US5792534A - Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus - Google Patents
Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus Download PDFInfo
- Publication number
- US5792534A US5792534A US08/475,953 US47595395A US5792534A US 5792534 A US5792534 A US 5792534A US 47595395 A US47595395 A US 47595395A US 5792534 A US5792534 A US 5792534A
- Authority
- US
- United States
- Prior art keywords
- polymer
- film
- mixture
- ethylene
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/322—Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J123/00—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
- C09J123/02—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
- C09J123/04—Homopolymers or copolymers of ethene
- C09J123/08—Copolymers of ethene
- C09J123/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C09J123/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2410/00—Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
- C08F2410/08—Presence of a deactivator
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2420/00—Metallocene catalysts
- C08F2420/02—Cp or analog bridged to a non-Cp X anionic donor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2314/00—Polymer mixtures characterised by way of preparation
- C08L2314/06—Metallocene or single site catalysts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/04—Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
- C08L2666/06—Homopolymers or copolymers of unsaturated hydrocarbons; Derivatives thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1334—Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
- Y10T428/1393—Multilayer [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1397—Single layer [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/24992—Density or compression of components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2813—Heat or solvent activated or sealable
- Y10T428/2817—Heat sealable
- Y10T428/2826—Synthetic resin or polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
Definitions
- This invention pertains to a polyolefin composition
- a polyolefin composition comprising at least two polymer material components.
- such a composition, or a film, coating or molding fabricated from such a composition will be characterized as having a high heat resistivity, high percent residual crystallinity, low level of hexane extractives, low heat seal and hot tack initiation temperatures, high hot tack strength and controlled modulus.
- polyolefin resins have long found utility in food packaging and food storage container applications, a polyolefin resin with the desired balance of properties in the form of a film, coating and molding has not been available to fabricators and packagers. An optimum polyolefin resin for packaging and storage applications would possess a number of key performance properties.
- an optimum resin would be characterized by a high percent residual crystallinity and/or high Vicat softening point (indicating high heat resistivity which is important, for example, for microwavable food container and in hot-fill film packaging applications); a controllably high or low modulus (indicating good dimensional stability which is important for efficient product loading and bag-making operations or indicating good openability of refrigerated food containers, respectively); a low heat seal and hot tack temperature (indicating the ability to readily convert films and coatings into packages); high tear, dart impact resistance and puncture resistance (indicating greater package or container integrity under abuse); and a low level of hexane extractives (indicating a lower tendency for low molecular weight impurities or polymer fractions to migrate into sensitive packaged goods such as foodstuffs in food contact applications).
- a high percent residual crystallinity and/or high Vicat softening point indicating high heat resistivity which is important, for example, for microwavable food container and in hot-fill film packaging applications
- ethylene alpha-olefin polymers having a higher comonomer content yield films and coatings that exhibit good performance in terms of low heat seal and hot tack initiation temperatures, tear strength, dart impact resistance and puncture resistance, such polymers either exhibit excessive n-hexane extractives or are substantially soluble in n-hexane.
- substantially complete solubility in n-hexane is attributable to higher degrees of polymer amorphosity, i.e., a lower degree of crystallinity characteristic of interpolymers having a higher comonomer content.
- Hexane-soluble materials and materials with high n-hexane extractives levels generally are not acceptable for use in direct food contact applications, such as sealant layers in multilayer film packages or injection molded food storage containers. Even where these materials are used for food packaging and storage in general, or for packaging and storing taste and odor sensitive goods, a substantial barrier material (such as, for example, aluminum foil) must be used between the material and the packaged or stored item. Accordingly, industry has historically been limited with respect to the utilization of lower density ethylene alpha-olefin resins having excellent heat seal and hot tack initiation performance and abuse properties in food contact applications as well as other applications involving taste or odor sensitive goods.
- an ethylene alpha-olefin polymer composition having the beneficial performance attributes of ethylene alpha-olefin resins having densities less than 0.900 g/cc (e.g., attributes which indicate their utility as films and coatings having improved abuse properties and lower heat seal and hot tack initiation temperatures), but which are characterized by reduced levels of hexane extractives, making such polymer compositions suitable for use in food contact applications.
- compositions for fabricating improved lids for freezer-to-microwave food containers should have good flexibility (i.e., a lower flexural modulus) to insure easy openability while the container is still at freezer or refrigerator temperatures, yet such compositions should also have good heat resistance to prevent undo melting, softening or distortion of lids when the container and foodstuff is microwaved. Easy lid openability and removal is particularly important for consumers with weak or weakened hand muscles and coordination. Thus, it also desirable to provide ethylene alpha-olefin molding compositions with improved heat resistance while maintaining a lower flexural modulus.
- U.S. Pat. No. 4,429,079 to Shibata, et al. discloses an ethylene/alpha-olefin copolymer blend composition
- the (A) component polymer is said to be produced by a titanium catalyst system and the (B) component polymer is said to be produced by a vanadium catalyst. Both of these catalyst systems are known as Ziegler type catalysts which produce linear ethylene alpha-olefin polymers. That is, the polymer will have a linear molecular backbone without any long chain branching. Further, the (A) component polymer will also have a heterogeneously branched short chain distribution, while the (B) component polymer will have a homogeneously branched short chain distribution.
- composition allegedly has good low-temperature heat sealability, heat seal strength, pin hole resistance, transparency and impact strength, making such film suitable for premium packaging applications.
- Shibata et al. do not disclose films with high ultimate hot tack strengths (i.e., values ⁇ 2.56 N/cm) and analysis of the data disclosed in the Examples provided by Shibata et al. reveals the properties of such film, particularly heat sealability, are additive and vary linearly with respect to the densities of blended component polymers.
- U.S. Pat. No. 4,981,760 to Naito et al. discloses a polyethylene mixture having a density of from 0.900 to 0.930 g/cc and melt flow rate of from 0.1 to 100 g/10 in., which comprises (I) from 60 to 99 parts by weight of an ethylene- ⁇ -olefin random copolymer comprising ethylene and an ⁇ -olefin having from 4 to 10 carbon atoms, the copolymer having an ⁇ -olefin content of from 2.0 to 10 mol % and a density of from 0.895 to 0.915 g/cc, the programmed-temperature thermogram of said copolymer as determined with a differential scanning calorimeter after being completely melted and then gradually cooled showing an endothermic peak in a range of from 75° to 100° C., with the ratio of an endotherm at said peak to the total endotherm being at least 0.8, and (II) from 1 to 40 parts by weight of high-density polyethylene having
- the component polymer (I) is said to be manufactured using a vanadium catalyst and the film allegedly has improved heat sealability and hot tack.
- Naito et al. do not disclose that the mixture is useful for fabricating molded articles, and in particular, do not disclose that the mixture has high heat resistivity while simultaneously having good flexibility.
- Naito et al. disclose fabricated film comprising a component polymer (II) with a density less than 0.945 g/cc.
- U.S. Pat. No. 5,206,075 to Hodgson et al. discloses a multilayer heat sealable film comprising a base layer and a heat sealable layer superimposed on one or both sides of the base layer.
- Hodgson discloses a blend of: (a) an olefin polymer having a density greater than 0.915 g/cc; and (b) a copolymer of ethylene and a C 3 -C 20 alpha-monoolefin, with the copolymer (b) having a density of from about 0.88 to about 0.915 g/cc, a melt index of from about 0.5 to about 7.5 dg/min, a molecular weight distribution of no greater than about 3.5, and a composition distribution breadth index greater than about 70 percent.
- Hodgson discloses a layer comprising a copolymer as defined in (b) with respect to the base layer. Hodgson does not disclose the use of a blend, such as that employed in the base layer (a), as a suitable sealing layer and the preferred olefin polymer for component (a) of the base layer is a copolymer of propylene with about 1-10 mole percent ethylene.
- compositions disclosed by Shibata et al., Naito et al. and Hodgson et al. are disadvantageous in that they are not optimally designed for premium food packaging and storage container applications.
- polymer compositions characterized by a Vicat softening point which is greater than the heat seal initiation temperature and/or hot tack initiation temperature of a thin film (i.e., a film having a thickness in the range of about 0.25 to about 3 mils (0.006 to about 0.076 mm)) fabricated from the resin, to allow higher packaging lines speeds without sacrificing the heat resistivity required for such applications as, for example, cook-in and hot fill packaging.
- polymer compositions which have low levels of n-hexane extractives, i.e., less than 15 weight percent, preferably less than 10 weight percent, more preferably less than 6 weight percent, most preferably less than 3 weight percent, as such compositions would be useful in direct food contact applications.
- n-hexane extractives i.e., less than 15 weight percent, preferably less than 10 weight percent, more preferably less than 6 weight percent, most preferably less than 3 weight percent
- Those in industry would further find great advantage in polymer compositions which have the above properties, as well as a controllably high modulus (indicating good dimensional stability and enabling high line speeds in vertical form, fill and seal applications) and high dart impact, tear resistance, and puncture resistance (leading to strong films and coatings, particularly useful in packaging articles containing sharp objects, such as bones found in primal and subprimal cuts of meat).
- polymer compositions that show a controllably low modulus and high heat resistance as molded articles as such, for instance, easy open freezer-to
- the subject invention provides a polymer mixture comprising:
- M w /M n a molecular weight distribution, as determined by gel permeation chromatography and defined by the equation: (M w /M n ) ⁇ (I 10 /I 2 )-4.63,
- a gas extrusion rheology such that the critical shear rate at onset of surface melt fracture for the substantially linear ethylene polymer is at least 50 percent greater than the critical shear rate at the onset of surface melt fracture for a linear ethylene polymer, wherein the substantially linear ethylene polymer and the linear ethylene polymer comprise the same comonomer or comonomers, the linear ethylene polymer has an I 2 , M w /M n and density within ten percent of the substantially linear ethylene polymer and wherein the respective critical shear rates of the substantially linear ethylene polymer and the linear ethylene polymer are measured at the same melt temperature using a gas extrusion rheometer, and
- the polymer mixture is characterized as having a density of from 0.890 to 0.930 g/cc, a differential between the densities of the first ethylene polymer and the second ethylene polymer of at least 0.015 g/cc, and a percent residual crystallinity, PRC, as defined by the equation:
- ⁇ is the density of the polymer mixture in grams/cubic centimeters.
- the subject invention further provides a polymer mixture comprising:
- M w /M n a molecular weight distribution, as determined by gel permeation chromatography and defined by the equation: (M w /M n ) ⁇ (I 10 /I 2 )-4.63,
- a gas extrusion rheology such that the critical shear rate at onset of surface melt fracture for the substantially linear ethylene polymer is at least 50 percent greater than the critical shear rate at the onset of surface melt fracture for a linear ethylene polymer, wherein the substantially linear ethylene polymer and the linear ethylene polymer comprise the same comonomer or comonomers, the linear ethylene polymer has an I 2 , M w /M n and density within ten percent of the substantially linear ethylene polymer and wherein the respective critical shear rates of the substantially linear ethylene polymer and the linear ethylene polymer are measured at the same melt temperature using a gas extrusion rheometer, and
- the polymer mixture is characterized as having a density of from 0.890 to 0.930 g/cc, and a differential between the densities of the first ethylene polymer and the second ethylene polymer of at least 0.015 g/cc, Vicat softening point of at least 75° C.;
- a 0.038 mm thick film sealant layer fabricated from the polymer mixture has a heat seal initiation temperature equal to or less than 100° C. and an ultimate hot tack strength equal to or greater than 2.56 N/cm, and
- the Vicat softening point of the polymer mixture is more than 6° C. higher than the heat seal initiation temperature of the film sealant layer.
- the subject invention further provides a polymer mixture comprising:
- M w /M n a molecular weight distribution, as defined by the equation: (M w /M n ) ⁇ (I 10 /I 2 )-4.63,
- a gas extrusion rheology such that the critical shear rate at onset of surface melt fracture for the substantially linear ethylene polymer is at least 50 percent greater than the critical shear rate at the onset of surface melt fracture for a linear ethylene polymer, wherein the substantially linear ethylene polymer and the linear ethylene polymer comprise the same comonomer or comonomers, the linear ethylene polymer has an I 2 , M w /M n and density within ten percent of the substantially linear ethylene polymer and wherein the respective critical shear rates of the substantially linear ethylene polymer and the linear ethylene polymer are measured at the same melt temperature using a gas extrusion rheometer,
- n-hexane extractive level of substantially 100 weight percent based on the weight of the first ethylene polymer
- the polymer mixture is characterized as having a density of from 0.890 to 0.930 g/cc, a differential between the densities of the first ethylene polymer and the second ethylene polymer of at least 0.015 g/cc and a compositional hexane-extractive level which is at least 30 percent lower than the expected extractive amount based on the total weight of the mixture.
- the subject invention further provides any of the polymer mixtures as defined herein in the form of a fabricated film, film layer, coating or molded article for such uses as cook-in bags, pouches for flowable materials, barrier shrink films, injected molded lids and packaging film sealant layers.
- FIG. 1 is a plot of percent residual crystallinity as a function of density for Example and Comparative polymer mixtures and for single compositions of substantially linear ethylene polymers and heterogeneously branched linear ethylene polymers.
- FIG. 2 is a plot of heat seal initiation temperature as a function of Vicat softening point in °C. for Example and Comparative polymer mixtures and for single polymer compositions of substantially linear ethylene polymers and heterogeneously branched linear ethylene polymers.
- FIG. 3 is a plot of hot tack initiation temperature in °C. as a function of density in g/cc for Example and Comparative polymer mixtures and for single polymer compositions of substantially linear ethylene polymers and heterogeneously branched linear ethylene polymers.
- FIG. 4 is a plot of hot tack initiation temperature in °C. as a function of Vicat softening point in °C. for Example and Comparative polymer mixtures and for single polymer compositions of substantially linear ethylene polymers and heterogeneously branched linear ethylene polymers.
- FIG. 5 is a graphical illustration of the proper alignment between an initial, unexposed print of the edge configuration of an ASTM flex bar and a subsequent bar print following exposure to an elevated oven temperature. The distance between the bar prints is taken as heat sag in centimeters for Examples.
- FIG. 6 is a graphical illustration of a differential scanning calorimetry (DSC) "first heat" melting curve which illustrates the portion of the curve above 100° C. that is actually quantified for 100° C. percent residual crystallinity determinations.
- DSC differential scanning calorimetry
- polymer refers to a polymeric compound prepared by polymerizing monomers, whether of the same or a different type.
- the generic term polymer thus embraces the term “homopolymer”, usually employed to refer to polymers prepared from only one type of monomer, and the term “interpolymer”, as defined hereinafter.
- interpolymer refers to polymers prepared by the polymerization of at least two different types of monomers.
- the generic term “interpolymer” thus includes the term “copolymers”, which is usually employed to refer to polymers prepared from two different monomers, as well as to polymers prepared from more than two different types of monomers.
- percent residual crystallinity refers to a first heat differential scanning calorimetry (DSC) determination of that amount of polymer material that melts at temperatures above 100° C. or 110° C.
- DSC differential scanning calorimetry
- controlled modulus and “controllably low or high modulus”, as used herein, refer to the ability to affect the modulus of a film, coating or molded article essentially independent of the heat resistivity of the polymer mixture or the heat seal initiation temperature of a sealant layer made from the polymer mixture by specifying ("controlling") the final density of the mixture.
- expected extractive amount refers to the additive weight percent of n-hexane extractives expected based on the weight fraction calculation for the individual n-hexane extractive levels contributed by the first and second ethylene polymers of a polymer mixture.
- a polymer mixture comprises (I) 30 weight percent of a first ethylene polymer which has a n-hexane extractive level of 50 weight percent, and (II) 70 weight percent of a second ethylene polymer which has a n-hexane extractive level of 10 weight percent
- the polymer mixture will have an expected extractive amount of 22 weight percent where 15 weight percent would be contributed by the first ethylene polymer and 7 weight percent would be contributed by the second ethylene polymer.
- compositional hexane extractive level refers to the total weight percent of n-hexane extracted from an Example in accordance with the test method set forth in 21 CFR 177.1520 (d)(3)(ii).
- heat seal initiation temperature refers to the minimum temperature at which a 0.038 mm thick film sealant layer of a nylon/adhesive/sealant coextruded film structure measures a heat seal strength of at least 0.4 kg/cm when folded over and sealed to itself.
- the test method used to determine the heat seal initiation temperature of Examples, including the description of the coextruded film structure used, is provided herein below.
- the term "ultimate hot tack strength”, as used herein, refers to the maximum hot tack strength of a 0.038 mm thick film sealant layer in a nylon/adhesive/sealant coextruded structure. The test method used to determine the ultimate hot tack strength of Examples is provided herein below.
- the first ethylene polymer of the mixture of the invention, Component (A), is described as at least one substantially linear ethylene polymer having a density in the range of 0.850 to 0.920 g/cc.
- the first ethylene polymer When used to fabricate the film and coating of the invention, the first ethylene polymer will have a density of greater than 0.865 g/cc, preferably greater than 0.875 g/cc, more preferably greater than 0.880 g/cc.
- the first ethylene polymer When used to fabricate the film and coating of the invention, the first ethylene polymer will also have a density of less than 0.920 g/cc, preferably less than 0.910 g/cc, more preferably less than 0.900 g/cc.
- the first ethylene polymer When used to fabricate the molded article of the invention, for purposes of, but not limited to, maximizing heat resistivity, the first ethylene polymer will have a density less than 0.890 g/cc, preferably less than 0.875 g/cc, more preferably less than 0.870 g/cc.
- the first ethylene polymer When the first ethylene polymer has a density of less than 0.900 g/cc, it will be further characterized as having a n-hexane extractive level of substantially 100 weight percent based on the weight of the first ethylene polymer. When the first ethylene polymer has a density less than 0.850 g/cc, it becomes tacky and difficult to handle in dry-blending operations. For the fabricated film and coating of the invention, when the first ethylene polymer has a density greater than 0.920 g/cc, heat seal and hot tack properties will be undesirably reduced.
- the density of the first ethylene polymer when the density of the first ethylene polymer is less than 0.865 g/cc, the Vicat softening point will be undesirably low.
- the first ethylene polymer when the first ethylene polymer has a density greater than 0.890 g/cc, undesirably, the heat resistivity of the mixture will be lower.
- the second ethylene polymer of the polymer mixture of the invention, Component (B), is described as at least one homogeneously branched, heterogeneously branched linear, or non-short chain branched linear ethylene polymer having a density in the range of 0.890 to 0.965 g/cc.
- suitable ethylene polymers are contemplated to include homogeneously branched linear ethylene interpolymers, heterogeneously branched linear ethylene interpolymers (both of the preceding include polymer classes known as linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), copolymer high density polyethylene (HDPE) and ultra low or very low density polyethylene (ULDPE or VLDPE)), substantially linear ethylene polymers, homopolymer high density polyethylene (HDPE) (referred to herein as "non-short chain branched linear”), and combinations thereof.
- LLDPE linear low density polyethylene
- MDPE medium density polyethylene
- HDPE copolymer high density polyethylene
- ULDPE or VLDPE ultra low or very low density polyethylene
- substantially linear ethylene polymers homopolymer high density polyethylene (HDPE) (referred to herein as "non-short chain branched linear"), and combinations thereof.
- HDPE homopolymer high density polyethylene
- the second ethylene polymer When used to fabricate the film and coating of the invention, the second ethylene polymer will have a density greater than 0.890 g/cc, preferably greater than 0.900 g/cc, more preferably greater than 0.910 g/cc. When used to fabricate the film and coating of the invention, the second ethylene polymer will also have a density of less than 0.942 g/cc, preferably less than 0.940 g/cc, more preferably less than 0.938 g/cc.
- the differential between the Vicat softening point of the mixture (which is considered herein to be the same for a film fabricated from the mixture) and the heat seal initiation temperature of a 0.038 mm thick coextruded sealant layer is undesirably low (i.e., ⁇ 6° C.).
- the density of the second ethylene polymer is less than 0.890 g/cc, the compositional hexane extractive level of the mixture is undesirably high.
- the second ethylene polymer When used to fabricate the molded article of the invention, the second ethylene polymer will have a density of at least 0.930 g/cc, preferably of at least 0.950 g/cc, more preferably of at least 0.960 g/cc.
- the second ethylene polymer will be further characterized as having a n-hexane extractive level of no more than 10 weight percent, preferably no more than 6 weight percent based on the weight of the second ethylene polymer.
- homogeneous and homogeneously branched are used in the conventional sense in reference to an ethylene polymer in which the comonomer is randomly distributed within a given polymer molecule and wherein substantially all of the polymer molecules have the same ethylene to comonomer molar ratio.
- Homogeneously branched polymers are characterized by a short chain branching distribution index (SCBDI) greater than or equal to 30 percent, preferably greater than or equal to 50 percent, more preferably greater than or equal to 90 percent.
- SCBDI short chain branching distribution index
- the SCBDI is defined as the weight percent of the polymer molecules having a comonomer content within 50 percent of the median total molar comonomer content.
- the SCBDI of polyolefins can be determined by well-known temperature rising elution fractionation techniques, such as those described by Wild et al., Journal of Polymer Science, Poly. Phys. Ed., Vol. 20, p. 441 (1982), L. D. Cady, "The Role of Comonomer Type and Distribution in LLDPE Product Performance," SPE Regional Technical Conference, Quaker Square Hilton, Akron, Ohio, October 1-2, pp. 107-119 (1985), or U.S. Pat. No. 4,798,081, the disclosures of all which are incorporated herein by reference.
- substantially linear means that, in addition to the short chain branches attributable to homogeneous comonomer incorporation, the ethylene polymer is further characterized as having long chain branches in that the polymer backbone is substituted with an average of 0.01 to 3 long chain branch/1000 carbons.
- Preferred substantially linear polymers for use in the invention are substituted with from 0.01 long chain branch/1000 carbons to 1 long chain branch/1000 carbons, and more preferably from 0.05 long chain branch/1000 carbons to 1 long chain branches/1000 carbons.
- Long chain branching is defined herein as a chain length of at least 6 carbons, above which the length cannot be distinguished using 13 C nuclear magnetic resonance spectroscopy.
- the long chain branch can be as long as about the same length as the length of the polymer backbone to which it is attached.
- deGroot and Chum found that the presence of octene does not change the hydrodynamic volume of the polyethylene samples in solution and, as such, one can account for the molecular weight increase attributable to octene short chain branches by knowing the mole percent octene in the sample. By deconvoluting the contribution to molecular weight increase attributable to 1-octene short chain branches, deGroot and Chum showed that GPC-DV may be used to quantify the level of long chain branches in substantially linear ethylene/octene copolymers.
- the long chain branch is longer than the short chain branch that results from the incorporation of the alpha-olefin(s) into the polymer backbone.
- the empirical effect of the presence of long chain branching in the substantial linear ethylene/alpha-olefin interpolymers used in the invention is manifested as enhanced rheological properties which are quantified and expressed herein in terms of gas extrusion rheometry (GER) results and/or melt flow, I 10 /I 2 , increases.
- GER gas extrusion rheometry
- linear means that the polymer lacks measurable or demonstrable long chain branches, i.e., the polymer is substituted with an average of less than 0.01 long branch/1000 carbons.
- a gas extrusion rheology such that the critical shear rate at onset of surface melt fracture for the substantially linear ethylene polymer is at least 50 percent greater than the critical shear rate at the onset of surface melt fracture for a linear ethylene polymer, wherein the substantially linear ethylene polymer and the linear ethylene polymer comprise the same comonomer or comonomers, the linear ethylene polymer has an I 2 , M w /M n and density within ten percent of the substantially linear ethylene polymer and wherein the respective critical shear rates of the substantially linear ethylene polymer and the linear ethylene polymer are measured at the same melt temperature using a gas extrusion rheometer, and
- the PI is the apparent viscosity (in kpoise) of a material measured by GER at an apparent shear stress of 2.15 ⁇ 10 6 dyne/cm 2 .
- the substantially linear ethylene polymer for use in the invention includes ethylene interpolymers and homopolymers and have a PI in the range of 0.01 kpoise to 50 kpoise, preferably 15 kpoise or less.
- the substantially linear ethylene polymers used herein have a PI less than or equal to 70 percent of the PI of a linear ethylene polymer (either a Ziegler polymerized polymer or a linear uniformly branched polymer as described by Elston in U.S. Pat. No. 3,645,992) having an I 2 , M w ,/M n and density, each within ten percent of the substantially linear ethylene polymers.
- a linear ethylene polymer either a Ziegler polymerized polymer or a linear uniformly branched polymer as described by Elston in U.S. Pat. No. 3,645,992
- I 2 , M w ,/M n and density each within ten percent of the substantially linear ethylene polymers.
- the rheological behavior of substantially linear ethylene polymers can also be characterized the Dow Rheology Index (DRI), which expresses a polymer's "normalized relaxation time as the result of long chain branching.”
- DRI Dow Rheology Index
- ITP INSITETM Technology Polyolefins
- DRI values range from 0 for polymers which do not have any measurable long chain branching (e.g., TafmerTM products available from Mitsui Petrochemical Industries and ExactTM products available from Exxon Chemical Company) to about 15 and is independent of melt index.
- DRI provides improved correlations to melt elasticity and high shear flowability relative to correlations of the same attempted with melt flow ratios.
- DRI is preferably at least 0.1, and especially at least 0.5, and most especially at least 0.8.
- DRI can be calculated from the equation:
- ⁇ o is the characteristic relaxation time of the material and ⁇ o is the zero shear viscosity of the material. Both ⁇ o and ⁇ o are the "best fit" values to the Cross equation, i.e.,
- n is the power law index of the material
- ⁇ and ⁇ are the measured viscosity and shear rate, respectively.
- Baseline determination of viscosity and shear rate data are obtained using a Rheometric Mechanical Spectrometer (RMS-800) under dynamic sweep mode from 0.1 to 100 radians/second at 160° C. and a Gas Extrusion Rheometer (GER) at extrusion pressures from 1,000 psi to 5,000 psi (6.89 to 34.5 MPa), which corresponds to shear stress from 0.086 to 0.43 MPa, using a 0.0754 mm diameter, 20:1 L/D die at 190° C.
- Specific material determinations can be performed from 140° to 190° C. as required to accommodate melt index variations.
- the critical shear stress at the onset of gross melt fracture for the substantially linear ethylene polymers, especially those having a density >0.910 g/cc, used in the invention is greater than 4 ⁇ 10 6 dynes/cm 2 .
- the critical shear rate at the onset of surface melt fracture (OSMF) and the onset of gross melt fracture (OGMF) will be used herein based on the changes of surface roughness and configurations of the extrudates extruded by a GER.
- the substantially linear ethylene polymer will be characterized by its critical shear rate when used as the first ethylene polymer of the invention and by its critical shear stress when used as the second ethylene polymer of the invention.
- the substantially linear ethylene polymers used in the invention are also characterized by a single DSC melting peak.
- the single melting peak is determined using a differential scanning calorimeter standardized with indium and deionized water. The method involves 5-7 mg sample sizes, a "first heat" to about 140° C. which is held for 4 minutes, a cool down at 10°/min. to -30° C. which is held for 3 minutes, and heat up at 10° C./min. to 140° C. for the "second heat”.
- the single melting peak is taken from the "second heat” heat flow vs. temperature curve. Total heat of fusion of the polymer is calculated from the area under the curve.
- the single melting peak may show, depending on equipment sensitivity, a "shoulder” or a "hump” on the low melting side that constitutes less than 12 percent, typically, less than 9 percent, and more typically less than 6 percent of the total heat of fusion of the polymer.
- Such an artifact is observable for other homogeneously branched polymers such as ExactTM resins and is discerned on the basis of the slope of the single melting peak varying monotonically through the melting region of the artifact.
- Such an artifact occurs within 34° C., typically within 27° C., and more typically within 20° C. of the melting point of the single melting peak.
- the heat of fusion attributable to an artifact can separately determined by specific integration of its associated area under the heat flow vs. temperature curve.
- the substantially linear ethylene polymers are analyzed by gel permeation chromatography (GPC) on a Waters 150 high temperature chromatographic unit equipped with differential refractometer and three columns of mixed porosity.
- the columns are supplied by Polymer Laboratories and are commonly packed with pore sizes of 10 3 , 10 4 , 10 5 and 10 6 ⁇ .
- the solvent is 1,2,4-trichlorobenzene, from which 0.3 percent by weight solutions of the samples are prepared for injection.
- the flow rate is 1.0 milliliters/minute, unit operating temperature is 140° C. and the injection size is 100 microliters.
- the molecular weight determination with respect to the polymer backbone is deduced by using narrow molecular weight distribution polystyrene standards (from Polymer Laboratories) in conjunction with their elution volumes.
- the equivalent polyethylene molecular weights are determined by using appropriate Mark-Houwink coefficients for polyethylene and polystyrene (as described by Williams and Ward in Journal of Polymer Science, Polymer Letters, Vol. 6, p. 621, 1968) to derive the following equation:
- substantially linear ethylene polymers are known to have excellent processability, despite having a relatively narrow molecular weight distribution (i.e., the M w /M n ratio is typically less than 3.5, preferably less than 2.5, and more preferably less than 2).
- the melt flow ratio (I 10 /I 2 ) of substantially linear ethylene polymers can be varied essentially independently of the molecular weight distribution, M w /M n .
- the first ethylene polymer, Component (A), of the inventive polymer mixtures is a substantially linear ethylene polymer.
- At least one substantially linear ethylene polymer is used in the invention as the first ethylene polymer for purposes of providing, but not limited to, high ultimate hot tack strength, i.e., ⁇ 6.5N/inch (2.56N/cm).
- Substantially linear ethylene polymers are homogeneously branched ethylene polymers and are disclosed in U.S. Pat. No. 5,272,236 and U.S. Pat. No. 5,272,272, the disclosures of which are incorporated herein by reference.
- Homogeneously branched substantially linear ethylene polymers are available from The Dow Chemical Company as AffinityTM polyolefin plastomers, and as EngageTM polyolefin elastomers.
- Homogeneously branched substantially linear ethylene polymers can be prepared via the solution, slurry, or gas phase polymerization of ethylene and one or more optional alpha-olefin comonomers in the presence of a constrained geometry catalyst, such as is disclosed in European patent application 416,815-A, incorporated herein by reference.
- a solution polymerization process is used to manufacture the substantially linear ethylene interpolymer used in the present invention.
- homogeneously branched linear ethylene polymers have long been commercially available.
- homogeneously branched linear ethylene polymers can be prepared in conventional polymerization processes using Ziegler-type catalysts such as, for example, zirconium and vanadium catalyst systems.
- U.S. Pat. No. 4,937,299 to Ewen et al. and U.S. Pat. No. 5,218,071 to Tsutsui et al. disclose the use of metallocene catalysts, such as catalyst systems based on hafnium, for the preparation of homogeneously branched linear ethylene polymers.
- Homogeneously branched linear ethylene polymers are typically characterized as having a molecular weight distribution, M w /M n , of about 2.
- Commercial examples of homogeneously branched linear ethylene polymers include those sold by Mitsui Petrochemical Industries as TafmerTM resins and by Exxon Chemical Company as ExactTM resins.
- heterogeneous and heterogeneously branched mean that the ethylene polymer is characterized as a mixture of interpolymer molecules having various ethylene to comonomer molar ratios. Heterogeneously branched ethylene polymers are characterized as having a short chain branching distribution index (SCBDI) less than about 30 percent. Heterogeneously branched linear ethylene polymers are available from The Dow Chemical Company as DowlexTM linear low density polyethylene and as AttaneTM ultra-low density polyethylene resins.
- SCBDI short chain branching distribution index
- Heterogeneously branched linear ethylene polymers can be prepared via the solution, slurry or gas phase polymerization of ethylene and one or more optional alpha-olefin comonomers in the presence of a Ziegler Natta catalyst, by processes such as are disclosed in U.S. Pat. No. 4,076,698 to Anderson et al., incorporated herein by reference.
- heterogeneously branched ethylene polymers are typically characterized as having molecular weight distributions, M w /M n , in the range of from 3.5 to 4.1.
- ethylene polymers useful as component (A) or (B) of the mixtures of the invention can independently be interpolymers of ethylene and at least one alpha-olefin. Suitable alpha-olefins are represented by the following formula:
- R is a hydrocarbyl radical.
- the comonomer which forms a part of component (A) may be the same as or different from the comonomer which forms a part of component (B) of the inventive mixture.
- R may be a hydrocarbyl radical having from one to twenty carbon atoms.
- Suitable alpha-olefins for use as comonomers in a solution, gas phase or slurry polymerization process or combinations thereof include 1-propylene, 1-butene, 1-isobutylene, 1-pentene, 1-h-exene, 4-methyl-1-pentene, 1-heptene and 1-octene, as well as other monomer types such as styrene, halo- or alkyl-substituted styrenes, tetrafluoro-ethylene, vinyl benzocyclobutane, 1,4-hexadiene, 1,7-octadiene, and cycloalkenes, e.g., cyclopentene, cyclohexene and cyclooctene.
- the alpha-olefin will be 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, or mixtures thereof. More preferably, the alpha-olefin will be 1-hexene, 1-heptene, 1-octene, or mixtures thereof, as films fabricated with the resultant interpolymers will have especially improved puncture resistance, dart impact, and tear strength properties where such higher alpha-olefins are utilized as comonomers. However, most preferably, the alpha-olefin will be 1-octene.
- the polymer mixture of the invention will have a density of from 0.890 to 0.930 g/cc as measured in accordance with ASTM D792. Further, the polymer mixture of the invention will have a density of at least 0.890 g/cc, preferably of at least 0.903 g/cc, more preferably of at least 0.909 g/cc. The polymer mixture of the invention will have a density of less than 0.930 g/cc, preferably less than 0.928 g/cc, more preferably of less than 0.922 g/cc.
- the difference between the densities of the first and second polymer is generally at least 0.015 g/cc, preferably, at least 0.025 g/cc, more preferably at least 0.045 g/cc.
- the density differential can be even higher such as at least 0.065 g/cc, especially at least 0.085 g/cc.
- the higher the density differential the more improved the heat resistance will be relative to a heterogeneously branched linear ethylene polymer having essentially the same density and, as such, higher density differentials are particularly preferred for the molded articles of the invention.
- the polymer mixture comprises from 15 to 60 weight percent, preferably from 15 to 50, more preferably from 20 to 45 weight percent of the first ethylene polymer (A) based on the total weight of the mixture and from 40 to 85 weight percent, preferably from 50 to 85, more preferably from 55 to 80 weight percent at the second ethylene polymer (B) based on the total weight of the mixture.
- Component (A) and component (B) will be independently characterized by an I 2 melt index of from 0.01 to 100 g/10 min. In preferred embodiments, components (A) and (B) will be independently characterized by an I 2 melt index of from 0.1 to 50 g/10 minutes. By “independently characterized” it is meant that the I 2 melt index of component (A) need not be the same as the I 2 melt index of component (B).
- the I 2 of the polymer mixture of the invention will be from 0.01 to 100 g/10 min., preferably from 0.1 to 75 g/10 min., more preferably from 0.5 to 50 g/10 min. Generally, for polymer mixtures useful in preparing the fabricated film of the invention, the I 2 will be less than 30 g/10 min., preferably less than 20 g/10 min., more preferably less than 15 g/10 min. Generally, for polymer mixtures useful in preparing the molded article of the invention, the I 2 of the polymer mixture will be greater than 10 g/10 min., preferably greater than 15 g/10 min., more preferably greater than 20 g/10 min.
- the polymer mixture of the invention is generally characterized as having a percent residual crystallinity, PRC, as defined by the equation:
- p is th(e density of the polymer mixture in grams/cubic centimeters.
- One preferred polymer mixture of the invention will be characterized as having a percent residual crystallinity which is at least 17.5% higher, preferably at least 20% higher, more preferably at least 35% higher, most preferably at least 50% higher than the percent residual crystallinity of a single linear ethylene polymer, or alternately, of a linear ethylene polymer mixture (i.e., a polymer mixture wherein essentially all component polymers are "linear"), having essentially the same density.
- a plot of percent residual crystallinity of the polymer mixture of the invention as a function of density (FIG. 1), will show a maximum percent residual crystallinity value for polymer mixtures characterized by a density in the range of 0.890 to 0.930 g/cc.
- a polymer mixture of the invention is not defined by one of the above equations or the mixture does not have a percent residual crystallinity at least equal to or higher than the percent residual crystallinity a linear ethylene polymer (or linear ethylene polymer mixture) having essentially the same density
- inventive polymer mixture will be distinguished by its enhanced performance in the form of monolayer or coextruded film, or alternately, such mixture will comprise a first ethylene polymer which has a n-hexane extractive level of substantially 100 weight percent and the polymer mixture will be further characterized as having a compositional hexane extractive level of less than 30 percent, preferably less than 40 percent, more preferably less than 50 percent, especially less than 80 percent, most especially less than 90 percent lower than the expected extractive amount for the mixture based on the total weight of the mixture.
- a preferred polymer mixture of the invention will be characterized as having a compositional hexane extractive level of less than 15 percent, preferably less than 10 percent, more preferably less, than 6, most preferably less than 3 percent based on the total weight of the mixture.
- Temperature rising elution fractionation such as described by Wild et al. can be used to "fingerprint” or identify the novel mixtures of the invention.
- Another preferred polymer mixture of the invention will be characterized by a Vicat softening point of at least 75° C., preferably at least 85° C., and more preferably at least 90° C.
- a preferred polymer mixture of the invention when fabricated as a 1.5 mil (0.038 mm) thick sealant layer of a nylon/adhesive/sealant blown coextruded film, will be characterized by a heat seal initiation temperature of less than 100° C., preferably less than 90° C., more preferably less than 85° C., most preferably less than 80° C.
- a preferred polymer mixture of the invention will have a Vicat softening point more than 6° C. higher, preferably at least than 8° C. higher, more preferably at least 10° C. higher, especially at least 15° C. higher, most especially at least 20° C. higher than the heat seal initiation temperature of a 1.5 mil (0.038 mm) thick sealant layer (fabricated from the polymer mixture) of a nylon/adhesive/sealant blown coextruded film.
- a polymer mixture of the invention when molded into an essentially flat part having a thickness of 125 mils (31.7 mm), will be characterized as having a microwave warp distortion of less than 0.75 cm, preferably less than 0.70 cm and most preferably less than or equal to 0.65 cm while maintaining a flexural modulus of less than 35,000 psi, preferably less than 30,000 psi, more preferably less than 25,000 psi (172.4 MPa).
- a preferred molded article of the invention will show a heat resistivity superior to a linear ethylene polymer having a density of 0.927 g/cc while simultaneously showing a controllably low flexural modulus, that is, having a flexural modulus lower than a linear ethylene polymer having a density less than 0.927 g/cc, preferably less than 0.920 g/cc, more preferably less than 0.912 g/cc.
- Another embodiment of the present invention is a process for fabricating the polymer mixture of the invention into the form of a film, film layer, coating or molded article.
- the process can include a lamination and coextrusion technique or combinations thereof, or using the polymer mixture alone, and includes a blown film, cast film, extrusion coating, injection molding, blow molding, compression molding, rotomolding, or injection blow molding operation or combinations thereof.
- the polymer mixture of the invention can be formed by any convenient method, including dry blending the individual components and subsequently melt mixing in a mixer or by mixing the components together directly in a mixer (e.g., a Banbury mixer, a Haake mixer, a Brabender internal mixer, or a single or twin screw extruder including a compounding extruder and a side-arm extruder employed directly down stream of a interpolymerization process.
- a mixer e.g., a Banbury mixer, a Haake mixer, a Brabender internal mixer, or a single or twin screw extruder including a compounding extruder and a side-arm extruder employed directly down stream of a interpolymerization process.
- the mixtures of the invention can further be formed in-situ via the interpolymerization of ethylene and the desired alpha-olefin using a constrained geometry catalyst in at least one reactor and a constrained geometry catalyst or a Ziegler-type catalyst in at least one other reactor.
- the reactors can be operated sequentially or in parallel.
- An exemplary in-situ interpolymerization process is disclosed in PCT patent application 94/01052, incorporated herein by reference.
- the polymer mixture of the invention can further be formed by isolating component (A) from a heterogeneous ethylene polymer by fractionating the heterogeneous ethylene polymer into specific polymer fractions with each fraction having a narrow branching distribution, selecting the fractions appropriate to meet the limitations specified for component (A), and blending the selected fraction in the appropriate amounts with a component (B).
- This method is obviously not as economical as the in-situ polymerization described above, but can nonetheless be used to obtain the polymer mixture of the invention.
- Additives such as antioxidants (e.g., hindered phenolics, such as IrganoxTM 1010 or IrganoxTM 1076 supplied by Ciba Geigy), phosphites (e.g., IrgafosTM 168 also supplied by Ciba Geigy), cling additives (e.g., PIB), Standostab PEPQTM (supplied by Sandoz), pigments, colorants, fillers, and the like may also be included in the polymer mixture of the present invention or in films formed from the same.
- antioxidants e.g., hindered phenolics, such as IrganoxTM 1010 or IrganoxTM 1076 supplied by Ciba Geigy
- phosphites e.g., IrgafosTM 168 also supplied by Ciba Geigy
- cling additives e.g., PIB
- Standostab PEPQTM supplied by Sandoz
- films, coatings and moldings formed from the polymer mixture of the present invention may also contain additives to enhance antiblocking, mold release and coefficient of friction characteristics including, but not limited to, untreated and treated silicon dioxide, talc, calcium carbonate, and clay, as well as primary, secondary and substituted fatty acid amides, release agents, silicone coatings, etc.
- Still other additives such as quaternary ammonium compounds alone or in combination with ethylene-acrylic acid (EAA) copolymers or other functional polymers, may also be added to enhance the antistatic characteristics of films, coatings and moldings formed from the polymer mixture of the invention and permit the use of these polymer mixtures in, for example, the heavy-duty packaging of electronically sensitive goods.
- EAA ethylene-acrylic acid
- the polymer mixture of the invention may further include recycled and scrap materials and diluent polymers, to the extent that the desired performance properties are maintained.
- diluent materials include, for example, elastomers, rubbers and anhydride modified polyethylenes (e.g., polybutylene and maleic anhydride grafted LLDPE and HDPE) as well as with high pressure polyethylene such as, for example, low density polyethylene (LDPE), ethylene/acrylic acid (EAA) interpolymers, ethylene/vinyl acetate (EVA) interpolymers and ethylene/methacrylate (EMA) interpolymers, and combinations thereof.
- LDPE low density polyethylene
- EAA ethylene/acrylic acid
- EVA ethylene/vinyl acetate
- EMA ethylene/methacrylate
- the polymer mixture of the invention may find utility in a variety of applications, including but not limited to shrink film (including but not limited to barrier shrink film), packages formed via horizontal or vertical form/fill/seal machinery, cook-in packaged foods, injection molded containers (particularly food storage containers), etc.
- shrink film including but not limited to barrier shrink film
- packages formed via horizontal or vertical form/fill/seal machinery cook-in packaged foods
- injection molded containers particularly food storage containers
- Barrier shrink film refers to oriented films (typically biaxially oriented films) which are caused to shrink about the packaged article upon the application of heat. Barrier shrink films find utility in the packaging of primal and subprimal cuts of meat, ham, poultry, bacon, cheese, etc.
- a typical barrier-shrink film utilizing the polymer mixture of the invention may be a three to seven layer co-extruded structure, with a heat sealing food contact layer (such as the polymer mixture of the invention), an outer layer (such as heterogeneously branched linear low density or ultra-low density polyethylene), and a barrier layer (such as a vinylidene chloride polymer or copolymer) interposed between.
- Adhesion promoting tie layers such as PrimacorTM ethylene-acrylic acid (EAA) copolymers available from The Dow Chemical Company, and/or ethylene-vinyl acetate (EVA) copolymers, as well as additional structural layers (such as AffinityTM polyolefin plastomers, EngageTM polyolefin elastomers, both available from The Dow Chemical Company, ultra-low density polyethylene, or blends of any of these polymers with each other or with another polymer, such as EVA) may be optionally employed.
- Barrier shrink films so fabricated with the mixtures of the invention will preferably shrink at least 25 percent in both the machine and transverse directions. Film or film layers fabricated from the polymer mixture of the invention are particularly well-suited as sealant layers in multilayer food packaging structures such as barrier shrink film and aseptic packages.
- Cook-in packaged foods are foods which are prepackaged and then cooked. The packaged and cooked foods go directly to the consumer, institution, or retailer for consumption or sale. A package for cook-in must be structurally capable of withstanding exposure to cook-in time and temperature conditions while containing a food product. Cook-in packaged foods are typically employed for the packaging of ham, turkey, vegetables, processed meats, etc.
- VFFS vertical form/fill/seal packaging
- a sheet of the plastic film structure is fed into a VFFS machine where the sheet is formed into a continuous tube by sealing the longitudinal edges of the film together by lapping the plastic film and sealing the film using an inside/outside seal or by fin sealing the plastic film using an inside/inside seal.
- a sealing bar seals the-tube transversely at one end to form the bottom of a pouch. The flowable material is then added to the formed pouch.
- the sealing bar then seals the top end of the pouch and either burns through the plastic film or a cutting device cuts the film, thus separating the formed completed pouch from the tube.
- the process of making a pouch with a VFFS machine is generally described in U.S. Pat. Nos. 4,503,102 and 4,521,437, the disclosures of which are incorporated herein by reference.
- the polymer mixture of the invention will be characterized by a Vicat softening point of at least 75° C., more preferably of at least 85°, most preferably of at least 90° C.
- the polymer mixture of the invention when fabricated into a 1.5 mils (0.038 mm) blown coextruded film as a sealant layer having a thickness of, will further be characterized by a heat seal initiation temperature of less than 100° C., preferably less than 90° C., more preferably less than 85° C., most preferably less than 80° C.
- the polymer mixture of the invention will be characterized by a Vicat softening point which is more than 6° C., preferably equal to or more than 8° C., more preferably equal to or more than 10° C., especially equal to or more than 15° C., most especially equal to or more than 20° C. higher than the heat seal initiation temperature of a 1.5 mil (0.038 mm) thick sealant layer (fabricated from the inventive polymer mixture) of a nylon/adhesive/sealant blown coextruded film.
- a Vicat softening point which is more than 6° C., preferably equal to or more than 8° C., more preferably equal to or more than 10° C., especially equal to or more than 15° C., most especially equal to or more than 20° C. higher than the heat seal initiation temperature of a 1.5 mil (0.038 mm) thick sealant layer (fabricated from the inventive polymer mixture) of a nylon/adhesive/sealant blown coextruded film.
- an essentially flat molded part fabricated from the polymer mixture of the invention will be characterized by having less than 0.75 cm, preferably less than 0.70 cm, and more preferably less than 0.65 cm of microwave warp distortion when exposed to low frequency microwave radiation energy for 5 minutes and while showing a flexural modulus of less than 35,000 psi (241.3 MPa) prior to microwave exposure.
- One particular embodiment of the polymer mixture of the invention when fabricated into a blown monolayer film having a thickness of 2 mils (0.051 mm), will be characterized as having a controllable 2% secant modulus (MD) in the range of 5,000 psi (34 MPa) to 35,000 psi (241 MPa), especially in the range of 7,000 psi (48 MPa) to 25,000 psi (172 MPa).
- MD controllable 2% secant modulus
- Another particular embodiment of the polymer mixture of the invention especially suitable as a food packaging resin, when fabricated into a blown monolayer film having a thickness of 2 mil (0.051 mm), will be characterized by an Elmendorf tear (MD) of at least 300 g, preferably at least 600 g, and more preferably at least 800 g.
- MD Elmendorf tear
- Another particular embodiment of the polymer mixture of the invention, especially suitable as a food packaging resin, when fabricated into a blown monolayer film having a thickness of 2 mil (0.051 mm), will be characterized by a Dart Impact (Type B) of greater than 300 g, preferably greater than 450 g, more preferably greater than 500 g, and most preferably greater than 600 g.
- Type B Dart Impact
- Another particular embodiment of the polymer mixture of the invention when fabricated into a blown monolayer film having a thickness of 2 mil (0.051 mm), will be characterized by a puncture resistance of greater than 150 ft-lb/in 3 (126 kg-cm/cc), preferably greater than 200 ft-lb/in 3 (168 kg-cm/cc), more preferably greater than 250 ft-lb/in 3 (210 kg-cm/cc), more preferably at least 275-ft lb/in 3 (231 kg-cm/cc), and most preferably at least 300 ft-lb/in 3 (252 kg-cm/cc).
- a puncture resistance of greater than 150 ft-lb/in 3 (126 kg-cm/cc), preferably greater than 200 ft-lb/in 3 (168 kg-cm/cc), more preferably greater than 250 ft-lb/in 3 (210 kg-cm/cc), more preferably at least
- Densities are measured in accordance with ASTM D-792 and are reported as grams/cubic centimeter (g/cc). The measurements reported in the Examples below are determined after the polymer samples have been annealed for 24 hours at ambient conditions.
- melt index measurements are performed according to ASTM D-1238, Condition 190° C./2.16 kilogram (kg) and condition 190° C./5 kg which are known as I 2 and I 5 , respectively.
- I 5 and I 2 values roughly relate to one another by a factor of about 5.1; for example, a 1.0 I 2 index melt is equivalent to a 5.1 I 5 melt index.
- Melt index is inversely proportional to the molecular weight of the polymer. Thus, the higher the molecular weight, the lower the melt index, although the relationship is not linear. Melt index is reported as g/10 minutes. Melt index determinations can also be performed with even higher weights, such as in accordance with ASTM D-1238, Condition 190° C./10 kg, which is known as I 10 .
- melt flow ratio as defined herein in the conventional sense as the ratio of a higher weight melt index determination to a lower weight melt index determination.
- melt flow ratio is conveniently designated as I 10 /I 2 .
- Elmendorf tear values of films prepared from the mixtures of the invention is measured in accordance with ASTM D1922 and is reported in grams. Elmendorf tear is measured both the machine direction (MD) and in the cross direction (CD). The term "tear strength" is used herein to represent the average between MD and CD Elmendorf tear values and, likewise, is reported in grams.
- the dart impact of films prepared from the mixtures of the invention is measured in accordance with ASTM D1709. Where indicated and according to the relationship of higher thicknesses yield increased performance values, Elmendorf tear and dart impact results are normalized to exactly 2 mils (0.051 mm) by proportionate increases or decreases based on actual measured (micrometer) film thickness. Such normalization calculations are only performed and reported where thickness variations are less than 10 percent, i.e., where the measured thickness is in the range of about 1.8-2.2 mils (0.46-0.56 mm).
- Film puncture values are obtained using an Instron tensiometer equipped with a strain cell and an integrated digital display that provides force determinations.
- a single ply of a blown monolayer film having a thickness of 2 mils (0.051 mm) is mounted taut between the two halves of a circular holder constructed of aluminum and machined to couple the halves securely when they are joined together.
- the exposed film area when mounted in the holder is 4 inches (10.2 cm) in diameter.
- the holder is then affixed to the upper stationary jaw of the tensiometer.
- the probe is aligned to traverse upwards through the center of the mounted film at a deformation rate of 250 mm/min.
- the force required to rupture the film is taken from the digital display and divided by the film thickness and the diameter of the probe to provide puncture resistance in kg-cm/cc.
- Secant modulus is measured in accordance with ASTM D882 on 2 mil (0.051 mm) blown monolayer film fabricated from the Examples, the n-hexane extractive level is measured in accordance with 21 CFR 177.1520 (d)(3)(ii) on 4-mil (1-mm) compression molded film fabricated from the Examples, and the Vicat softening point is measured in accordance with ASTM D1525 on 2 mil (0.051 mm) blown monolayer film fabricated from the Examples.
- Heat seal initiation temperature is defined as the minimum temperature for a 2 lb/in (0.4 kg/cm) seal strength. Heat seal testing is performed using a 3.5 mil (0.089 mm) thick coextruded film of the following structure: 1 mil (0.025 mm) Capron XtraformTM 1590F Nylon 6/6,6 copolymer available from Allied Chemical Company/1 mil (0.025 mm) PrimacorTM 1410 ethylene-acrylic acid (EAA) copolymer available from The Dow Chemical Company/1.5 mil (0.038 mm) sealant layer of the polymer mixture of the Examples. The testing is done on a Topwave Hot Tack Tester using a 0.5 second dwell time with a 40 psi (0.28 MPa) seal bar pressure.
- EAA ethylene-acrylic acid
- the seals are made at 5° increments in the range of 60°-160° C. by folding the sealant layer over and sealing it to itself.
- the so-formed seals are pulled 24 hours after they are made using an Instron tensiometer at a 10 in/min. (51 cm/min.) crosshead rate.
- Hot tack initiation temperature is defined as the minimum seal temperature required to develop a 4 Newton/in (1.6N/cm) seal strength.
- Hot tack testing is also performed using above-described three-layer coextruded structure and a Topwave Hot Tack Tester set at a 0.5 second dwell, 0.2 second delay time, and 40 psi (0.28 MPa) seal bar pressure.
- Hot tack seals are made at 5° increments in the temperature range of 60°-160° C. by folding the sealant layer over and hot tack sealing it to itself.
- the peel rate applied to the so-formed hot tack seals is of 150 mm/sec.
- the tester pulls the seal immediately after the 0.2 second delay.
- Ultimate hot tack strength is taken as the maximum N/cm value in the 60°-160° C. temperature range for the Example.
- Residual crystallinity is determined using a Perkin-Elmer DSC 7. The determination involves quantifying the heat of fusion of that portion of an Example above 100° C. or 110° C. at first heat. The area under "first heat” melting curve is determined by computer integration using Perkin-Elmer PC Series Software Version 3.1. FIG. 6 graphically illustrates a "first heat" melting curve and the area under the curve above 100° C. actually integrated.
- Example 1 is prepared using an in-situ polymerization and mixture process, such as is disclosed in PCT patent application No. 94/01052, the disclosure of which is incorporated herein by reference. The particular production details are set forth as follows.
- MMAO methylalumoxane
- a heterogeneous Ziegler-type catalyst is prepared substantially according to the procedure of U.S. Pat. No. 4,612,300 (Example P), by sequentially adding to a volume of IsoparTM E hydrocarbon, a slurry of anhydrous magnesium chloride in IsoparTM E hydrocarbon, a solution of EtAlCl 2 in n-hexane, and a solution of Ti(O-iPr) 4 in IsoparTM E hydrocarbon, to yield a slurry containing a magnesium concentration of 0.166M and a ratio of Mg/Al/Ti of 40.0:12.5:3.0.
- Ethylene is fed into a first reactor at a rate of 40 lb/hr (18.2 kg/hr).
- the ethylene Prior to introduction into the first reactor, the ethylene is combined with a diluent mixture comprising IsoparTM E hydrocarbon (available from Exxon Chemical Company) and 1-octene.
- the 1-octene:ethylene ratio (constituting fresh and recycled monomer) is 0.28:1 (mole percent) and the diluent:ethylene feed ratio is 8.23:1 (weight percent).
- a homogeneous constrained geometry catalyst and cocatalyst such as prepared above is introduced into the first polymerization reactor.
- the catalyst, activator, and MMAO flow rates into the first polymerization reactor are 1.64 ⁇ 10 -5 lbs. Ti/hr (7.4 ⁇ 10 -6 kg Ti/hr), 6.21 ⁇ 10 -4 lbs. activator/hr (2.82 ⁇ 10 -4 kg activator/hr), and 6.57 ⁇ 10 -5 lbs. MMAO/hr (3.0 ⁇ 10 -5 kg MMAO/hr), respectively.
- the polymerization is conducted at a reaction temperature in the range of 70°-160° C.
- the reaction product of the first polymerization reactor is transferred to a second reactor.
- the ethylene concentration in the exit stream from the first polymerization reactor is less than four percent, indicating the presence of long chain branching as described in U.S. Pat. No. 5,272,236.
- Ethylene is further fed into a second polymerization reactor at a rate of 120 lbs./hr (54.5 kg/hr).
- a second polymerization reactor Prior to introduction into the second polymerization reactor, the ethylene and a stream of hydrogen are combined with a diluent mixture comprising IsoparTM E hydrocarbon and 1-octene.
- the 1-octene:ethylene feed ratio (constituting fresh and recycled monomer) is 0.196:1 (mole percent)
- the diluent:ethylene ratio is 5.91:1 (weight percent)
- the hydrogen:ethylene feed ratio is 0.24:1 (mole percent).
- a heterogeneous Ziegler catalyst and cocatalyst as prepared above are introduced into the second polymerization reactor.
- the catalyst (Ti) and cocatalyst (TEA) concentrations in the second polymerization reactor are 2.65 ⁇ 10 -3 and 1.65 ⁇ 10 -3 molar, respectively.
- the catalyst and cocatalyst flow rates into the second polymerization reactor are 4.49 ⁇ 10 -4 lbs. Ti/hr (2.04 ⁇ 10 -4 kg Ti/hr) and 9.14 ⁇ 10 -3 lbs. TEA/hr (4.15 ⁇ 10 -3 kg TEA/hr) respectively.
- the polymerization is conducted at a reaction temperature in the range of 130°-200° C.
- the conversion and production split between the first and second polymerization reactors is such as to yield the "percent of mixture" value for Example 1 set forth in Table 1.
- a standard catalyst kill agent (1250 ppm Calcium Stearate) and antioxidants (200 ppm IrganoxTM 1010, i.e., tetrakis methylene 3-(3,5-di-tert-butyl-4-hydroxy-phenylpropionate)!methane, available from Ciba-Geigy and 800 ppm SandostabTM PEPQ, i.e., tetrakis-(2,4-di-tert-butyl-phenyl)-4,4' biphenylphosphonite, available from Sandoz Chemical) are added to stabilize the polymer.
- the Calcium Stearate is known to conventionally function as a processing aid, comparative experiments will show it does not contribute to the enhanced rheological properties of the substantially linear polymers useful in the invention.
- the polymer mixtures of Examples 2 and 3 are prepared in a similar fashion.
- the split between the first and second polymerization reactors is such as to yield the "percent of mixture" values set forth in Table 1.
- the densities, melt indices, and hexane extractive levels of the first reactor products, the second reactor products, and the resultant in-reactor mixtures as well as the Vicat softening point, density differential between the component polymers and expected n-hexane extractive amount of the in-reactor mixtures are further set forth in Table 1.
- the mixtures of Examples 4-8 are prepared by dry blending the substantially linear ethylene polymer component (A) and the heterogeneously branched linear ethylene polymer component (B) (or in the case of Example 5, the substantially linear ethylene polymer component (B)) in a lab scale mechanical tumble blender.
- Cormparative Examples 9-11 are also prepared using the mechanical tumble blender.
- the component weight percentages based on the total weight of the respective polymer mixtures are set forth in Table 1.
- component (A) for Comparative Example 11 is a linear ethylene/1-butene copolymer commercially available from Mitsui Petrochemical Industries under the designation of TafmerTM A4085.
- the substantially linear ethylene polymer component (A) and component (B) in the case of Example 5 is prepared by techniques disclosed in U.S. Pat. No. 5,272,236 via a solution ethylene/1-octene interpolymerization process utilizing a ((CH 3 ) 4 C 5 ))--(CH 3 ) 2 Si--N--(t--C 4 H 9 )!Ti(CH 3 ) 2 activated with tris(perfluorophenyl)borane and MMAO.
- a standard catalyst kill agent and antioxidants described above are added to stabilize the polymer.
- the heterogeneously branched components (B) of Examples 4-8 and Comparative Examples C9-C11 are solution-polymerized copolymers of ethylene and 1-octene manufactured with the use of a Ziegler titanium catalyst system.
- Calcium Stearate in quantities sufficient for functioning as a standard processing aid and as a catalyst kill agent, and as antioxidants, 200 ppm IrganoxTM 1010 and 1600 ppm IrgafosTM 168, a phosphite stabilizer available from Ciba-Geigy, are added to stabilize the polymer and to enhance its rheological properties.
- Comparative Examples C12 and C13 are single polymer compositions in contrast to the above inventive and comparative polymer mixtures.
- Comparative Example C12 is a substantially linear ethylene/1-octene copolymer also prepared by techniques disclosed in U.S. Pat. No. 5,272,236 utilizing a ((CH 3 ) 4 C 5 ))--(CH 3 ) 2 Si--N--(t--C 4 H 9 )!Ti(CH 3 ) 2 activated with tris(perfluorophenyl)borane and MMAO. To the resulting polymer, calcium stearate as a catalyst kill agent and antioxidants as described above for Example 1 are added to stabilize the polymer.
- Comparative Example C13 is a heterogeneously branched linear ethylene/1-octene copolymer prepared in a solution process utilizing a Ziegler titanium catalyst system.
- the melt index of component (B) of Comparative Example C9 and the resultant mixture are reported as a corrected I 2 value using the correction factor discussed above.
- the component (B) second ethylene polymer of Comparative Example 9 has a measured I 5 melt index of 0.26 g/10 minutes which has been corrected to 0.05 g/10 min.
- the densities, melt indices, and n-hexane extractive level of the component polymers, resultant polymer mixtures and single polymer compositions as well as the Vicat softening point, density differential between the component polymers and the expected n-hexane extractive amount of the mixtures are set forth in Table 1.
- Examples 1-8 contain at least 20 weight percent of a homogeneously branched substantially linear ethylene polymer component (A) which is substantially fully soluble in hexane, the mixtures of the invention are characterized by a relatively low compositional hexane extractive level, i.e., less than 4.5 weight percent. Table 1 also illustrates that the actual n-hexane extractive level of inventive mixture is at least 30% and as high as 98% lower than the expected extractive amount for the mixture.
- component (B) While not wishing to be bound by any particular theory, it is believed that the higher density, more crystalline ethylene polymer used in the invention as component (B) creates a tortuous path and, as such, significantly reduces the amount of n-hexane extractable material that would otherwise traverse and escape the polymer mixture matrix.
- the polymer mixtures of Examples 1-8 are characterized by a Vicat softening point greater than 75° C.
- the Vicat softening point of Comparative Example C10 is too low for packaging applications requiring improved heat resistivity.
- the actual n-hexane extractive level of Comparative Example C10 is significantly lower than its expected n-hexane extractive amount, its actual n-hexane extractive level is still markedly higher (i.e., from 2.7 to 39 times higher) than that of preferred polymer mixtures of the invention.
- the deficiencies of Comparative Example C10 are thought to be due to the relatively low density (i.e., 0.903 g/cc) of the mixture.
- the density of the component (A) polymer is equal to or less than 0.870 g/cc
- the density of the component (B) polymer should be greater than 0.920 g/cc (i.e., the density differential between the first and second ethylene polymers should be greater than 0.049 g/cc) but still less than 0.942 g/cc.
- the mixtures of Examples 1-8 and the single polymer compositions and mixtures of Comparative Examples C9-C13 are fabricated into a 2 mil (0.051 mm) thick monolayer blown (tubular) film at about 200° C. melt temperature using a 2.5 inch (6.4 cm) diameter, 30:1 L/D Gloucester blown film line equipped with a 6 inch (15.2 cm) annular die.
- the monolayer blown films are evaluated for 1% and 2% secant modulus, Elmendorf tear, dart impact, and puncture resistance using the procedures described above. The results of the evaluation are set forth in Table 2.
- the polymer mixtures of Examples 1-8 exhibit a controllable 2% secant modulus (MD) as low as 6,595 psi in the case of Example 5 and as high as 33,355 psi in the case of Example 7.
- Table 2 also illustrates that the polymer mixtures of Examples 1-8 as well as the comparative mixtures of C9-C13 are characterized by an Elmendorf tear (MD) of at least 300 g, a Dart Impact (Type B) of at least 300 g, and a puncture resistance of at least 150 ft-lb/in 3 (126 kg-cm/cc), establishing additional criteria of a food packaging resin.
- the mixtures of Examples 1-8 and the single polymer compositions and mixtures of Comparative Examples C9-C13 are fabricated into a 3.5 mil (0.89 mm) thick coextruded film using a coextrusion blown film unit manufactured by Egan Machinery equipped with two 30:1 L/D 2.5 inch (6.4 cm) diameter extruders, one 30:1 L/D 2 inch (5.1 cm) extruder and an 8 inch (20.3 cm) spiral mandrel annular die.
- the individual layers of the film are as follows: 1 mil (0.025 mm) nylon; 1 mil (0.025 mm) PrimacorTM 1410 an ethylene-acrylic acid (EAA) copolymer available from The Dow Chemical Company); and 1.5 mil (0.038 mm) of Examples 1-8 or Comparative Examples C9-C13.
- the resultant coextruded films are evaluated for heat seal initiation temperature, hot tack initiation temperature, and ultimate hot tack strength. The results of the evaluation are set forth in Table 3.
- the polymer mixtures of Examples 1-8 exhibit a heat seal initiation temperature of less than 100° C. and as low as 63° C. as in the case of Example 5, and a differential between the Vicat softening point of the polymer mixture and the heat seal initiation temperature of a 1.5 mil (0.038 mm) film layer fabricated of the polymer mixture of at least 8° C. (as in the case of Examples 1-8), of at least 10° C. (as in the case of Examples 1-7), of at least 15° C. (as in the case of Examples 2-4, and 7), and of at least 20° C. (as in the case of Examples 2 and 4).
- Comparative Examples C9, C12 and C13 all have heat seal and hot tack initiation temperatures that merely approximate their respective Vicat softening points.
- Table 3 also illustrates Comparative Example C11 is also characterized by a desirably low heat seal and hot tack initiation temperature and a desirably high differential between its Vicat softening point and its heat seal initiation temperature.
- the heat seat initiation temperatures of the mixtures and single polymer compositions are plotted as function of the Vicat softening point for the material.
- the individual relationships are subjected to first and second order linear regression analysis using Cricket Graph computer software Version 1.3 supplied commercially by Cricket Software Company to establish an equation for the respective relationships.
- FIG. 2 illustrates the resulting equations and that, desirably, the heat seal initiation temperature of a given inventive mixture is at least 13% lower in the case of Examples 1-8, at least 20% lower in the case of Examples 1-6 and 8, and at least 25% lower in the case of Examples 2-6 than a heterogeneously linear polymer having essentially the same Vicat softening point.
- the hot tack initiation temperature of a given inventive mixture is at least 10% lower in the case of Examples 1-8, at least 20% lower in the case of Examples 1-6, and at least 30% lower in the case of Examples 2-6 than a heterogeneously linear polymer having essentially the same density or Vicat softening point.
- the low heat seal and hot tack initiation temperatures of the inventive mixtures permits industrial fabricators to increase productivity by making more seals per unit time and, as such, fabricating more bags, pouches, and other packages and containers that are produced by creating heat seals.
- the inventive polymer mixtures will better maintain seal integrity during use in packaging applications involving high temperatures (for example, about 45° C.) such as hot-fill packaging where items are packaged hot and dropped onto bottom seals, cook-in applications and boil-in-bag applications.
- Table 3 further illustrates that the ultimate hot tack strength of Examples 1-8 is greater than or equal to 6.5 N/in. (2.56 N/cm) and is as high as 11.8N/in (4.65N/cm) in the case of Example 3.
- the ultimate hot strength of the comparative mixtures including C11 which is exemplary of the mixture disclosed by Shibata et al. in U.S. Pat. No. 4,429,079, are all less than 6.5N/in (2.56N/cm).
- the high ultimate hot tack strength of the inventive mixture is particularly important in vertical form/fill/seal packaging applications where the items to be packaged are dropped into the package and onto the bottom hot tack seal immediately after the seal is formed. High hot tack strength insures the bottom seal will not rupture during loading of the items and, as such, will help eliminate leakers and spillage of the items.
- Example 2 is evaluated for its machinability performance when processed through automated converting and packaging equipment.
- Good "machinability”, as the term is used herein, refers to the ability to convert film into non-filled packages on high speed packaging equipment without generating packages that are outside of the desired package specification or having premature equipment shutdowns.
- Machinability is determined by first fabricating from Example 2 a 2.0 mil (0.051 mm) thick monolayer film using the Gloucester blown film unit described above. Then the film is run through a Hayssen Ultima Super CMB Vertical Form/Fill/Seal (VFFS) machine for at least 5 minutes to determine whether 7 inch wide ⁇ 9.5 inch long (17.8 cm wide ⁇ 24.1 cm long) pouches can be produced at a rate of 25 pouches/minute and at a higher rate of 50 pouches/minute. In this evaluation, the film fabricated from Example 2 shows good machinability. Non-filled pouches within the desired dimensional specification were prepared at the rates of 25 and 50/minute without any equipment shutdowns.
- VFFS Vertical Form/Fill/Seal
- Comparative Example 21 which is an ethylene vinyl acetate (EVA) copolymer containing 18 weight percent vinyl acetate and having heat seal characteristics comparable to Example 2 (See, Table 4), is also evaluated for VFFS non-filled packaging machinability.
- EVA ethylene vinyl acetate
- Comparative Example 21 experienced continuous equipment interruptions and shutdowns and could not be processed at a packaging speed as low as 20 non-filled pouches per minute in this evaluation.
- the poor performance of Comparative Example 21 is attributable to its tackiness and low modulus (poor dimensional stability) which results in the film excessively necking-down and dragging on the forming tube of the VFFS unit.
- Example 2 is evaluated for its cook-in performance by procedures pursuant to those disclosed in U.S. Pat. No. 4,469,742, which is incorporated herein by reference.
- a 3.5 mil (0.89 mm) thick coextruded film consisting of 1.5 mils (0.038 mm) of nylon/1.0 mil (0.25 mm) PrimacorTM 1410/1.5 mils (0.038 mm) of Example 2 is fabricated using the Egan coextrusion line described above.
- the nylon material as for all other nylon/adhesive/sealant film structures used and disclosed herein, is Capron XtraformTM 1590F Nylon 6/6, 6 copolymer supplied commercially by Allied Chemical Company.
- the Hayssen VFFS unit described above is also used in combination with a Pro/Fill 3000 Liquid Filler unit in this evaluation.
- the temperature of the sealing bars and platen for making bottom, top and side fin seals to prepare the pouches is set at 250° F.(121° C.).
- 7 inch wide ⁇ 9.5 inch long (17.8 cm wide ⁇ 24.1 cm long) pouches are prepared and filled with 1,000 milliliters of water on the VFFS unit at a rate of 15 filled pouches per minute. Five water filled and heat sealed pouches are collected and placed into a large water-tight pan.
- the pan is then filled with water, covered with a suitable lid and placed in a Blue M forced-air convection oven and permitted to stand for 17 hours at 85° C. After 17 hours of oven time, the five pouches are removed from the oven and allowed to cool to ambient and inspect for seal integrity, In this evaluation, no leakers due to seal ruptures, delamination or cracking were detected. All five pouches fabricated from Example 2 passed this cook-in evaluation in accordance to criteria provided in U.S. Pat. No. 4,469,742.
- Example 22 a polymer mixture designated Example 22 is prepared by tumble blending, as component (A), 22 percent by weight of the total mixture of a substantially linear ethylene/1-octene copolymer having a density of 0.870 g/cc and produced according to techniques described in U.S. Pat. No. 5,272,236 and, as component (B), 78 percent by weight of the total mixture of a heterogeneously branched ethylene/1-octene copolymer having a density of 0.935 g/cc and produced using a solution polymerization process and a Ziegler-type titanium catalyst.
- the mixture is then melt mixed on a 30 mm Werner-Pflieder ZSK co-rotating, twin screw extruder and pelletized.
- the mixture which is characterized as having a density of 0.920 g/cc, is then extruded into 200 mil (51 mm) thick sheet using a conventional cast film extruder unit equipped with a slot die and the melt temperature set at 415° F. (213° C.) and the chill roll set at 67° F. (19° C.).
- the resulting extruded sheet is then cut into four 2 inch ⁇ 2 inch (5.1 cm ⁇ 5.1 cm) sheets and biaxially stretched individually using a T. M. Long laboratory stretching frame. The sheets are stretched to a thickness of 1 mil (0.025 mm) using the various settings shown in Table 5 below.
- the sheets are tested for free shrinkage at 250° F. (121° C.) in accordance with ASTM D2732 and averaged to determine the total shrink response.
- the average free shrinkage of sheet fabricated from Example 21 measured 27 percent in the machine direction and 25 percent in the traverse direction.
- the mixture also had an orientation temperature range of at least 11° C. which is broader than that of typical homogeneously branched ethylene polymer:.
- Examples 1-8 and 22 are believed to be well-suited for use in fabricating biaxially oriented films for use in such applications as, for example, barrier shrink packaging of primal and subprimal meat.
- Examples 23-26 and Comparative Examples C29-C31 are prepared by dry blending followed by melt mixing at about 149° C. in a 1 inch (2.5 cm) diameter 24:1 L/D MPM extruder.
- Table 6 provide a description of the component polymers as well the component weight percentages expressed as "percent of mixture”.
- the melt extrusion conditions for use in preparing Examples 23-26 and Comparative Examples C29-C31 are shown in Table 7.
- Examples 27 and 28 are prepared by operating two polymerization reactors sequentially in a manner similar to that described for Example 1, utilizing reactor splits (conversion and production rates) that correspond to the percent of mixture in Table 6.
- Comparative Examples 23-28 are also compared to Comparative Examples C32 and C33 which are single-reactor homogeneously branched and single-reactor heterogeneously branched resins, respectively.
- Comparative Example C32 is an experimental substantially linear ethylene polymer resin produced according to the disclosure by Lai et al. in U.S. Pat. No. 5,272,236 and U.S. Pat. No. 5,272,272.
- Comparative Example C33 is a molding grade resin supplied by The Dow Chemical Company under the designation of DowlexTM 2500.
- Examples 23-28 and Comparative Examples C29-C31 and C33 are all injection molded at 200° C. using a 150-ton DeMag injection molding machine equipped with reciprocating screw and a six-cavity ASTM plaque mold to produce 6 ⁇ 1/2 ⁇ 1/8 inch (15.2 ⁇ 1.3 ⁇ 0.3 cm) flex bars. Although the melt index of the Example and Comparative Example polymer mixtures is lower than the DowlexTM 2500 resin (Comparative Example C33), all polymer mixtures show good molding characteristics such as good flowability and mold filling capability as well as short cycle times. Table 8 sets forth the physical properties of the injection molded parts. Flexural modulus determination are performed in accordance with ASTM D790 test methods.
- Examples 23-28 and Comparative Examples C29-C33 are injection molded at 200° C. into 3 inch (7.6 cm) diameter, 125 mil (0.3 cm) thick circular disks using the DeMag molder described above and allowed to cool to an ambient temperature.
- the disks are tested individually by placing each disk over a 2 inch (5.1 cm) diameter, 12 ounce (354 cc) microwave-resistant polypropylene container and filled with about 6 ounces (177 cc) of commercial spaghetti sauce, i.e., Ragu® chunky garden style spaghetti sauce.
- Each disk and container is then placed into a General Electric Spacesaver® microwave for 5 minutes at the highest temperature setting.
- the GE Spacesaver microwave is a typical low-frequency consumer microwave unit. After 5 minutes in the microwave, the disk is removed, allowed to cool to an ambient temperature and then rinsed with cool running tap water. During the rinse, the disk is carefully held with its length parallel to the stream of tap water. The amount of distortion for each disk is measured as warpage in centimeters by laying the disk on a flat horizontal surface and determining the distance from the flat surface to the apex (highest point) of the warpage. Table 9 shows the microwave heat resistance or warp resistance results.
- Injection molded flex bars are prepared using the DeMag molder described above.
- the edge configuration of individual bars are recorded (printed) by firmly placing a bar edge on a rubber stamp ink pad and stamping the configuration on a sheet of plain paper. After the edge configurations are recorded, five bars are then affixed to a metal rack having five spring clamps aligned vertically and spaced 3 cm apart. The bars are loaded into individual spring clamps (one bar per clamp) such that a 1/4 inch (0.64 cm) of the bar length is within the jaws of the clamp and the remaining 53/4 inch (14.6 cm) length is allowed to remain suspended free of any obstructions or support.
- FIG. 5 graphically illustrates the proper alignment of the bar prints for heat sag performance determinations.
- Example 23-28 The measurement is repeated for each of the five bars, averaged and reported as heat sag performance for the Example.
- the heat sag performance of the various materials is also summarized in Table 9. Examples 23-28 all show good heat sag resistance in that lower heat sag values are taken as characteristic of improved heat resistance performance. Surprisingly, although Examples 23-28 have a relatively low flexural modulus as set forth in Table 8, Table 9 indicates these novel mixtures have excellent heat resistance.
- the residual crystallinity of the several Examples and Comparative Examples at elevated temperatures is measured by differential scanning calorimetry (DSC).
- DSC differential scanning calorimetry
- the residual portion of the polymer mixtures and single-reactor resins above 100° C. actually quantified is illustrated graphically in FIG. 6.
- the percent residual crystallinity is taken from first heat determinations and calculated according to the following formula:
- ⁇ is the density of the polymer mixture in grams/cubic centimeters.
- Example 9 in Table 10 is the same polymer mixture represented above as Comparative Example C9 in Tables 1 and 2. Since the percent residual crystallinity of Example 9 is defined by the equation immediately above and the mixture is considered useful for preparing the molded articles of the invention, Example 9 is considered a part of the present invention. As discussed above in reference to sealant layers, the mixture is simply not preferred with respect to the films and coatings of the invention.
- FIG. 1 also shows that for inventive polymer mixtures having a density in the range of 0.900 to 0.930 g/cc, particularly in the range of 0.903 to 0.928 g/cc show a significantly higher percent residual crystallinity at 100° C. than single-reactor, non-mixed polymers having essentially the same density.
- inventive polymer mixtures having a density in the range of 0.900 to 0.930 g/cc particularly in the range of 0.903 to 0.928 g/cc show a significantly higher percent residual crystallinity at 100° C. than single-reactor, non-mixed polymers having essentially the same density.
- Examples 7, 23, 25-28 have at least 17.5% higher
- Examples 23, 25-28 have at least 35% higher
- Examples 23 and 28 have at least 50% higher percent residual crystallinities.
- Examples 7, 23, 25-28 all show dramatically higher percent residual crystallinities.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Wrappers (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Thermistors And Varistors (AREA)
- Dental Preparations (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
PRC≧5.0195×10.sup.4 (ρ)-2.7062×10.sup.4 (ρ).sup.2 -2.3246×10.sup.4,
DRI=(3652879*τ.sub.o.sup.1.00649 /η.sub.o -1)/10
η/η.sub.o =1/(1+(γ*τ.sub.o).sup.1-n)
.sup.M polyethylene=a*(.sup.M polystyrene).sup.b.
CH.sub.2 =CHR
PRC≧5.0195×10.sup.4 (ρ)-2.7062×10.sup.4 (ρ).sup.2 -2.3246×10.sup.4,
PRC≧5.7929×10.sup.4 (ρ)-3.1231×10.sup.4 (ρ).sup.2 -2.6828×10.sup.4,
PRC≧6.4363×10.sup.4 (ρ)-3.470×10.sup.4 (ρ).sup.2 -2.9808×10.sup.4,
TABLE 1 __________________________________________________________________________ Example 1 2 3 4 5 6 __________________________________________________________________________ First Polymer Type Substantially Substantially Substantially Substantially Substantially Substantially Ethylene Linear Linear Linear Linear Linear Linear Polymer Density (g/cc) 0.887 0.88 0.888 0.887 0.887 0.887 I.sub.2 (g/10 min) 1.0 5.0 0.6 0.5 0.5 0.5 n-Hexane 100 100 100 100 100 100 Extractives Percent of 20 28 42 20 50 50 Mixture (wt %) Second Polymer Type Hetero- Hetero- Hetero- Hetero- Substantially Hetero- Ethylene geneously geneously geneously geneously Linear geneously Polymer Branched Branched Branched Branched Branched Linear Linear Linear Linear Linear Density (g/cc) 0.920 0.925 0.926 0.920 0.902 0.912 I.sub.2 (g/10 min) 1.0 1 1.4 1.0 1.0 1.0 n-Hexane <2 <2 <2 <2 <2 <2 Extractives (%) Percent of 80 72 58 80 50 50 Mixture (wt %) Polymer Density (g/cc) 0.912 0.912 0.912 0.913 0.894 0.899 Mixture First/Second 0.033 0.045 0.038 0.033 0.015 0.025 Polymer Density Differential (g/cc) I.sub.2 (g/10 min) 1.05 1.5 1.0 1.0 0.7 0.7 n-Hexane 0.8 0.8 0.7 ND 2.5 4.3 Extractives (%) Expected 21.6 29.4 43.2 21.6 51.0 51.0 n-Hexane Extractives (%) Percent Lower 96.3 97.3 98.4 NA 95.2 91.6 Than Expected Extractive Amount Vicat 91.9 94.6 91.85 98.3 76.1 76.15 Softening Point (VSP) (°C.) __________________________________________________________________________ Example 7 8 C9 C10 C11 C12 C13 __________________________________________________________________________ First Polymer Type Substantially Substantially Substantially Substantially Homo- None Substantially Ethylene Linear Linear Linear Linear geneously Linear Polymer Branched Linear Density (g/cc) 0.887 0.896 0.887 0.871 0.881 NA 0.920 I.sub.2 (g/10 min) 0.5 1.3 0.5 0.87 3.5 NA 1.0 n-Hexane 100 100 100 100 100 NA <2 Extractives (%) Percent of 20 50 30 35 20 0 100 Mixture (wt %) Second Polymer Type Hetero- Hetero- Hetero- Hetero- Hetero- Hetero- None Ethylene geneously geneously geneously geneously geneously geneously Polymer Branched Branched Branched Branched Branched Branched Polymer Linear Linear Linear Linear Linear Linear Density (g/cc) 0.935 0.935 0.942 0.920 0.920 0.912 NA I.sub.2 (g/10 min) 1.0 1.0 0.05 1.0 1.0 1.0 NA n-Hexane <2.0 <2.0 <2.0 <2.0 <2.0 2.3 NA Extractives (%) Percent of 80 50 70 65 80 100 0 Mixture (wt %) Polymer Density (g/cc) 0.925 0.917 0.926 0.903 0.912 0.912 0.920 Mixture First/Second 0.048 0.039 0.055 0.049 0.039 None None or Polymer Density Single Differential Polymer (g/cc) I.sub.2 (g/10 min) 0.9 1.1 -0.2 1.0 1.3 1.0 1.0 n-Hexane 0.3 ND 0.9 11.8 1.2 2.3 <2.0 Extractives (%) Expected 21.6 NA 31.4 36.3 21.6 NA NA n-Hexane Extractives (%) Percent Lower 9.4 NA 97.1 67.4 94.3 NA NA Than Expected Extractive Amount Vicat Softening 113.15 95 109 64.6 99.05 96.1 108.7 Point (VSP) (°C.) __________________________________________________________________________ ND denotes the measurement was not determined. NA denotes the measurement is not applicable.
TABLE 2 __________________________________________________________________________ Example 1 2 3 4 5 6 __________________________________________________________________________ Monolayer Film 2% Secant Modulus 22,000 22,147 18,870 19,541 6,595 8,989 Performance (MD) (152) (153) (130) (135) (45) (62) Properties (psi (MPa) 1% Secant Modulus ND ND ND 21,522 7,627 10,421 (MD) (148) (53) (72) (psi) (MPa) 2% Secant Modulus 26,000 22,033 24,590 21,140 7,052 9,391 (CD) (179) (152) (170) (146) (49) (65) (psi) (MPa) 1% Secant Modulus ND ND ND 22,993 8,492 10,898 (CD) (159) (59) (75) (psi) (MPa) Elmendorf Tear 800 1,094 811 659 359 312 (Type A) (MD) (grams) Elmendorf Tear 980 1,222 1,030 877 512 482 (Type A) (CD) (grams) Dart Impact 512 646 850 698 >850 >850 (Type B) (grams) Puncture Resistance 300 259 320 312 255 254 (ft-lbs/cc) __________________________________________________________________________ Example 7 8 C9 C10 C11 C12 C13 __________________________________________________________________________ Monolayer Film 2% Secant Modulus 33355 ND 41,887 12,597 20,278 18,361 25,325 Performance (MD) (230) (289) (87) (140) (127) (175) Properties (psi) (MPa) 1% Secant Modulus 37,516 ND 46,514 14,299 22,470 21,176 29,275 (MD) (259) (321) (99) (155) (146) (202) (psi) (MPa) 2% Secant Modulus 36,440 ND 48,964 12,758 22,725 19,160 25,863 (CD) (251) (338) (88) (157) (132) (178) (psi) (MPa) 1% Secant Modulus 37,238 ND 52,433 14,953 25,597 21,511 28,005 (CD) (257) (362) (103) (176) (148) (193) (psi) (MPa) Elmendorf Tear 579 670 330 1,155 645 765 427 (Type A) (MD) (grams) Elmendorf Tear 891 900 907 1,414 794 912 749 (Type A) (CD) (grams) Dart Impact 323 ND 330 0 430 800 270 (Type B) (grams) Puncture Resistance 193 290 142 213 292 142 176 (ft-lbs/cc) __________________________________________________________________________ ND denotes the measurement was not determined.
TABLE 3 __________________________________________________________________________ Example 1 2 3 4 5 6 __________________________________________________________________________ Coextruded Film Heat Seal Initiation 81 71 76 77 63 65 Performance Temperature (°C.) PropertiesHot Tack Initiation 80 69 75 78 68 67 Temperature (°C.) Ultimate Hot Tack 7.3 7.2 11.8 7.4 7.1 7.9 Strength (2.87) (2.83) (4.64) (2.91) (2.79) (3.11) N/in (N/cm) VSP - Heat Seal 10.9 23.6 15.9 21.3 13.1 11.2 Initiation Temperature (°C.) __________________________________________________________________________ Example 7 8 C9 C10 C11 C12 C13 __________________________________________________________________________ Coextruded Film Heat Seal Initiation 98 87 116 54 73 103 108 Performance Temperature (°C.) Properties Hot Tack Initiation 102 92 ˜110 48 80 108 109 Temperature (°C.) Ultimate Hot Tack 9.7 6.6 3.8 10.0 6.1 8.2 9.4 Strength (3.82) (2.60) (1.48) (3.94) (2.40) (3.23) (3.70) N/in (N/cm) VSP - Heat Seal 15.2 8.0 -7.0 10.6 26.1 -6.9 0.7 Initiation Temperature (°C.) __________________________________________________________________________
TABLE 4 __________________________________________________________________________ Heterogeneous Linear Ethylene Polymers Heat Seal Hot Tack Melt Index Vicat Initiation Initiation Vicat - Heat Comparative Density (g/10 Softening Temperature Temperature Seal Example (g/cc) minutes) Point (°C.) (°C.) (°C.) Initiation __________________________________________________________________________ C12 0.912 1.0 96 103 108 -7 C14 0.935 1.1 119 116 117 3 C15 0.920 1.0 105 111 109 -6 C16 0.905 0.80 83 87 103 -4 Substantially Linear Ethylene Polymers C13 0.920 1.0 108.7 108 109 0.7 C17 0.908 1.0 ND 91 99 NA C18 0.902 1.0 89 83 88 6 C19 0.895 1.3 73 76 85 -3 __________________________________________________________________________ Ethylene Vinyl Acetate (EVA) Copolymers Heat Seal Hot Tack Percent Vicat Initiation Initiation Vicat - Heat Comparative Vinyl Melt Index Softening Temperature Temperature Seal Example Acetate (g/10 min.) Point (°C.) (°C.) (°C.) Initiation __________________________________________________________________________ C20 12 0 79 86 None -7 (strength was N/cm threshold) C21 18 0.80 65 80 None -15 (strength was below the 1.6 N/cm threshold) __________________________________________________________________________ ND denotes the measurement was not determined
TABLE 5 ______________________________________ Stretch Temperature Setting 245° F. (118° C.), top and bottomplatens Preheat Time 10minutes Stretch Rate 5 in/min. (12.7 cm/min.) in both the machine and traverse directions Stretch Mode Simultaneous Stretching Stretch Ratio 4.5 × 4.5 ______________________________________
TABLE 6 __________________________________________________________________________ Example 23 24 25 26 27 28 __________________________________________________________________________ First Polymer Type Substantially Substantially Substantially Substantially Substantially Substantially Ethylene Linear Linear Linear Linear Linear Linear Polymer Density (g/cc) 0.870 0.886 0.870 0.886 0.870 0.865 I.sub.2 (g/10 min) 30.0 30 30 30 3.0 8.0 n-Hexane 100 100 100 100 100 100 Extractives Percent of 38 50 34 45 37 38 Mixture (wt %) Second Polymer Type Substantially Substantially Hetero- Hetero- Hetero- Hetero- Ethylene Linear Linear geneously: geneously geneously geneously Polymer Linear Linear Linear Linear Density (g/cc) 0.940 0.940 0.935 0.935 0.941 0.946 I.sub.2 (g/10 min) 27 27 40 40 58 40 n-Hexane <2 <2 <2 <2 <2 <2 Extractives (%) Percent of 62 50 66 55 63 62 Mixture (wt %) Polymer Density (g/cc) 0.9133 0.9132 0.9128 0.9136 0.9135 0.9137 Mixture First/Second 0.070 0.054 0.065 0.049 0.071 0.073 Polymer Density Differential (g/cc) I.sub.2 (g/10 min) 27.12 24.68 38.85 34.00 19.48 21.82 n-Hexane 9.32 6.64 10.27 6.27 4.53 16.4 Extractives (%) __________________________________________________________________________ Example C29 C30 C31 C32 C33 __________________________________________________________________________ First Polymer Type Substantially Hetero- Substantially Substantially None Ethylene Linear geneously Linear Linear Polymer Branched Linear Density (g/cc) 0.940 0.935 0.886 0.913 NA I.sub.2 (g/10 min) 27 40 30 30 NA n-Hexane <2 <2 100 <2 NA Extractives Percent of Mixture 26 30 32 100 NA (wt %) Second Polymer Type Substantially Substantially Hetero- None Hetero- Ethylene Linear Linear geneously geneously Polymer Branched Branched Linear Linear Density (g/cc) 0.903 0.9121 0.925 NA 0.9269 I.sub.2 (g/10 min) 30 30 58 NA 60.08 n-Hexane <2 <2 <2 NA <2 Extractives (%) Percent of Mixture 74 70 68 NA 100 (wt %) Polymer Density (g/cc) 0.9137 0.9121 0.9144 0.913 0.927 Mixture Component Density 0.037 0.032 0.039 NA NA Differential (g/cc) I.sub.2 (g/10 min) 26.24 31.00 45.28 30.00 60.08 n-Hexane 2.09 2.42 5.18 <2 <2 Extractives (%) __________________________________________________________________________ NA denotes the measurement is not applicable.
TABLE 7 __________________________________________________________________________Zone 1 Temp. Zone 2 Temp. Die Temp. Extruder (Actual/Set) (Actual/Set) (Actual/Set) Melt Temp. Pressure (°F.) (°F.) (°F.) (°F.) Extruder (psi) Example (°C.) (°C.) (°C.) (°C.) RPM (MPa) __________________________________________________________________________ 23 299/300 309/300 296/300 290 190 440 (148/149) (154/149) (147/149) 143 3.0 24 300/300 301/300 301/300 280 190 460 (149/149) (149/149) (149/149) 138 3.2 25 300/300 300/300 300/300 290 190 395 (149/149) (149/149) (149/149) 143 2.7 26 301/300 301/300 301/300 280 190 415 (149/149) (149/149) (149/149) 138 2.9 C29 300/300 301/300 300/300 290 190 450 (149/149) (149/149) (149/149) 143 3.1 C30 301/300 300/300 300/300 279 190 440 (149/149) (149/149) (149/149) 137 3.0 C31 300/300 301/300 300/300 286 190 370 (149/149) (149/149) (149/149) 141 2.6 C33 300/300 301/300 301/300 276 190 300 (149/149) (149/149) (149/149) 136 2.1 __________________________________________________________________________
TABLE 8 ______________________________________ Flexural Modulus Melt Index Density (psi) Example (g/10 min) I.sub.10 /I.sub.2 (g/cc) (MPa) ______________________________________ 23 27.12 6.29 0.9133 22,921 (158) 24 24.68 6.46 0.9132 20,430 (141) 25 38.85 7.07 0.9128 19,394 (141) 26 34.00 7.02 0.9136 20,821 (144) 27 19.48 7.69 0.9135 23,711 (163) 28 21.82 6.75 0.9137 24,486 (169) C29 26.24 6.45 0.9137 17,210 (119) C30 31.00 6.49 0.9121 17,249 (119) C31 45.28 6.94 0.9144 19,770 (136) C32 30.00 ND 0.9130 17,259 (119) C33 60.08 6.85 0.9269 36,101 (249) ______________________________________ ND denotes the measurement was not determined.
TABLE 9 ______________________________________ Microwave Warp Distortion Heat Sag Example (cm) (cm) ______________________________________ 23 0.16 ± 0.03 1.43 ± 0.14 24 0.54 ± 0.05 2.61 ± 0.27 25 0.73 ± 0.13 2.06 ± 0.14 26 0.65 ± 0.13 3.14 ± 0.20 27 ND 1.62 ± 0.29 28 ND 1.29 ± 0.01 C29 0.84 ± 0.05 4.59 ± 0.31 C30 0.85 ± 0.04 5.40 ± 0.22 C31 0.70 ± 0.09 3.22 ± 0.25 C32 ND 3.84 ± 0.19 C33 0.83 ± 0.12 1.13 ± 0.19 ______________________________________ ND denotes measurement was not determined.
% residual crystallinity=(heat of fusion÷292J/cc)×% area above 100° or 110° C.
PRC≧6.4363×10.sup.4 (ρ)-3.4701×10.sup.4 (ρ).sup.2 -2.9808×10.sup.4,
TABLE 10 ______________________________________ % Residual % Residual Crystallinity above Crystallinity above Example 100° C. 110° C. ______________________________________ 5 1.8 0.3 6 9.2 5.9 7 37.8 31.7 9 37.2 32.5 23 33.3 29.8 24 28.2 24.7 25 28.9 22.9 26 27.2 17.4 27 30.2 24.8 28 32.9 29.3 C29 20.4 16.5 C30 14.5 10.0 C31 21.6 14.6 C33 32.7 22.1 ______________________________________
TABLE 11 ______________________________________ Heterogeneous Linear Ethylene Polymers Compar- Percent Residual Percent Residual ative Density Melt Index Crystallinity Crystallinity Example (g/cc) (g/10 min.) at 100° C. at 110° C. ______________________________________ C12 0.912 1.0 19.3 7.4 C14 0.935 1.1 42.3 33.7 C15 0.920 1.0 27.5 18.3 C16 0.905 0.8 15.2 10.4 C33 0.927 60.1 32.7 22.1 ______________________________________ Substantially Linear Ethylene Polymers Compar- Melt Index Percent Residual Percent Residual ative Density (g/10 Crystallinity Crystallinity Example (g/cc) minutes) at 100° C. at 110° C. ______________________________________ C13 0.920 1.0 29.1 15.0 C32 0.913 29.3 15.8 0.3 C34 0.903 30.0 1.9 0 C35 0.940 27.0 50.4 44.5 C36 0.902 3.6 4.1 0 C37 0.934 2.6 46.9 41.0 C38 0.937 2.2 49.1 43.6 ______________________________________
Claims (20)
(M.sub.w /M.sub.n)≦(I.sub.10 /I.sub.2)-4.63,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/475,953 US5792534A (en) | 1994-10-21 | 1995-06-07 | Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32715694A | 1994-10-21 | 1994-10-21 | |
US08/475,953 US5792534A (en) | 1994-10-21 | 1995-06-07 | Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US32715694A Division | 1991-10-15 | 1994-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5792534A true US5792534A (en) | 1998-08-11 |
Family
ID=23275399
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/487,819 Expired - Lifetime US5773106A (en) | 1994-10-21 | 1995-06-07 | Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus |
US08/475,953 Expired - Lifetime US5792534A (en) | 1994-10-21 | 1995-06-07 | Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus |
US08/748,321 Expired - Lifetime US5874139A (en) | 1994-10-21 | 1996-11-13 | Multilayer polyolefin with balanced sealant properties |
US08/788,981 Expired - Lifetime US5747594A (en) | 1994-10-21 | 1997-01-27 | Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/487,819 Expired - Lifetime US5773106A (en) | 1994-10-21 | 1995-06-07 | Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/748,321 Expired - Lifetime US5874139A (en) | 1994-10-21 | 1996-11-13 | Multilayer polyolefin with balanced sealant properties |
US08/788,981 Expired - Lifetime US5747594A (en) | 1994-10-21 | 1997-01-27 | Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus |
Country Status (22)
Country | Link |
---|---|
US (4) | US5773106A (en) |
EP (1) | EP0787167B1 (en) |
JP (1) | JP3118759B2 (en) |
KR (1) | KR100358856B1 (en) |
CN (1) | CN1070208C (en) |
AT (1) | ATE240988T1 (en) |
AU (1) | AU685331B2 (en) |
BR (1) | BR9510388A (en) |
CA (1) | CA2203128C (en) |
CO (1) | CO4440533A1 (en) |
DE (1) | DE69530854T2 (en) |
ES (1) | ES2194061T3 (en) |
FI (1) | FI118085B (en) |
IL (1) | IL115618A0 (en) |
MY (1) | MY121203A (en) |
NO (1) | NO313640B1 (en) |
NZ (1) | NZ295837A (en) |
PE (1) | PE24096A1 (en) |
RU (1) | RU2171263C2 (en) |
TW (1) | TW381098B (en) |
WO (1) | WO1996012762A1 (en) |
ZA (1) | ZA958897B (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5928798A (en) * | 1994-04-28 | 1999-07-27 | Cryovac, Inc. | Multi-layer polyolefin film containing recycle polymer from cross-linked films |
US6100341A (en) * | 1995-01-13 | 2000-08-08 | Norton Performance Plastics Corporation | Thermoplastic seal and wrapping film |
US6294266B1 (en) * | 1997-04-08 | 2001-09-25 | Japan Polychem Corporation | Laminates |
WO2002002323A1 (en) * | 2000-06-30 | 2002-01-10 | Borealis Technology Oy | Heat sealable polyethylene film and method for its preparation |
US6359072B1 (en) | 2000-02-16 | 2002-03-19 | Univation Technologies, Llc | Polyethylene films having improved optical properties |
EP1216824A1 (en) * | 2000-12-18 | 2002-06-26 | Mitsui Chemicals, Inc. | Sealant for polypropylene and easily openable hermetically sealed package including the same |
US6423421B1 (en) | 1999-08-11 | 2002-07-23 | Sealed Air Corporation | Heat shrinkable film with multicomponent interpenetrating network resin |
US6509106B1 (en) * | 1998-08-18 | 2003-01-21 | Eastman Chemical Company | Blends containing linear low density polyethylene, high density polyethylene, and low density polyethylene particularly suitable for extrusion coating and films |
US6545094B2 (en) * | 2001-03-09 | 2003-04-08 | The Dow Chemical Company | Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends |
US6548572B1 (en) | 1999-12-07 | 2003-04-15 | Dupont Canada Inc. | Surface printing inks and coatings for use |
US6713562B2 (en) * | 1995-09-11 | 2004-03-30 | Mitsui Chemicals, Inc. | Resin compositions and use of the same |
US6812289B2 (en) | 1996-12-12 | 2004-11-02 | Dow Global Technologies Inc. | Cast stretch film of interpolymer compositions |
US20040232026A1 (en) * | 2003-03-13 | 2004-11-25 | Goeking Harold J. | Microwaveable food storage container with freshness indicator and steam vent |
US20050065286A1 (en) * | 2001-03-16 | 2005-03-24 | Degroot Alexander W. | High melt strength polymers and method of making same |
US20060147685A1 (en) * | 2004-12-30 | 2006-07-06 | Kimberly-Clark Worldwide, Inc. | Multilayer film structure with higher processability |
US9505893B2 (en) | 2014-10-21 | 2016-11-29 | Nova Chemicals (International) S.A. | Caps and closures |
US9512283B2 (en) | 2014-10-21 | 2016-12-06 | NOVA Chemicals (International S.A. | Rotomolded articles |
US9546446B2 (en) | 2009-10-23 | 2017-01-17 | Toyo Boseki Kabushiki Kaisha | Highly functional polyethylene fibers, woven or knit fabric, and cut-resistant glove |
US10329412B2 (en) | 2017-02-16 | 2019-06-25 | Nova Chemicals (International) S.A. | Caps and closures |
US10442921B2 (en) | 2017-04-19 | 2019-10-15 | Nova Chemicals (International) S.A. | Means for increasing the molecular weight and decreasing the density employing mixed homogeneous catalyst formulations |
US10442920B2 (en) | 2017-04-19 | 2019-10-15 | Nova Chemicals (International) S.A. | Means for increasing the molecular weight and decreasing the density of ethylene interpolymers employing homogeneous and heterogeneous catalyst formulations |
US10683376B2 (en) | 2017-11-07 | 2020-06-16 | Nova Chemicals (International) S.A. | Manufacturing ethylene interpolymer products at higher production rate |
US10882987B2 (en) | 2019-01-09 | 2021-01-05 | Nova Chemicals (International) S.A. | Ethylene interpolymer products having intermediate branching |
US10995166B2 (en) | 2017-11-07 | 2021-05-04 | Nova Chemicals (International) S.A. | Ethylene interpolymer products and films |
US11046843B2 (en) | 2019-07-29 | 2021-06-29 | Nova Chemicals (International) S.A. | Ethylene copolymers and films with excellent sealing properties |
Families Citing this family (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972444A (en) * | 1991-10-15 | 1999-10-26 | The Dow Chemical Company | Polyolefin compositions with balanced shrink properties |
US7316833B1 (en) * | 1993-06-24 | 2008-01-08 | Penchiney Emballage Flexible Europe | Multi-layer thermoplastic films and packages made therefrom |
US6743217B2 (en) | 1994-05-13 | 2004-06-01 | Scimed Life Systems, Inc. | Apparatus for performing diagnostic and therapeutic modalities in the biliary tree |
DE69606811T3 (en) | 1995-07-31 | 2012-01-12 | Kureha Corp. | Multilayer film |
CN1120856C (en) * | 1995-09-13 | 2003-09-10 | 三井化学株式会社 | Resin composition and use thereof |
US5795941A (en) * | 1995-10-03 | 1998-08-18 | The Dow Chemical Company | Crosslinkable bimodal polyolefin compositions |
US6723398B1 (en) | 1999-11-01 | 2004-04-20 | Dow Global Technologies Inc. | Polymer blend and fabricated article made from diverse ethylene interpolymers |
PL327988A1 (en) * | 1996-01-22 | 1999-01-04 | Dow Chemical Co | Mixtures of polyolefinic elastomers of improved properties |
WO1998021276A1 (en) | 1996-11-13 | 1998-05-22 | The Dow Chemical Company | Shrink film having balanced properties or improved toughness and methods of making the same |
NZ335732A (en) * | 1996-11-13 | 2000-12-22 | Dow Chemical Co | Polyolefin compounds with balanced sealant properties and improved modulus and method for same |
US6071454A (en) * | 1997-01-22 | 2000-06-06 | Chisso Corporation | Method for producing a composite molded article of thermoplastic resins |
ZA986434B (en) | 1997-07-21 | 2000-01-20 | Dow Chemical Co | Broad mwd, compositionally uniform ethylene interpolymer compositions, process for making the same and article made therefrom. |
US6316547B1 (en) | 1997-09-11 | 2001-11-13 | The Procter & Gamble Company | Masterbatch composition |
EP0902072A1 (en) * | 1997-09-11 | 1999-03-17 | The Procter & Gamble Company | Stress crack resistant closure |
CA2304220C (en) | 1997-09-19 | 2008-06-17 | The Dow Chemical Company | Narrow mwd, compositionally optimized ethylene interpolymer composition, process for making the same and article made therefrom |
DE19745047A1 (en) * | 1997-10-11 | 1999-04-15 | Basf Ag | Polymer mixture, especially for production of film |
AU755801B2 (en) | 1998-03-04 | 2002-12-19 | Cryovac, Inc. | Stack-sealable, heat-shrinkable multilayer packaging film |
US6699573B1 (en) | 1998-03-16 | 2004-03-02 | Dow Global Technologies Inc. | Liner compositions |
DK1068268T3 (en) * | 1998-03-16 | 2005-12-19 | Dow Global Technologies Inc | coating Compositions |
AR019067A1 (en) * | 1998-04-15 | 2001-12-26 | Dow Chemical Co | SEALING POLYOLEFIN COMPOSITIONS; REMOVABLE SEALING COMPOSITIONS; FILMS THAT INCLUDE AT LEAST A SEAT COAT FORMULATED WITH SUCH COMPOSITIONS AND METHOD TO PREPARE SUCH COMPOSITIONS. |
TW457317B (en) | 1998-11-06 | 2001-10-01 | Bridgestone Corp | Resin net and its production method, and drawn product of polyethylene based resin |
BR9908379B1 (en) * | 1998-12-24 | 2008-11-18 | bottle caps and process for producing bottle caps. | |
US6287700B1 (en) * | 1998-12-30 | 2001-09-11 | Exxon Mobil Oil Corporation | Multi-layer film with enhanced lamination bond strength |
US6248442B1 (en) * | 1998-12-31 | 2001-06-19 | Mobil Oil Corporation | Easy opening hermetically sealed film |
EP1044805B1 (en) * | 1999-04-01 | 2005-03-09 | Japan Polychem Corporation | Multi-layer film and medical bag using the same |
GB9908602D0 (en) * | 1999-04-15 | 1999-06-09 | Northumbria Lyonnaise Technolo | Rehabilitation of water supply pipes |
US6127484A (en) * | 1999-04-29 | 2000-10-03 | Equistar Chemicals, Lp | Olefin polymerization process |
EP1263873B1 (en) * | 1999-06-24 | 2005-01-12 | The Dow Chemical Company | Polyolefin composition with improved impact properties |
WO2001018097A1 (en) * | 1999-09-07 | 2001-03-15 | E.I. Du Pont De Nemours And Company | Heat-sealable polyolefins and articles made therefrom |
EP1108749A1 (en) * | 1999-12-13 | 2001-06-20 | Fina Research S.A. | Medium density polyethylene compositions for film applications |
US7041617B2 (en) * | 2004-01-09 | 2006-05-09 | Chevron Phillips Chemical Company, L.P. | Catalyst compositions and polyolefins for extrusion coating applications |
AU2001236531A1 (en) | 2000-01-24 | 2001-07-31 | The Dow Chemical Company | Composition and films thereof |
CA2409687C (en) * | 2000-05-04 | 2011-01-11 | Marlin E. Walters | Molecular melt comprising a coupling agent and an antioxidant and methods for making and using the molecular melt |
DE60110794T2 (en) * | 2000-05-26 | 2005-10-06 | Dow Global Technologies, Inc., Midland | PELYETHYLENE-rich Mixtures with Polypropylene and Their Use |
US6482532B1 (en) * | 2000-06-07 | 2002-11-19 | Dow Global Technologies Inc. | Easy tear non-halogenic food wrap |
WO2001094105A1 (en) * | 2000-06-08 | 2001-12-13 | Pechiney Emballage Flexible Europe | Laminated thermoformable film structures useful for packaging food products |
AU2001265353A1 (en) * | 2000-06-08 | 2001-12-17 | Pechiney Emballage Flexible Europe | Thermoformable film structures useful for packaging food products |
US6403717B1 (en) | 2000-07-12 | 2002-06-11 | Univation Technologies, Llc | Ethylene inter-polymer blends |
CN1250587C (en) * | 2000-07-26 | 2006-04-12 | 三井化学株式会社 | Novel ethylene copolymer and uses thereof |
ATE284790T1 (en) * | 2000-07-31 | 2005-01-15 | Reynolds Metals Co | PLASTIC CASE WITH SELF-ADHESIVE LAYER |
US6498214B2 (en) * | 2000-08-22 | 2002-12-24 | Dupont Dow Elastomers L.L.C. | Soft touch TPO compositions comprising polypropylene and low crystalline ethylene copolymers |
DE10047861A1 (en) * | 2000-09-27 | 2002-04-25 | Basell Polyolefine Gmbh | Polyethylene molding compound is suitable as a pipe material with excellent processing properties |
JP4161528B2 (en) * | 2000-09-28 | 2008-10-08 | 凸版印刷株式会社 | Lid and soft packaging |
ATE286078T1 (en) | 2000-12-22 | 2005-01-15 | Dow Global Technologies Inc | PROPYLENE COPOLYMER FOAMS |
DE60211305T2 (en) * | 2001-01-12 | 2007-03-29 | Total Petrochemicals Research Feluy, Seneffe | METALLOCENE FILM RESIN |
US6579300B2 (en) | 2001-01-18 | 2003-06-17 | Scimed Life Systems, Inc. | Steerable sphincterotome and methods for cannulation, papillotomy and sphincterotomy |
EP1260541A1 (en) * | 2001-05-21 | 2002-11-27 | Atofina Research S.A. | Polyethylene films with improved processability and optical properties |
US7338691B2 (en) * | 2001-07-27 | 2008-03-04 | Cryovac, Inc. | Cook-in patch bag and process for using same |
AU2002326492B2 (en) * | 2001-07-31 | 2008-07-17 | Avery Dennison Corporation | Conformable holographic labels |
CA2463958A1 (en) * | 2001-10-19 | 2003-04-24 | Dupont Canada Inc. | Composite film structure for manufacturing pouches using rotary thermic sealing |
US7783765B2 (en) * | 2001-12-12 | 2010-08-24 | Hildebrand Hal S | System and method for providing distributed access control to secured documents |
GB2389848B (en) * | 2002-06-17 | 2006-02-08 | Hanovia Ltd | UV disinfection apparatus and method of operating UV disinfection apparatus |
KR101186271B1 (en) | 2002-06-26 | 2012-09-27 | 애버리 데니슨 코포레이션 | Oriented films comprising polypropylene/olefin elastomer blends |
US6864195B2 (en) * | 2002-08-15 | 2005-03-08 | Bfs Diversified Products, Llc | Heat weldable roofing membrane |
CA2411183C (en) * | 2002-11-05 | 2011-06-14 | Nova Chemicals Corporation | Heterogeneous/homogeneous copolymer |
CA2413096C (en) * | 2002-11-28 | 2010-12-21 | Nova Chemicals Corporation | Thin walled polyethylene container |
US7736726B2 (en) | 2002-12-17 | 2010-06-15 | Cryovac, Inc. | Polymeric film with low blocking and high slip properties |
US7659343B2 (en) * | 2003-06-10 | 2010-02-09 | Dow Global Technologies, Inc. | Film layers made from ethylene polymer blends |
US6995216B2 (en) * | 2003-06-16 | 2006-02-07 | Equistar Chemicals, Lp | Process for manufacturing single-site polyolefins |
US6861485B2 (en) * | 2003-06-20 | 2005-03-01 | Equistar Chemicals, Lp | Multi-catalyst system for olefin polymerization |
US7763676B2 (en) | 2003-08-25 | 2010-07-27 | Dow Global Technologies Inc. | Aqueous polymer dispersions and products from those dispersions |
US8779053B2 (en) | 2003-08-25 | 2014-07-15 | Dow Global Technologies Llc | Coating compositions |
US8357749B2 (en) * | 2003-08-25 | 2013-01-22 | Dow Global Technologies Llc | Coating composition and articles made therefrom |
US7803865B2 (en) * | 2003-08-25 | 2010-09-28 | Dow Global Technologies Inc. | Aqueous dispersion, its production method, and its use |
US8722787B2 (en) | 2003-08-25 | 2014-05-13 | Dow Global Technologies Llc | Coating composition and articles made therefrom |
US9169406B2 (en) | 2003-08-25 | 2015-10-27 | Dow Global Technologies Llc | Coating compositions |
US7947776B2 (en) | 2003-08-25 | 2011-05-24 | Dow Global Technologies Llc | Aqueous dispersion, its production method, and its use |
US8946329B2 (en) | 2003-08-25 | 2015-02-03 | Dow Global Technologies Llc | Coating compositions |
US8158711B2 (en) * | 2003-08-25 | 2012-04-17 | Dow Global Technologies Llc | Aqueous dispersion, its production method, and its use |
US8349929B2 (en) * | 2003-08-25 | 2013-01-08 | Dow Global Technologies Llc | Coating composition and articles made therefrom |
DE102004011373A1 (en) * | 2003-11-13 | 2005-06-16 | Rainer Busch | Transport packaging and method for producing a transport packaging |
US20050107560A1 (en) * | 2003-11-17 | 2005-05-19 | Mota Carlos A. | Injection molded articles |
US7147930B2 (en) * | 2003-12-16 | 2006-12-12 | Curwood, Inc. | Heat-shrinkable packaging films with improved sealing properties and articles made thereof |
US20050142367A1 (en) * | 2003-12-24 | 2005-06-30 | Toray Plastics (America), Inc. | Heat sealable biaxially oriented polypropylene film |
US7119153B2 (en) * | 2004-01-21 | 2006-10-10 | Jensen Michael D | Dual metallocene catalyst for producing film resins with good machine direction (MD) elmendorf tear strength |
US7671131B2 (en) | 2004-03-17 | 2010-03-02 | Dow Global Technologies Inc. | Interpolymers of ethylene/α-olefins blends and profiles and gaskets made therefrom |
US7795321B2 (en) | 2004-03-17 | 2010-09-14 | Dow Global Technologies Inc. | Rheology modification of interpolymers of ethylene/α-olefins and articles made therefrom |
US7863379B2 (en) | 2004-03-17 | 2011-01-04 | Dow Global Technologies Inc. | Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers |
US7687442B2 (en) | 2004-03-17 | 2010-03-30 | Dow Global Technologies Inc. | Low molecular weight ethylene/α-olefin interpolymer as base lubricant oils |
US7714071B2 (en) | 2004-03-17 | 2010-05-11 | Dow Global Technologies Inc. | Polymer blends from interpolymers of ethylene/α-olefins and flexible molded articles made therefrom |
US7608668B2 (en) | 2004-03-17 | 2009-10-27 | Dow Global Technologies Inc. | Ethylene/α-olefins block interpolymers |
US7741397B2 (en) | 2004-03-17 | 2010-06-22 | Dow Global Technologies, Inc. | Filled polymer compositions made from interpolymers of ethylene/α-olefins and uses thereof |
US7582716B2 (en) | 2004-03-17 | 2009-09-01 | Dow Global Technologies Inc. | Compositions of ethylene/α-olefin multi-block interpolymer for blown films with high hot tack |
US7666918B2 (en) | 2004-03-17 | 2010-02-23 | Dow Global Technologies, Inc. | Foams made from interpolymers of ethylene/α-olefins |
US7671106B2 (en) | 2004-03-17 | 2010-03-02 | Dow Global Technologies Inc. | Cap liners, closures and gaskets from multi-block polymers |
US8816006B2 (en) | 2004-03-17 | 2014-08-26 | Dow Global Technologies Llc | Compositions of ethylene/α-olefin multi-block interpolymer suitable for films |
JP4856853B2 (en) * | 2004-05-21 | 2012-01-18 | 出光ユニテック株式会社 | Zipper tape and packaging bag with zipper tape |
US7131289B2 (en) * | 2004-06-29 | 2006-11-07 | The Glad Products Company | Container |
US7459521B2 (en) * | 2004-08-06 | 2008-12-02 | E.I. Dupont De Nemours And Company | Heat-sealable polyolefins and articles made therefrom |
GB0418581D0 (en) * | 2004-08-20 | 2004-09-22 | Solvay | Polymer composition |
US20060135698A1 (en) * | 2004-12-21 | 2006-06-22 | Fina Technology, Inc. | Blends of medium density polyethylene with other polyolefins |
US7722794B2 (en) * | 2005-02-08 | 2010-05-25 | Toray Plastics (America), Inc. | Method for producing a sealable biaxially oriented polypropylene film for packaging |
US7514152B2 (en) * | 2005-02-10 | 2009-04-07 | Cryovac, Inc. | Oxygen scavenging film with good interply adhesion |
TWI388574B (en) | 2005-03-17 | 2013-03-11 | Dow Global Technologies Llc | Adhesive and marking compositions made from interpolymers of ethylene/α-olefins |
MX2007011322A (en) | 2005-03-17 | 2007-11-07 | Dow Global Technologies Inc | Compositions of ethylene/alpha-olefin multi-block interpolymer for elastic films and laminates. |
EP1721931A1 (en) * | 2005-05-09 | 2006-11-15 | Total Petrochemicals Research Feluy | mono-layer rotomoulded articles prepared from blends comprising polyethylene |
US7473745B2 (en) * | 2005-09-02 | 2009-01-06 | Equistar Chemicals, Lp | Preparation of multimodal polyethylene |
US8202001B1 (en) * | 2006-01-26 | 2012-06-19 | Chunhua Zhang | Self-opening bag pack and method thereof |
EP1987179B1 (en) | 2006-02-15 | 2012-03-28 | Dow Global Technologies LLC | Crosslinked polyethylene elastic fibers |
US20070243331A1 (en) * | 2006-02-17 | 2007-10-18 | Dow Global Technologies Inc. | Heat sealable compositions from aqueous dispersions |
CN100460202C (en) * | 2006-05-15 | 2009-02-11 | 高学文 | PVDC polyolefin coextruded thermal-formed high-blocked composite packaging material |
CN101466543B (en) | 2006-06-14 | 2014-03-19 | 艾利丹尼森公司 | Conformable and die-cuttable machine direction oriented labelstocks and labels, and process for preparing |
BRPI0713492A2 (en) | 2006-06-20 | 2012-01-24 | Avery Dennison Corp | multi-layer polymeric film for labeling hot melt adhesives and label and label thereof |
ES2379607T3 (en) * | 2006-07-17 | 2012-04-27 | Avery Dennison Corporation | Asymmetric multilayer polymeric film and label thereof |
CN101117036A (en) * | 2006-07-31 | 2008-02-06 | 陶氏全球科技股份有限公司 | Layered film combination, packaging made by the layered film combination and use method thereof |
US20080063845A1 (en) * | 2006-09-12 | 2008-03-13 | Excel-Pac Inc. | Multilayer structures, uses and preparation thereof |
RU2457224C2 (en) * | 2006-10-23 | 2012-07-27 | ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи | Polyethylene compositions, production methods thereof and articles made therefrom |
BRPI0721669B1 (en) | 2007-06-13 | 2018-04-03 | Dow Global Technologies Inc. | "FILM FORMED FROM POLYETHYLENE COMPOSITIONS" |
FR2917381B1 (en) | 2007-06-15 | 2009-10-16 | Ceva Sante Animale Sa | MULTILAYER PLASTIC PACKAGING FOR PRESERVING A PHARMACEUTICAL COMPOSITION |
KR100901632B1 (en) | 2008-04-01 | 2009-06-08 | 호남석유화학 주식회사 | Polyethlene resin composition for preparing container closure |
US7829641B2 (en) * | 2008-07-16 | 2010-11-09 | Equistar Chemicals, Lp | Process for the preparation of multimodal polyethylene resins |
CN102197078B (en) * | 2008-08-28 | 2013-12-11 | 陶氏环球技术有限责任公司 | Process and compositions for injections blow molding |
KR101077071B1 (en) | 2008-11-03 | 2011-10-26 | 에스케이이노베이션 주식회사 | Ethylene Copolymer with Improved Impact Resistance |
US20100239796A1 (en) * | 2009-03-23 | 2010-09-23 | Gagne Joseph Donald | Lap sealable laminate and packaging made therefrom |
EP2416961B1 (en) * | 2009-04-10 | 2022-11-16 | Dow Global Technologies LLC | High performance sealable coextruded biaxially oriented polypropylene film |
MX2013009494A (en) * | 2011-02-16 | 2014-03-12 | Albea Services | Laminated material suitable for forming containers. |
US9493641B2 (en) * | 2011-06-10 | 2016-11-15 | Dow Global Technologies Llc | Resin compositions for extrusion coating |
JP5584661B2 (en) * | 2011-07-20 | 2014-09-03 | 三井化学株式会社 | Food container |
CN103974827B (en) * | 2011-11-22 | 2017-03-29 | 丹纳帕克软绳股份有限公司 | Thin plate, making and using thin plate as packaging lid method |
US20130260122A1 (en) * | 2012-03-30 | 2013-10-03 | Toray Plastics (America), Inc. | Low seal initiation lid for rigid substrates |
US9676532B2 (en) | 2012-08-15 | 2017-06-13 | Avery Dennison Corporation | Packaging reclosure label for high alcohol content products |
CN110551424B (en) | 2012-12-28 | 2022-07-29 | 陶氏环球技术有限责任公司 | Coating compositions and articles made therefrom |
JP6328659B2 (en) | 2012-12-28 | 2018-05-23 | ダウ グローバル テクノロジーズ エルエルシー | Coating composition |
US9815975B2 (en) * | 2013-03-25 | 2017-11-14 | Dow Global Technologies Llc | Film having good barrier properties together with good physical characteristics |
JP2017520642A (en) | 2014-06-02 | 2017-07-27 | アベリー・デニソン・コーポレイションAvery Dennison Corporation | Film with improved scuff resistance, transparency, and adaptability |
CN106459527B (en) * | 2014-06-25 | 2018-06-26 | 巴塞尔聚烯烃股份有限公司 | Ethylene polymer composition with improved tensile property |
MX2017003105A (en) * | 2014-09-26 | 2017-06-14 | Dow Global Technologies Llc | A multilayer structure. |
US10099453B2 (en) * | 2014-10-20 | 2018-10-16 | Dow Global Tchnologies LLC | Multilayer structure, a film made therefrom and a package formed therefrom |
AR102954A1 (en) * | 2014-12-19 | 2017-04-05 | Dow Global Technologies Llc | A MULTIPLE LAYER STRUCTURE, A METHOD TO PRODUCE THE SAME, AND A PACKAGING THAT INCLUDES THE SAME |
DE102015206688B4 (en) * | 2015-04-14 | 2016-11-24 | Thyssenkrupp Ag | A process for the crystallization and separation of low molecular weight components from a granulate of a crystallizable thermoplastic material and device therefor |
JP6826997B2 (en) * | 2015-05-13 | 2021-02-10 | ダウ グローバル テクノロジーズ エルエルシー | Resin composition for extrusion coating |
WO2016198271A1 (en) * | 2015-06-10 | 2016-12-15 | Borealis Ag | Multimodal polyethylene copolymer |
WO2018045559A1 (en) * | 2016-09-09 | 2018-03-15 | Dow Global Technologies Llc | Multilayer films and laminates and articles comprising the same |
JP7050055B2 (en) | 2016-09-29 | 2022-04-07 | ダウ グローバル テクノロジーズ エルエルシー | Modified Ziegler-Natta (Pro) catalysts and systems |
US11155650B2 (en) | 2016-09-29 | 2021-10-26 | Dow Global Technologies Llc | Magnesium halide-supported titanium (pro)catalysts |
BR112019006072B1 (en) | 2016-09-29 | 2023-02-14 | Dow Global Technologies Llc | METHOD OF POLYMERIZATION OF AN OLEFIN USING A ZIEGLER-NATTA CATALYST AND AN UNSUPPORTED MOLECULAR CATALYST IN THE SAME REACTOR AT THE SAME TIME AND POLYMERIZATION METHOD |
AR109705A1 (en) * | 2016-09-30 | 2019-01-16 | Dow Global Technologies Llc | HIGH PROCESSABILITY POLYETHYLENE COMPOSITIONS FOR INJECTION MOLDED ITEMS |
RU2670101C1 (en) * | 2017-09-26 | 2018-10-18 | Публичное Акционерное Общество "Нижнекамскнефтехим" | Polyethylene composition for outer cable sheath and outer insulation for steel pipes |
CA3011031A1 (en) * | 2018-07-11 | 2020-01-11 | Nova Chemicals Corporation | Polyethylene composition and film having outstanding properties |
CA3011050A1 (en) * | 2018-07-11 | 2020-01-11 | Nova Chemicals Corporation | Polyethylene composition and film having high stiffness, outstanding sealability and high permeability |
CA3011038A1 (en) * | 2018-07-11 | 2020-01-11 | Nova Chemicals Corporation | Polyethylene composition and film having a good permeability, stiffness and sealability |
CN112955322B (en) * | 2018-09-25 | 2023-06-16 | Sabic环球技术有限责任公司 | Polyethylene film for heat sealing |
US20220025135A1 (en) * | 2018-11-13 | 2022-01-27 | Exxonmobil Chemical Patents Inc. | Polyethylene Films |
CN115556448B (en) * | 2022-09-08 | 2024-05-24 | 上海乐纯生物技术股份有限公司 | Multilayer film for bioprocess bag and application thereof |
WO2024062315A1 (en) * | 2022-09-23 | 2024-03-28 | Nova Chemicals (International) S.A. | Ethylene copolymer composition and film applications |
Citations (293)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2983704A (en) * | 1959-10-13 | 1961-05-09 | Du Pont | Blends of high density and low density ethylene polymers and films thereof |
US3014702A (en) * | 1958-12-01 | 1961-12-26 | Dow Chemical Co | Heat exchanger |
GB942363A (en) | 1961-02-17 | 1963-11-20 | Dow Chemical Co | Polypropylene rubber blends |
CA684471A (en) | 1964-04-14 | The Dow Chemical Company | Polypropylene rubber blends | |
US3231636A (en) * | 1958-03-20 | 1966-01-25 | Union Carbide Corp | High shear strength blends of high and low density polyethylene |
US3239197A (en) * | 1960-05-31 | 1966-03-08 | Dow Chemical Co | Interfacial surface generator |
US3247290A (en) * | 1961-07-13 | 1966-04-19 | Phillips Petroleum Co | Extrusion coating resin comprising a blend of low density polyethylene and thermally degraded high density polyethylene |
GB1065568A (en) | 1964-12-28 | 1967-04-19 | Dow Chemical Co | Polypropylene blends having improved impact strength |
US3340328A (en) * | 1962-12-13 | 1967-09-05 | Continental Oil Co | Blends of polyethylenes having improved properties |
US3371464A (en) * | 1965-10-15 | 1968-03-05 | Joseph S. Swick | Skin packaging apparatus |
US3456044A (en) * | 1965-03-12 | 1969-07-15 | Heinz Erich Pahlke | Biaxial orientation |
US3491073A (en) * | 1965-08-13 | 1970-01-20 | Dow Chemical Co | Process for the polymerization of olefins |
US3555604A (en) * | 1965-03-12 | 1971-01-19 | Union Carbide Corp | Biaxial orientation |
US3645992A (en) * | 1967-03-02 | 1972-02-29 | Du Pont Canada | Process for preparation of homogenous random partly crystalline copolymers of ethylene with other alpha-olefins |
US3914342A (en) * | 1971-07-13 | 1975-10-21 | Dow Chemical Co | Ethylene polymer blend and polymerization process for preparation thereof |
US3974241A (en) * | 1974-11-18 | 1976-08-10 | Exxon Research And Engineering Company | Blends of sulfonated elastomers with crystalline polyolefins |
US3998914A (en) * | 1972-02-01 | 1976-12-21 | Du Pont Of Canada Limited | Film from a blend of high density polyethylene and a low density ethylene polymer |
US4011384A (en) * | 1974-06-29 | 1977-03-08 | Chemische Werke Huls Aktiengesellschaft | Process for the production of crystalline terpolymers of ethene, butene-1 and butene-2 |
US4048428A (en) * | 1961-12-05 | 1977-09-13 | W. R. Grace & Co. | Method for preparing a film of vinylidene chloride polymer |
US4076698A (en) * | 1956-03-01 | 1978-02-28 | E. I. Du Pont De Nemours And Company | Hydrocarbon interpolymer compositions |
US4188443A (en) * | 1978-08-30 | 1980-02-12 | W. R. Grace & Co. | Multi-layer polyester/polyolefin shrink film |
US4194039A (en) * | 1978-04-17 | 1980-03-18 | W. R. Grace & Co. | Multi-layer polyolefin shrink film |
US4205021A (en) * | 1977-01-27 | 1980-05-27 | Mitsui Petrochemical Industries, Ltd. | Ethylene copolymers |
US4229241A (en) * | 1978-12-04 | 1980-10-21 | W. R. Grace & Co. | Process for making a multi layer polyolefin shrink film |
US4230831A (en) * | 1979-05-18 | 1980-10-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Polyethylene blend composition |
US4243619A (en) * | 1978-03-31 | 1981-01-06 | Union Carbide Corporation | Process for making film from low density ethylene hydrocarbon copolymer |
US4259468A (en) * | 1978-08-17 | 1981-03-31 | Mitsui Petrochemical Industries Ltd. | Ethylene-α-olefin-polyene rubbery terpolymer and process for production thereof |
US4302566A (en) * | 1978-03-31 | 1981-11-24 | Union Carbide Corporation | Preparation of ethylene copolymers in fluid bed reactor |
US4303710A (en) * | 1978-08-16 | 1981-12-01 | Mobil Oil Corporation | Coextruded multi-layer polyethylene film and bag construction |
US4303771A (en) * | 1978-12-14 | 1981-12-01 | Union Carbide Corporation | Process for the preparation of high density ethylene polymers in fluid bed reactor |
US4314912A (en) * | 1977-02-03 | 1982-02-09 | The Dow Chemical Company | High efficiency, high temperature catalyst for polymerizing olefins |
US4320088A (en) * | 1978-12-28 | 1982-03-16 | Societe Chimique Des Charbonnages-Cdf Chimie | Process and apparatus for widening the polyethylene molecular weight distribution by using two reactors and two separators |
US4328328A (en) * | 1978-12-11 | 1982-05-04 | Mitsui Petrochemical Industries Ltd. | Continuous process for production of olefin polymers or copolymers |
US4330646A (en) * | 1979-08-13 | 1982-05-18 | Asahi Kasei Kogyo Kabushiki Kaisha | Polymerization of an α-olefin |
US4330639A (en) * | 1979-12-26 | 1982-05-18 | Nippon Oil Company, Ltd. | Polymer blend composition for forming polyethylene film |
US4339496A (en) * | 1979-10-05 | 1982-07-13 | Mobil Oil Corporation | Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of ethylene copolymer and propylene copolymer |
US4339493A (en) * | 1979-10-05 | 1982-07-13 | Mobil Oil Corporation | Heat sealable packaging film comprising propylene polymer substrate and olefin surface layer blend of polybutene-1 and an ethylene or a propylene copolymer |
US4339507A (en) * | 1980-11-26 | 1982-07-13 | Union Carbide Corporation | Linear low density ethylene hydrocarbon copolymer containing composition for extrusion coating |
US4340640A (en) * | 1979-10-05 | 1982-07-20 | Mobil Oil Corporation | Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of ethylene copolymer and propylene copolymer |
US4340641A (en) * | 1979-10-05 | 1982-07-20 | Mobil Oil Corporation | Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of ethylene copolymer and propylene copolymer |
US4346834A (en) * | 1980-11-18 | 1982-08-31 | Mobil Oil Corporation | Thermoplastic carrying bag with polyolefin resin blend |
US4348346A (en) * | 1980-07-23 | 1982-09-07 | Champion International Corporation | Polyester film extrusion with edge bead control |
US4349648A (en) * | 1981-07-31 | 1982-09-14 | Union Carbide Corporation | Catalyst composition for copolymerizing ethylene |
US4352844A (en) * | 1981-05-29 | 1982-10-05 | W. R. Grace & Co. | Thermoplastic film having improved handling and sealing characteristics and receptacle formed therefrom |
US4352849A (en) * | 1981-03-26 | 1982-10-05 | W. R. Grace & Co. | Coextruded, heat-shrinkable, multi-layer, polyolefin packaging film |
US4354009A (en) * | 1981-07-30 | 1982-10-12 | Union Carbide Corporation | Catalyst composition for copolymerizing ethylene |
US4359561A (en) * | 1979-06-18 | 1982-11-16 | Union Carbide Corporation | High tear strength polymers |
US4359495A (en) * | 1981-02-25 | 1982-11-16 | Shell Oil Company | Retort-sterilizable pouch |
US4359553A (en) * | 1981-09-14 | 1982-11-16 | Eastman Kodak Company | Polyethylene extrusion coating compositions |
US4363904A (en) * | 1979-06-18 | 1982-12-14 | Union Carbide Corporation | High tear strength polymers |
US4365044A (en) * | 1981-05-15 | 1982-12-21 | Hercules Incorporated | Polypropylene composition for extrusion coating |
US4367256A (en) * | 1981-05-15 | 1983-01-04 | Union Carbide Corporation | Cling-wrap polyethylene film |
US4370456A (en) * | 1981-11-23 | 1983-01-25 | Union Carbide Corporation | Catalyst composition for copolymerizing ethylene |
US4378451A (en) * | 1981-09-14 | 1983-03-29 | Eastman Kodak Company | High flow rate polyolefin extrusion coating compositions |
US4379197A (en) * | 1981-12-02 | 1983-04-05 | El Paso Polyolefins Company | Stretch wrap film composition |
US4380567A (en) * | 1980-10-09 | 1983-04-19 | Mitsui Petrochemical Industries, Ltd. | Ethylenic composite film structure |
US4383095A (en) * | 1979-02-16 | 1983-05-10 | Union Carbide Corporation | Process for the preparation of high density ethylene polymers in fluid bed reactor |
US4387185A (en) * | 1981-02-25 | 1983-06-07 | Shell Oil Company | Cracked blend of propylene copolymer and E/VA |
US4390677A (en) * | 1978-03-31 | 1983-06-28 | Karol Frederick J | Article molded from ethylene hydrocarbon copolymer |
US4390573A (en) * | 1980-03-03 | 1983-06-28 | Mobil Oil Corporation | Laminar thermoplastic film constructions |
US4391862A (en) * | 1981-07-02 | 1983-07-05 | W. R. Grace & Co., Cryovac Division | Pasteurizable thermoplastic film and receptacle therefrom |
US4399180A (en) * | 1978-09-15 | 1983-08-16 | Mobil Oil Corporation | Coextruded thermoplastic stretch-wrap |
US4405774A (en) * | 1980-12-23 | 1983-09-20 | Mitsubishi Petrochemical Company Limited | Ethylene copolymer |
US4410649A (en) * | 1982-03-31 | 1983-10-18 | Union Carbide Corporation | Ethylene polymer compositions having improved transparency |
US4418114A (en) * | 1982-04-29 | 1983-11-29 | Mobil Oil Corporation | Coextruded thermoplastic stretch-wrap |
US4421162A (en) * | 1982-06-25 | 1983-12-20 | The Dow Chemical Company | Flat plate heat exchange apparatus |
US4424138A (en) * | 1980-03-24 | 1984-01-03 | Imperial Chemical Industries Plc | Drying process and product |
US4427573A (en) * | 1981-09-16 | 1984-01-24 | Union Carbide Corporation | Polymerization catalyst, process for preparing, and use for ethylene polymerization |
US4427833A (en) * | 1982-03-19 | 1984-01-24 | Eastman Kodak Company | Polyethylene extrusion coating compositions |
US4429079A (en) * | 1980-08-07 | 1984-01-31 | Mitsui Petrochemical Industries, Ltd. | Ethylene/alpha-olefin copolymer composition |
US4438243A (en) * | 1978-10-18 | 1984-03-20 | Mitsui Petrochemical Industries, Ltd. | Process for producing random ethylene terpolymer |
US4438238A (en) * | 1981-01-30 | 1984-03-20 | Sumitomo Chemical Company, Limited | Low density copolymer composition of two ethylene-α-olefin copolymers |
US4452958A (en) * | 1981-12-30 | 1984-06-05 | Mobil Oil Corporation | Olefin polymerization with catalysts derived from chromium exchanged zeolites |
US4454281A (en) * | 1982-12-01 | 1984-06-12 | Union Carbide Corporation | Formulation for high clarity linear low density polyethylene film products |
US4461792A (en) * | 1982-09-30 | 1984-07-24 | Union Carbide Corporation | Poly-1-butene multilayers plastic film |
US4461873A (en) * | 1982-06-22 | 1984-07-24 | Phillips Petroleum Company | Ethylene polymer blends |
US4463153A (en) * | 1979-08-20 | 1984-07-31 | Kohjin Co., Ltd. | Heat shrinkable film and process for preparing the same |
US4464426A (en) * | 1981-11-03 | 1984-08-07 | Union Carbide Corporation | Multilayer film having a layer of low pressure, low density heterogeneous ethylene copolymers |
US4465812A (en) * | 1981-10-23 | 1984-08-14 | Asahi Kasei Kogyo Kabushiki Kaisha | Linear medium- or low-density polyethylene composition |
US4467065A (en) * | 1979-09-10 | 1984-08-21 | Becton Dickinson And Company | Semi-crystalline polymers stabilized for irradiation sterilization |
US4474740A (en) * | 1981-10-21 | 1984-10-02 | Linde Aktiengesellschaft | Method for regenerating physically acting organic scrubbing agents |
US4482687A (en) * | 1979-10-26 | 1984-11-13 | Union Carbide Corporation | Preparation of low-density ethylene copolymers in fluid bed reactor |
US4485217A (en) * | 1983-04-13 | 1984-11-27 | Mobil Oil Corporation | Method for reducing shrinkage of injection molded linear low density polyethylene |
US4486579A (en) * | 1981-12-24 | 1984-12-04 | Societe Chimique Des Charbonnages | Modified copolymers of ethylene and α-olefins and a process for their preparation |
US4486552A (en) * | 1983-02-28 | 1984-12-04 | The Dow Chemical Company | Fog-resistant olefin polymer films |
US4486377A (en) * | 1982-09-27 | 1984-12-04 | Union Carbide Corporation | Process for reducing draw resonance in polymeric film |
US4505970A (en) * | 1982-09-30 | 1985-03-19 | Union Carbide Corporation | Multilayer films comprising mixtures of a melt index and 2 melt index linear low density polyethylene |
US4510303A (en) * | 1982-05-06 | 1985-04-09 | Mitsui Petrochemical Industries, Ltd. | Ethylene-alpha-olefin-polyene random copolymer rubber |
US4513038A (en) * | 1981-11-03 | 1985-04-23 | Union Carbide Corporation | Multilayer film having a layer of low pressure, low density heterogeneous ethylene copolymers |
US4514465A (en) * | 1984-05-30 | 1985-04-30 | W. R. Grace & Co., Cryovac Div. | Storm window film comprising at least five layers |
US4519968A (en) * | 1982-02-20 | 1985-05-28 | Chemische Werke Huls Ag | Manufacturing dimensionally stable shaped hollow sections from aliphatic polyamides and their applications |
US4526919A (en) * | 1984-06-27 | 1985-07-02 | Eastman Kodak Company | Polyolefin extrusion coating compositions having good coatability and good adhesion to the substrate |
US4528312A (en) * | 1984-06-27 | 1985-07-09 | Eastman Kodak Company | Degraded polyolefin containing extrusion coating compositions having good adhesion to a substrate at fast coating speeds |
US4530914A (en) * | 1983-06-06 | 1985-07-23 | Exxon Research & Engineering Co. | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
US4532189A (en) * | 1982-02-19 | 1985-07-30 | W. R. Grace & Co., Cryovac Div. | Linear polyethylene shrink films |
US4542886A (en) * | 1977-10-11 | 1985-09-24 | Y. Toyoda International Patent Office | Process for preparing cold drawn film from an ethylene-α-olefin copolymer and at least one of low-density polyethylene or ethylene copolymers and polypropylene, high density polyethylene or crystalline polybutadiene |
US4544762A (en) * | 1982-11-02 | 1985-10-01 | Hoechst Aktiengesellschaft | Process for the preparation of oligomeric aluminoxanes |
US4547475A (en) * | 1984-09-07 | 1985-10-15 | The Dow Chemical Company | Magnesium halide catalyst support and transition metal catalyst prepared thereon |
US4547555A (en) * | 1983-09-01 | 1985-10-15 | Mobil Oil Corporation | Method for rapid kill gas injection to gas phase polymerization reactors during power failures |
US4547551A (en) * | 1982-06-22 | 1985-10-15 | Phillips Petroleum Company | Ethylene polymer blends and process for forming film |
US4551380A (en) * | 1984-05-10 | 1985-11-05 | W. R. Grace & Co., Cryovac Div. | Oriented heat-sealable multilayer packaging film |
US4563504A (en) * | 1982-06-30 | 1986-01-07 | Societe Chimique Des Charbonnages, S.A. | Propylene and ethylene/α-olefin copolymer combinations applicable to the manufacture of mono-oriented yarns |
US4564559A (en) | 1984-12-28 | 1986-01-14 | Mobil Oil Corporation | Oriented multi-layer heat sealable film |
US4564063A (en) | 1984-04-16 | 1986-01-14 | The Dow Chemical Company | Annular heat exchanger |
US4568713A (en) | 1984-05-30 | 1986-02-04 | Shell Oil Company | Hot melt poly(butylene/ethylene) adhesives |
US4587318A (en) | 1984-01-27 | 1986-05-06 | Nippon Petrochemicals Company, Limited | Ethylene copolymer compositions for rotational molding |
US4588794A (en) | 1979-04-13 | 1986-05-13 | Mitsui Petrochemical Industries, Ltd. | Process for production of rubbery ethylene/1-butene/polyene copolymers |
US4588650A (en) | 1982-09-29 | 1986-05-13 | The Dow Chemical Company | Olefin polymer stretch/cling film |
US4593009A (en) | 1984-04-04 | 1986-06-03 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4597920A (en) | 1981-04-23 | 1986-07-01 | E. I. Du Pont De Nemours And Company | Shrink films of ethylene/α-olefin copolymers |
US4598128A (en) | 1983-03-14 | 1986-07-01 | Phillips Petroleum Company | Polymer composition and preparation method |
US4599392A (en) | 1983-06-13 | 1986-07-08 | The Dow Chemical Company | Interpolymers of ethylene and unsaturated carboxylic acids |
US4599391A (en) | 1983-12-20 | 1986-07-08 | Nippon Petrochemicals Company, Limited | Coating composition for power cable |
US4608221A (en) | 1984-12-28 | 1986-08-26 | Union Carbide Corporation | Process for reducing draw resonance in polymeric film |
US4612300A (en) | 1985-06-06 | 1986-09-16 | The Dow Chemical Company | Novel catalyst for producing relatively narrow molecular weight distribution olefin polymers |
US4613547A (en) | 1984-12-19 | 1986-09-23 | Mobil Oil Corporation | Multi-layer oriented polypropylene films |
US4617241A (en) | 1984-01-23 | 1986-10-14 | W. R. Grace & Co., Cryovac Div. | Linear polyethylene stretch/shrink films |
US4618662A (en) | 1984-04-23 | 1986-10-21 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4624991A (en) | 1981-07-15 | 1986-11-25 | Societe Chimique Des Charbonnages-Cdf Chimie | Cold-stretchable, self-adhesive film composition |
US4626574A (en) | 1982-07-21 | 1986-12-02 | Clopay Corporation | Linear low density polyethylene film and method of making |
US4626467A (en) | 1985-12-16 | 1986-12-02 | Hercules Incorporated | Branched polyolefin as a quench control agent for spin melt compositions |
US4632801A (en) | 1984-04-09 | 1986-12-30 | Norchem, Inc. | Blown film extrusion |
US4640856A (en) | 1985-04-29 | 1987-02-03 | W. R. Grace & Co., Cryovac Div. | Multi-layer packaging film and receptacles made therefrom |
US4643926A (en) | 1985-04-29 | 1987-02-17 | W. R. Grace & Co., Cryovac Div. | Flexible medical solution pouches |
US4649001A (en) | 1984-04-17 | 1987-03-10 | Japan Styrene Paper Corporation | Process for producing polyethylene extruded foams |
US4659685A (en) | 1986-03-17 | 1987-04-21 | The Dow Chemical Company | Heterogeneous organometallic catalysts containing a supported titanium compound and at least one other supported organometallic compound |
US4666772A (en) | 1985-05-11 | 1987-05-19 | Wolff Walsrode Aktiengesellschaft | Opaque, heat sealable multilayer polyolefin films |
US4666999A (en) | 1983-09-01 | 1987-05-19 | Mobil Oil Corporation | Method and reactor system for rapid kill gas injection to gas phase polymerization reactors |
US4668463A (en) | 1982-07-21 | 1987-05-26 | Clopay Corporation | Method of making linear low density polyethylene film |
US4668575A (en) | 1985-06-12 | 1987-05-26 | Wolff Walsrode Aktiengesellschaft | Heat sealable multilayer films with low permeability to gas and their use as packaging material |
US4668752A (en) | 1983-10-21 | 1987-05-26 | Mitsui Petrochemical Industries, Ltd. | Linear ethylene copolymer |
US4668650A (en) | 1986-01-03 | 1987-05-26 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution |
US4672096A (en) | 1984-04-04 | 1987-06-09 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4676922A (en) | 1986-04-04 | 1987-06-30 | Gencorp Inc. | Preblends |
US4677087A (en) | 1986-01-03 | 1987-06-30 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution |
US4690991A (en) | 1983-06-22 | 1987-09-01 | Neste Oy | Procedure for making copolymers of ethylene and long-chained alpha olefins |
US4690992A (en) | 1984-03-28 | 1987-09-01 | California Institute Of Technology | Polymerization of difunctional ring compounds |
US4692386A (en) | 1985-05-11 | 1987-09-08 | Wolff Walsrode Aktiengesellschaft | Sealable multilayer polyolefin films |
US4701432A (en) | 1985-11-15 | 1987-10-20 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
US4710538A (en) | 1986-03-10 | 1987-12-01 | Union Carbide Corporation | Process for the production of a sticky polymer |
US4714638A (en) | 1985-06-14 | 1987-12-22 | Viskase Corporation | Irradiated multilayer film for primal meat packaging |
US4716207A (en) | 1983-06-15 | 1987-12-29 | Exxon Research & Engineering Co. | Nodular copolymers comprising narrow MWD alpha-olefin copolymers coupled by non-conjugated dienes |
US4719193A (en) | 1986-09-30 | 1988-01-12 | Union Carbide Corporation | Processes for preparing polyethylene catalysts by heating catalyst precursors |
US4720427A (en) | 1985-10-28 | 1988-01-19 | Mobil Oil Corporation | Oriented multi-layer heat sealable film |
US4722971A (en) | 1985-08-02 | 1988-02-02 | Exxon Chemical Patents Inc. | Easy processing ethylene propylene elastomers |
US4724185A (en) | 1985-09-17 | 1988-02-09 | W. R. Grace & Co., Cryovac Div. | Oxygen barrier oriented film |
US4732882A (en) | 1986-01-24 | 1988-03-22 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4737391A (en) | 1984-12-03 | 1988-04-12 | Viskase Corporation | Irradiated multilayer film for primal meat packaging |
US4742138A (en) | 1983-05-09 | 1988-05-03 | Mitsubishi Petrochemical Company Limited | Production of ethylene copolymers |
US4755403A (en) | 1985-06-03 | 1988-07-05 | W. R. Grace & Co., Cryovac Div. | Protective patch for shrinkable bag |
US4755419A (en) | 1986-03-21 | 1988-07-05 | W. R. Grace & Co., Cryovac Div. | Oxygen barrier oriented shrink film |
US4762898A (en) | 1985-03-08 | 1988-08-09 | Mitsubishi Petrochemical Company Limited | Process for polymerizing ethylene |
US4764549A (en) | 1984-09-07 | 1988-08-16 | Vulkor, Incorporated | Low temperature curing of elastomer |
US4767485A (en) | 1983-09-30 | 1988-08-30 | Exxon Research & Engineering Co. | High speed extrusion coating with ethylene copolymers |
US4770912A (en) | 1987-07-23 | 1988-09-13 | Union Camp Corporation | Polyethylene resin blend |
US4775710A (en) | 1985-12-12 | 1988-10-04 | Mallinckrodt, Inc. | Stabilized linear low-density polyethylene containing ring-substituted N-acyl-para-aminophenol |
US4780264A (en) | 1987-05-22 | 1988-10-25 | The Dow Chemical Company | Linear low density polyethylene cast film |
US4786688A (en) | 1980-11-13 | 1988-11-22 | Bp Chimie | Polyethylene composition for extrusion, particularly for blow moulding |
US4788232A (en) | 1985-03-11 | 1988-11-29 | Phillips Petroleum Company | Pigment concentrates for resins |
US4789714A (en) | 1983-06-15 | 1988-12-06 | Exxon Research & Engineering Co. | Molecular weight distribution modification in tubular reactor |
US4792595A (en) | 1983-06-15 | 1988-12-20 | Exxon Research & Engineering Co. | Narrow MWD alpha-olefin copolymers |
US4798081A (en) | 1985-11-27 | 1989-01-17 | The Dow Chemical Company | High temperature continuous viscometry coupled with analytic temperature rising elution fractionation for evaluating crystalline and semi-crystalline polymers |
US4801652A (en) | 1986-03-03 | 1989-01-31 | Kohjin Co., Ltd. | Heat shrinkable film |
US4801486A (en) | 1985-09-30 | 1989-01-31 | W. R. Grace & Co.-Conn. | Thermoplastic multi-layer packaging film and bags made therefrom |
US4803253A (en) | 1982-03-30 | 1989-02-07 | Phillips Petroleum Company | Ethylene polymer produced using a catalyst comprising a phosphate and with a bis-(cyclopentadienyl)chromium(II) compound |
US4803122A (en) | 1985-10-11 | 1989-02-07 | W. R. Grace & Co. | Multilayer laminate of self supporting films |
US4808262A (en) | 1985-12-16 | 1989-02-28 | General Electric Company | Method for devolatilizing polymer solutions |
US4808635A (en) | 1983-11-22 | 1989-02-28 | Hercules Incorporated | Method for making a dicyclopentadiene cross-linked polymer and the product thereof |
US4820589A (en) | 1986-11-17 | 1989-04-11 | Mobil Oil Corporation | Cling/no cling-slip stretch wrap film |
US4820557A (en) | 1987-09-17 | 1989-04-11 | W. R. Grace & Co.-Conn. | Thermoplastic packaging film of low I10 /I2 |
US4824912A (en) | 1987-08-31 | 1989-04-25 | Mobil Oil Corporation | Terblends and films of LLDPE, LMW-HDPE and HMW-HDPE |
US4824889A (en) | 1987-10-30 | 1989-04-25 | Shell Oil Company | Poly-1-butene blend adhesives |
US4826939A (en) | 1987-08-31 | 1989-05-02 | Eastman Kodak Company | Highly amorphous olefin terpolymer |
US4828906A (en) | 1986-09-05 | 1989-05-09 | Mitsui Petrochemical Industries, Ltd. | Resin composition and film suitable for agricultural covering material |
US4830926A (en) | 1987-10-30 | 1989-05-16 | Shell Oil Company | Poly-1-butene blend adhesives for laminar structure |
US4833017A (en) | 1987-04-17 | 1989-05-23 | Mobil Oil Corporation | Particle-impregnated one-sided cling stretch wrap film |
US4834947A (en) | 1983-09-01 | 1989-05-30 | Mobil Oil Corporation | Reactor system for rapid kill gas injection to gas phase polymerization reactors |
US4843129A (en) | 1985-12-27 | 1989-06-27 | Exxon Research & Engineering Company | Elastomer-plastic blends |
US4842930A (en) | 1986-07-19 | 1989-06-27 | Wolff Walsrode Aktiengesellschaft | Heat-sealable multi-layer films of polyolefins |
US4842951A (en) | 1985-06-05 | 1989-06-27 | Idemitsu Petrochemical Company Limited | Thermoforming resin laminate sheet |
US4842187A (en) | 1986-04-04 | 1989-06-27 | Hoechst Aktiengesellschaft | Opaque film for candy twist wrapping |
EP0129368B1 (en) | 1983-06-06 | 1989-07-26 | Exxon Research And Engineering Company | Process and catalyst for polyolefin density and molecular weight control |
US4857611A (en) | 1984-05-02 | 1989-08-15 | Bp Chemicals Limited | Gas fluidized bed terpolymerization of olefins |
US4859379A (en) | 1987-12-30 | 1989-08-22 | Mobil Oil Corporation | Process for reducing draw resonance by heating film after extrusion |
US4863784A (en) | 1987-05-28 | 1989-09-05 | Viskase Corporation | Multilayer film containing very low density polyethylene |
US4863769A (en) | 1985-06-17 | 1989-09-05 | Viskase Corporation | Puncture resistant, heat-shrinkable films containing very low density polyethylene |
US4865902A (en) | 1986-01-17 | 1989-09-12 | E. I. Du Pont De Nemours And Company | Multilayered polyolefin high shrinkage, low-shrink force shrink film |
US4874820A (en) | 1983-06-15 | 1989-10-17 | Exxon Research And Engineering Company | Copolymer compositions containing a narrow MWD component and process of making same |
US4876321A (en) | 1986-01-03 | 1989-10-24 | Mobil Oil Corporation | Preparation of alpha-olefin polymers of relatively narrow molecular weight distribution |
US4882406A (en) | 1983-06-15 | 1989-11-21 | Exxon Research & Engineering Company | Nodular copolymers formed of alpha-olefin copolymers coupled by non-conjugated dienes |
US4883853A (en) | 1986-06-26 | 1989-11-28 | Ruhrchemie Aktiengesellachaft | Copolymers of ethylene and 2,4,4-trimethylpentene-1 |
US4886690A (en) | 1987-12-21 | 1989-12-12 | W. R. Grace & Co. | Peelable barrier film for vacuum skin packages and the like |
US4888318A (en) | 1986-01-24 | 1989-12-19 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4892911A (en) | 1985-11-29 | 1990-01-09 | American National Can Company | Films using blends of polypropylene and polyisobutylene |
US4921920A (en) | 1984-06-28 | 1990-05-01 | Bp Chemicals Limited | Process for the polymerization or copolymerization of alpha-olefins in a fluidized bed, in the presence of a Ziegler-Natta catalyst system |
US4923750A (en) | 1987-12-30 | 1990-05-08 | Co-Ex Plastics, Inc. | Thermoplastic stretch-wrap material |
US4925728A (en) | 1986-09-13 | 1990-05-15 | Hoechst Aktiengesellschaft | Multilayer film suitable as a release sheet in the production of decorative laminate panels |
US4927708A (en) | 1987-04-10 | 1990-05-22 | W. R. Grace & Co.-Conn. | Flexible stretch/shrink film |
US4935474A (en) | 1983-06-06 | 1990-06-19 | Exxon Research & Engineering Company | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
US4937112A (en) | 1987-12-18 | 1990-06-26 | W. R. Grace & Co.-Conn. | High strength coextruded film for chub packaging |
US4952451A (en) | 1988-11-17 | 1990-08-28 | W. R. Grace & Co.-Conn. | Stretch/shrink film with improved oxygen transmission |
US4954391A (en) | 1985-11-07 | 1990-09-04 | Showa Denko Kabushiki Kaisha | High density polyethylene type transparent film and process for production thereof |
US4957790A (en) | 1987-12-21 | 1990-09-18 | W. R. Grace & Co.-Conn. | Oriented polymeric films |
US4957972A (en) | 1988-11-03 | 1990-09-18 | Mobil Oil Corporation | Blends of linear low density ethylene copolymers |
US4959436A (en) | 1983-06-15 | 1990-09-25 | Exxon Research And Engineering Co. | Narrow MWD alpha-olefin copolymers |
US4960878A (en) | 1988-12-02 | 1990-10-02 | Texas Alkyls, Inc. | Synthesis of methylaluminoxanes |
US4963388A (en) | 1987-04-17 | 1990-10-16 | Mobil Oil Corporation | Method for forming particle-impregnated one-sided cling stretch wrap film |
US4963419A (en) | 1987-05-13 | 1990-10-16 | Viskase Corporation | Multilayer film having improved heat sealing characteristics |
US4963427A (en) | 1986-04-15 | 1990-10-16 | W. R. Grace & Co.-Conn. | Multilayer packaging film |
US4966951A (en) | 1988-09-26 | 1990-10-30 | Phillips Petroleum Company | High strength linear, low density polyethylene polymerization process |
US4967898A (en) | 1988-06-14 | 1990-11-06 | Fael S.A. | Conveyor apparatus for the transport of sheet metal blanks |
US4968765A (en) | 1987-09-05 | 1990-11-06 | Mitsui Petrochemical Industries, Ltd. | Molecularly oriented molded body of ultra-high-molecular-weight ethylene/polyene copolymer |
US4975315A (en) | 1987-03-20 | 1990-12-04 | Hoechst Aktiengesellschaft | Metallizable multi-ply film |
US4976898A (en) | 1985-06-17 | 1990-12-11 | Viskase Corporation | Process for making puncture resistant, heat-shrinkable films containing very low density polyethylene |
US4977022A (en) | 1988-03-15 | 1990-12-11 | W. R. Grace & Co.-Conn. | Barrier stretch film |
US4981826A (en) | 1989-11-17 | 1991-01-01 | Exxon Chemical Patents Inc. | Polymerization catalyst prepared with a halogenated silane compound |
US4981760A (en) | 1988-07-11 | 1991-01-01 | Sumitomo Chemical Company, Limited | Ethylene-alpha-olefin copolymer and films obtained therefrom |
US4983447A (en) | 1986-09-13 | 1991-01-08 | Hoechst Aktiengesellschaft | Biaxially oriented opaque polyolefin multi-layer film |
US4987212A (en) | 1982-09-07 | 1991-01-22 | Bp Chimie Societe Anonyme | Copolymerization of ethylene and an alpha-olefin having six carbon atoms comprising hexene-1 or 4-methyl-pentene-1 in a fluidized bed |
US4988465A (en) | 1987-05-28 | 1991-01-29 | Viskase Corporation | Manufacture of multilayer film containing very low density polyethylene |
US4996094A (en) | 1988-09-26 | 1991-02-26 | Mobil Oil Corporation | One-sided cling/one-sided slip stretch wrap films |
US5006398A (en) | 1988-03-18 | 1991-04-09 | Exxon Chemical Patents Inc. | Food wrap film |
US5006396A (en) | 1988-07-25 | 1991-04-09 | Xerox Corporation | Moisture proof thermally actuated binding tape for books |
US5011891A (en) | 1985-12-27 | 1991-04-30 | Exxon Research & Engineering Company | Elastomer polymer blends |
US5013801A (en) | 1983-06-15 | 1991-05-07 | Charles Cozewith | Molecular weight distribution modification in a tubular reactor |
US5015511A (en) | 1988-05-12 | 1991-05-14 | The Dow Chemical Company | Linear low density ethylene interpolymers for injection molding |
US5015749A (en) | 1987-08-31 | 1991-05-14 | The Dow Chemical Company | Preparation of polyhydrocarbyl-aluminoxanes |
US5019315A (en) | 1988-10-25 | 1991-05-28 | Mobil Oil Corporation | Preparing multi-layer coextruded polyolefin stretch wrap films |
US5024799A (en) | 1987-09-14 | 1991-06-18 | Tredegar Industries, Inc. | Method for producing an embossed oriented film |
US5025072A (en) | 1981-12-04 | 1991-06-18 | Mobil Oil Corporation | Highly active catalyst composition for polymerizing alpha-olefins |
US5026610A (en) | 1987-10-20 | 1991-06-25 | Courtaulds Films & Packaging (Holdings) Ltd. | Polymeric films |
US5026798A (en) | 1989-09-13 | 1991-06-25 | Exxon Chemical Patents Inc. | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
US5028663A (en) | 1988-04-28 | 1991-07-02 | Chung Chan I | Solid state processing of polymer blends |
US5032463A (en) | 1988-07-18 | 1991-07-16 | Viskase Corporation | Very low density polyethylene film from blends |
US5041585A (en) | 1990-06-08 | 1991-08-20 | Texas Alkyls, Inc. | Preparation of aluminoxanes |
US5041316A (en) | 1988-11-18 | 1991-08-20 | W. R. Grace & Co.-Conn. | Multi-layer film structure for packaging and bags made therefrom |
US5041583A (en) | 1990-06-28 | 1991-08-20 | Ethyl Corporation | Preparation of aluminoxanes |
US5041584A (en) | 1988-12-02 | 1991-08-20 | Texas Alkyls, Inc. | Modified methylaluminoxane |
US5043040A (en) | 1989-08-30 | 1991-08-27 | Borden, Inc. | Slitting of plastic film |
USRE33683E (en) * | 1986-01-24 | 1991-09-03 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US5047468A (en) | 1988-11-16 | 1991-09-10 | Union Carbide Chemicals And Plastics Technology Corporation | Process for the in situ blending of polymers |
US5055534A (en) | 1989-12-28 | 1991-10-08 | Union Carbide Chemicals And Plastics Technology Corporation | Preparation of very low molecular weight polyethylene in a fluidized bed |
US5055533A (en) | 1986-01-24 | 1991-10-08 | Mobil Oil Corporation | Process for polymerizing alpha-olefins with trimethylaluminum-activated catalyst |
US5055338A (en) | 1987-03-11 | 1991-10-08 | Exxon Chemical Patents Inc. | Metallized breathable films prepared from melt embossed polyolefin/filler precursor films |
US5055438A (en) | 1989-09-13 | 1991-10-08 | Exxon Chemical Patents, Inc. | Olefin polymerization catalysts |
US5055328A (en) | 1989-06-16 | 1991-10-08 | Viskase Corporation | Differentially cross-linked multilayer film |
US5057475A (en) | 1989-09-13 | 1991-10-15 | Exxon Chemical Patents Inc. | Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization |
US5059481A (en) | 1985-06-17 | 1991-10-22 | Viskase Corporation | Biaxially stretched, heat shrinkable VLDPE film |
US5064796A (en) | 1991-01-07 | 1991-11-12 | Exxon Chemical Patents Inc. | Support adjuvant for improved vanadium polymerization catalyst |
US5064802A (en) | 1989-09-14 | 1991-11-12 | The Dow Chemical Company | Metal complex compounds |
US5066738A (en) | 1987-04-09 | 1991-11-19 | Fina Technology, Inc. | Polymerization of olefins with an improved catalyst system using a new electron donor |
US5068489A (en) | 1989-12-28 | 1991-11-26 | Union Carbide Chemicals And Plastics Technology Corporation | Preparation of very low molecular weight polyethylene in a fluidized bed |
US5073599A (en) | 1985-11-29 | 1991-12-17 | American National Can Company | Films using blends of polypropylene and polyisobutylene |
US5073452A (en) | 1989-05-09 | 1991-12-17 | Toray Industries, Inc. | Film for print lamination |
US5075143A (en) | 1989-09-29 | 1991-12-24 | W. R. Grace & Co.-Conn. | High barrier implosion resistant films |
US5077255A (en) | 1986-09-09 | 1991-12-31 | Exxon Chemical Patents Inc. | New supported polymerization catalyst |
US5079205A (en) | 1990-07-13 | 1992-01-07 | Exxon Chemical Patents Inc. | Group ivb, vb and vib metal hydrocarbyloxides, with alumoxane for olefin polymerization |
US5082908A (en) | 1988-06-08 | 1992-01-21 | Sumitomo Chemical Co., Ltd. | Ethylene-α-olefin copolymer and process for producing the same |
US5084134A (en) | 1988-07-16 | 1992-01-28 | Montedipe S.R.L. | Process for the devolatilization of polymer solutions |
US5084534A (en) | 1987-06-04 | 1992-01-28 | Exxon Chemical Patents, Inc. | High pressure, high temperature polymerization of ethylene |
US5084540A (en) | 1978-08-02 | 1992-01-28 | Montedison S.P.A. | Ethylene/butene-1 copolymers |
US5084039A (en) | 1987-03-27 | 1992-01-28 | Clopay Corporation | Disposable diapers, absorbent articles and thermoplastic sheet material having improving tape adhesion |
US5084927A (en) | 1991-02-08 | 1992-02-04 | Tan Sense Medical Corp. | Method for protecting a surface from contaminants |
US5086024A (en) | 1988-12-02 | 1992-02-04 | Texas Alkyls, Inc. | Catalyst system for polymerization of olefins |
US5089321A (en) | 1991-01-10 | 1992-02-18 | The Dow Chemical Company | Multilayer polyolefinic film structures having improved heat seal characteristics |
US5091228A (en) | 1987-07-13 | 1992-02-25 | Mitsubishi Kasei Corporation | Linear polyethylene film and process for producing the same |
US5096867A (en) | 1990-06-04 | 1992-03-17 | Exxon Chemical Patents Inc. | Monocyclopentadienyl transition metal olefin polymerization catalysts |
US5102955A (en) | 1989-12-29 | 1992-04-07 | Mobil Oil Corporation | Broad distribution, high molecular weight low density polyethylene and method of making thereof |
US5106688A (en) | 1988-05-20 | 1992-04-21 | W. R. Grace & Co.-Conn. | Multi-layer packaging film and process |
US5106545A (en) | 1987-12-21 | 1992-04-21 | W. R. Grace & Co.-Conn. | Oriented polymeric films and process for enhanced orientation of polymeric films |
US5112674A (en) | 1989-11-07 | 1992-05-12 | Exxon Chemical Company Inc. | Cling packaging film for wrapping food products |
US5118753A (en) | 1987-07-08 | 1992-06-02 | Sumitomo Chemical Company, Limited | Olefinic thermoplastic elastomer composition |
US5132074A (en) | 1989-04-10 | 1992-07-21 | Kohjin Co., Ltd. | Process of making stretchable, heat shrinkable polyethylene film |
US5153039A (en) | 1990-03-20 | 1992-10-06 | Paxon Polymer Company, L.P. | High density polyethylene article with oxygen barrier properties |
US5189106A (en) | 1990-12-28 | 1993-02-23 | Nippon Petrochemicals Company, Limited | Polyethylene composition |
US5206075A (en) | 1991-12-19 | 1993-04-27 | Exxon Chemical Patents Inc. | Sealable polyolefin films containing very low density ethylene copolymers |
US5218071A (en) | 1988-12-26 | 1993-06-08 | Mitsui Petrochemical Industries, Ltd. | Ethylene random copolymers |
US5241031A (en) | 1992-02-19 | 1993-08-31 | Exxon Chemical Patents Inc. | Elastic articles having improved unload power and a process for their production |
US5242922A (en) | 1992-06-24 | 1993-09-07 | Mobil Oil Corporation | Blends of HDPE and polybutene |
US5258161A (en) | 1992-06-15 | 1993-11-02 | Union Carbide Chemicals & Plastics Technology Corporation | Blown film extrusion |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
US5288531A (en) | 1991-08-09 | 1994-02-22 | The Dow Chemical Company | Pouch for packaging flowable materials |
US5374700A (en) | 1990-04-18 | 1994-12-20 | Mitsui Petrochemical Industries, Ltd. | Ethylene copolymer |
US5395810A (en) | 1991-09-30 | 1995-03-07 | Fina Technology, Inc. | Method of making a homogeneous-heterogenous catalyst system for olefin polymerization |
US5395471A (en) | 1991-10-15 | 1995-03-07 | The Dow Chemical Company | High drawdown extrusion process with greater resistance to draw resonance |
CA2008315C (en) | 1989-01-24 | 1995-03-21 | Toshiyuki Tsutsui | Olefin copolymers and processes for preparing same |
US5408004A (en) | 1993-08-17 | 1995-04-18 | The Dow Chemical Company | Polyolefin blends and their solid state processing |
US5444145A (en) | 1992-04-20 | 1995-08-22 | Exxon Chemical Patents Inc. | Ethylene/branched olefin copolymers |
EP0436399B1 (en) | 1989-12-29 | 1996-02-07 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst and process for the polymerization of olefins |
US5631069A (en) | 1994-05-09 | 1997-05-20 | The Dow Chemical Company | Medium modulus molded material comprising substantially linear polyethlene and fabrication method |
EP0416815B1 (en) | 1989-08-31 | 1997-08-13 | The Dow Chemical Company | Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US33683A (en) * | 1861-11-05 | Improved steering apparatus | ||
JPS5920557B2 (en) * | 1978-06-29 | 1984-05-14 | 電気化学工業株式会社 | packaging |
IT1192473B (en) | 1982-07-09 | 1988-04-13 | Piero Francesconi | SELF-SEALING COLD EXTENDABLE TRANSPARENT FILM, FOR PACKAGING FOOD AND OTHER |
EP0221726A3 (en) * | 1985-10-28 | 1988-09-21 | Mobil Oil Corporation | Laminar thermoplastic film having a heat sealable surface |
CA1303790C (en) | 1987-07-02 | 1992-06-16 | Alfred P. Engelmann | Skin packaging film |
AU615804B2 (en) * | 1988-09-30 | 1991-10-10 | Exxon Chemical Patents Inc. | Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distributions |
US5382631A (en) * | 1988-09-30 | 1995-01-17 | Exxon Chemical Patents Inc. | Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distributions |
TW206240B (en) * | 1990-02-13 | 1993-05-21 | Mitsui Petroleum Chemicals Ind | |
MX9200724A (en) * | 1991-02-22 | 1993-05-01 | Exxon Chemical Patents Inc | HEAT SEALABLE MIX OF POLYETHYLENE OR PLASTOMER OF VERY LOW DENSITY WITH POLYMERS BASED ON POLYPROPYLENE AND THERMAL SEALABLE FILM AS WELL AS ARTICLES MADE WITH THOSE. |
WO1993003093A1 (en) * | 1991-07-18 | 1993-02-18 | Exxon Chemical Patents Inc. | Heat sealed article |
CA2125780C (en) * | 1991-12-30 | 2004-07-06 | Deepak R. Parikh | Ethylene interpolymer polymerizations |
US5530065A (en) * | 1992-01-07 | 1996-06-25 | Exxon Chemical Patents Inc. | Heat sealable films and articles made therefrom |
KR100262833B1 (en) * | 1992-09-16 | 2000-08-01 | 벤 씨. 카덴헤드 | Soft films having enhanced physical properties |
GB9224876D0 (en) * | 1992-11-27 | 1993-01-13 | Exxon Chemical Patents Inc | Improved processing polyolefin blends |
US5523136A (en) * | 1993-04-30 | 1996-06-04 | Cypress Packaging | Packaging film, packages and methods for using them |
US5360065A (en) * | 1993-06-29 | 1994-11-01 | Marathon Oil Company | Scale inhibitor and process for using |
JP3589352B2 (en) * | 1993-11-12 | 2004-11-17 | エクソンモービル・ケミカル・パテンツ・インク | Heat sealable films and products made therefrom |
BR9507937A (en) * | 1994-06-06 | 1997-11-18 | Grace W R & Co | Laminates for forming / filling / sealing packaging |
US6300451B1 (en) * | 1994-10-24 | 2001-10-09 | Exxon Chemical Patents Inc. | Long-chain branched polymers and their production |
US5635262A (en) * | 1994-12-12 | 1997-06-03 | Exxon Chemical Patents Inc. | High molecular weight high density polyethylene with improved tear resistance |
JP3375780B2 (en) * | 1995-03-29 | 2003-02-10 | 三井化学株式会社 | Polyethylene resin composition for heavy packaging bags and polyethylene resin film for heavy packaging bags comprising the composition |
DE69606811T3 (en) * | 1995-07-31 | 2012-01-12 | Kureha Corp. | Multilayer film |
-
1995
- 1995-06-07 US US08/487,819 patent/US5773106A/en not_active Expired - Lifetime
- 1995-06-07 US US08/475,953 patent/US5792534A/en not_active Expired - Lifetime
- 1995-10-04 CA CA 2203128 patent/CA2203128C/en not_active Expired - Lifetime
- 1995-10-04 AU AU39471/95A patent/AU685331B2/en not_active Ceased
- 1995-10-04 AT AT95937338T patent/ATE240988T1/en not_active IP Right Cessation
- 1995-10-04 BR BR9510388A patent/BR9510388A/en not_active IP Right Cessation
- 1995-10-04 ES ES95937338T patent/ES2194061T3/en not_active Expired - Lifetime
- 1995-10-04 EP EP95937338A patent/EP0787167B1/en not_active Expired - Lifetime
- 1995-10-04 CN CN95196493A patent/CN1070208C/en not_active Expired - Lifetime
- 1995-10-04 JP JP51394796A patent/JP3118759B2/en not_active Expired - Lifetime
- 1995-10-04 KR KR1019970702614A patent/KR100358856B1/en not_active IP Right Cessation
- 1995-10-04 NZ NZ29583795A patent/NZ295837A/en not_active IP Right Cessation
- 1995-10-04 RU RU97107889A patent/RU2171263C2/en not_active IP Right Cessation
- 1995-10-04 DE DE1995630854 patent/DE69530854T2/en not_active Expired - Lifetime
- 1995-10-04 WO PCT/US1995/012773 patent/WO1996012762A1/en active IP Right Grant
- 1995-10-13 IL IL11561895A patent/IL115618A0/en unknown
- 1995-10-20 PE PE28248495A patent/PE24096A1/en not_active Application Discontinuation
- 1995-10-20 MY MYPI95003151A patent/MY121203A/en unknown
- 1995-10-20 CO CO95049448A patent/CO4440533A1/en unknown
- 1995-10-20 ZA ZA958897A patent/ZA958897B/en unknown
- 1995-11-09 TW TW84111871A patent/TW381098B/en not_active IP Right Cessation
-
1996
- 1996-11-13 US US08/748,321 patent/US5874139A/en not_active Expired - Lifetime
-
1997
- 1997-01-27 US US08/788,981 patent/US5747594A/en not_active Expired - Lifetime
- 1997-04-18 NO NO19971819A patent/NO313640B1/en unknown
- 1997-05-21 FI FI972169A patent/FI118085B/en not_active IP Right Cessation
Patent Citations (299)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA684471A (en) | 1964-04-14 | The Dow Chemical Company | Polypropylene rubber blends | |
US4076698B1 (en) * | 1956-03-01 | 1993-04-27 | Du Pont | |
US4076698A (en) * | 1956-03-01 | 1978-02-28 | E. I. Du Pont De Nemours And Company | Hydrocarbon interpolymer compositions |
US3231636A (en) * | 1958-03-20 | 1966-01-25 | Union Carbide Corp | High shear strength blends of high and low density polyethylene |
US3014702A (en) * | 1958-12-01 | 1961-12-26 | Dow Chemical Co | Heat exchanger |
US2983704A (en) * | 1959-10-13 | 1961-05-09 | Du Pont | Blends of high density and low density ethylene polymers and films thereof |
US3239197A (en) * | 1960-05-31 | 1966-03-08 | Dow Chemical Co | Interfacial surface generator |
GB942363A (en) | 1961-02-17 | 1963-11-20 | Dow Chemical Co | Polypropylene rubber blends |
US3247290A (en) * | 1961-07-13 | 1966-04-19 | Phillips Petroleum Co | Extrusion coating resin comprising a blend of low density polyethylene and thermally degraded high density polyethylene |
US4048428A (en) * | 1961-12-05 | 1977-09-13 | W. R. Grace & Co. | Method for preparing a film of vinylidene chloride polymer |
US3340328A (en) * | 1962-12-13 | 1967-09-05 | Continental Oil Co | Blends of polyethylenes having improved properties |
GB1065568A (en) | 1964-12-28 | 1967-04-19 | Dow Chemical Co | Polypropylene blends having improved impact strength |
US3555604A (en) * | 1965-03-12 | 1971-01-19 | Union Carbide Corp | Biaxial orientation |
US3456044A (en) * | 1965-03-12 | 1969-07-15 | Heinz Erich Pahlke | Biaxial orientation |
US3491073A (en) * | 1965-08-13 | 1970-01-20 | Dow Chemical Co | Process for the polymerization of olefins |
US3371464A (en) * | 1965-10-15 | 1968-03-05 | Joseph S. Swick | Skin packaging apparatus |
US3645992A (en) * | 1967-03-02 | 1972-02-29 | Du Pont Canada | Process for preparation of homogenous random partly crystalline copolymers of ethylene with other alpha-olefins |
US3914342A (en) * | 1971-07-13 | 1975-10-21 | Dow Chemical Co | Ethylene polymer blend and polymerization process for preparation thereof |
US3998914A (en) * | 1972-02-01 | 1976-12-21 | Du Pont Of Canada Limited | Film from a blend of high density polyethylene and a low density ethylene polymer |
US4011384A (en) * | 1974-06-29 | 1977-03-08 | Chemische Werke Huls Aktiengesellschaft | Process for the production of crystalline terpolymers of ethene, butene-1 and butene-2 |
US3974241A (en) * | 1974-11-18 | 1976-08-10 | Exxon Research And Engineering Company | Blends of sulfonated elastomers with crystalline polyolefins |
US4205021A (en) * | 1977-01-27 | 1980-05-27 | Mitsui Petrochemical Industries, Ltd. | Ethylene copolymers |
US4314912A (en) * | 1977-02-03 | 1982-02-09 | The Dow Chemical Company | High efficiency, high temperature catalyst for polymerizing olefins |
US4542886A (en) * | 1977-10-11 | 1985-09-24 | Y. Toyoda International Patent Office | Process for preparing cold drawn film from an ethylene-α-olefin copolymer and at least one of low-density polyethylene or ethylene copolymers and polypropylene, high density polyethylene or crystalline polybutadiene |
US4243619A (en) * | 1978-03-31 | 1981-01-06 | Union Carbide Corporation | Process for making film from low density ethylene hydrocarbon copolymer |
US4302566A (en) * | 1978-03-31 | 1981-11-24 | Union Carbide Corporation | Preparation of ethylene copolymers in fluid bed reactor |
US4390677A (en) * | 1978-03-31 | 1983-06-28 | Karol Frederick J | Article molded from ethylene hydrocarbon copolymer |
US4194039A (en) * | 1978-04-17 | 1980-03-18 | W. R. Grace & Co. | Multi-layer polyolefin shrink film |
US5084540A (en) | 1978-08-02 | 1992-01-28 | Montedison S.P.A. | Ethylene/butene-1 copolymers |
US4303710A (en) * | 1978-08-16 | 1981-12-01 | Mobil Oil Corporation | Coextruded multi-layer polyethylene film and bag construction |
US4259468A (en) * | 1978-08-17 | 1981-03-31 | Mitsui Petrochemical Industries Ltd. | Ethylene-α-olefin-polyene rubbery terpolymer and process for production thereof |
US4188443A (en) * | 1978-08-30 | 1980-02-12 | W. R. Grace & Co. | Multi-layer polyester/polyolefin shrink film |
US4399180A (en) * | 1978-09-15 | 1983-08-16 | Mobil Oil Corporation | Coextruded thermoplastic stretch-wrap |
US4438243A (en) * | 1978-10-18 | 1984-03-20 | Mitsui Petrochemical Industries, Ltd. | Process for producing random ethylene terpolymer |
US4229241A (en) * | 1978-12-04 | 1980-10-21 | W. R. Grace & Co. | Process for making a multi layer polyolefin shrink film |
US4328328A (en) * | 1978-12-11 | 1982-05-04 | Mitsui Petrochemical Industries Ltd. | Continuous process for production of olefin polymers or copolymers |
US4303771A (en) * | 1978-12-14 | 1981-12-01 | Union Carbide Corporation | Process for the preparation of high density ethylene polymers in fluid bed reactor |
US4320088A (en) * | 1978-12-28 | 1982-03-16 | Societe Chimique Des Charbonnages-Cdf Chimie | Process and apparatus for widening the polyethylene molecular weight distribution by using two reactors and two separators |
US4383095A (en) * | 1979-02-16 | 1983-05-10 | Union Carbide Corporation | Process for the preparation of high density ethylene polymers in fluid bed reactor |
US4588794A (en) | 1979-04-13 | 1986-05-13 | Mitsui Petrochemical Industries, Ltd. | Process for production of rubbery ethylene/1-butene/polyene copolymers |
US4230831A (en) * | 1979-05-18 | 1980-10-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Polyethylene blend composition |
US4359561A (en) * | 1979-06-18 | 1982-11-16 | Union Carbide Corporation | High tear strength polymers |
US4363904A (en) * | 1979-06-18 | 1982-12-14 | Union Carbide Corporation | High tear strength polymers |
US4330646A (en) * | 1979-08-13 | 1982-05-18 | Asahi Kasei Kogyo Kabushiki Kaisha | Polymerization of an α-olefin |
US4463153A (en) * | 1979-08-20 | 1984-07-31 | Kohjin Co., Ltd. | Heat shrinkable film and process for preparing the same |
US4467065A (en) * | 1979-09-10 | 1984-08-21 | Becton Dickinson And Company | Semi-crystalline polymers stabilized for irradiation sterilization |
US4339493A (en) * | 1979-10-05 | 1982-07-13 | Mobil Oil Corporation | Heat sealable packaging film comprising propylene polymer substrate and olefin surface layer blend of polybutene-1 and an ethylene or a propylene copolymer |
US4339496A (en) * | 1979-10-05 | 1982-07-13 | Mobil Oil Corporation | Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of ethylene copolymer and propylene copolymer |
US4340641A (en) * | 1979-10-05 | 1982-07-20 | Mobil Oil Corporation | Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of ethylene copolymer and propylene copolymer |
US4340640A (en) * | 1979-10-05 | 1982-07-20 | Mobil Oil Corporation | Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of ethylene copolymer and propylene copolymer |
US4482687A (en) * | 1979-10-26 | 1984-11-13 | Union Carbide Corporation | Preparation of low-density ethylene copolymers in fluid bed reactor |
US4330639A (en) * | 1979-12-26 | 1982-05-18 | Nippon Oil Company, Ltd. | Polymer blend composition for forming polyethylene film |
US4390573A (en) * | 1980-03-03 | 1983-06-28 | Mobil Oil Corporation | Laminar thermoplastic film constructions |
US4629771A (en) | 1980-03-24 | 1986-12-16 | Imperial Chemical Industries, Plc | Process for polymerizing olefins with a spray-dried catalyst |
US4424138A (en) * | 1980-03-24 | 1984-01-03 | Imperial Chemical Industries Plc | Drying process and product |
US4348346A (en) * | 1980-07-23 | 1982-09-07 | Champion International Corporation | Polyester film extrusion with edge bead control |
US4429079A (en) * | 1980-08-07 | 1984-01-31 | Mitsui Petrochemical Industries, Ltd. | Ethylene/alpha-olefin copolymer composition |
US4380567A (en) * | 1980-10-09 | 1983-04-19 | Mitsui Petrochemical Industries, Ltd. | Ethylenic composite film structure |
US4786688A (en) | 1980-11-13 | 1988-11-22 | Bp Chimie | Polyethylene composition for extrusion, particularly for blow moulding |
US4346834A (en) * | 1980-11-18 | 1982-08-31 | Mobil Oil Corporation | Thermoplastic carrying bag with polyolefin resin blend |
US4339507A (en) * | 1980-11-26 | 1982-07-13 | Union Carbide Corporation | Linear low density ethylene hydrocarbon copolymer containing composition for extrusion coating |
US4405774A (en) * | 1980-12-23 | 1983-09-20 | Mitsubishi Petrochemical Company Limited | Ethylene copolymer |
US4438238A (en) * | 1981-01-30 | 1984-03-20 | Sumitomo Chemical Company, Limited | Low density copolymer composition of two ethylene-α-olefin copolymers |
US4387185A (en) * | 1981-02-25 | 1983-06-07 | Shell Oil Company | Cracked blend of propylene copolymer and E/VA |
US4359495A (en) * | 1981-02-25 | 1982-11-16 | Shell Oil Company | Retort-sterilizable pouch |
US4352849A (en) * | 1981-03-26 | 1982-10-05 | W. R. Grace & Co. | Coextruded, heat-shrinkable, multi-layer, polyolefin packaging film |
US4597920A (en) | 1981-04-23 | 1986-07-01 | E. I. Du Pont De Nemours And Company | Shrink films of ethylene/α-olefin copolymers |
US4365044A (en) * | 1981-05-15 | 1982-12-21 | Hercules Incorporated | Polypropylene composition for extrusion coating |
US4367256A (en) * | 1981-05-15 | 1983-01-04 | Union Carbide Corporation | Cling-wrap polyethylene film |
US4352844A (en) * | 1981-05-29 | 1982-10-05 | W. R. Grace & Co. | Thermoplastic film having improved handling and sealing characteristics and receptacle formed therefrom |
US4391862A (en) * | 1981-07-02 | 1983-07-05 | W. R. Grace & Co., Cryovac Division | Pasteurizable thermoplastic film and receptacle therefrom |
US4624991A (en) | 1981-07-15 | 1986-11-25 | Societe Chimique Des Charbonnages-Cdf Chimie | Cold-stretchable, self-adhesive film composition |
US4354009A (en) * | 1981-07-30 | 1982-10-12 | Union Carbide Corporation | Catalyst composition for copolymerizing ethylene |
US4349648A (en) * | 1981-07-31 | 1982-09-14 | Union Carbide Corporation | Catalyst composition for copolymerizing ethylene |
US4359553A (en) * | 1981-09-14 | 1982-11-16 | Eastman Kodak Company | Polyethylene extrusion coating compositions |
US4378451A (en) * | 1981-09-14 | 1983-03-29 | Eastman Kodak Company | High flow rate polyolefin extrusion coating compositions |
US4427573A (en) * | 1981-09-16 | 1984-01-24 | Union Carbide Corporation | Polymerization catalyst, process for preparing, and use for ethylene polymerization |
US4474740A (en) * | 1981-10-21 | 1984-10-02 | Linde Aktiengesellschaft | Method for regenerating physically acting organic scrubbing agents |
US4465812A (en) * | 1981-10-23 | 1984-08-14 | Asahi Kasei Kogyo Kabushiki Kaisha | Linear medium- or low-density polyethylene composition |
US4513038A (en) * | 1981-11-03 | 1985-04-23 | Union Carbide Corporation | Multilayer film having a layer of low pressure, low density heterogeneous ethylene copolymers |
US4464426A (en) * | 1981-11-03 | 1984-08-07 | Union Carbide Corporation | Multilayer film having a layer of low pressure, low density heterogeneous ethylene copolymers |
US4370456A (en) * | 1981-11-23 | 1983-01-25 | Union Carbide Corporation | Catalyst composition for copolymerizing ethylene |
US4379197A (en) * | 1981-12-02 | 1983-04-05 | El Paso Polyolefins Company | Stretch wrap film composition |
US5025072A (en) | 1981-12-04 | 1991-06-18 | Mobil Oil Corporation | Highly active catalyst composition for polymerizing alpha-olefins |
US4486579A (en) * | 1981-12-24 | 1984-12-04 | Societe Chimique Des Charbonnages | Modified copolymers of ethylene and α-olefins and a process for their preparation |
US4452958A (en) * | 1981-12-30 | 1984-06-05 | Mobil Oil Corporation | Olefin polymerization with catalysts derived from chromium exchanged zeolites |
US4532189A (en) * | 1982-02-19 | 1985-07-30 | W. R. Grace & Co., Cryovac Div. | Linear polyethylene shrink films |
US4519968A (en) * | 1982-02-20 | 1985-05-28 | Chemische Werke Huls Ag | Manufacturing dimensionally stable shaped hollow sections from aliphatic polyamides and their applications |
US4427833A (en) * | 1982-03-19 | 1984-01-24 | Eastman Kodak Company | Polyethylene extrusion coating compositions |
US4803253A (en) | 1982-03-30 | 1989-02-07 | Phillips Petroleum Company | Ethylene polymer produced using a catalyst comprising a phosphate and with a bis-(cyclopentadienyl)chromium(II) compound |
US4410649A (en) * | 1982-03-31 | 1983-10-18 | Union Carbide Corporation | Ethylene polymer compositions having improved transparency |
US4418114A (en) * | 1982-04-29 | 1983-11-29 | Mobil Oil Corporation | Coextruded thermoplastic stretch-wrap |
US4510303A (en) * | 1982-05-06 | 1985-04-09 | Mitsui Petrochemical Industries, Ltd. | Ethylene-alpha-olefin-polyene random copolymer rubber |
US4461873A (en) * | 1982-06-22 | 1984-07-24 | Phillips Petroleum Company | Ethylene polymer blends |
US4547551A (en) * | 1982-06-22 | 1985-10-15 | Phillips Petroleum Company | Ethylene polymer blends and process for forming film |
US4421162A (en) * | 1982-06-25 | 1983-12-20 | The Dow Chemical Company | Flat plate heat exchange apparatus |
US4563504A (en) * | 1982-06-30 | 1986-01-07 | Societe Chimique Des Charbonnages, S.A. | Propylene and ethylene/α-olefin copolymer combinations applicable to the manufacture of mono-oriented yarns |
US4626574A (en) | 1982-07-21 | 1986-12-02 | Clopay Corporation | Linear low density polyethylene film and method of making |
US4668463A (en) | 1982-07-21 | 1987-05-26 | Clopay Corporation | Method of making linear low density polyethylene film |
US4987212A (en) | 1982-09-07 | 1991-01-22 | Bp Chimie Societe Anonyme | Copolymerization of ethylene and an alpha-olefin having six carbon atoms comprising hexene-1 or 4-methyl-pentene-1 in a fluidized bed |
US4486377A (en) * | 1982-09-27 | 1984-12-04 | Union Carbide Corporation | Process for reducing draw resonance in polymeric film |
US4588650A (en) | 1982-09-29 | 1986-05-13 | The Dow Chemical Company | Olefin polymer stretch/cling film |
US4461792A (en) * | 1982-09-30 | 1984-07-24 | Union Carbide Corporation | Poly-1-butene multilayers plastic film |
US4505970A (en) * | 1982-09-30 | 1985-03-19 | Union Carbide Corporation | Multilayer films comprising mixtures of a melt index and 2 melt index linear low density polyethylene |
US4544762A (en) * | 1982-11-02 | 1985-10-01 | Hoechst Aktiengesellschaft | Process for the preparation of oligomeric aluminoxanes |
US4454281A (en) * | 1982-12-01 | 1984-06-12 | Union Carbide Corporation | Formulation for high clarity linear low density polyethylene film products |
US4486552A (en) * | 1983-02-28 | 1984-12-04 | The Dow Chemical Company | Fog-resistant olefin polymer films |
US4598128A (en) | 1983-03-14 | 1986-07-01 | Phillips Petroleum Company | Polymer composition and preparation method |
US4485217A (en) * | 1983-04-13 | 1984-11-27 | Mobil Oil Corporation | Method for reducing shrinkage of injection molded linear low density polyethylene |
US4742138A (en) | 1983-05-09 | 1988-05-03 | Mitsubishi Petrochemical Company Limited | Production of ethylene copolymers |
US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
EP0129368B1 (en) | 1983-06-06 | 1989-07-26 | Exxon Research And Engineering Company | Process and catalyst for polyolefin density and molecular weight control |
US4935474A (en) | 1983-06-06 | 1990-06-19 | Exxon Research & Engineering Company | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
US4530914A (en) * | 1983-06-06 | 1985-07-23 | Exxon Research & Engineering Co. | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
CA1260490A (en) | 1983-06-06 | 1989-09-26 | Exxon Research And Engineering Company | Process and catalyst for polyolefin density and molecular weight control |
US4599392A (en) | 1983-06-13 | 1986-07-08 | The Dow Chemical Company | Interpolymers of ethylene and unsaturated carboxylic acids |
US4716207A (en) | 1983-06-15 | 1987-12-29 | Exxon Research & Engineering Co. | Nodular copolymers comprising narrow MWD alpha-olefin copolymers coupled by non-conjugated dienes |
US4874820A (en) | 1983-06-15 | 1989-10-17 | Exxon Research And Engineering Company | Copolymer compositions containing a narrow MWD component and process of making same |
US4882406A (en) | 1983-06-15 | 1989-11-21 | Exxon Research & Engineering Company | Nodular copolymers formed of alpha-olefin copolymers coupled by non-conjugated dienes |
US5013801A (en) | 1983-06-15 | 1991-05-07 | Charles Cozewith | Molecular weight distribution modification in a tubular reactor |
US4959436A (en) | 1983-06-15 | 1990-09-25 | Exxon Research And Engineering Co. | Narrow MWD alpha-olefin copolymers |
US4792595A (en) | 1983-06-15 | 1988-12-20 | Exxon Research & Engineering Co. | Narrow MWD alpha-olefin copolymers |
US4789714A (en) | 1983-06-15 | 1988-12-06 | Exxon Research & Engineering Co. | Molecular weight distribution modification in tubular reactor |
US4690991A (en) | 1983-06-22 | 1987-09-01 | Neste Oy | Procedure for making copolymers of ethylene and long-chained alpha olefins |
US4834947A (en) | 1983-09-01 | 1989-05-30 | Mobil Oil Corporation | Reactor system for rapid kill gas injection to gas phase polymerization reactors |
US4547555A (en) * | 1983-09-01 | 1985-10-15 | Mobil Oil Corporation | Method for rapid kill gas injection to gas phase polymerization reactors during power failures |
US4666999A (en) | 1983-09-01 | 1987-05-19 | Mobil Oil Corporation | Method and reactor system for rapid kill gas injection to gas phase polymerization reactors |
US4767485A (en) | 1983-09-30 | 1988-08-30 | Exxon Research & Engineering Co. | High speed extrusion coating with ethylene copolymers |
US4668752A (en) | 1983-10-21 | 1987-05-26 | Mitsui Petrochemical Industries, Ltd. | Linear ethylene copolymer |
US4808635A (en) | 1983-11-22 | 1989-02-28 | Hercules Incorporated | Method for making a dicyclopentadiene cross-linked polymer and the product thereof |
US4599391A (en) | 1983-12-20 | 1986-07-08 | Nippon Petrochemicals Company, Limited | Coating composition for power cable |
US4617241A (en) | 1984-01-23 | 1986-10-14 | W. R. Grace & Co., Cryovac Div. | Linear polyethylene stretch/shrink films |
US4587318A (en) | 1984-01-27 | 1986-05-06 | Nippon Petrochemicals Company, Limited | Ethylene copolymer compositions for rotational molding |
US4690992A (en) | 1984-03-28 | 1987-09-01 | California Institute Of Technology | Polymerization of difunctional ring compounds |
US4593009A (en) | 1984-04-04 | 1986-06-03 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4672096A (en) | 1984-04-04 | 1987-06-09 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4632801A (en) | 1984-04-09 | 1986-12-30 | Norchem, Inc. | Blown film extrusion |
US4564063A (en) | 1984-04-16 | 1986-01-14 | The Dow Chemical Company | Annular heat exchanger |
US4649001A (en) | 1984-04-17 | 1987-03-10 | Japan Styrene Paper Corporation | Process for producing polyethylene extruded foams |
US4618662A (en) | 1984-04-23 | 1986-10-21 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4857611A (en) | 1984-05-02 | 1989-08-15 | Bp Chemicals Limited | Gas fluidized bed terpolymerization of olefins |
US4551380A (en) * | 1984-05-10 | 1985-11-05 | W. R. Grace & Co., Cryovac Div. | Oriented heat-sealable multilayer packaging film |
US4514465A (en) * | 1984-05-30 | 1985-04-30 | W. R. Grace & Co., Cryovac Div. | Storm window film comprising at least five layers |
US4568713A (en) | 1984-05-30 | 1986-02-04 | Shell Oil Company | Hot melt poly(butylene/ethylene) adhesives |
US4528312A (en) * | 1984-06-27 | 1985-07-09 | Eastman Kodak Company | Degraded polyolefin containing extrusion coating compositions having good adhesion to a substrate at fast coating speeds |
US4526919A (en) * | 1984-06-27 | 1985-07-02 | Eastman Kodak Company | Polyolefin extrusion coating compositions having good coatability and good adhesion to the substrate |
US4921920A (en) | 1984-06-28 | 1990-05-01 | Bp Chemicals Limited | Process for the polymerization or copolymerization of alpha-olefins in a fluidized bed, in the presence of a Ziegler-Natta catalyst system |
US4547475A (en) * | 1984-09-07 | 1985-10-15 | The Dow Chemical Company | Magnesium halide catalyst support and transition metal catalyst prepared thereon |
US4764549A (en) | 1984-09-07 | 1988-08-16 | Vulkor, Incorporated | Low temperature curing of elastomer |
US4737391A (en) | 1984-12-03 | 1988-04-12 | Viskase Corporation | Irradiated multilayer film for primal meat packaging |
US4613547A (en) | 1984-12-19 | 1986-09-23 | Mobil Oil Corporation | Multi-layer oriented polypropylene films |
US4608221A (en) | 1984-12-28 | 1986-08-26 | Union Carbide Corporation | Process for reducing draw resonance in polymeric film |
US4564559A (en) | 1984-12-28 | 1986-01-14 | Mobil Oil Corporation | Oriented multi-layer heat sealable film |
US4762898A (en) | 1985-03-08 | 1988-08-09 | Mitsubishi Petrochemical Company Limited | Process for polymerizing ethylene |
US4788232A (en) | 1985-03-11 | 1988-11-29 | Phillips Petroleum Company | Pigment concentrates for resins |
US4643926A (en) | 1985-04-29 | 1987-02-17 | W. R. Grace & Co., Cryovac Div. | Flexible medical solution pouches |
US4640856A (en) | 1985-04-29 | 1987-02-03 | W. R. Grace & Co., Cryovac Div. | Multi-layer packaging film and receptacles made therefrom |
US4666772A (en) | 1985-05-11 | 1987-05-19 | Wolff Walsrode Aktiengesellschaft | Opaque, heat sealable multilayer polyolefin films |
US4692386A (en) | 1985-05-11 | 1987-09-08 | Wolff Walsrode Aktiengesellschaft | Sealable multilayer polyolefin films |
US4755403A (en) | 1985-06-03 | 1988-07-05 | W. R. Grace & Co., Cryovac Div. | Protective patch for shrinkable bag |
US4842951A (en) | 1985-06-05 | 1989-06-27 | Idemitsu Petrochemical Company Limited | Thermoforming resin laminate sheet |
US4612300A (en) | 1985-06-06 | 1986-09-16 | The Dow Chemical Company | Novel catalyst for producing relatively narrow molecular weight distribution olefin polymers |
US4668575A (en) | 1985-06-12 | 1987-05-26 | Wolff Walsrode Aktiengesellschaft | Heat sealable multilayer films with low permeability to gas and their use as packaging material |
US4714638A (en) | 1985-06-14 | 1987-12-22 | Viskase Corporation | Irradiated multilayer film for primal meat packaging |
US4863769A (en) | 1985-06-17 | 1989-09-05 | Viskase Corporation | Puncture resistant, heat-shrinkable films containing very low density polyethylene |
US5059481A (en) | 1985-06-17 | 1991-10-22 | Viskase Corporation | Biaxially stretched, heat shrinkable VLDPE film |
US4976898A (en) | 1985-06-17 | 1990-12-11 | Viskase Corporation | Process for making puncture resistant, heat-shrinkable films containing very low density polyethylene |
US4722971A (en) | 1985-08-02 | 1988-02-02 | Exxon Chemical Patents Inc. | Easy processing ethylene propylene elastomers |
US4724185A (en) | 1985-09-17 | 1988-02-09 | W. R. Grace & Co., Cryovac Div. | Oxygen barrier oriented film |
US4801486A (en) | 1985-09-30 | 1989-01-31 | W. R. Grace & Co.-Conn. | Thermoplastic multi-layer packaging film and bags made therefrom |
US4803122A (en) | 1985-10-11 | 1989-02-07 | W. R. Grace & Co. | Multilayer laminate of self supporting films |
US4720427A (en) | 1985-10-28 | 1988-01-19 | Mobil Oil Corporation | Oriented multi-layer heat sealable film |
US4954391A (en) | 1985-11-07 | 1990-09-04 | Showa Denko Kabushiki Kaisha | High density polyethylene type transparent film and process for production thereof |
US4701432A (en) | 1985-11-15 | 1987-10-20 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
US4798081A (en) | 1985-11-27 | 1989-01-17 | The Dow Chemical Company | High temperature continuous viscometry coupled with analytic temperature rising elution fractionation for evaluating crystalline and semi-crystalline polymers |
US4892911A (en) | 1985-11-29 | 1990-01-09 | American National Can Company | Films using blends of polypropylene and polyisobutylene |
US5073599A (en) | 1985-11-29 | 1991-12-17 | American National Can Company | Films using blends of polypropylene and polyisobutylene |
US4775710A (en) | 1985-12-12 | 1988-10-04 | Mallinckrodt, Inc. | Stabilized linear low-density polyethylene containing ring-substituted N-acyl-para-aminophenol |
US4808262A (en) | 1985-12-16 | 1989-02-28 | General Electric Company | Method for devolatilizing polymer solutions |
US4626467A (en) | 1985-12-16 | 1986-12-02 | Hercules Incorporated | Branched polyolefin as a quench control agent for spin melt compositions |
US4843129A (en) | 1985-12-27 | 1989-06-27 | Exxon Research & Engineering Company | Elastomer-plastic blends |
US5011891A (en) | 1985-12-27 | 1991-04-30 | Exxon Research & Engineering Company | Elastomer polymer blends |
US4677087A (en) | 1986-01-03 | 1987-06-30 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution |
US4668650A (en) | 1986-01-03 | 1987-05-26 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution |
US4876321A (en) | 1986-01-03 | 1989-10-24 | Mobil Oil Corporation | Preparation of alpha-olefin polymers of relatively narrow molecular weight distribution |
US4865902A (en) | 1986-01-17 | 1989-09-12 | E. I. Du Pont De Nemours And Company | Multilayered polyolefin high shrinkage, low-shrink force shrink film |
US4888318A (en) | 1986-01-24 | 1989-12-19 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4732882A (en) | 1986-01-24 | 1988-03-22 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US5055533A (en) | 1986-01-24 | 1991-10-08 | Mobil Oil Corporation | Process for polymerizing alpha-olefins with trimethylaluminum-activated catalyst |
USRE33683E (en) * | 1986-01-24 | 1991-09-03 | Mobil Oil Corporation | Catalyst composition for polymerizing alpha-olefins |
US4801652A (en) | 1986-03-03 | 1989-01-31 | Kohjin Co., Ltd. | Heat shrinkable film |
US4710538A (en) | 1986-03-10 | 1987-12-01 | Union Carbide Corporation | Process for the production of a sticky polymer |
US4659685A (en) | 1986-03-17 | 1987-04-21 | The Dow Chemical Company | Heterogeneous organometallic catalysts containing a supported titanium compound and at least one other supported organometallic compound |
US4755419A (en) | 1986-03-21 | 1988-07-05 | W. R. Grace & Co., Cryovac Div. | Oxygen barrier oriented shrink film |
US4842187A (en) | 1986-04-04 | 1989-06-27 | Hoechst Aktiengesellschaft | Opaque film for candy twist wrapping |
US4676922A (en) | 1986-04-04 | 1987-06-30 | Gencorp Inc. | Preblends |
US4963427A (en) | 1986-04-15 | 1990-10-16 | W. R. Grace & Co.-Conn. | Multilayer packaging film |
US4883853A (en) | 1986-06-26 | 1989-11-28 | Ruhrchemie Aktiengesellachaft | Copolymers of ethylene and 2,4,4-trimethylpentene-1 |
US4842930A (en) | 1986-07-19 | 1989-06-27 | Wolff Walsrode Aktiengesellschaft | Heat-sealable multi-layer films of polyolefins |
US4828906A (en) | 1986-09-05 | 1989-05-09 | Mitsui Petrochemical Industries, Ltd. | Resin composition and film suitable for agricultural covering material |
US5077255A (en) | 1986-09-09 | 1991-12-31 | Exxon Chemical Patents Inc. | New supported polymerization catalyst |
US4983447A (en) | 1986-09-13 | 1991-01-08 | Hoechst Aktiengesellschaft | Biaxially oriented opaque polyolefin multi-layer film |
US4925728A (en) | 1986-09-13 | 1990-05-15 | Hoechst Aktiengesellschaft | Multilayer film suitable as a release sheet in the production of decorative laminate panels |
US4719193A (en) | 1986-09-30 | 1988-01-12 | Union Carbide Corporation | Processes for preparing polyethylene catalysts by heating catalyst precursors |
US4820589A (en) | 1986-11-17 | 1989-04-11 | Mobil Oil Corporation | Cling/no cling-slip stretch wrap film |
US5055338A (en) | 1987-03-11 | 1991-10-08 | Exxon Chemical Patents Inc. | Metallized breathable films prepared from melt embossed polyolefin/filler precursor films |
US4975315A (en) | 1987-03-20 | 1990-12-04 | Hoechst Aktiengesellschaft | Metallizable multi-ply film |
US5084039A (en) | 1987-03-27 | 1992-01-28 | Clopay Corporation | Disposable diapers, absorbent articles and thermoplastic sheet material having improving tape adhesion |
US5066738A (en) | 1987-04-09 | 1991-11-19 | Fina Technology, Inc. | Polymerization of olefins with an improved catalyst system using a new electron donor |
US4927708A (en) | 1987-04-10 | 1990-05-22 | W. R. Grace & Co.-Conn. | Flexible stretch/shrink film |
US4963388A (en) | 1987-04-17 | 1990-10-16 | Mobil Oil Corporation | Method for forming particle-impregnated one-sided cling stretch wrap film |
US4833017A (en) | 1987-04-17 | 1989-05-23 | Mobil Oil Corporation | Particle-impregnated one-sided cling stretch wrap film |
US4963419A (en) | 1987-05-13 | 1990-10-16 | Viskase Corporation | Multilayer film having improved heat sealing characteristics |
US4780264A (en) | 1987-05-22 | 1988-10-25 | The Dow Chemical Company | Linear low density polyethylene cast film |
US4988465A (en) | 1987-05-28 | 1991-01-29 | Viskase Corporation | Manufacture of multilayer film containing very low density polyethylene |
US4863784A (en) | 1987-05-28 | 1989-09-05 | Viskase Corporation | Multilayer film containing very low density polyethylene |
US4863784C1 (en) | 1987-05-28 | 2001-05-01 | Bt Commercial Corp | Multilayer film containing very low density polyethylene |
US5084534A (en) | 1987-06-04 | 1992-01-28 | Exxon Chemical Patents, Inc. | High pressure, high temperature polymerization of ethylene |
US5118753A (en) | 1987-07-08 | 1992-06-02 | Sumitomo Chemical Company, Limited | Olefinic thermoplastic elastomer composition |
US5091228A (en) | 1987-07-13 | 1992-02-25 | Mitsubishi Kasei Corporation | Linear polyethylene film and process for producing the same |
US4770912A (en) | 1987-07-23 | 1988-09-13 | Union Camp Corporation | Polyethylene resin blend |
US4826939A (en) | 1987-08-31 | 1989-05-02 | Eastman Kodak Company | Highly amorphous olefin terpolymer |
US4824912A (en) | 1987-08-31 | 1989-04-25 | Mobil Oil Corporation | Terblends and films of LLDPE, LMW-HDPE and HMW-HDPE |
US5015749A (en) | 1987-08-31 | 1991-05-14 | The Dow Chemical Company | Preparation of polyhydrocarbyl-aluminoxanes |
US4968765A (en) | 1987-09-05 | 1990-11-06 | Mitsui Petrochemical Industries, Ltd. | Molecularly oriented molded body of ultra-high-molecular-weight ethylene/polyene copolymer |
US5024799A (en) | 1987-09-14 | 1991-06-18 | Tredegar Industries, Inc. | Method for producing an embossed oriented film |
US4820557A (en) | 1987-09-17 | 1989-04-11 | W. R. Grace & Co.-Conn. | Thermoplastic packaging film of low I10 /I2 |
US5026610A (en) | 1987-10-20 | 1991-06-25 | Courtaulds Films & Packaging (Holdings) Ltd. | Polymeric films |
US4830926A (en) | 1987-10-30 | 1989-05-16 | Shell Oil Company | Poly-1-butene blend adhesives for laminar structure |
US4824889A (en) | 1987-10-30 | 1989-04-25 | Shell Oil Company | Poly-1-butene blend adhesives |
US4937112A (en) | 1987-12-18 | 1990-06-26 | W. R. Grace & Co.-Conn. | High strength coextruded film for chub packaging |
US5106545A (en) | 1987-12-21 | 1992-04-21 | W. R. Grace & Co.-Conn. | Oriented polymeric films and process for enhanced orientation of polymeric films |
US4957790A (en) | 1987-12-21 | 1990-09-18 | W. R. Grace & Co.-Conn. | Oriented polymeric films |
US4886690A (en) | 1987-12-21 | 1989-12-12 | W. R. Grace & Co. | Peelable barrier film for vacuum skin packages and the like |
US4923750A (en) | 1987-12-30 | 1990-05-08 | Co-Ex Plastics, Inc. | Thermoplastic stretch-wrap material |
US4859379A (en) | 1987-12-30 | 1989-08-22 | Mobil Oil Corporation | Process for reducing draw resonance by heating film after extrusion |
US4977022A (en) | 1988-03-15 | 1990-12-11 | W. R. Grace & Co.-Conn. | Barrier stretch film |
US5006398A (en) | 1988-03-18 | 1991-04-09 | Exxon Chemical Patents Inc. | Food wrap film |
US5028663A (en) | 1988-04-28 | 1991-07-02 | Chung Chan I | Solid state processing of polymer blends |
US5015511A (en) | 1988-05-12 | 1991-05-14 | The Dow Chemical Company | Linear low density ethylene interpolymers for injection molding |
US5106688A (en) | 1988-05-20 | 1992-04-21 | W. R. Grace & Co.-Conn. | Multi-layer packaging film and process |
US5082908A (en) | 1988-06-08 | 1992-01-21 | Sumitomo Chemical Co., Ltd. | Ethylene-α-olefin copolymer and process for producing the same |
US4967898A (en) | 1988-06-14 | 1990-11-06 | Fael S.A. | Conveyor apparatus for the transport of sheet metal blanks |
US4981760A (en) | 1988-07-11 | 1991-01-01 | Sumitomo Chemical Company, Limited | Ethylene-alpha-olefin copolymer and films obtained therefrom |
US5084134A (en) | 1988-07-16 | 1992-01-28 | Montedipe S.R.L. | Process for the devolatilization of polymer solutions |
US5032463A (en) | 1988-07-18 | 1991-07-16 | Viskase Corporation | Very low density polyethylene film from blends |
US5006396A (en) | 1988-07-25 | 1991-04-09 | Xerox Corporation | Moisture proof thermally actuated binding tape for books |
US4966951A (en) | 1988-09-26 | 1990-10-30 | Phillips Petroleum Company | High strength linear, low density polyethylene polymerization process |
US4996094A (en) | 1988-09-26 | 1991-02-26 | Mobil Oil Corporation | One-sided cling/one-sided slip stretch wrap films |
US5019315A (en) | 1988-10-25 | 1991-05-28 | Mobil Oil Corporation | Preparing multi-layer coextruded polyolefin stretch wrap films |
US5041501A (en) | 1988-11-03 | 1991-08-20 | Mobil Oil Corporation | Blends of linear low density ethylene copolymers |
US4957972A (en) | 1988-11-03 | 1990-09-18 | Mobil Oil Corporation | Blends of linear low density ethylene copolymers |
US5047468A (en) | 1988-11-16 | 1991-09-10 | Union Carbide Chemicals And Plastics Technology Corporation | Process for the in situ blending of polymers |
US4952451A (en) | 1988-11-17 | 1990-08-28 | W. R. Grace & Co.-Conn. | Stretch/shrink film with improved oxygen transmission |
US5041316A (en) | 1988-11-18 | 1991-08-20 | W. R. Grace & Co.-Conn. | Multi-layer film structure for packaging and bags made therefrom |
US5041584A (en) | 1988-12-02 | 1991-08-20 | Texas Alkyls, Inc. | Modified methylaluminoxane |
US4960878A (en) | 1988-12-02 | 1990-10-02 | Texas Alkyls, Inc. | Synthesis of methylaluminoxanes |
US5086024A (en) | 1988-12-02 | 1992-02-04 | Texas Alkyls, Inc. | Catalyst system for polymerization of olefins |
US5218071A (en) | 1988-12-26 | 1993-06-08 | Mitsui Petrochemical Industries, Ltd. | Ethylene random copolymers |
CA2008315C (en) | 1989-01-24 | 1995-03-21 | Toshiyuki Tsutsui | Olefin copolymers and processes for preparing same |
US5132074A (en) | 1989-04-10 | 1992-07-21 | Kohjin Co., Ltd. | Process of making stretchable, heat shrinkable polyethylene film |
US5073452A (en) | 1989-05-09 | 1991-12-17 | Toray Industries, Inc. | Film for print lamination |
US5055328A (en) | 1989-06-16 | 1991-10-08 | Viskase Corporation | Differentially cross-linked multilayer film |
US5043040A (en) | 1989-08-30 | 1991-08-27 | Borden, Inc. | Slitting of plastic film |
EP0416815B1 (en) | 1989-08-31 | 1997-08-13 | The Dow Chemical Company | Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith |
US5026798A (en) | 1989-09-13 | 1991-06-25 | Exxon Chemical Patents Inc. | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
US5057475A (en) | 1989-09-13 | 1991-10-15 | Exxon Chemical Patents Inc. | Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization |
US5055438A (en) | 1989-09-13 | 1991-10-08 | Exxon Chemical Patents, Inc. | Olefin polymerization catalysts |
US5064802A (en) | 1989-09-14 | 1991-11-12 | The Dow Chemical Company | Metal complex compounds |
US5075143A (en) | 1989-09-29 | 1991-12-24 | W. R. Grace & Co.-Conn. | High barrier implosion resistant films |
US5112674A (en) | 1989-11-07 | 1992-05-12 | Exxon Chemical Company Inc. | Cling packaging film for wrapping food products |
US4981826A (en) | 1989-11-17 | 1991-01-01 | Exxon Chemical Patents Inc. | Polymerization catalyst prepared with a halogenated silane compound |
US5068489A (en) | 1989-12-28 | 1991-11-26 | Union Carbide Chemicals And Plastics Technology Corporation | Preparation of very low molecular weight polyethylene in a fluidized bed |
US5055534A (en) | 1989-12-28 | 1991-10-08 | Union Carbide Chemicals And Plastics Technology Corporation | Preparation of very low molecular weight polyethylene in a fluidized bed |
US5102955A (en) | 1989-12-29 | 1992-04-07 | Mobil Oil Corporation | Broad distribution, high molecular weight low density polyethylene and method of making thereof |
EP0436399B1 (en) | 1989-12-29 | 1996-02-07 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst and process for the polymerization of olefins |
US5153039A (en) | 1990-03-20 | 1992-10-06 | Paxon Polymer Company, L.P. | High density polyethylene article with oxygen barrier properties |
US5374700A (en) | 1990-04-18 | 1994-12-20 | Mitsui Petrochemical Industries, Ltd. | Ethylene copolymer |
US5096867A (en) | 1990-06-04 | 1992-03-17 | Exxon Chemical Patents Inc. | Monocyclopentadienyl transition metal olefin polymerization catalysts |
US5041585A (en) | 1990-06-08 | 1991-08-20 | Texas Alkyls, Inc. | Preparation of aluminoxanes |
US5041583A (en) | 1990-06-28 | 1991-08-20 | Ethyl Corporation | Preparation of aluminoxanes |
US5079205A (en) | 1990-07-13 | 1992-01-07 | Exxon Chemical Patents Inc. | Group ivb, vb and vib metal hydrocarbyloxides, with alumoxane for olefin polymerization |
US5189106A (en) | 1990-12-28 | 1993-02-23 | Nippon Petrochemicals Company, Limited | Polyethylene composition |
US5064796A (en) | 1991-01-07 | 1991-11-12 | Exxon Chemical Patents Inc. | Support adjuvant for improved vanadium polymerization catalyst |
US5089321A (en) | 1991-01-10 | 1992-02-18 | The Dow Chemical Company | Multilayer polyolefinic film structures having improved heat seal characteristics |
US5084927A (en) | 1991-02-08 | 1992-02-04 | Tan Sense Medical Corp. | Method for protecting a surface from contaminants |
US5288531A (en) | 1991-08-09 | 1994-02-22 | The Dow Chemical Company | Pouch for packaging flowable materials |
US5395810A (en) | 1991-09-30 | 1995-03-07 | Fina Technology, Inc. | Method of making a homogeneous-heterogenous catalyst system for olefin polymerization |
US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5380810A (en) | 1991-10-15 | 1995-01-10 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5395471A (en) | 1991-10-15 | 1995-03-07 | The Dow Chemical Company | High drawdown extrusion process with greater resistance to draw resonance |
US5206075A (en) | 1991-12-19 | 1993-04-27 | Exxon Chemical Patents Inc. | Sealable polyolefin films containing very low density ethylene copolymers |
US5241031A (en) | 1992-02-19 | 1993-08-31 | Exxon Chemical Patents Inc. | Elastic articles having improved unload power and a process for their production |
US5444145A (en) | 1992-04-20 | 1995-08-22 | Exxon Chemical Patents Inc. | Ethylene/branched olefin copolymers |
US5258161A (en) | 1992-06-15 | 1993-11-02 | Union Carbide Chemicals & Plastics Technology Corporation | Blown film extrusion |
US5242922A (en) | 1992-06-24 | 1993-09-07 | Mobil Oil Corporation | Blends of HDPE and polybutene |
US5408004A (en) | 1993-08-17 | 1995-04-18 | The Dow Chemical Company | Polyolefin blends and their solid state processing |
US5631069A (en) | 1994-05-09 | 1997-05-20 | The Dow Chemical Company | Medium modulus molded material comprising substantially linear polyethlene and fabrication method |
Non-Patent Citations (200)
Title |
---|
"A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance" by G.F. Van der Sanden and Richard W. Halle, (Feb. 1992), Tappi Journal, pp. 99-103. |
"A Review of High Resolution Liquid 13 Carbon Nuclear Magnetic Resonance Characterizations of Ethylene-Based Polymers", pp. 201-317, by James C. Randall (1989). |
"Coextrusion Basics" by Thomas I. Butler, Film Extrusion Manual: Process, Materials, Properties, pp. 31-80 (published by TAPPI Press (1992)). |
"Coextrusion for Barrier Packaging" by W. J. Schrenk and C. R. Finch, Society of Plastics Engineers RETEC Proceedings, Jun. 15-17 (1981), pp. 211-229. |
"FLEXOMER™ Polyolefins: A Bridge Between Polyethylene and Rubbers" by M.R. Rifi, H. K. Ficker and M.A. Corwin, pp. 1-7, 1990, Union Carbide Chemicals and Plastics Inc., Bound Brook, New Jersey. |
"Laminations vs. Coextrusion" by D. Dumbleton, Converting Magazine, Sep. 1992 Packaging Foods With Plastics, by Wilmer A. Jenkins and James P. Harrington (1991). |
"LLDPE Blends Perk Up Performance of PE Films",Plastics World, pp. 40-43, (Dec. 1982). |
"Packaging Machinery Operations: No. 8, Form-Fill-Sealing, A Self-Instructional Course" by C. G. Davis, Packaging Machinery Manufacturers Institute (Apr. 1982). |
"Polyolefin Modification with EXACT™ Plastomers", (before Jul. 1994 and after Sep. 1992), pp. 539-564, by T. C. Yu, G. J. Wagner. |
"The Marketing Challenge Created By Single Site Catalysts in Polyolefins" by Michael P. Jeffries, 1991 Specialty Polyolefins Conference (SPO '91), pp. 43-55 (Sep. 24, 1991). |
"The Wiley Encyclopedia of Packaging Technology" by M. Bakker (Editor), John Wiley & Sons (1986) (pp. 334, 364-369). |
1991 Polymers, Laminations & Coatings Conference , pp. 289 296, A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance , by Van der Sanden et al. * |
1991 Polymers, Laminations & Coatings Conference Proceedings , pp. 289 296, A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance by Dirk G. F. Van der Sanden and Richard Halle. * |
1991 Polymers, Laminations & Coatings Conference Proceedings, pp. 289-296, "A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance" by Dirk G. F. Van der Sanden and Richard Halle. |
1991 Polymers, Laminations & Coatings Conference, pp. 289-296, "A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance", by Van der Sanden et al. |
1991 Polymers, Laminations & Coatings Conference, TAPPI Proceedings, presented in Feb. 1991, pp. 289-296, "A New Family of Linear Ethylene Polymers with Enhanced Sealing Performance" by D. Van der Sanden and R. W. Halle. |
1991 Specialty Polyolefins Conference Proceedings, "The Marketing Challenge Created By Single Site Catalysts in Polyolefins," Sep. 24, 1991, (pp. 41-45) by Michael P. Jeffries. |
1992 Polymers, Laminations & Coatings Conference , pp. 103 111, A New Family of Linear Ethylene Polymers with Enhanced Sealing Performance designed for Multilayer Barrier Food Packaging Films by D. Van der Sanden and R. W. Halle. * |
1992 Polymers, Laminations & Coatings Conference Proceedings , A New Family of Ethylene Polymers with Enhanced Sealing Performance designed for Multilayer Barrier Packaging Films by D. Van Sandern and R. W. Halle. * |
1992 Polymers, Laminations & Coatings Conference Proceedings, "A New Family of Ethylene Polymers with Enhanced Sealing Performance designed for Multilayer Barrier Packaging Films" by D. Van Sandern and R. W. Halle. |
1992 Polymers, Laminations & Coatings Conference, pp. 103-111, "A New Family of Linear Ethylene Polymers with Enhanced Sealing Performance designed for Multilayer Barrier Food Packaging Films" by D. Van der Sanden and R. W. Halle. |
A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance by G.F. Van der Sanden and Richard W. Halle, (Feb. 1992), Tappi Journal , pp. 99 103. * |
A Review of High Resolution Liquid 13 Carbon Nuclear Magnetic Resonance Characterizations of Ethylene Based Polymers , pp. 201 317, by James C. Randall (1989). * |
ACS Symposium Series , No. 142, pp. 94 118. Characterization of Long Chain Branching in Polyethylenes Using High Field Carbon 13 NMR , by J. C. Randall (1980). * |
ACS Symposium Series No. 142, "Polymer Characterization by ESR and NMR", by Randall Williams and Word in Journal of Polymer Science, Polymer Letters, vol. 6, p. 621 (1968). |
ACS Symposium Series No. 142, Polymer Characterization by ESR and NMR , by Randall Williams and Word in Journal of Polymer Science, Polymer Letters , vol. 6, p. 621 (1968). * |
ACS Symposium Series, No. 142, pp. 94-118. "Characterization of Long-Chain Branching in Polyethylenes Using High -Field Carbon-13 NMR", by J. C. Randall (1980). |
Advances in Organometallic Chemistry , pp. 99 148, vol. 18, (1980) Ziegler Natta Catalysis by Hansjorg Sinn and Walter Kaminsky. * |
Advances in Organometallic Chemistry, pp. 99-148, vol. 18, (1980) "Ziegler-Natta Catalysis" by Hansjorg Sinn and Walter Kaminsky. |
Advances In Polyolefins, by R. B. Seymour and T. Cheng, (1987) "New Catalysis and Process For Ethyelene Polymerization", pp. 337-354, by F. Karol, B. Wagner, I. Levine, G. Goeke, and A. Noshay. |
Advances In Polyolefins, by R. B. Seymour and T. Cheng, (1987) "Polymerization of Olefins With A Homogeneous Zirconium/Alumoxane Catalyst", pp. 361-371 by W. Kaminsky and H. Hahnsen. |
Advances In Polyolefins, by R. B. Seymour and T. Cheng, (1987), pp. 373-380 "Crystallinity and Morphology of Ethylene/α-Olefin Copolymers" by P. Schouterden, G. Groeninckx, and H. Reynaers. |
Angew, Chem. Int. Ed. Engl. , pp. 390 393, vol. 19 No. 5 (1980) Living Polymers on Polymerization with Extremely Productive Ziegler Catalysts by Hansjorg Sinn, Walter Kaminsky, Hans Jurgen Vollmer, and Rudiger Woldt. * |
Angew, Chem. Int. Ed. Engl., pp. 390-393, vol. 19 No. 5 (1980) "`Living Polymers` on Polymerization with Extremely Productive Ziegler Catalysts" by Hansjorg Sinn, Walter Kaminsky, Hans-Jurgen Vollmer, and Rudiger Woldt. |
Angew. Chem. Int. Ed. Engl , pp. 630 632 (1976) vol. 15, No. 10, Halogen Free Soluble Ziegler Catalysts for the Polymerization of Ethylene. Control of Molecular Weight by Choice of Temperature by Arne Andresen et al. * |
Angew. Chem. Int. Ed. Engl, pp. 630-632 (1976) vol. 15, No. 10, "Halogen-Free Soluble Ziegler Catalysts for the Polymerization of Ethylene. Control of Molecular Weight by Choice of Temperature" by Arne Andresen et al. |
ANTEC 92 Proceedings , pp. 154 158 ( Exact Linear Ethylene Polymers for Enhanced Sealing Performance by D. Van der Sanden and R. W. Halle). * |
ANTEC '92 Proceedings, pp. 154-158 ("Exact™ Linear Ethylene Polymers for Enhanced Sealing Performance" by D. Van der Sanden and R. W. Halle). |
Antec 93 , pp. 58 62, Flexomer Polyolefins, A Unique Class of Ethylene Copolymers for Low Temperature Film Applications , by D. C. Eagar, G. E. Ealer, S. A. Bartocci and D. M. Kung (1993). * |
Antec 93 Be In That Number , New Orleans, May 9 13, (1993), vol. II, Dow Constrained Geometry Catalyst Technology (CGCT): New Rules For Ethylene a Olefins Interpolymers Controlled Rheology Polyolefins , pp. 1188 1192, by S. Lai and G. W. Knight. * |
Antec 93, pp. 58-62, "Flexomer Polyolefins, A Unique Class of Ethylene Copolymers for Low Temperature Film Applications", by D. C. Eagar, G. E. Ealer, S. A. Bartocci and D. M. Kung (1993). |
Antec 93-Be In That Number, New Orleans, May 9-13, (1993), vol. II, "Dow Constrained Geometry Catalyst Technology (CGCT): New Rules For Ethylene a-Olefins Interpolymers-Controlled Rheology Polyolefins", pp. 1188-1192, by S. Lai and G. W. Knight. |
ANTEC Procedings , pp. 306 309 (1983), Analysis of Long Chain Branching in High Density Polyethylene by J.K. Hughes. * |
ANTEC Procedings, pp. 306-309 (1983), "Analysis of Long Chain Branching in High Density Polyethylene" by J.K. Hughes. |
ANTEC Proceedings 89 , Resistance to Draw Resonance of Linear Low Density Polyethylene Through Improved Resin Design , pp. 28 30. * |
ANTEC Proceedings '89, "Resistance to Draw Resonance of Linear Low Density Polyethylene Through Improved Resin Design", pp. 28-30. |
Coextrusion Basics by Thomas I. Butler, Film Extrusion Manual: Process, Materials, Properties , pp. 31 80 (published by TAPPI Press (1992)). * |
Coextrusion for Barrier Packaging by W. J. Schrenk and C. R. Finch, Society of Plastics Engineers RETEC Proceedings , Jun. 15 17 (1981), pp. 211 229. * |
February 1992 Tappai Journal , pp. 99 103, A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance by Van der Sanden et al. * |
February 1992 Tappai Journal, pp. 99-103, "A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance" by Van der Sanden et al. |
FLEXOMER Polyolefins: A Bridge Between Polyethylene and Rubbers by M.R. Rifi, H. K. Ficker and M.A. Corwin, pp. 1 7, 1990, Union Carbide Chemicals and Plastics Inc., Bound Brook, New Jersey. * |
High Polymers, vol. XX, "Crystalline Olefin Polymers" Part I, pp. 495-501, R.A.V. Raff et al., ed., Interscience Pub. (1964-1965). |
Japanese Abstract JP 58 222131 (23 Dec. 1983). * |
Japanese Abstract JP 58-222131 (23 Dec. 1983). |
Japanese Abstract JP 61 009446 (17 Jan. 1986). * |
Japanese Abstract JP 61-009446 (17 Jan. 1986). |
John Dealy, Rheometers for Molten Plastics , Van Nostrand Reinhold Co., pp. 97 99, (1982). * |
John Dealy, Rheometers for Molten Plastics, Van Nostrand Reinhold Co., pp. 97-99, (1982). |
Journal of Applied Polymer Science , pp. 3751 3765 (1985) vol. 30, On the Effects of Very Low Levels of Long Chain Branching on Rheological Behavior in Behavior Polyethylene by B. H. Bersted. * |
Journal of Applied Polymer Science, pp. 3751-3765 (1985) vol. 30, "On the Effects of Very Low Levels of Long Chain Branching on Rheological Behavior in Behavior Polyethylene" by B. H. Bersted. |
Journal of Macromolecular Science: Reviews in Macromolecular Chemistry and Physics , C29(2&3), pp. 201 303 (1989) A Review of High Resolution Liquid 13 Carbon Nuclear Magnetic Resonance Characterizations of Ethylene BasedPolymers . * |
Journal of Macromolecular Science: Reviews in Macromolecular Chemistry and Physics, C29(2&3), pp. 201-303 (1989) "A Review of High Resolution Liquid 13 Carbon Nuclear Magnetic Resonance Characterizations of Ethylene-BasedPolymers". |
Journal of Non Newtonian Fluid Mechanics , 36, pp. 255 263 (1990) Additional Observations on The Surface Melt Fracture Behavior Of Linear Low Density Polyethylene by R. Moynihan, D. Baird, and R. Ramanathan. * |
Journal of Non-Newtonian Fluid Mechanics, 36, pp. 255-263 (1990) "Additional Observations on The Surface Melt Fracture Behavior Of Linear Low-Density Polyethylene" by R. Moynihan, D. Baird, and R. Ramanathan. |
Journal of Polymer Science , Part A, vol. 1 (pp. 2869 2880 (1963)). Long Chain Branching Frequency in Polyethylene by J. E. Guillet. * |
Journal of Polymer Science, Part A, vol. 1 (pp. 2869-2880 (1963)). "Long-Chain Branching Frequency in Polyethylene" by J. E. Guillet. |
Journal of Polymer Science, Poly. Phys. Ed. , Determination of Branching Distributions in Polyethylene and Ethylene Copolymers , vol. 20, pp. 441 455 (1982) Wild et al. * |
Journal of Polymer Science, Poly. Phys. Ed., "Determination of Branching Distributions in Polyethylene and Ethylene Copolymers", vol. 20, pp. 441-455 (1982) Wild et al. |
Journal of Polymer Science: Polymer Chemistry Edition , pp. 2117 2133 (1985), vol. 23, Homogeneous Ziegler Natta Catalysis II. Ethylene Polymerization by IVB Transition Metal Complexes/MethylAluminoxane Catalyst Systems by E. Giannetti and R. Mazzocchi. * |
Journal of Polymer Science: Polymer Chemistry Edition , pp. 2151 2164 (1985) vol. 23, Ethylene Propylene Diene Terpolymers Produced with a Homogeneous and Highly Active Zirconium Catalyst by Walter Kaminsky et al. * |
Journal of Polymer Science: Polymer Chemistry Edition, pp. 2117-2133 (1985), vol. 23, "Homogeneous Ziegler Natta Catalysis II. Ethylene Polymerization by IVB Transition Metal Complexes/MethylAluminoxane Catalyst Systems" by E. Giannetti and R. Mazzocchi. |
Journal of Polymer Science: Polymer Chemistry Edition, pp. 2151-2164 (1985) vol. 23, "Ethylene Propylene Diene Terpolymers Produced with a Homogeneous and Highly Active Zirconium Catalyst" by Walter Kaminsky et al. |
Journal of Polymer Science:Polymer Physics Edition , vol. 20, pp. 441 455 (1982), Determination of Branching Distributions in Polyethylene and Ethylene Copolymers , by L. Wild, T. R. Ryle, D. C. Knobeloch, and I. R. Peat. * |
Journal of Polymer Science:Polymer Physics Edition, vol. 20, pp. 441-455 (1982), "Determination of Branching Distributions in Polyethylene and Ethylene Copolymers", by L. Wild, T. R. Ryle, D. C. Knobeloch, and I. R. Peat. |
Journal of Rhelogy , Wall Slip in Viscous Fluids and Influence of Materials of Construction , 30(2), pp. 337 257 (1986), by Ramamurthy. * |
Journal of Rhelogy, "Wall Slip in Viscous Fluids and Influence of Materials of Construction", 30(2), pp. 337-257 (1986), by Ramamurthy. |
Journal of Rheology , (1986), pp. 340 341, 344 345, 348 349, 352 353, 356 357, Wall Slip in Viscous Fluids and Influence of Materials of Construction , by A. V. Ramamurthy. * |
Journal of Rheology , 31 (8) pp. 815 834 (1987) Wall Slip and Extrudate Distortion in Linear Low Density Polyethylene by D. Kalika and M. Denn. * |
Journal of Rheology , 35(4) ,3 (May, 1991) pp. 497 452, Wall Slip of Molten High Density Polyethylene. I. Sliding Plate Rheometer Studies by S. G. Hatzikiriakos and J. M. Dealy. * |
Journal of Rheology, (1986), pp. 340-341, 344-345, 348-349, 352-353, 356-357, "Wall Slip in Viscous Fluids and Influence of Materials of Construction", by A. V. Ramamurthy. |
Journal of Rheology, 31 (8) pp. 815-834 (1987) "Wall Slip and Extrudate Distortion in Linear Low-Density Polyethylene" by D. Kalika and M. Denn. |
Journal of Rheology, 35(4) ,3 (May, 1991) pp. 497-452, "Wall Slip of Molten High Density Polyethylene. I. Sliding Plate Rheometer Studies" by S. G. Hatzikiriakos and J. M. Dealy. |
Journal of the American Chemical Society , 98:7, pp. 1729 1742 (Mar. 31, 1976) Structure and Chemistry of Bis(cyclopentadienyl) MLn Complexes by Joseph W. Lauher and Roald Hoffman. * |
Journal of the American Chemical Society, 98:7, pp. 1729-1742 (Mar. 31, 1976) "Structure and Chemistry of Bis(cyclopentadienyl)-MLn Complexes" by Joseph W. Lauher and Roald Hoffman. |
K. R. Osborn and W. A. Jenkins in Plastic Films, Technology and Packaging Applications (Technomic Publishing Co., Inc. (1992)). * |
L. K. Mergenhagen and N. F. Whiteman, "Plastomers as Sealants in Packaging Applications", TAPPI Proceedings, 1993. |
L. K. Mergenhagen and N. F. Whiteman, Plastomers as Sealants in Packaging Applications , TAPPI Proceedings, 1993. * |
Laminations vs. Coextrusion by D. Dumbleton, Converting Magazine, Sep. 1992 Packaging Foods With Plastics , by Wilmer A. Jenkins and James P. Harrington (1991). * |
LLDPE Blends Perk Up Performance of PE Films , Plastics World , pp. 40 43, (Dec. 1982). * |
Lucchesi et al., Plastic Engineering , Reducing Draw Resonance in LLDPE film resins , pp. 87 90, May 1985. * |
Lucchesi et al., Plastic Engineering, Reducing Draw Resonance in LLDPE film resins', pp. 87-90, May 1985. |
M. Shida et al., Polymer Engineering Science , vol. 17, No. 11, Correlation of Low Density Polyethylene Rheological Measurements with Optical and Processing Properties , pp. 769 774 (1977). * |
M. Shida et al., Polymer Engineering Science, vol. 17, No. 11, "Correlation of Low Density Polyethylene Rheological Measurements with Optical and Processing Properties", pp. 769-774 (1977). |
Makromol. Chem. , 190, pp. 515 526 (1989) Copolymerization of Cycloalkenes with Ethylene In Presence of Chiral Zirconocene Catalysts by W. Kaminsky and R. Spiehl. * |
Makromol. Chem. Rapid Commun. , pp. 89 94 (1990) Terpolymers of Ethylene, Propene and 1,5 Hexadiene Synthesized with Zirconocene/Methylaluminoxane by W. Kaminsky and H. Drogemuller. * |
Makromol. Chem. Rapid Commun., pp. 89-94 (1990) "Terpolymers of Ethylene, Propene and 1,5-Hexadiene Synthesized with Zirconocene/Methylaluminoxane" by W. Kaminsky and H. Drogemuller. |
Makromol. Chem., 190, pp. 515-526 (1989) "Copolymerization of Cycloalkenes with Ethylene In Presence of Chiral Zirconocene Catalysts" by W. Kaminsky and R. Spiehl. |
Makromol. Chem., Macromol. Symp. , 4, pp. 103 118 (1986) Elastomers By Atactic Linkage of Olefins Using Soluble Ziegler Catalysts by W. Kaminsky and M. Schlobohm. * |
Makromol. Chem., Macromol. Symp., 4, pp. 103-118 (1986) "Elastomers By Atactic Linkage of α-Olefins Using Soluble Ziegler Catalysts" by W. Kaminsky and M. Schlobohm. |
Makromol. Chem., Rapid Commun. , (5) pp. 225 228 (1984) Influence of hydrogen on the polymerization of ethylene with the homogeneous Ziegler system bis(cyclopentadienyl)zirconiumdichloride/aluminoxane by Walter Kaminsky et al. * |
Makromol. Chem., Rapid Commun. , 4, pp. 417 421 (1983) Bis(cyclopentadienyl)zirkon Verbingungen und Aluminoxanals Ziegler Katalysatoren fur die Polymerisation und Copolymerisation von Olefinen by Walter Kaminsky et al. * |
Makromol. Chem., Rapid Commun., (5) pp. 225-228 (1984) "Influence of hydrogen on the polymerization of ethylene with the homogeneous Ziegler system bis(cyclopentadienyl)zirconiumdichloride/aluminoxane" by Walter Kaminsky et al. |
Makromol. Chem., Rapid Commun., 4, pp. 417-421 (1983) "Bis(cyclopentadienyl)zirkon-Verbingungen und Aluminoxanals Ziegler-Katalysatoren fur die Polymerisation und Copolymerisation von Olefinen" by Walter Kaminsky et al. |
Modern Methods of Polymer Characterization , pp. 103 112, (1991) Measurement of Long Chain Branch Frequency in Synthetic Polymers , by Alfred Rudin. * |
Modern Methods of Polymer Characterization, pp. 103-112, (1991) "Measurement of Long-Chain Branch Frequency in Synthetic Polymers", by Alfred Rudin. |
Modern Plastics 1963ED 1962, p. 227. * |
Modern Plastics -1963ED-1962, p. 227. |
Modern Plastics Encyclopedia , vol. 65, No. 11, p. 112, 1989, Elastomeric Alloy TPEs by C. P.Rader. * |
Modern Plastics Encyclopedia , vol. 65, No. 11, pp. 110 & 112, 1989, Introduction to TPEs by Charles D. Shedd. * |
Modern Plastics Encyclopedia , vol. 65, No. 11, pp. 112 113, 1989, Engineering TPEs by Thomas W. Sheridan. * |
Modern Plastics Encyclopedia, vol. 65, No. 11, p. 112, 1989, "Elastomeric Alloy TPEs" by C. P.Rader. |
Modern Plastics Encyclopedia, vol. 65, No. 11, pp. 110 & 112, 1989, "Introduction to TPEs" by Charles D. Shedd. |
Modern Plastics Encyclopedia, vol. 65, No. 11, pp. 112-113, 1989, "Engineering TPEs" by Thomas W. Sheridan. |
Modern Plastics International, vol. 23, No. 8, Aug. 1993, pp. 40 41, Don Schwank Single site metallocene catalysts yield tailor made polyolefin resins . * |
Modern Plastics International, vol. 23, No. 8, Aug. 1993, pp. 40-41, Don Schwank "Single-site metallocene catalysts yield tailor-made polyolefin resins". |
Packaging Machinery Operations: No. 8, Form Fill Sealing, A Self Instructional Course by C. G. Davis, Packaging Machinery Manufacturers Institute (Apr. 1982). * |
Packaging Technology and Engineering , Apr. 1994, pp. 34 37, Single Site Catalysts Produce Tailor Made, Consistent Resins , by David F. Simon. * |
Packaging Technology and Engineering, Apr. 1994, pp. 34-37, "Single-Site Catalysts Produce Tailor-Made, Consistent Resins", by David F. Simon. |
Packaging: An Introduction , by S. Sacharow and A. L. Brody, Harcourt Brace Javanovich Publications, Inc.(1987)(pp. 322 326). * |
Packaging: An Introduction, by S. Sacharow and A. L. Brody, Harcourt Brace Javanovich Publications, Inc.(1987)(pp. 322-326). |
Polymer Bullentin , 9, pp. 464 469 (1983) Halogen Free Soluble Ziegler Catalysts with Methylalumoxan as Catalyst by Jens Herwig and Walter Kaminsky. * |
Polymer Bullentin, 9, pp. 464-469 (1983) "Halogen Free Soluble Ziegler Catalysts with Methylalumoxan as Catalyst" by Jens Herwig and Walter Kaminsky. |
Polymer Engineering and Science , vol. 16, No. 12, pp. 811 816 (Dec. 1976), Influence of Long Chain Branching on the Viscoelastic Properties of Low Density Polyethylenes by L. Wild, R. Ranganath, and D. Knobeloch. * |
Polymer Engineering and Science , vol. 17, No. 11, 1977, Correlation of Low Density Polyethylene Rheological Measurements with Optical and Processing Properties , Shida et al. * |
Polymer Engineering and Science , vol. 17, No. 11, Nov. (1977), pp. 769 774, Correlation of Low Density Polyethylene Rheological Measurments with Optical and Processing Properties , by M. Shida, R. N. Shroff, and L. V. Cancio. * |
Polymer Engineering and Science, vol. 16, No. 12, pp. 811-816 (Dec. 1976), "Influence of Long-Chain Branching on the Viscoelastic Properties of Low-Density Polyethylenes" by L. Wild, R. Ranganath, and D. Knobeloch. |
Polymer Engineering and Science, vol. 17, No. 11, 1977, "Correlation of Low Density Polyethylene Rheological Measurements with Optical and Processing Properties", Shida et al. |
Polymer Engineering and Science, vol. 17, No. 11, Nov. (1977), pp. 769-774, "Correlation of Low Density Polyethylene Rheological Measurments with Optical and Processing Properties", by M. Shida, R. N. Shroff, and L. V. Cancio. |
Polymer Preprints, Amer. Chem. Society , vol. 12, No. 1, pp. 277 281 (Mar. 1971), Evidence of Long Chain Branching in High Density Polyethylene by E. E. Drott and R. A. Mendelson. * |
Polymer Preprints, Amer. Chem. Society, vol. 12, No. 1, pp. 277-281 (Mar. 1971), "Evidence of Long-Chain Branching in High Density Polyethylene" by E. E. Drott and R. A. Mendelson. |
Polyolefin Modification with EXACT Plastomers , (before Jul. 1994 and after Sep. 1992), pp. 539 564, by T. C. Yu, G. J. Wagner. * |
Polyolefins VII International Conference , pp. 45 66, Feb. 1991, Structure/Property Relationships in Exxpol Polymers by C. S. Speed, B. C. Trudell, A. K. Mehta and F. C. Stehling. * |
Polyolefins VII International Conference, pp. 45-66, Feb. 1991, "Structure/Property Relationships in Exxpol™ Polymers" by C. S. Speed, B. C. Trudell, A. K. Mehta and F. C. Stehling. |
Proceedings of the 1991 IEEE Engineering Society , pp. 184 190, Sep. 1990, New Specialty Linear Polymers (SLP) For Power Cables by Monica Hedewerk and Lawrence Spenadel. * |
Proceedings of the 1991 IEEE Engineering Society, pp. 184-190, Sep. 1990, "New Specialty Linear Polymers (SLP) For Power Cables" by Monica Hedewerk and Lawrence Spenadel. |
Proceedings of the 1991 IEEE Power Engineering Society , pp. 184 190 (Sep. 22 27, 1991), New Specialty Linear Polymers (SLP) For Power Cables by Monica Hendewerk and Lawrence Spenadel. * |
Proceedings of the 1991 IEEE Power Engineering Society , pp. 184 190, Sep. 22 27, 1991, New Speciality Linear Polymers (SLP) for Power Cables , by Hendewerk et al. * |
Proceedings of the 1991 IEEE Power Engineering Society , pp. 184 190, Sep. 22 27, 1991, New Specialty Linear Polymers (SLP) for Power Cables , Hendewerk and Spenadel. * |
Proceedings of the 1991 IEEE Power Engineering Society, pp. 184-190 (Sep. 22-27, 1991), "New Specialty Linear Polymers (SLP) For Power Cables" by Monica Hendewerk and Lawrence Spenadel. |
Proceedings of the 1991 IEEE Power Engineering Society, pp. 184-190, Sep. 22-27, 1991, "New Speciality Linear Polymers (SLP) for Power Cables", by Hendewerk et al. |
Proceedings of the 1991 IEEE Power Engineering Society, pp. 184-190, Sep. 22-27, 1991, "New Specialty Linear Polymers (SLP) for Power Cables", Hendewerk and Spenadel. |
Proceedings of the First International Business Forum of Specialty Polyolefins SPO 91 , Sep. 1991, pp. 41 55, The Marketing Challenge by Single Site Catalysts in Polyolefins by Michael Jefferies. * |
Proceedings of the First International Business Forum of Specialty Polyolefins SPO '91, Sep. 1991, pp. 41-55, "The Marketing Challenge by Single Site Catalysts in Polyolefins" by Michael Jefferies. |
Ramamurthy, Journal of Rhelogy , Wall Slip in Viscous Fluids and Influence of Materials of Construction , John Wiley and Sons, 30(2), pp. 337 357, (1986). * |
Ramamurthy, Journal of Rhelogy, "Wall Slip in Viscous Fluids and Influence of Materials of Construction", John Wiley and Sons, 30(2), pp. 337-357, (1986). |
Randall ( Rev. Macromol. Chem. Phys. , C29 (2&3), pp. 285 297). * |
Randall (Rev. Macromol. Chem. Phys., C29 (2&3), pp. 285-297). |
Randall, ACS Symposium Series No. 142 , Polymer Characterization by ESR and NMR , pp. 93 117 (1980). * |
Randall, ACS Symposium Series No. 142, "Polymer Characterization by ESR and NMR", pp. 93-117 (1980). |
Rheometers for Molten , John Dealy, Van Nostrand Reinhold Co. (1982), pp. 97 99. * |
Rheometers for Molten Plastics , (1982), pp. 97 99, by John Dealy. * |
Rheometers for Molten Plastics, (1982), pp. 97-99, by John Dealy. |
Rheometers for Molten, John Dealy, Van Nostrand Reinhold Co. (1982), pp. 97-99. |
Roberts et al., ANTEC Proceedings 85 , New Process for the Reduction of Draw Resonance in Melt Embossing and Extrusion Coating , pp. 104 107. * |
Roberts et al., ANTEC Proceedings '85, "New Process for the Reduction of Draw Resonance in Melt Embossing and Extrusion Coating", pp. 104-107. |
S. Lai et al., ANTEC 93 Proceedings , Dow Constrained Geometry Catalyst Technology (CGCT) New Rules for Ethylene Olefin Interpolymers Controlled Rhelogy Polyolefins , New Orleans, LA, pp. 1182 1192, (May 1993). * |
S. Lai et al., ANTEC '93 Proceedings, "Dow Constrained Geometry Catalyst Technology (CGCT) -New Rules for Ethylene α-Olefin Interpolymers -Controlled Rhelogy Polyolefins", New Orleans, LA, pp. 1182-1192, (May 1993). |
Selected Applications For Constrained Geometry Catalyst Technology (CGCT) Polymers by G. D. Schwank, presented and distributed at SPO 92 sponsered by Schotland Business Research, Inc., (Sep. 23, 1992). * |
Society of Plastic Engineers 1991 Specialty Polyolefins Conference Proceedings, pp. 41-55, "The Marketing Challenge Created by Single Site Catalysts in Polyolefins" by M. Jefferies (Sep. 24, 1991). |
Society of Plastic Engineers Proceedings , Polyolefins VII International Conference, Feb. 24 27, 1991, Structure/Property Relationships In Exxpol Polymers (pp. 45 66) by C. Speed, B. Trudell, A. Mehta, and F. Stehling. * |
Society of Plastic Engineers Proceedings , Polyolefins VIII International Conference, Feb. 24 27, 1991, Structure/Property Relationships in Expol Polymers , pp.45 66, Speed et al. * |
Society of Plastic Engineers Proceedings, Polyolefins VII International Conference, Feb. 24-27, 1991, "Structure/Property Relationships In Exxpol™ Polymers" (pp. 45-66) by C. Speed, B. Trudell, A. Mehta, and F. Stehling. |
Society of Plastic Engineers Proceedings, Polyolefins VIII International Conference, Feb. 24-27, 1991, "Structure/Property Relationships in Expol™ Polymers", pp.45-66, Speed et al. |
Society of Plastics Engineers , Polyolefins VII International Conference, Feb. 24 27, 1991, Structure/Property Relationships in Exxpol Polymers , pp. 45 66, Speed et al. * |
Society of Plastics Engineers Polyolefins VII International Conference Proceedings, "Structure Property Relationships in EXXPOL TM Polymers" by C. S. Speed, B. C. Trudell, A. K. Mehta and F. C. Stehling, pp. 45-66, (Feb. 24-27 1991). |
Society of Plastics Engineers Polyolefins VII International Conference Proceedings, Structure Property Relationships in EXXPOL TM Polymers by C. S. Speed, B. C. Trudell, A. K. Mehta and F. C. Stehling, pp. 45 66, (Feb. 24 27 1991). * |
Society of Plastics Engineers, Polyolefins VII International Conference, Feb. 24-27, 1991, "Structure/Property Relationships in Exxpol™ Polymers", pp. 45-66, Speed et al. |
SPE Regional Technical Conference, Quaker Square Hilton, Akron, Ohio, Oct. 1 2, (1985), pp. 107 119, The Role of Comonomer Type and Distribution in LLDPE Product Performance , by L. D. Cady. * |
SPE Regional Technical Conference, Quaker Square Hilton, Akron, Ohio, Oct. 1-2, (1985), pp. 107-119, "The Role of Comonomer Type and Distribution in LLDPE Product Performance", by L. D. Cady. |
Speciality Plastics Conference 1990 The Raw Materials Scenario for PE and PP Film Applications and Markets, Dec. 3 4, High Value Added Film Using an Olefin Based Elastomer , by M. Tanaka. * |
Speciality Plastics Conference 1990-The Raw Materials Scenario for PE and PP Film Applications and Markets, Dec. 3-4, "High Value Added Film Using an Olefin Based Elastomer", by M. Tanaka. |
SPO '92 "Future Trends in Polyolefins Technology" by Douglas M. Selman, pp. 11-16 (Sep. 23, 1992). |
SPO 92 Future Trends in Polyolefins Technology by Douglas M. Selman, pp. 11 16 (Sep. 23, 1992). * |
SPO '92 Proceedings, "The Material Properties of Polymers Made From Constrained Geometry Catalysts" by Kurt W. Swogger, pp. 155-165 (1992). |
SPO 92 Proceedings, The Material Properties of Polymers Made From Constrained Geometry Catalysts by Kurt W. Swogger, pp. 155 165 (1992). * |
Tappi Journal , Feb. 1992, pp. 99 103, A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance by Dirk G. F. Van der Sanden and Richard W. Halle. * |
Tappi Journal, Feb. 1992, pp. 99-103, "A New Family of Linear Ethylene Polymers Provides Enhanced Sealing Performance" by Dirk G. F. Van der Sanden and Richard W. Halle. |
The Encyclopedia of Chemical Technology , Kirk Othmer, Third Edition, John Wiley & Sons New York, 1981, vol. 18, pp. 191 192. * |
The Encyclopedia of Chemical Technology , Kirk Othmer, Third Edition, John Wiley & Sons, New York, 1981, vol. 16,pp. 416 417. * |
The Encyclopedia of Chemical Technology , Kirk Othmer, Third Edition, John Wiley & Sons, New York, 1981, vol. 18, pp. 191 192. * |
The Encyclopedia of Chemical Technology , Kirtk Othmer, Third Edition, John Wiley & Sons, New York, 1981, vol. 16, pp. 415 417. * |
The Encyclopedia of Chemical Technology, Kirk-Othmer, Third Edition, John Wiley & Sons New York, 1981, vol. 18, pp. 191-192. |
The Encyclopedia of Chemical Technology, Kirk-Othmer, Third Edition, John Wiley & Sons, New York, 1981, vol. 16,pp. 416-417. |
The Encyclopedia of Chemical Technology, Kirk-Othmer, Third Edition, John Wiley & Sons, New York, 1981, vol. 18, pp. 191-192. |
The Encyclopedia of Chemical Technology, Kirtk-Othmer, Third Edition, John Wiley & Sons, New York, 1981, vol. 16, pp. 415-417. |
The Journal of Chemical Physics , vol. 17, No. 12, Dec. (1949), pp. 1301 1314, The Dimensions of Chain Molecules Containing Branches and Rings , by Bruno H. Zimm and Walter H. Stockmayer. * |
The Journal of Chemical Physics, vol. 17, No. 12, Dec. (1949), pp. 1301-1314, "The Dimensions of Chain Molecules Containing Branches and Rings", by Bruno H. Zimm and Walter H. Stockmayer. |
The Marketing Challenge Created By Single Site Catalysts in Polyolefins by Michael P. Jeffries, 1991 Specialty Polyolefins Conference ( SPO 91 ), pp. 43 55 (Sep. 24, 1991). * |
The Society of Rheology , pp. 337 357 (1986) vol. 30, Wall Slip in Viscous Fluids and Influence of Materials of Construction by A. V. Ramamurthy. * |
The Society of Rheology, pp. 337-357 (1986) vol. 30, "Wall Slip in Viscous Fluids and Influence of Materials of Construction" by A. V. Ramamurthy. |
The Wiley Encyclopedia of Packaging Technology by M. Bakker (Editor), John Wiley & Sons (1986) (pp. 334, 364 369). * |
Wild et al., Journal of Polymer Science, Poly. Phys. Ed. , Determination of Branching Distributions in Polyethylene and Ethylene Copolymers*, John Wiley & Sons, vol. 20, pp. 441, (1982). * |
Wild et al., Journal of Polymer Science, Poly. Phys. Ed. vol. 20, p. 441 (1982). * |
Wild et al., Journal of Polymer Science, Poly. Phys. Ed., Determination of Branching Distributions in Polyethylene and Ethylene Copolymers*, John Wiley & Sons, vol. 20, pp. 441, (1982). |
Williams and Ward, Journal of Polymer Science: Polymer Letters , vol. 6, The Construction of a Calibration Curve for Gel Permeation Chromatography using Polystyrene Fractions , pp. 621 627, (1968). * |
Williams and Ward, Journal of Polymer Science: Polymer Letters, vol. 6, "The Construction of a Calibration Curve for Gel Permeation Chromatography using Polystyrene Fractions", pp. 621-627, (1968). |
Williams and Word in Journal of Polymer Science, Polymer Letters , vol.6, (621) 1968. * |
Williams and Word in Journal of Polymer Science, Polymer Letters, vol.6, (621) 1968. |
Worldwide Metallocene Conference MetCon 94, May 25 27, (1994), Improved Processing and Performance Balance of Polyethylene Resins Using Metallocene Catalyst Technology , by Mark A. Wendorf. * |
Worldwide Metallocene Conference MetCon '94, May 25-27, (1994), "Improved Processing and Performance Balance of Polyethylene Resins Using Metallocene Catalyst Technology", by Mark A. Wendorf. |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5928798A (en) * | 1994-04-28 | 1999-07-27 | Cryovac, Inc. | Multi-layer polyolefin film containing recycle polymer from cross-linked films |
US6100341A (en) * | 1995-01-13 | 2000-08-08 | Norton Performance Plastics Corporation | Thermoplastic seal and wrapping film |
US6936660B2 (en) | 1995-09-11 | 2005-08-30 | Mitsui Chemicals, Inc. | Resin compositions and use of the same |
US6713562B2 (en) * | 1995-09-11 | 2004-03-30 | Mitsui Chemicals, Inc. | Resin compositions and use of the same |
US20040186237A1 (en) * | 1995-09-11 | 2004-09-23 | Mitsui Chemicals, Inc. | Resin compositions and use of the same |
US6812289B2 (en) | 1996-12-12 | 2004-11-02 | Dow Global Technologies Inc. | Cast stretch film of interpolymer compositions |
US6294266B1 (en) * | 1997-04-08 | 2001-09-25 | Japan Polychem Corporation | Laminates |
US6509106B1 (en) * | 1998-08-18 | 2003-01-21 | Eastman Chemical Company | Blends containing linear low density polyethylene, high density polyethylene, and low density polyethylene particularly suitable for extrusion coating and films |
US6423421B1 (en) | 1999-08-11 | 2002-07-23 | Sealed Air Corporation | Heat shrinkable film with multicomponent interpenetrating network resin |
US6548572B1 (en) | 1999-12-07 | 2003-04-15 | Dupont Canada Inc. | Surface printing inks and coatings for use |
US6359072B1 (en) | 2000-02-16 | 2002-03-19 | Univation Technologies, Llc | Polyethylene films having improved optical properties |
US7018710B2 (en) | 2000-06-30 | 2006-03-28 | Borealis Technology Oy | Heat sealable polyethylene film and method for its preparation |
WO2002002323A1 (en) * | 2000-06-30 | 2002-01-10 | Borealis Technology Oy | Heat sealable polyethylene film and method for its preparation |
KR100717654B1 (en) | 2000-06-30 | 2007-05-15 | 보레알리스 테크놀로지 오와이 | Heat Sealable Polyethylene Film and Method for Its Preparation |
US20030171501A1 (en) * | 2000-06-30 | 2003-09-11 | Kalle Kallio | Heat sealable polyethylene film and method for its preparation |
EP1216824A1 (en) * | 2000-12-18 | 2002-06-26 | Mitsui Chemicals, Inc. | Sealant for polypropylene and easily openable hermetically sealed package including the same |
US6933346B2 (en) * | 2000-12-18 | 2005-08-23 | Mitsui Chemicals, Inc. | Sealant for polypropylene and easily openable hermetically sealed package including the same |
US6545094B2 (en) * | 2001-03-09 | 2003-04-08 | The Dow Chemical Company | Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends |
US20050065286A1 (en) * | 2001-03-16 | 2005-03-24 | Degroot Alexander W. | High melt strength polymers and method of making same |
US7300983B2 (en) * | 2001-03-16 | 2007-11-27 | Dow Global Technologies Inc. | High melt strength polymers and method of making same |
USRE42276E1 (en) * | 2001-03-16 | 2011-04-05 | Dow Global Technologies Llc | High melt strength polymers and method of making same |
USRE43004E1 (en) * | 2001-03-16 | 2011-12-06 | Dow Global Technologies Llc | High melt strength polymers and method of making same |
US20040232026A1 (en) * | 2003-03-13 | 2004-11-25 | Goeking Harold J. | Microwaveable food storage container with freshness indicator and steam vent |
US20060147685A1 (en) * | 2004-12-30 | 2006-07-06 | Kimberly-Clark Worldwide, Inc. | Multilayer film structure with higher processability |
US9546446B2 (en) | 2009-10-23 | 2017-01-17 | Toyo Boseki Kabushiki Kaisha | Highly functional polyethylene fibers, woven or knit fabric, and cut-resistant glove |
US9512283B2 (en) | 2014-10-21 | 2016-12-06 | NOVA Chemicals (International S.A. | Rotomolded articles |
US10023729B2 (en) | 2014-10-21 | 2018-07-17 | Nova Chemicals (International) S.A. | Films produced from ethylene interpolymer products |
US9512282B2 (en) | 2014-10-21 | 2016-12-06 | Nova Chemicals (International) S.A. | Dilution index |
US9518159B2 (en) | 2014-10-21 | 2016-12-13 | Nova Chemicals (International) S.A. | Ethylene interpolymer films |
US9505893B2 (en) | 2014-10-21 | 2016-11-29 | Nova Chemicals (International) S.A. | Caps and closures |
US9695309B2 (en) | 2014-10-21 | 2017-07-04 | Nova Chemicals (International) S.A. | Rotomolded articles |
US10000630B2 (en) | 2014-10-21 | 2018-06-19 | Nova Chemicals (International) S.A. | Ethylene interpolymers having improved color |
US10023706B2 (en) | 2014-10-21 | 2018-07-17 | Nova Chemicals (International) S.A. | Rotomolded articles |
US10023730B2 (en) | 2014-10-21 | 2018-07-17 | Nova Chemicals (International) S.A. | HDPE articles |
US10954365B2 (en) | 2014-10-21 | 2021-03-23 | Nova Chemicals (International) S.A. | Dilution index |
US10035906B2 (en) | 2014-10-21 | 2018-07-31 | Nova Chemicals (International) S.A. | Dilution index |
US10040928B2 (en) | 2014-10-21 | 2018-08-07 | Nova Chemicals (International) S.A. | Rotomolded articles |
US10053565B2 (en) | 2014-10-21 | 2018-08-21 | Nova Chemicals (International) S.A. | Ethylene interpolymer films |
US10053564B2 (en) | 2014-10-21 | 2018-08-21 | Nova Chemicals (International) S.A. | Caps and closures |
US10577491B2 (en) | 2014-10-21 | 2020-03-03 | Nova Chemicals (International) S.A. | Dilution index |
US9505892B2 (en) | 2014-10-21 | 2016-11-29 | Nova Chemicals (International) S.A. | HDPE articles |
US11078351B2 (en) | 2014-10-21 | 2021-08-03 | Nova Chemicals (International) S.A. | Ethylene interpolymers having improved color |
US10329412B2 (en) | 2017-02-16 | 2019-06-25 | Nova Chemicals (International) S.A. | Caps and closures |
US10442921B2 (en) | 2017-04-19 | 2019-10-15 | Nova Chemicals (International) S.A. | Means for increasing the molecular weight and decreasing the density employing mixed homogeneous catalyst formulations |
US10738183B2 (en) | 2017-04-19 | 2020-08-11 | Nova Chemicals (International) S.A. | Means for increasing the molecular weight and decreasing the density of ethylene interpolymers employing homogeneous and heterogeneous catalyst formulations |
US11015044B2 (en) | 2017-04-19 | 2021-05-25 | Nova Chemicals (International) S.A. | Means for increasing the molecular weight and decreasing the density of ethylene interpolymers employing mixed homogeneous catalyst formulations |
US10442920B2 (en) | 2017-04-19 | 2019-10-15 | Nova Chemicals (International) S.A. | Means for increasing the molecular weight and decreasing the density of ethylene interpolymers employing homogeneous and heterogeneous catalyst formulations |
US11111368B2 (en) | 2017-04-19 | 2021-09-07 | Nova Chemicals (International) S.A. | Means for increasing the molecular weight and decreasing the density of ethylene interpolymers employing homogeneous and heterogeneous catalyst formulations |
US10683376B2 (en) | 2017-11-07 | 2020-06-16 | Nova Chemicals (International) S.A. | Manufacturing ethylene interpolymer products at higher production rate |
US10995166B2 (en) | 2017-11-07 | 2021-05-04 | Nova Chemicals (International) S.A. | Ethylene interpolymer products and films |
US11708437B2 (en) | 2017-11-07 | 2023-07-25 | Nova Chemicals (International) S.A. | Ethylene interpolymer products and films |
US11773197B2 (en) | 2017-11-07 | 2023-10-03 | Nova Chemicals (International) S.A. | Manufacturing ethylene interpolymer products at higher production rate |
US10882987B2 (en) | 2019-01-09 | 2021-01-05 | Nova Chemicals (International) S.A. | Ethylene interpolymer products having intermediate branching |
US11046843B2 (en) | 2019-07-29 | 2021-06-29 | Nova Chemicals (International) S.A. | Ethylene copolymers and films with excellent sealing properties |
Also Published As
Publication number | Publication date |
---|---|
NO313640B1 (en) | 2002-11-04 |
FI972169A0 (en) | 1997-05-21 |
TW381098B (en) | 2000-02-01 |
RU2171263C2 (en) | 2001-07-27 |
CN1070208C (en) | 2001-08-29 |
PE24096A1 (en) | 1996-07-16 |
FI972169A (en) | 1997-05-21 |
US5773106A (en) | 1998-06-30 |
US5747594A (en) | 1998-05-05 |
ZA958897B (en) | 1997-04-21 |
JP3118759B2 (en) | 2000-12-18 |
CA2203128A1 (en) | 1996-05-02 |
EP0787167A1 (en) | 1997-08-06 |
IL115618A0 (en) | 1996-01-19 |
FI118085B (en) | 2007-06-29 |
KR100358856B1 (en) | 2002-12-18 |
BR9510388A (en) | 1997-12-23 |
ATE240988T1 (en) | 2003-06-15 |
JPH10507786A (en) | 1998-07-28 |
NO971819L (en) | 1997-06-18 |
US5874139A (en) | 1999-02-23 |
WO1996012762A1 (en) | 1996-05-02 |
KR970707225A (en) | 1997-12-01 |
DE69530854D1 (en) | 2003-06-26 |
NZ295837A (en) | 1999-06-29 |
NO971819D0 (en) | 1997-04-18 |
AU3947195A (en) | 1996-05-15 |
AU685331B2 (en) | 1998-01-15 |
EP0787167B1 (en) | 2003-05-21 |
CA2203128C (en) | 2002-06-04 |
ES2194061T3 (en) | 2003-11-16 |
MY121203A (en) | 2006-01-28 |
CN1167496A (en) | 1997-12-10 |
DE69530854T2 (en) | 2004-03-11 |
CO4440533A1 (en) | 1997-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5792534A (en) | Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus | |
AU739746B2 (en) | Polyolefin compositions with balanced sealant properties and improved modulus and method for same | |
US6306969B1 (en) | Shrink film having balanced properties or improved toughness and methods of making the same | |
US5972444A (en) | Polyolefin compositions with balanced shrink properties | |
US20020006482A1 (en) | Multilayer blown film structure with polypropylene non-sealant layer and polyethylene sealant layer | |
KR100286154B1 (en) | Heat Sealable Films and Products | |
CA2376538C (en) | Polymer compositions which exhibit high hot tack | |
WO2001053079A1 (en) | Multilayer blown film structure with polypropylene non-sealant layer and polyethylene sealant layer | |
WO1999052972A1 (en) | Peelable-seal polyolefin composition and sealant layer | |
EP0750650A1 (en) | Polymers blends, films and articles thereof | |
WO1998050230A1 (en) | Ethylene/styrene polymer sealant layer for use in liquid packaging | |
MXPA99004434A (en) | Polyolefin compositions with balanced sealant properties and improved modulus and method for same | |
AU1193202A (en) | Polyolefin compositions with balanced sealant properties and improved modulus and method for same | |
MXPA99004381A (en) | Shrink film having balanced properties or improved toughness and methods of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |