US5981410A - Cellulose-binding fibres - Google Patents
Cellulose-binding fibres Download PDFInfo
- Publication number
- US5981410A US5981410A US09/056,875 US5687598A US5981410A US 5981410 A US5981410 A US 5981410A US 5687598 A US5687598 A US 5687598A US 5981410 A US5981410 A US 5981410A
- Authority
- US
- United States
- Prior art keywords
- fibres
- polyolefin component
- grafted
- bicomponent
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/425—Cellulose series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4291—Olefin series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43828—Composite fibres sheath-core
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43832—Composite fibres side-by-side
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
- Y10T442/622—Microfiber is a composite fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/627—Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
- Y10T442/629—Composite strand or fiber material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
- Y10T442/641—Sheath-core multicomponent strand or fiber material
Definitions
- the present invention relates to drylaid nonwoven materials comprising polyolefin bicomponent fibres having excellent bonding affinity for natural fibres such as cellulose fibres.
- Hygienic absorbent products such as disposable diapers contain, in addition to a water-permeable coverstock, a water-impermeable backsheet and one or more layers for distribution of liquid, an absorbent core typically comprising natural fibres such as cellulose fluff pulp fibres, synthetic fibres based on e.g. polyolefin and/or polyester and a superabsorbent polymer (SAP) material.
- an absorbent core typically comprising natural fibres such as cellulose fluff pulp fibres, synthetic fibres based on e.g. polyolefin and/or polyester and a superabsorbent polymer (SAP) material.
- SAP superabsorbent polymer
- the synthetic fibres which often are bicomponent fibres of e.g. polypropylene/polyethylene or polyester/polyethylene, are thermobonded to each other to form a supporting network for the core.
- the synthetic fibres should be able to not only bond to each other, but also to the natural fibres and the SAP, so as to result in a core structure which is as strong and coherent as possible, and in which the natural fibres and the SAP are locked into place within the structure.
- the existing synthetic fibres that are used for the production of drylaid, e.g. airlaid, nonwovens suffer from the disadvantage of suboptimal bonding to e.g. cellulose fibres.
- the problem is made worse by the fact that the natural fibres are typically relatively short, e.g. fluff pulp fibres with a length of not more than about 3 mm, as compared to the synthetic fibres, which are normally (although not necessarily) considerably longer.
- dust problems are created in the manufacturing process, and the performance of the resulting nonwovens is also suboptimal, since a large proportion of the natural fibres is not bonded to any of the synthetic fibres or otherwise held in place by means of the structure formed by bonding of the synthetic fibres.
- EP 0465203-B1 discloses thermally bonded fibrous wet laid webs containing bicomponent fibres comprising a first component of polyester, polyamide or polypropylene and a second component of linear low density polyethylene (LLDPE) with a density of 0.88-0.945 g/cc and a grafted high density polyethylene (HDPE) with a density of 0.94-0.965 g/cc which has been grafted with maleic acid or maleic anhydride to provide succinic acid or succinic anhydride groups along the HDPE polymer.
- LLDPE linear low density polyethylene
- HDPE grafted high density polyethylene
- EP 0421734-B1 discloses thermobondable bicomponent fibres composed of two different polyolefins having melting points which differ by at least 20° C., the lower melting polyolefin containing 3-10% by weight of a monoglyceride of a fatty acid of 12 or more carbon atoms incorporated therein.
- the fibres are reported to be easily processable without the need for an oiling agent to be applied during spinning or drawing.
- U.S. Pat. No. 4,950,541 discloses succinic acid and succinic anhydride grafts of linear ethylene polymers obtained by grafting maleic acid or maleic anhydride onto a LDPE (low density polyethylene), LLDPE or HDPE polymer.
- the grafted polymers are dyeable and can be used e.g. as the sheath component of a bicomponent fibre.
- U.S. Pat. No. 4,684,576 discloses the production of blends of grafted HDPE with ungrafted LLDPE or LDPE, the HDPE having been grafted with maleic acid or maleic anhydride to provide succinic acid or succinic anhydride groups along the HDPE polymer.
- the blends are disclosed for use in producing laminate structures.
- polyolefin bicomponent fibres whose low melting component comprises a non-grafted polyolefin component and a grafted polyolefin component which has been grafted with an unsaturated dicarboxylic acid or an anhydride thereof have advantageous properties when used in the production of drylaid nonwoven materials, including improved bonding to cellulose pulp fibres and improved strength properties in the resulting nonwovens.
- the present invention relates to a drylaid nonwoven material comprising bicomponent fibres comprising a low melting polyolefin component and a high melting polyolefin component, wherein the low melting polyolefin component has a melting point at least 4° C. lower than the melting point of the high melting polyolefin component, the low melting polyolefin component constituting at least a part of the surface of the fibre and comprising a non-grafted polyolefin component and a grafted polyolefin component, wherein the grafted polyolefin component has been grafted with an unsaturated dicarboxylic acid or an anhydride thereof.
- Another aspect of the invention relates to a method for producing a drylaid nonwoven material, comprising forming a fibrous web using dry lay nonwoven equipment, the web comprising bicomponent fibres comprising a low melting polyolefin component and a high melting polyolefin component, wherein the low melting polyolefin component has a melting point at least 4° C.
- the low melting polyolefin component constituting at least a part of the surface of the fibre and comprising a non-grafted polyolefin component and a grafted polyolefin component, wherein the grafted polyolefin component has been grafted with an unsaturated dicarboxylic acid or an anhydride thereof, and bonding the fibrous web to result in the drylaid nonwoven material.
- polyolefin component for the purpose of this invention means a polyolefin-containing polymeric material of which the largest part (by weight) consists of homo- or copolymers of monoolefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, etc.
- examples of such polymers are isotactic or syndiotactic polypropylene, polyethylenes of different densities, such as high density polyethylene, low density polyethylene and linear low density polyethylene and blends of the same.
- the polymeric material may be mixed with other non-polyolefin polymers such as polyamide or polyester, provided that polyolefins still constitute the largest part of the composition.
- the melts used to produce the polyolefin-containing fibres may also contain various conventional fibre additives, such as calcium stearate, antioxidants, process stabilizers, compatibilizers and pigments, including whiteners and colourants such as TiO 2 , etc.
- various conventional fibre additives such as calcium stearate, antioxidants, process stabilizers, compatibilizers and pigments, including whiteners and colourants such as TiO 2 , etc.
- the bicomponent fibres will typically have a high melting and low melting polyolefin component which comprise, respectively, polypropylene/polyethylene (the polyethylene comprising HDPE, LDPE and/or LLDPE), high density polyethylene/linear low density polyethylene, polypropylene random copolymer/polyethylene, or polypropylene/polypropylene random copolymer.
- a high melting and low melting polyolefin component which comprise, respectively, polypropylene/polyethylene (the polyethylene comprising HDPE, LDPE and/or LLDPE), high density polyethylene/linear low density polyethylene, polypropylene random copolymer/polyethylene, or polypropylene/polypropylene random copolymer.
- the difference in melting points between the two polyolefin components may be quite small, e.g. about 7-8° C. and in some cases even as low as about 4-5° C.
- the two components have melting points which differ by at least about 20° C., preferably at least about 25° C., more preferably at least about 28° C., e.g. at least about 30° C.
- acids and anhydrides are maleic acid, maleic anhydride and derivatives thereof such as citraconic acid, citraconic anhydride and pyrocinchonic anhydride; fumaric acid and derivatives thereof; unsaturated derivatives of malonic acid such as 3-butene-1,1-dicarboxylic acid, benzylidene malonic acid and isopropylidene malonic acid; and unsaturated derivatives of succinic acid such as itaconic acid and itaconic anhydride.
- maleic acid, maleic anhydride and derivatives thereof such as citraconic acid, citraconic anhydride and pyrocinchonic anhydride
- fumaric acid and derivatives thereof unsaturated derivatives of malonic acid such as 3-butene-1,1-dicarboxylic acid, benzylidene malonic acid and isopropylidene malonic acid
- unsaturated derivatives of succinic acid such as itaconic acid and itaconic anhydride.
- Maleic acid and maleic anhydride are particularly preferred as the dicarboxylic acid or anhydride thereof.
- the resulting chain is provided with succinic acid or succinic anhydride groups, respectively, grafted onto it.
- the grafting of the dicarboxylic acid or anhydride thereof onto the polyolefin may be performed in a manner that is known per se, see e.g. the above-mentioned EP 0465203, U.S. Pat. No. 4,950,541 and U.S. Pat. No. 4,684,576.
- the weight ratio of grafted polyolefin to non-grafted polyolefin in the low melting polyolefin component of the bicomponent fibres will be within the range of about 1:99 to 50:50, typically about 1.5:98.5 to 30:70, more typically about 2:98 to 20:80, e.g. about 3:97 to 15:85, such as about 5:95 to 10:90.
- the content of carboxylic acid or anhydride thereof is typically in the range of about 1-30% (by weight), typically about 2-20%, more typically about 3-15%, such as about 5-10%.
- the weight ratio between the high melting and low melting polyolefin components will be in the range of from 10:90 to 90:10, typically about 20:80 to 80:20, more typically about 30:70 to 70:30, e.g. 35:65 to 65:35.
- a cardboard strip with a width of 5 mm is attached to the short sides of the sample, after which the sample with the attached cardboard strips is weighed on a laboratory scale with an accuracy of ⁇ 0.1 mg.
- the nonwoven sample to be tested is then fixed with two clamps having a length of 12 cm, each of which is mounted on an arm.
- the exposed area of the fixed nonwoven is about 310 cm 2 , which is about the size of a piece of A4 paper.
- One of the arms is stationary, while the other arm is rotatable and is attached to a spring.
- the test is performed by rotating the rotatable arm 45°, so that the nonwoven sample goes from a "stretched out” condition to a "relaxed” condition, after which the rotatable arm is released, whereby the action of the spring returns the rotatable arm to its original position.
- the movement of the arm is stopped by the nonwoven sample, which thus is subjected to a small vibration and stretching effect designed to be similar to the conditions a nonwoven roll is subjected to when it is unrolled at the converter, the vibration and stretching resulting in a loss of loose fibres at the fibre surface. This action is repeated 50 times.
- the stretching force the sample is subjected to must of course lie within the nonwoven's elasticity limit, so that the nonwoven is not substantially deformed or damaged during the test.
- the force provided by the spring must obviously be compatible with the nonwoven to be tested, so that the nonwoven is on the one hand returned to its original stretched out position and subjected to a slight vibration and stretching, but is on the other hand not excessively stretched so as to become deformed or damaged.
- the result in mg will often be no more than about 15 mg, typically no more than about 10 mg, preferably no more than about 5 mg, more preferably no more than about 4 mg, still more preferably no more than about 3 mg, most preferably no more than about 2 mg.
- the result can be as low as about 1 mg of dust.
- the dust properties of a given nonwoven can vary greatly depending on factors such as the nature of the bicomponent fibres and the nature of the cellulose or other fibres as well as e.g. the particular webforming and bonding process, it will often be preferred to compare the performance of a given fibre in terms of its dust reduction percentage compared to a similar control fibre rather than in terms of an absolute value in mg.
- the fibres of the invention will also show an improved bonding and fixation of not only cellulosic fibres but also different superabsorbent polymers (SAP) that are commonly used in hygiene absorbent products in the form of particles or fibres.
- SAPs e.g. a crosslinked polyacrylic acid salt
- SAPs are typically used in the form of superabsorbent particles in the absorbent core of e.g. disposable diapers, since they are able to absorb many times their weight in liquid and form a gel that holds onto the liquid upon wetting.
- the improved bonding of the fibres of the invention to the cellulosic fibres will result in an improved structure that in itself serves to ensure that the SAP particles are maintained in the desired location in the absorbent product, whereby the function of the SAP will be improved.
- the spinning of the fibres is preferably accomplished using conventional melt spinning (also known as “long spinning"), with spinning and stretching being performed in two separate steps.
- melt spinning also known as “long spinning”
- other means of manufacturing staple fibres in particular "compact spinning", which is a one step operation, may be used to carry out the invention.
- Methods for the spinning of bicomponent fibres and filaments are well-known in the art. Such methods generally involve extrusion of the melts to produce filaments, cooling and drawing of the filaments, treatment of the filaments with an appropriate spin finish to result in desired surface properties, e.g.
- a spin finish to provide hydrophilic properties when the fibres are to be used in an absorbent core and/or to provide antistatic properties, stretching the filaments, typically, treating with a second spin finish, texturizing the filaments, drying the filaments and cutting the filaments to result in staple fibres.
- the drylaid nonwovens of the present invention typically comprise, in addition to the polyolefin bicomponent fibres, at least one additional fibrous material, in particular natural fibres or regenerated fibres, e.g. selected from cellulose fibres, viscose rayon fibres and Lyocell fibres.
- the cellulose fibres may e.g. be pulp fibres or cotton fibres and are in particular pulp fibres such as CTMP (chemi-thermo-mechanical pulp), sulfite pulp or kraft pulp.
- the fibrous web comprising the bicomponent fibres and the additional fibrous material will typically comprise 5-50% by weight of the bicomponent fibres and 50-95% by weight of the additional fibrous material, more typically 10-40% by weight of the bicomponent fibres and 60-90% by weight of the additional fibrous material, e.g. 15-25% by weight of the bicomponent fibres and 75-85% by weight of the additional fibrous material.
- the cellulose fibres were NB 416 from Weyerhauser.
- the weight ratio of between the bicomponent fibres and the cellulose fibres was 25:75.
- the tested bicomponent fibres had the following composition, fibre No. 1 being according to the present invention:
- Core polypropylene; sheath: 10% grafted LLDPE (5% maleic acid grafted onto 95% LLDPE), 90% LLDPE.
- Control fibre core: polypropylene; sheath: 100% LLDPE.
- Hercules 449 from Hercules Inc. length 5 mm, fineness 1.5 dtex; polypropylene core/polyethylene sheath.
- Bicomponent fibres 1, 2 and 3 all had a fineness of 1.7 dtex, a length of 6 mm and a weight ratio between core and sheath of 35:65.
- the fibres were run at a very low speed of 8.33 m/min on an airlaid apparatus (Dan-Web, Denmark), since the primary purpose of these trials was to determine the fibres' ability to bond to cellulose.
- an airlaid nonwoven product having a basis weight of 80 g/m 2 was aimed at, and the trials were started at the lowest possible bonding temperature, after which the temperature in the oven was increased in increments of 5 or 10° C.
- the cross direction (CD) dry strength, machine direction (MD) dry strength and MD wet strength were determined on samples produced at different temperatures as indicated below (EDANA test method No. 20.2-89, tested at a speed of 100 mm/min). Furthermore, the thickness and the basis weight (g/m 2 ) of each sample was determined, and this information (not listed below) was used to adjust the strength values to result in normalised values that are comparable in spite of minor differences in thickness and base weight of the individual samples tested. The results are shown below.
- fibre 1 according to the invention gave a significantly improved result in the dust test, the greatly reduced dust generation reflecting a significantly improved bonding of the bicomponent fibres of the invention to the cellulose fluff pulp fibres. Observation of the samples by microscope also revealed bonding of the bicomponent fibres of the invention to the cellulose fibres. It was also found that fibre 1 gave a bulkier nonwoven compared to fibres 2 and 3 (fibre 4 was not compared in this regard). Furthermore, as shown by the strength values given in the table above, the fibres of the invention resulted in nonwovens with improved strength and elongation characteristics.
- a test of the ability of two different fibres to bind cellulose was performed in a test on a commercial airlaid line. Airlaid nonwovens with a basis weight of about 80 g/m 2 and a thickness of about 1 mm were produced. The nonwovens contained 25% by weight of bicomponent fibres and 75% by weight of cellulose pulp fibres. The bicomponent fibres tested had a fineness of 1.7 dtex and a length of 6 mm. In addition to (control) fibre No. 3 described above, a bicomponent fibre (referred to as No. 5) with the same cellulose-binding additive as in fibre No. 1 but a higher melting polyethylene sheath component (HDPE) was tested. This fibre thus had the following composition:
- Core polypropylene; sheath: 10% grafted LLDPE (5% maleic acid grafted onto 95% LLDPE), 90% HDPE.
- nonwovens containing bicomponent fibres of the invention resulted in an improved binding of the cellulose fibres as evidenced by a reduced generation of dust during processing compared to the control fibre (quantitative measurements were not performed in this case). Furthermore, the fibres of the invention resulted in nonwovens with improved strength characteristics as evidenced by the following test results:
- Tests were performed to illustrate the influence of varying the amount of additive (maleic acid grafted LLDPE with an active content of 5%) in the sheath component.
- the bicomponent fibres tested all had a fineness of 1.7 dtex and a length of 6 mm.
- the core/sheath weight ratio for fibres 6-9 was 35:65, and 50:50 for fibre No. 10.
- the core was in all cases of polypropylene.
- Nonwovens were produced on a commercial airlaid line using technology from Dan-Web, Denmark, the nonwovens having a basis weight of about 80 g/m 2 , a thickness of about 1 mm, and weight ratio of bicomponent fibres to cellulose fibres of 25:75. Samples with each of the bicomponent fibres were tested at 3 different bonding temperatures, 137, 140 and 143° C.
- the sheath composition of the individual fibres was as follows:
- the nonwovens containing the fibres of the invention showed a substantially improved dry and wet tensile strength compared to the control nonwovens.
- some of the fibres of the invention notably Nos. 6, 7 and 8, showed elongation values above those of the control fibres, while fibre 10 and to a certain extent fibre 9 showed elongation values lower than for the control fibres.
- the suboptimal results for fibres 9 and 10 in terms of elongation are believed to be related to the fact that some difficulties were experienced in spinning these fibres with a relatively large amount of the grafted component in the sheath. It is believed that with further tests and optimisation of the spinning process and other process parameters, it will be possible to obtain improved results for these and other fibres with a relatively large content of the grafted polyolefin component as well.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nonwoven Fabrics (AREA)
- Multicomponent Fibers (AREA)
Abstract
Description
______________________________________ Bonding Strength MD, Sample Temp. Strength MD Strength CD wet No. ° C. N/5 cm N/5 cm N/5 cm ______________________________________ 1 125 25.9 25.2 25.4 1 130 20.9 20.5 18.3 1 135 23.5 22.4 20.6 1 140 23.1 22.3 20.1 1 145 23.9 22.5 18.0 2 125 17.46 15.43 15.13 2 130 13.63 13.32 11.62 2 135 15.17 15.06 12.66 2 140 16.25 15.72 13.49 2 145 12.77 13.08 9.78 2 150 11.28 10.77 6.77 2 155 4.15 4.26 2.23 3 130 24.01 23.37 23.59 3 140 19.34 18.08 18.57 3 150 15.59 16.66 14.42 4 130 7.98 7.78 7.98 4 140 9.23 7.93 8.73 4 150 8.83 8.93 8.83 4 160 4.21 4.31 2.26 4 170 3.24 3.14 1.27 ______________________________________
______________________________________ Fibre number Dust (mg) ______________________________________ 1 1.7 2 7.4 3 12-30 4 14.0 ______________________________________
______________________________________ MD tensile strength, dry (N/5 cm) Bonding Fibre Temp. ° C. Control 5 ______________________________________ 137 13.96 15.08 140 15.77 19.01 143 12.56 19.40 146 -- 15.41 ______________________________________
______________________________________ Bonding Fibre No. Temp. ° C. Control 6 7 8 9 10 ______________________________________ Tensile strength, dry (N/5 cm) 137 8.54 21.58 17.65 16.91 18.68 12.75 140 9.85 18.58 20.98 17.00 17.95 14.40 143 8.53 18.59 19.25 30.63 18.18 16.38 Elongation, dry (%) 137 185.25 190.25 154.50 199.67 174.25 133.50 140 175.00 184.75 188.25 195.67 169.00 119.00 143 178.67 189.25 185.78 184.25 185.75 144.75 Tensile strength, wet (N/5 cm) 137 8.24 17.57 15.21 16.03 17.11 9.39 140 9.32 13.64 17 13.78 16.31 10.19 143 8.01 15.34 15.2 24.08 17.04 16.31 Elongation, wet (%) 137 175.25 220.75 161.50 179.67 205.25 118.75 140 159.50 194.25 177.75 186.75 189.00 132.50 143 142.50 196.00 179.67 177.00 188.50 123.75 ______________________________________
______________________________________ Fibre number Dust (mg) ______________________________________ 6 6.6 7 14.9 8 5.8 9 6.7 Control 29.9 ______________________________________
Claims (24)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK0394/97 | 1997-04-08 | ||
DK39497 | 1997-04-08 | ||
US4327897P | 1997-04-17 | 1997-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5981410A true US5981410A (en) | 1999-11-09 |
Family
ID=26063912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/056,875 Expired - Lifetime US5981410A (en) | 1997-04-08 | 1998-04-08 | Cellulose-binding fibres |
Country Status (1)
Country | Link |
---|---|
US (1) | US5981410A (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020034914A1 (en) * | 2000-07-11 | 2002-03-21 | Polymer Group Inc. | Multi-component nonwoven fabric for use in disposable absorbent articles |
US20030064651A1 (en) * | 2001-05-28 | 2003-04-03 | Chisso Corporation | Thermoadhesive conjugate fibers and nonwoven fabric employing them |
US20030114066A1 (en) * | 2001-12-13 | 2003-06-19 | Clark Darryl Franklin | Uniform distribution of absorbents in a thermoplastic web |
US20030111758A1 (en) * | 2001-12-13 | 2003-06-19 | Clark Darryl Franklin | Fully activated bicomponent web with absorbents |
US20030118825A1 (en) * | 2001-12-21 | 2003-06-26 | Kimberly-Clark Worldwide,Inc | Microwave heatable absorbent composites |
US20030116888A1 (en) * | 2001-12-20 | 2003-06-26 | Rymer Timothy James | Method and apparatus for making on-line stabilized absorbent materials |
US20030129392A1 (en) * | 2001-12-20 | 2003-07-10 | Abuto Francis Paul | Targeted bonding fibers for stabilized absorbent structures |
EP1350869A1 (en) * | 2002-04-05 | 2003-10-08 | ARTEVA TECHNOLOGIES S.à.r.l. | Improved binder fiber and nonwoven web |
EP1359240A1 (en) * | 2002-05-02 | 2003-11-05 | ARTEVA TECHNOLOGIES S.à.r.l. | Nonwoven web with improved adhesion and reduced dust formation |
US20040013859A1 (en) * | 2000-09-15 | 2004-01-22 | Annis Vaughan R | Disposable nonwoven wiping fabric and method of production |
US6686303B1 (en) * | 1998-11-13 | 2004-02-03 | Kimberly-Clark Worldwide, Inc. | Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component |
US6709613B2 (en) | 2001-12-21 | 2004-03-23 | Kimberly-Clark Worldwide, Inc. | Particulate addition method and apparatus |
US20040065422A1 (en) * | 2002-10-08 | 2004-04-08 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced slough |
US20040087237A1 (en) * | 2002-11-06 | 2004-05-06 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced lint and slough |
US6887350B2 (en) | 2002-12-13 | 2005-05-03 | Kimberly-Clark Worldwide, Inc. | Tissue products having enhanced strength |
WO2005104812A2 (en) * | 2004-02-06 | 2005-11-10 | Invista Technologies, S.A.R.L. | Moldable composite article |
US20060111003A1 (en) * | 2001-11-07 | 2006-05-25 | Balthes Garry E | Heat deflection/high strength panel compositions |
WO2006073710A2 (en) * | 2005-01-06 | 2006-07-13 | Bki Holding Corporation | High strength and high elongation wipe |
US20070056674A1 (en) * | 2005-09-12 | 2007-03-15 | Sellars Absorbent Materials, Inc. | Method and device for making towel, tissue, and wipers on an air carding or air lay line utilizing hydrogen bonds |
US20070173161A1 (en) * | 2003-07-11 | 2007-07-26 | Allgeuer Thomas T | Method for the manufacture of a functionalised polyolefin, functionalised polyolefin, bicomponent fiber, nonwoven and hygienic absorment product |
US20070172630A1 (en) * | 2005-11-30 | 2007-07-26 | Jones David M | Primary carpet backings composed of bi-component fibers and methods of making and using thereof |
US7309372B2 (en) * | 2004-11-05 | 2007-12-18 | Donaldson Company, Inc. | Filter medium and structure |
US20070295659A1 (en) * | 2005-09-29 | 2007-12-27 | Sellars Absorbent Materials, Inc. | Filters and methods of manufacturing the same |
US20080131649A1 (en) * | 2006-11-30 | 2008-06-05 | Jones David M | Low melt primary carpet backings and methods of making thereof |
EP1944395A2 (en) | 2007-01-12 | 2008-07-16 | Far Eastern Texile Ltd. | Fiber composition and fiber made from the same |
US20080233381A1 (en) * | 2006-10-04 | 2008-09-25 | Sellars Absorbent Materials, Inc. | Industrial absorbents and methods of manufacturing the same |
US20090163102A1 (en) * | 2006-10-04 | 2009-06-25 | Sellars Absorbent Materials, Inc. | Non-woven webs and methods of manufacturing the same |
US7662745B2 (en) | 2003-12-18 | 2010-02-16 | Kimberly-Clark Corporation | Stretchable absorbent composites having high permeability |
US20100130084A1 (en) * | 2007-03-26 | 2010-05-27 | Mitsui Chemicals, Inc. | Mixed continuous fiber non-woven fabric and method for producing the same |
US20100129633A1 (en) * | 2008-11-27 | 2010-05-27 | Stephen Law | Absorbent Material |
US7732039B2 (en) | 2001-12-20 | 2010-06-08 | Kimberly-Clark Worldwide, Inc. | Absorbent article with stabilized absorbent structure having non-uniform lateral compression stiffness |
US7772456B2 (en) | 2004-06-30 | 2010-08-10 | Kimberly-Clark Worldwide, Inc. | Stretchable absorbent composite with low superaborbent shake-out |
EP1607518B1 (en) * | 2004-05-17 | 2010-12-01 | Chisso Corporation | Electro-chargeable fiber, non-woven fabric and non-woven product thereof |
US20110045312A1 (en) * | 2009-02-11 | 2011-02-24 | New Pig Corporation | Recycled Cellulosic Industrial and Commercial Absorbent Matting |
US7938813B2 (en) | 2004-06-30 | 2011-05-10 | Kimberly-Clark Worldwide, Inc. | Absorbent article having shaped absorbent core formed on a substrate |
US7985344B2 (en) | 2004-11-05 | 2011-07-26 | Donaldson Company, Inc. | High strength, high capacity filter media and structure |
US8021455B2 (en) | 2007-02-22 | 2011-09-20 | Donaldson Company, Inc. | Filter element and method |
US20110238025A1 (en) * | 2008-11-27 | 2011-09-29 | Stephen Law | Cellulose Ethylsulfonate-Based Absorbent Material |
US8057567B2 (en) | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8177875B2 (en) | 2005-02-04 | 2012-05-15 | Donaldson Company, Inc. | Aerosol separator; and method |
US8267681B2 (en) | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
US8404014B2 (en) | 2005-02-22 | 2013-03-26 | Donaldson Company, Inc. | Aerosol separator |
US8721756B2 (en) | 2008-06-13 | 2014-05-13 | Donaldson Company, Inc. | Filter construction for use with air in-take for gas turbine and methods |
US8722963B2 (en) | 2010-08-20 | 2014-05-13 | The Procter & Gamble Company | Absorbent article and components thereof having improved softness signals, and methods for manufacturing |
US9114339B2 (en) | 2007-02-23 | 2015-08-25 | Donaldson Company, Inc. | Formed filter element |
WO2019190705A1 (en) | 2018-03-29 | 2019-10-03 | Dow Global Technologies Llc | Bicomponent fiber and polymer composition thereof |
US10639212B2 (en) | 2010-08-20 | 2020-05-05 | The Procter & Gamble Company | Absorbent article and components thereof having improved softness signals, and methods for manufacturing |
WO2020118479A1 (en) | 2018-12-10 | 2020-06-18 | Dow Global Technologies Llc | Airlaid substrates having at least one bicomponent fiber |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5430929A (en) * | 1977-08-05 | 1979-03-07 | Chisso Corp | Heat fusible composite fibers and their production |
US4684576A (en) * | 1984-08-15 | 1987-08-04 | The Dow Chemical Company | Maleic anhydride grafts of olefin polymers |
JPH02112415A (en) * | 1988-10-17 | 1990-04-25 | Unitika Ltd | Heat bonding conjugate fiber and nonwoven fabric thereof |
US4950541A (en) * | 1984-08-15 | 1990-08-21 | The Dow Chemical Company | Maleic anhydride grafts of olefin polymers |
EP0421734A2 (en) * | 1989-10-02 | 1991-04-10 | Chisso Corporation | Conjugate fibres and products formed from them |
EP0465203A1 (en) * | 1990-07-02 | 1992-01-08 | Hoechst Celanese Corporation | Improved wet laid bonded fibrous web containing bicomponent fibers including LLDPE |
DE19506083A1 (en) * | 1995-02-22 | 1995-07-13 | Thueringisches Inst Textil | Mixed fibre needled felt webs of cellulose and modified polypropylene@ staple fibres |
-
1998
- 1998-04-08 US US09/056,875 patent/US5981410A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5430929A (en) * | 1977-08-05 | 1979-03-07 | Chisso Corp | Heat fusible composite fibers and their production |
US4684576A (en) * | 1984-08-15 | 1987-08-04 | The Dow Chemical Company | Maleic anhydride grafts of olefin polymers |
US4950541A (en) * | 1984-08-15 | 1990-08-21 | The Dow Chemical Company | Maleic anhydride grafts of olefin polymers |
JPH02112415A (en) * | 1988-10-17 | 1990-04-25 | Unitika Ltd | Heat bonding conjugate fiber and nonwoven fabric thereof |
EP0421734A2 (en) * | 1989-10-02 | 1991-04-10 | Chisso Corporation | Conjugate fibres and products formed from them |
EP0465203A1 (en) * | 1990-07-02 | 1992-01-08 | Hoechst Celanese Corporation | Improved wet laid bonded fibrous web containing bicomponent fibers including LLDPE |
DE19506083A1 (en) * | 1995-02-22 | 1995-07-13 | Thueringisches Inst Textil | Mixed fibre needled felt webs of cellulose and modified polypropylene@ staple fibres |
Cited By (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6686303B1 (en) * | 1998-11-13 | 2004-02-03 | Kimberly-Clark Worldwide, Inc. | Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component |
US20020034914A1 (en) * | 2000-07-11 | 2002-03-21 | Polymer Group Inc. | Multi-component nonwoven fabric for use in disposable absorbent articles |
US7732357B2 (en) * | 2000-09-15 | 2010-06-08 | Ahlstrom Nonwovens Llc | Disposable nonwoven wiping fabric and method of production |
EP1320458B2 (en) † | 2000-09-15 | 2016-03-02 | Suominen Corporation | Disposable nonwoven wiping fabric and method of production |
US20040013859A1 (en) * | 2000-09-15 | 2004-01-22 | Annis Vaughan R | Disposable nonwoven wiping fabric and method of production |
US20030064651A1 (en) * | 2001-05-28 | 2003-04-03 | Chisso Corporation | Thermoadhesive conjugate fibers and nonwoven fabric employing them |
US8105654B2 (en) | 2001-05-28 | 2012-01-31 | Chisso Corporation | Thermoadhesive conjugate fibers and nonwoven fabric employing them |
US20090061709A1 (en) * | 2001-05-28 | 2009-03-05 | Chisso Corporation | Thermoadhesive conjugate fibers and nonwoven fabric employing them |
US20060111003A1 (en) * | 2001-11-07 | 2006-05-25 | Balthes Garry E | Heat deflection/high strength panel compositions |
US8158539B2 (en) * | 2001-11-07 | 2012-04-17 | Flexform Technologies, Llc | Heat deflection/high strength panel compositions |
US20030114066A1 (en) * | 2001-12-13 | 2003-06-19 | Clark Darryl Franklin | Uniform distribution of absorbents in a thermoplastic web |
US20030111758A1 (en) * | 2001-12-13 | 2003-06-19 | Clark Darryl Franklin | Fully activated bicomponent web with absorbents |
US20030116888A1 (en) * | 2001-12-20 | 2003-06-26 | Rymer Timothy James | Method and apparatus for making on-line stabilized absorbent materials |
US7732039B2 (en) | 2001-12-20 | 2010-06-08 | Kimberly-Clark Worldwide, Inc. | Absorbent article with stabilized absorbent structure having non-uniform lateral compression stiffness |
US20030129392A1 (en) * | 2001-12-20 | 2003-07-10 | Abuto Francis Paul | Targeted bonding fibers for stabilized absorbent structures |
US6709613B2 (en) | 2001-12-21 | 2004-03-23 | Kimberly-Clark Worldwide, Inc. | Particulate addition method and apparatus |
US20030118825A1 (en) * | 2001-12-21 | 2003-06-26 | Kimberly-Clark Worldwide,Inc | Microwave heatable absorbent composites |
US6670035B2 (en) | 2002-04-05 | 2003-12-30 | Arteva North America S.A.R.L. | Binder fiber and nonwoven web |
EP1350869A1 (en) * | 2002-04-05 | 2003-10-08 | ARTEVA TECHNOLOGIES S.à.r.l. | Improved binder fiber and nonwoven web |
KR100996019B1 (en) | 2002-04-05 | 2010-11-22 | 인비스타 테크놀로지즈 에스.에이.알.엘. | Improved binder fiber and nonwoven web |
US20030207639A1 (en) * | 2002-05-02 | 2003-11-06 | Tingdong Lin | Nonwoven web with improved adhesion and reduced dust formation |
EP1359240A1 (en) * | 2002-05-02 | 2003-11-05 | ARTEVA TECHNOLOGIES S.à.r.l. | Nonwoven web with improved adhesion and reduced dust formation |
US20040065422A1 (en) * | 2002-10-08 | 2004-04-08 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced slough |
US6929714B2 (en) | 2002-10-08 | 2005-08-16 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced slough |
US6752905B2 (en) | 2002-10-08 | 2004-06-22 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced slough |
US6861380B2 (en) | 2002-11-06 | 2005-03-01 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced lint and slough |
US20040087237A1 (en) * | 2002-11-06 | 2004-05-06 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced lint and slough |
US6887350B2 (en) | 2002-12-13 | 2005-05-03 | Kimberly-Clark Worldwide, Inc. | Tissue products having enhanced strength |
CN1823103B (en) * | 2003-07-11 | 2010-11-03 | 陶氏环球技术公司 | Method for the manufacture of a functionalised polyolefin, functionalised polyolefin, bicomponent fiber, nonwoven and hygienic absorment product |
US20070173161A1 (en) * | 2003-07-11 | 2007-07-26 | Allgeuer Thomas T | Method for the manufacture of a functionalised polyolefin, functionalised polyolefin, bicomponent fiber, nonwoven and hygienic absorment product |
US7662745B2 (en) | 2003-12-18 | 2010-02-16 | Kimberly-Clark Corporation | Stretchable absorbent composites having high permeability |
WO2005104812A3 (en) * | 2004-02-06 | 2005-12-15 | Invista North America Sarl | Moldable composite article |
WO2005104812A2 (en) * | 2004-02-06 | 2005-11-10 | Invista Technologies, S.A.R.L. | Moldable composite article |
EP1607518B1 (en) * | 2004-05-17 | 2010-12-01 | Chisso Corporation | Electro-chargeable fiber, non-woven fabric and non-woven product thereof |
US7938813B2 (en) | 2004-06-30 | 2011-05-10 | Kimberly-Clark Worldwide, Inc. | Absorbent article having shaped absorbent core formed on a substrate |
US7772456B2 (en) | 2004-06-30 | 2010-08-10 | Kimberly-Clark Worldwide, Inc. | Stretchable absorbent composite with low superaborbent shake-out |
US11504663B2 (en) | 2004-11-05 | 2022-11-22 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8277529B2 (en) | 2004-11-05 | 2012-10-02 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8268033B2 (en) | 2004-11-05 | 2012-09-18 | Donaldson Company, Inc. | Filter medium and structure |
US8512435B2 (en) | 2004-11-05 | 2013-08-20 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8641796B2 (en) | 2004-11-05 | 2014-02-04 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US9795906B2 (en) | 2004-11-05 | 2017-10-24 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US7314497B2 (en) * | 2004-11-05 | 2008-01-01 | Donaldson Company, Inc. | Filter medium and structure |
USRE47737E1 (en) * | 2004-11-05 | 2019-11-26 | Donaldson Company, Inc. | Filter medium and structure |
US8057567B2 (en) | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US7309372B2 (en) * | 2004-11-05 | 2007-12-18 | Donaldson Company, Inc. | Filter medium and structure |
US10610813B2 (en) | 2004-11-05 | 2020-04-07 | Donaldson Company, Inc. | Filter medium and breather filter structure |
USRE49097E1 (en) * | 2004-11-05 | 2022-06-07 | Donaldson Company, Inc. | Filter medium and structure |
US8021457B2 (en) | 2004-11-05 | 2011-09-20 | Donaldson Company, Inc. | Filter media and structure |
US7985344B2 (en) | 2004-11-05 | 2011-07-26 | Donaldson Company, Inc. | High strength, high capacity filter media and structure |
WO2006073710A2 (en) * | 2005-01-06 | 2006-07-13 | Bki Holding Corporation | High strength and high elongation wipe |
US7919419B2 (en) | 2005-01-06 | 2011-04-05 | Buckeye Technologies Inc. | High strength and high elongation wipe |
WO2006073710A3 (en) * | 2005-01-06 | 2006-12-21 | Bki Holding Corp | High strength and high elongation wipe |
US20110159265A1 (en) * | 2005-01-06 | 2011-06-30 | Buckeye Technologies Inc | High Strength and High Elongation Wipes |
CN101133199B (en) * | 2005-01-06 | 2010-09-22 | Bki控股公司 | High strength and high elongation wipe |
US8501647B2 (en) | 2005-01-06 | 2013-08-06 | Buckeye Technologies Inc. | High strength and high elongation wipes |
CN102041640B (en) * | 2005-01-06 | 2013-07-10 | 博凯技术公司 | High strength and high elongation wipe |
US20090092809A1 (en) * | 2005-01-06 | 2009-04-09 | Buckeye Technologies Inc. | High Strength And High Elongation Wipe |
US8177875B2 (en) | 2005-02-04 | 2012-05-15 | Donaldson Company, Inc. | Aerosol separator; and method |
US8460424B2 (en) | 2005-02-04 | 2013-06-11 | Donaldson Company, Inc. | Aerosol separator; and method |
US8404014B2 (en) | 2005-02-22 | 2013-03-26 | Donaldson Company, Inc. | Aerosol separator |
US20070056674A1 (en) * | 2005-09-12 | 2007-03-15 | Sellars Absorbent Materials, Inc. | Method and device for making towel, tissue, and wipers on an air carding or air lay line utilizing hydrogen bonds |
US20070295659A1 (en) * | 2005-09-29 | 2007-12-27 | Sellars Absorbent Materials, Inc. | Filters and methods of manufacturing the same |
US20070172630A1 (en) * | 2005-11-30 | 2007-07-26 | Jones David M | Primary carpet backings composed of bi-component fibers and methods of making and using thereof |
US20090163102A1 (en) * | 2006-10-04 | 2009-06-25 | Sellars Absorbent Materials, Inc. | Non-woven webs and methods of manufacturing the same |
US8318062B2 (en) | 2006-10-04 | 2012-11-27 | Sellars Absorbent Materials, Inc. | Industrial absorbents and methods of manufacturing the same |
US20080233381A1 (en) * | 2006-10-04 | 2008-09-25 | Sellars Absorbent Materials, Inc. | Industrial absorbents and methods of manufacturing the same |
US8118177B2 (en) * | 2006-10-04 | 2012-02-21 | Sellars Absorbent Materials, Inc. | Non-woven webs and methods of manufacturing the same |
US8973762B2 (en) | 2006-10-04 | 2015-03-10 | Sellars Absorbent Materials, Inc. | Industrial absorbents and methods of manufacturing the same |
US20080131649A1 (en) * | 2006-11-30 | 2008-06-05 | Jones David M | Low melt primary carpet backings and methods of making thereof |
CN101220118B (en) * | 2007-01-12 | 2010-08-11 | 远东新世纪股份有限公司 | Modification copolymer, modification sheath material and core sheath type composite fiber |
EP1944395A2 (en) | 2007-01-12 | 2008-07-16 | Far Eastern Texile Ltd. | Fiber composition and fiber made from the same |
US8021455B2 (en) | 2007-02-22 | 2011-09-20 | Donaldson Company, Inc. | Filter element and method |
US9114339B2 (en) | 2007-02-23 | 2015-08-25 | Donaldson Company, Inc. | Formed filter element |
US20100130084A1 (en) * | 2007-03-26 | 2010-05-27 | Mitsui Chemicals, Inc. | Mixed continuous fiber non-woven fabric and method for producing the same |
US8721756B2 (en) | 2008-06-13 | 2014-05-13 | Donaldson Company, Inc. | Filter construction for use with air in-take for gas turbine and methods |
US20100129633A1 (en) * | 2008-11-27 | 2010-05-27 | Stephen Law | Absorbent Material |
US20110238025A1 (en) * | 2008-11-27 | 2011-09-29 | Stephen Law | Cellulose Ethylsulfonate-Based Absorbent Material |
US9144625B2 (en) | 2008-11-27 | 2015-09-29 | Speciality Fibres And Materials Ltd. | Cellulose ethylsulfonate-based absorbent material |
US9221963B2 (en) * | 2008-11-27 | 2015-12-29 | Speciality Fibres And Materials Ltd. | Absorbent material |
US8267681B2 (en) | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
US9353481B2 (en) | 2009-01-28 | 2016-05-31 | Donldson Company, Inc. | Method and apparatus for forming a fibrous media |
US8524041B2 (en) | 2009-01-28 | 2013-09-03 | Donaldson Company, Inc. | Method for forming a fibrous media |
US9885154B2 (en) | 2009-01-28 | 2018-02-06 | Donaldson Company, Inc. | Fibrous media |
US10316468B2 (en) | 2009-01-28 | 2019-06-11 | Donaldson Company, Inc. | Fibrous media |
US8182927B2 (en) * | 2009-02-11 | 2012-05-22 | New Pig Corporation | Recycled cellulosic industrial and commercial absorbent matting |
US20110045312A1 (en) * | 2009-02-11 | 2011-02-24 | New Pig Corporation | Recycled Cellulosic Industrial and Commercial Absorbent Matting |
US10639212B2 (en) | 2010-08-20 | 2020-05-05 | The Procter & Gamble Company | Absorbent article and components thereof having improved softness signals, and methods for manufacturing |
US8841507B2 (en) | 2010-08-20 | 2014-09-23 | The Procter & Gamble Company | Absorbent article and components thereof having improved softness signals, and methods for manufacturing |
US9770371B2 (en) | 2010-08-20 | 2017-09-26 | The Procter & Gamble Company | Absorbent article and components thereof having improved softness signals, and methods for manufacturing |
US8722963B2 (en) | 2010-08-20 | 2014-05-13 | The Procter & Gamble Company | Absorbent article and components thereof having improved softness signals, and methods for manufacturing |
US9629755B2 (en) | 2010-08-20 | 2017-04-25 | The Procter & Gamble Company | Absorbent article and components thereof having improved softness signals, and methods for manufacturing |
WO2019190705A1 (en) | 2018-03-29 | 2019-10-03 | Dow Global Technologies Llc | Bicomponent fiber and polymer composition thereof |
WO2020118479A1 (en) | 2018-12-10 | 2020-06-18 | Dow Global Technologies Llc | Airlaid substrates having at least one bicomponent fiber |
US11821141B2 (en) | 2018-12-10 | 2023-11-21 | Dow Global Technologies Llc | Airlaid substrates having at least one bicomponent fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5981410A (en) | Cellulose-binding fibres | |
EP0973966B1 (en) | Cellulose-binding fibres | |
US6670035B2 (en) | Binder fiber and nonwoven web | |
US6458726B1 (en) | Polypropylene fibers and items made therefrom | |
KR960015656B1 (en) | Bicomponent synthetic fiber and process for producing the same | |
KR100453609B1 (en) | Heat-fusible conjugate fiber and a nonwoven fabric made therefrom | |
TWI359220B (en) | Improved fibers for polyethylene nonwoven fabric a | |
KR100231347B1 (en) | Low-temperature adhesive fiber and nonwovens made of the fiber | |
KR20040030183A (en) | Nonwoven web with improved adhesion and reduced dust formation | |
CA2165627C (en) | Process for producing fibers for high strength non-woven materials, and the resulting fibers and non-wovens | |
US6699922B2 (en) | Hydrophilic additive | |
WO2017100570A1 (en) | Method for forming porous fibers | |
US20030089443A1 (en) | Dry-laid web with hollow synthetic fibers | |
JP3525536B2 (en) | Modified polyolefin fiber and nonwoven fabric using the same | |
MXPA99008903A (en) | Cellulose-binding fibres | |
JPS6392723A (en) | Wettable composite fiber and nonwoven cloth made thereof | |
US20050064186A1 (en) | Nonwoven web with improved adhesion and reduced dust formation | |
JPH02264016A (en) | Thermally adhesive conjugated fiber | |
JPS63303109A (en) | Blend structure of polyethylene and polypropylene and nonwoven fabric made thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FIBERVISIONS A/S, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANSEN, PIA HOLM;LARSEN, ANNE MONRAD;REEL/FRAME:009272/0723;SIGNING DATES FROM 19980423 TO 19980501 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |