1 (en) * | 2009-02-25 | 2010-08-26 | Avi Shalgi | Delivery of therapeutic focused energy |
US10709906B2 (en) | 2009-05-20 | 2020-07-14 | Ethicon Llc | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9498245B2 (en) | 2009-06-24 | 2016-11-22 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9764164B2 (en) | 2009-07-15 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instruments |
US11717706B2 (en) | 2009-07-15 | 2023-08-08 | Cilag Gmbh International | Ultrasonic surgical instruments |
US10688321B2 (en) | 2009-07-15 | 2020-06-23 | Ethicon Llc | Ultrasonic surgical instruments |
US20110028867A1 (en) * | 2009-07-29 | 2011-02-03 | Seh-Eun Choo | Apparatus and method for non-invasive delivery and tracking of focused ultrasound generated from transducer |
US8338726B2 (en) | 2009-08-26 | 2012-12-25 | Covidien Ag | Two-stage switch for cordless hand-held ultrasonic cautery cutting device |
US10265117B2 (en) | 2009-10-09 | 2019-04-23 | Ethicon Llc | Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices |
US10263171B2 (en) | 2009-10-09 | 2019-04-16 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11871982B2 (en) | 2009-10-09 | 2024-01-16 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US9623237B2 (en) | 2009-10-09 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Surgical generator for ultrasonic and electrosurgical devices |
EP2311427A1 (en) * | 2009-10-16 | 2011-04-20 | Reinhard Becker | Ultrasound treatment device and method for its operation |
US8715186B2 (en) | 2009-11-24 | 2014-05-06 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
US9039617B2 (en) | 2009-11-24 | 2015-05-26 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
US9345910B2 (en) | 2009-11-24 | 2016-05-24 | Guided Therapy Systems Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
US11369402B2 (en) | 2010-02-11 | 2022-06-28 | Cilag Gmbh International | Control systems for ultrasonically powered surgical instruments |
US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US9510850B2 (en) | 2010-02-11 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9962182B2 (en) | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
US9427249B2 (en) | 2010-02-11 | 2016-08-30 | Ethicon Endo-Surgery, Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US10117667B2 (en) | 2010-02-11 | 2018-11-06 | Ethicon Llc | Control systems for ultrasonically powered surgical instruments |
US10835768B2 (en) | 2010-02-11 | 2020-11-17 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US9848901B2 (en) | 2010-02-11 | 2017-12-26 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US9649126B2 (en) | 2010-02-11 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Seal arrangements for ultrasonically powered surgical instruments |
US11382642B2 (en) | 2010-02-11 | 2022-07-12 | Cilag Gmbh International | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US8665031B2 (en) | 2010-03-30 | 2014-03-04 | Covidien Lp | System and method for improved start-up of self-oscillating electro-mechanical surgical devices |
US20110239370A1 (en) * | 2010-03-31 | 2011-10-06 | Anthony Michael Turo | Systems for relieving pressure sores and methods therefor |
US8528135B2 (en) * | 2010-03-31 | 2013-09-10 | Anthony Michael Turo | Systems for relieving pressure sores and methods therefor |
US9707027B2 (en) | 2010-05-21 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Medical device |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US9149658B2 (en) | 2010-08-02 | 2015-10-06 | Guided Therapy Systems, Llc | Systems and methods for ultrasound treatment |
US10183182B2 (en) | 2010-08-02 | 2019-01-22 | Guided Therapy Systems, Llc | Methods and systems for treating plantar fascia |
US9504446B2 (en) | 2010-08-02 | 2016-11-29 | Guided Therapy Systems, Llc | Systems and methods for coupling an ultrasound source to tissue |
EP2446823A1 (en) * | 2010-11-02 | 2012-05-02 | Samsung Medison Co., Ltd. | Ultrasonic diagnostic apparatus |
US8857438B2 (en) | 2010-11-08 | 2014-10-14 | Ulthera, Inc. | Devices and methods for acoustic shielding |
US20150288401A1 (en) * | 2011-01-25 | 2015-10-08 | Seiko Epson Corporation | Ultrasonic sensor and electronic device |
US9774358B2 (en) * | 2011-01-25 | 2017-09-26 | Seiko Epson Corporation | Ultrasonic sensor and electronic device |
US10758450B2 (en) | 2011-07-06 | 2020-09-01 | LELO Inc. | Motion-based control for a personal massager |
US9615994B2 (en) | 2011-07-06 | 2017-04-11 | LELO Inc. | Motion-based control for a personal massager |
US8858471B2 (en) | 2011-07-10 | 2014-10-14 | Guided Therapy Systems, Llc | Methods and systems for ultrasound treatment |
US9452302B2 (en) | 2011-07-10 | 2016-09-27 | Guided Therapy Systems, Llc | Systems and methods for accelerating healing of implanted material and/or native tissue |
US9011337B2 (en) | 2011-07-11 | 2015-04-21 | Guided Therapy Systems, Llc | Systems and methods for monitoring and controlling ultrasound power output and stability |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US20140148704A1 (en) * | 2011-07-29 | 2014-05-29 | Olympus Corporation | Endoscope apparatus |
US10729494B2 (en) | 2012-02-10 | 2020-08-04 | Ethicon Llc | Robotically controlled surgical instrument |
US9232979B2 (en) | 2012-02-10 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Robotically controlled surgical instrument |
US9925003B2 (en) | 2012-02-10 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Robotically controlled surgical instrument |
US9700343B2 (en) | 2012-04-09 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Devices and techniques for cutting and coagulating tissue |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US11419626B2 (en) | 2012-04-09 | 2022-08-23 | Cilag Gmbh International | Switch arrangements for ultrasonic surgical instruments |
US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9263663B2 (en) | 2012-04-13 | 2016-02-16 | Ardent Sound, Inc. | Method of making thick film transducer arrays |
US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
US10398497B2 (en) | 2012-06-29 | 2019-09-03 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9737326B2 (en) | 2012-06-29 | 2017-08-22 | Ethicon Endo-Surgery, Llc | Haptic feedback devices for surgical robot |
US11096752B2 (en) | 2012-06-29 | 2021-08-24 | Cilag Gmbh International | Closed feedback control for electrosurgical device |
US11602371B2 (en) | 2012-06-29 | 2023-03-14 | Cilag Gmbh International | Ultrasonic surgical instruments with control mechanisms |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US11583306B2 (en) | 2012-06-29 | 2023-02-21 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US9713507B2 (en) | 2012-06-29 | 2017-07-25 | Ethicon Endo-Surgery, Llc | Closed feedback control for electrosurgical device |
US11717311B2 (en) | 2012-06-29 | 2023-08-08 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
US11871955B2 (en) | 2012-06-29 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US10993763B2 (en) | 2012-06-29 | 2021-05-04 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
US10842580B2 (en) | 2012-06-29 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US10966747B2 (en) | 2012-06-29 | 2021-04-06 | Ethicon Llc | Haptic feedback devices for surgical robot |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
US11426191B2 (en) | 2012-06-29 | 2022-08-30 | Cilag Gmbh International | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9802063B2 (en) | 2012-09-21 | 2017-10-31 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US9795405B2 (en) | 2012-10-22 | 2017-10-24 | Ethicon Llc | Surgical instrument |
US11179173B2 (en) | 2012-10-22 | 2021-11-23 | Cilag Gmbh International | Surgical instrument |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US11517772B2 (en) | 2013-03-08 | 2022-12-06 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US10420960B2 (en) | 2013-03-08 | 2019-09-24 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US11969609B2 (en) | 2013-03-08 | 2024-04-30 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US11272952B2 (en) | 2013-03-14 | 2022-03-15 | Cilag Gmbh International | Mechanical fasteners for use with surgical energy devices |
US9743947B2 (en) | 2013-03-15 | 2017-08-29 | Ethicon Endo-Surgery, Llc | End effector with a clamp arm assembly and blade |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US10561862B2 (en) | 2013-03-15 | 2020-02-18 | Guided Therapy Systems, Llc | Ultrasound treatment device and methods of use |
US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
US10987187B2 (en) * | 2013-11-14 | 2021-04-27 | Hera Med Ltd. | Moveable medical device configured to operate only within a specific range of acceleration |
US20160270872A1 (en) * | 2013-11-14 | 2016-09-22 | Hera Med Ltd. | Moveable medical device configured to operate only within a specific range of acceleration |
US9474681B2 (en) | 2013-12-09 | 2016-10-25 | LELO, Inc. | Wearable massager for couples |
US9203288B2 (en) * | 2013-12-09 | 2015-12-01 | Mitsubishi Electric Corporation | Rotary electric machine with power converter |
US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10932847B2 (en) | 2014-03-18 | 2021-03-02 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US11471209B2 (en) | 2014-03-31 | 2022-10-18 | Cilag Gmbh International | Controlling impedance rise in electrosurgical medical devices |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
US10603521B2 (en) | 2014-04-18 | 2020-03-31 | Ulthera, Inc. | Band transducer ultrasound therapy |
US11351401B2 (en) | 2014-04-18 | 2022-06-07 | Ulthera, Inc. | Band transducer ultrasound therapy |
US11413060B2 (en) | 2014-07-31 | 2022-08-16 | Cilag Gmbh International | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11553954B2 (en) | 2015-06-30 | 2023-01-17 | Cilag Gmbh International | Translatable outer tube for sealing using shielded lap chole dissector |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10952788B2 (en) | 2015-06-30 | 2021-03-23 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11903634B2 (en) | 2015-06-30 | 2024-02-20 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
US11559347B2 (en) | 2015-09-30 | 2023-01-24 | Cilag Gmbh International | Techniques for circuit topologies for combined generator |
US10751108B2 (en) | 2015-09-30 | 2020-08-25 | Ethicon Llc | Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms |
US11058475B2 (en) | 2015-09-30 | 2021-07-13 | Cilag Gmbh International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
US10687884B2 (en) | 2015-09-30 | 2020-06-23 | Ethicon Llc | Circuits for supplying isolated direct current (DC) voltage to surgical instruments |
US10624691B2 (en) | 2015-09-30 | 2020-04-21 | Ethicon Llc | Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US10610286B2 (en) | 2015-09-30 | 2020-04-07 | Ethicon Llc | Techniques for circuit topologies for combined generator |
US11766287B2 (en) | 2015-09-30 | 2023-09-26 | Cilag Gmbh International | Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US11666375B2 (en) | 2015-10-16 | 2023-06-06 | Cilag Gmbh International | Electrode wiping surgical device |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11751929B2 (en) | 2016-01-15 | 2023-09-12 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10842523B2 (en) | 2016-01-15 | 2020-11-24 | Ethicon Llc | Modular battery powered handheld surgical instrument and methods therefor |
US11058448B2 (en) | 2016-01-15 | 2021-07-13 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multistage generator circuits |
US11051840B2 (en) | 2016-01-15 | 2021-07-06 | Ethicon Llc | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
US10299821B2 (en) | 2016-01-15 | 2019-05-28 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limit profile |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11134978B2 (en) | 2016-01-15 | 2021-10-05 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly |
US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
US10709469B2 (en) | 2016-01-15 | 2020-07-14 | Ethicon Llc | Modular battery powered handheld surgical instrument with energy conservation techniques |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10779849B2 (en) | 2016-01-15 | 2020-09-22 | Ethicon Llc | Modular battery powered handheld surgical instrument with voltage sag resistant battery pack |
US10828058B2 (en) | 2016-01-15 | 2020-11-10 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization |
US11896280B2 (en) | 2016-01-15 | 2024-02-13 | Cilag Gmbh International | Clamp arm comprising a circuit |
US11974772B2 (en) | 2016-01-15 | 2024-05-07 | Cilag GmbH Intemational | Modular battery powered handheld surgical instrument with variable motor control limits |
US11684402B2 (en) | 2016-01-15 | 2023-06-27 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11224895B2 (en) | 2016-01-18 | 2022-01-18 | Ulthera, Inc. | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof |
US11202670B2 (en) | 2016-02-22 | 2021-12-21 | Cilag Gmbh International | Method of manufacturing a flexible circuit electrode for electrosurgical instrument |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US11864820B2 (en) | 2016-05-03 | 2024-01-09 | Cilag Gmbh International | Medical device with a bilateral jaw configuration for nerve stimulation |
US11266432B2 (en) | 2016-05-05 | 2022-03-08 | Covidien Lp | Ultrasonic surgical instrument |
US10368898B2 (en) | 2016-05-05 | 2019-08-06 | Covidien Lp | Ultrasonic surgical instrument |
US11883055B2 (en) | 2016-07-12 | 2024-01-30 | Cilag Gmbh International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10966744B2 (en) | 2016-07-12 | 2021-04-06 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US12114914B2 (en) | 2016-08-05 | 2024-10-15 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
US11344362B2 (en) | 2016-08-05 | 2022-05-31 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
US11241218B2 (en) | 2016-08-16 | 2022-02-08 | Ulthera, Inc. | Systems and methods for cosmetic ultrasound treatment of skin |
USD924400S1 (en) | 2016-08-16 | 2021-07-06 | Cilag Gmbh International | Surgical instrument |
USD1049376S1 (en) | 2016-08-16 | 2024-10-29 | Cilag Gmbh International | Surgical instrument |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10779847B2 (en) | 2016-08-25 | 2020-09-22 | Ethicon Llc | Ultrasonic transducer to waveguide joining |
US11925378B2 (en) | 2016-08-25 | 2024-03-12 | Cilag Gmbh International | Ultrasonic transducer for surgical instrument |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US11350959B2 (en) | 2016-08-25 | 2022-06-07 | Cilag Gmbh International | Ultrasonic transducer techniques for ultrasonic surgical instrument |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11998230B2 (en) | 2016-11-29 | 2024-06-04 | Cilag Gmbh International | End effector control and calibration |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10571435B2 (en) | 2017-06-08 | 2020-02-25 | Covidien Lp | Systems and methods for digital control of ultrasonic devices |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US12076591B2 (en) | 2018-01-26 | 2024-09-03 | Ulthera, Inc. | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
US11259832B2 (en) | 2018-01-29 | 2022-03-01 | Covidien Lp | Ultrasonic horn for an ultrasonic surgical instrument, ultrasonic surgical instrument including the same, and method of manufacturing an ultrasonic horn |
US11246617B2 (en) | 2018-01-29 | 2022-02-15 | Covidien Lp | Compact ultrasonic transducer and ultrasonic surgical instrument including the same |
US11246621B2 (en) | 2018-01-29 | 2022-02-15 | Covidien Lp | Ultrasonic transducers and ultrasonic surgical instruments including the same |
US11229449B2 (en) | 2018-02-05 | 2022-01-25 | Covidien Lp | Ultrasonic horn, ultrasonic transducer assembly, and ultrasonic surgical instrument including the same |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
US11304721B2 (en) | 2018-02-23 | 2022-04-19 | Covidien Lp | Ultrasonic surgical instrument with torque assist feature |
US10582944B2 (en) | 2018-02-23 | 2020-03-10 | Covidien Lp | Ultrasonic surgical instrument with torque assist feature |
US11446494B2 (en) | 2018-02-26 | 2022-09-20 | Amosense Co., Ltd | Skin care device and control method therefor |
US10724857B1 (en) | 2018-11-09 | 2020-07-28 | Smart Wires Inc. | Real-time bolt monitoring system |
US11478268B2 (en) | 2019-08-16 | 2022-10-25 | Covidien Lp | Jaw members for surgical instruments and surgical instruments incorporating the same |
US12023065B2 (en) | 2019-09-03 | 2024-07-02 | Covidien Lp | Bi-stable spring-latch connector for ultrasonic surgical instruments |
US11666357B2 (en) | 2019-09-16 | 2023-06-06 | Covidien Lp | Enclosure for electronics of a surgical instrument |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11986234B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Surgical system communication pathways |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US12004769B2 (en) | 2020-05-20 | 2024-06-11 | Covidien Lp | Ultrasonic transducer assembly for an ultrasonic surgical instrument |
US11617599B2 (en) | 2020-10-15 | 2023-04-04 | Covidien Lp | Ultrasonic surgical instrument |
US20220304887A1 (en) * | 2021-03-25 | 2022-09-29 | Biboting International Co., Ltd. | Massage device |
US11717312B2 (en) | 2021-10-01 | 2023-08-08 | Covidien Lp | Surgical system including blade visualization markings |
Also Published As
Publication number | Publication date |
---|---|
DE19880830B4 (en) | 2006-09-28 |
WO1998051255A1 (en) | 1998-11-19 |
KR100285388B1 (en) | 2001-03-15 |
JP3816960B2 (en) | 2006-08-30 |
CN1154462C (en) | 2004-06-23 |
KR20000023746A (en) | 2000-04-25 |
DE19880830T1 (en) | 1999-07-01 |
TW480172B (en) | 2002-03-21 |
CN1222846A (en) | 1999-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6183426B1 (en) | Ultrasonic wave applying apparatus | |
US7981060B2 (en) | Ultrasound applying skin care device | |
KR100274109B1 (en) | Ultrasonic beatuty device | |
US10376693B2 (en) | High-frequency cosmetic treatment apparatus | |
RU2724672C2 (en) | Feedback device and method for providing it to users of devices for oral care, applying pressure when using | |
EP2089103B1 (en) | An apparatus for iontophoresis | |
CA2324007C (en) | Ultrasonic treatment controller | |
US6090054A (en) | Ultrasonic wave cosmetic device | |
JPH11512938A (en) | Toothbrush with adaptive load sensor | |
US20160113840A1 (en) | Diagnostic and therapeutic treatment device, and related systems and methods of utilizing such a device | |
JP6009466B2 (en) | Animal breathing and / or heart rate fluctuation monitoring method | |
US5776065A (en) | Apparatus and method for controlling an ultrasound transducer array | |
KR101912851B1 (en) | Functional Skin Caring Apparatus having water peeling mode and multi-ion mode with hybrid power supply | |
JP4415852B2 (en) | Ultrasonic beauty device | |
KR200289138Y1 (en) | Skin beauty apparatus using ultrasonic waves | |
KR101457400B1 (en) | Skin care apparatus using ultrasonic wave | |
CN209900463U (en) | Wearable supersound physiotherapy equipment of intelligence | |
KR20060024793A (en) | Ultrasound applying skin care device | |
JP2001095875A (en) | Ultrasonic equipment for fitness and beauty | |
KR100853031B1 (en) | Portable type apparatus for beautifying face and skin | |
JPH11114000A (en) | Ultrasonic cosmetic device | |
JP2713149B2 (en) | Wireless in-vivo embedded receiver control system | |
JP6445083B2 (en) | Ultrasonic device and ultrasonic unit | |
US20080275346A1 (en) | Ultrasound therapy apparatus | |
JP4748134B2 (en) | Ultrasonic generator and beauty apparatus equipped with the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MATSUSHITA ELECTRIC WORKS, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AKISADA, SHOSUKE;INOUE, HIROMITU;ABE, HIDEAKI;AND OTHERS;REEL/FRAME:009751/0257 Effective date: 19981105 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: PANASONIC ELECTRIC WORKS CO., LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC WORKS, LTD.;REEL/FRAME:022288/0703 Effective date: 20081001 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |