US5391257A - Method of transferring a thin film to an alternate substrate - Google Patents
Method of transferring a thin film to an alternate substrate Download PDFInfo
- Publication number
- US5391257A US5391257A US08/165,050 US16505093A US5391257A US 5391257 A US5391257 A US 5391257A US 16505093 A US16505093 A US 16505093A US 5391257 A US5391257 A US 5391257A
- Authority
- US
- United States
- Prior art keywords
- substrate
- thin film
- bonding
- layer
- epitaxial thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76256—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68318—Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
- H01L2221/68322—Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68363—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10S117/915—Separating from substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/977—Thinning or removal of substrate
Definitions
- the present invention relates to the fabrication of thin film devices and, in particular, to a method of transferring a thin film to an alternate substrate.
- lattice-matched epitaxial growth may require a substrate of a certain material that has other characteristics, such a thermal, mechanical, and/or electromagnetic properties, that produce less than optimal performance in the final device or system.
- performance may be substantially improved by transferring the thin epitaxial layer from the growth substrate to another substrate that has the desired thermal, mechanical, and/or electromagnetic properties.
- Epitaxial films can be separated from their original growth substrates using known materials processing techniques generally referred to as epitaxial liftoff (ELO).
- ELO epitaxial liftoff
- One such process uses east films of "black wax" (Apiezon W) atop the epitaxial layer to provide support after separation from the original substrate. Bonding to a new substrate can be achieved through Van der Waals attraction to the new surface or metallurgical interactions with a gold or palladium coating. Black wax, however, is not easily manipulated, and the method of casting is not part of a normal microelectronics fabrication process. The total area that can be lifted using black wax is small, unless the epitaxial layer and wax are bent away from the substrate to allow the etching agent to get deeper under the layer. Bending of a thin epitaxial layer, however, is not desirable because it can damage the materials or structures of the layer. Furthermore, post processing of the lifted film suffers from the fragility, opacity, and low tolerance of black wax to solvents and elevated temperatures.
- Another known ELO process uses polyimide films to support both continuous and patterned epitaxial structures.
- Use of transparent polyimide as a membrane material facilitates vacuum deposition on the back surface of the epitaxial material after liftoff and before grafting. Perforation of the polyimide membrane allows visibility through the membrane to the host substrate, even after metal film deposition on the underside. These attributes facilitate manipulation and alignment of arrays of previously fabricated devices without the need for transfer from the primary temporary support membrane to a secondary membrane.
- the flexibility of polyimide membranes can cause damage to thin film circuit devices as a result of bending.
- the thin film to be transferred is held by a rigid temporary substrate, a problem may be encountered releasing the film from the temporary substrate after the film has been attached to the host substrate.
- dissolving a glue bond with solvents is effective only for small sections since the rate of dissolution drops exponentially with distance from an edge.
- One approach to this problem has been to glue the thin film to a temporary substrate of silicon that has had many holes etched through it. This allows solvents better access to the bonding glue, but fragile circuit films can be damaged where they bridge the relatively large holes etched in the silicon substrate.
- the present invention comprises a method of transferring a thin film, such as a semiconductor epitaxial layer, from an original substrate to an alternate host substrate.
- a thin film such as a semiconductor epitaxial layer
- an etch stop layer is provided below an epitaxial layer grown on a semiconductor substrate.
- the epitaxial layer is bonded, using metallic solder, for example, to a rigid host substrate having desirable thermal, electromagnetic, and/or mechanical properties.
- the original growth substrate is then separated from the transferred epitaxial layer using the etch stop layer.
- the epitaxial layer is first bonded to a rigid, porous, temporary support substrate using a thermally or chemically releasable resin, for example.
- the original growth substrate is removed using the etch stop layer so that the side of the epitaxial layer originally abutting the growth substrate can be bonded to the rigid host substrate, as described above.
- the temporary substrate is then removed using the releasable resin, leaving the transferred epitaxial layer attached to the host substrate.
- a principal object of the invention is a method of transferring thin films to alternate substrates.
- a feature of the invention is use of a temporary substrate that is rigid, porous with uniform small pores, and easily releasable from transferred thin films.
- An advantage of the invention is the use of rigid substrates to support transferred thin films having large areas.
- FIGS. 1A-F are schematic cross-sections illustrating the transfer of a thin film to an alternate substrate using a single transfer process of the present invention.
- FIGS. 2A-F are schematic cross-sections illustrating the transfer of a thin film to an alternate substrate using a double transfer process of the present invention.
- Lattice-matched epitaxial growth may require a substrate of a certain material, for example a III-V semiconductor such as gallium arsenide or indium phosphide, that has less than optimal thermal, mechanical, and/or electromagnetic characteristics with respect to performance of finished devices or systems, such as light emitting diodes, lasers, and high power heterojunction bipolar transistor (HBT) amplifiers.
- a substrate of a certain material for example a III-V semiconductor such as gallium arsenide or indium phosphide
- HBT heterojunction bipolar transistor
- performance can be significantly improved by transferring the thin epitaxial layer (or layers) from the growth substrate to another substrate, such as diamond or aluminum nitride, for example, that has the desired thermal, mechanical, and/or electromagnetic properties.
- the actual thin film to be transferred may comprise unprocessed epitaxial layers, functional circuits, microelectromechanical devices, or other thin film structures.
- FIGS. 1A-F A single transfer process is illustrated schematically in FIGS. 1A-F.
- a GaAs substrate 10 is prepared with an etch-stop layer 12, that may comprise AlAs or AlGaAs, for example.
- An epitaxial layer 14 is then grown atop the etch-stop layer 12.
- Epitaxial layer 14 may comprise one or more epitaxial growths or thin layers, such as GaAs, InGaAs, and AlGaAs for fabricating HBTs, for example.
- epitaxial layer 14 is bonded to a host substrate 16, comprising a material such as diamond or aluminum nitride (AlN), for example, that has desirable thermal, mechanical, and/or electromagnetic properties. Bonding of layer 14 to host substrate 16 may be accomplished using a resin or glue, a metallic solder for good thermal conductivity, or chemical bonds that would form if host substrate 16 were deposited directly on top of layer 14. In the process illustrated in FIGS. 1A-F, epitaxial layer 14 and host substrate 16 are coated with metal adhesion and barrier layers 18, which may comprise Ti/Pd barrier metal, for example.
- metal adhesion and barrier layers 18 which may comprise Ti/Pd barrier metal, for example.
- Metal layers 18 can then be bonded using a bonding layer 19 of indium (In) or tin (Sn) conductive metal, for example, applied to either or both of metal barrier layers 18.
- the layers of FIG. 1B are brought together and heated so that bonding layer 19 solders metal barrier layers 18 together to form a solid, thermally conductive bond as shown in FIG. 1C.
- original substrate 10 can be lapped and then reactive ion etched up to etch-stop layer 12, as shown in FIG. 1D.
- Etch-stop layer 12 can then be removed by selective etching and the whole structure inverted, as shown in FIG. 1E, for conventional fabrication of circuit devices, as illustrated in FIG. 1F.
- epitaxial layer 14 (which may comprise a plurality of thin layers as described above) is now inverted from its original growth sequence.
- FIGS. 2A-F A double (or multiple) transfer process of the present invention is illustrated in FIGS. 2A-F.
- FIG. 2A which is similar to FIG. 1A, shows a GaAs substrate 20, an AlAs or AlGaAs etch-stop layer 22, and an epitaxial layer 24 grown atop layer 22.
- Epitaxial layer 24 may comprise one or more epitaxial growths or thin layers, such as GaAs, InGaAs, and AlGaAs for fabricating HBTs, as in the example above.
- the top of epitaxial layer 24 is then bonded to a rigid, temporary substrate 26 using a releasable bonding material 25.
- Bonding material 25 may comprise a glue or resin that can be released, for example, with a thermal, chemical, or photoactivated process.
- temporary substrate 26 comprises a rigid, porous material such as porous alumina (Al 2 O 3 ), for example.
- Porous alumina has a coefficient of thermal expansion that is a good match for GaAs and InP substrates so that strain on the thin film is reduced during the transfer process.
- a porous material provides a good temporary substrate 26 because the surface hole size can be small enough not to damage the fragile thin film to be transferred but still allow resin releasing solvents to penetrate substrate 26 for fast release of the temporary bond.
- Porous materials suitable for temporary substrate 26 are typically made by taking a powder form of the desired material (perhaps combined with a binder material to improve bonding), pressing it into a desired shape, and sintering it to strengthen the bonds.
- the material is generally chosen to optimize a certain characteristic, such as coefficient of thermal expansion, for example.
- the pore size of the final material is largely determined by the particulate size of the forming powder.
- the density, or porosity, of the final material is a function of the force used to press the powder into the desired shape.
- the pressed and sintered porous material can be made into a suitable temporary substrate 26 using well known shaping and polishing methods.
- porous substrate 26 There are many materials that can be prepared as porous substrate 26.
- Aluminum oxide pressed powder disks for example, are commercially available and have a fairly good match to the coefficient of thermal expansion of GaAs.
- a variety of glasses can be prepared as porous substrate 26, some of which have a good match to the coefficient of thermal expansion of silicon. In theory, it should be possible, although probably not always practical, to prepare any chemically stable solid, including diamond and most metals, as porous substrate 26.
- the pore size of temporary substrate 26 should be large enough to allow for rapid transport of resin releasing agents through the substrate, but small enough that layer 24 is supported effectively by the releasable bonding agent 25 where layer 24 traverses a pore of the porous material of substrate 26. Therefore, the pore size of substrate 26 should be a fraction of the average thickness of the releasable resin 25. For typical resin thicknesses of 15 to 30 microns, for example, the pore size should be in the 5 to 20 micron range.
- a host substrate 30, as described above, may then be bonded to the bottom surface of epitaxial layer 24.
- bonding of layer 24 to host substrate 30 may be accomplished using a resin or glue, a metallic solder for good thermal conductivity, or chemical bonds that would form if host substrate 30 were deposited directly on layer 24.
- epitaxial layer 24 and host substrate 30 are coated with metal adhesion and barrier layers 28, which may comprise Ti/Pd barrier metal, for example.
- Metal layers 28 can then be bonded together using a bonding layer 29 of indium (In) or tin (Sn) conductive metal, for example, applied to either or both of metal barrier layers 28.
- the layers of FIG. 2D are brought together and heated so that bonding layer 29 solders metal barrier layers 28 together to form a solid, thermally conductive bond.
- epitaxial layer 24 After epitaxial layer 24 has been bonded to host substrate 30, releasable bonding layer 25 is dissolved or otherwise released, as shown in FIG. 2E, using a chemical, thermal, or ultraviolet process, for example. After cleaning as necessary to remove residual temporary bonding material 25, epitaxial layer 24, now bonded to host substrate 30, is ready for conventional fabrication of circuit devices as illustrated in FIG. 1F.
- the final orientation of epitaxial layer 24 (which may comprise a plurality of thin layers as described above) is its original growth order. As can be seen, transferred layer 24 will end up in a face up or face down orientation depending on the number of transfers (i.e., even or odd) in the overall process.
- the method of the present invention has be described with reference to HBT epitaxial layers grown on a GaAs substrate.
- the process is applicable to the transfer of any thin film to an alternate, rigid substrate.
- Prior art transfer processes that use flexible membranes can damage delicate films and circuits by bending the layers during transfer. Transfer processes that rely on chemical attack of a bonding layer exposed along the edge of a wafer severely limit the size of the thin film patch that can be released and transferred.
- the present invention is most applicable to the transfer of a thin film, such as an epitaxial layer (or layers) or a complete semiconductor circuit, for example, from a growth substrate to a host substrate having more desirable performance characteristics.
- the host substrate may comprise any suitable material, such as diamond, polycrystalline AlN, sapphire, or silicon, for example.
- Temporary substrate 26 may comprise any rigid material that can be released after it is temporarily bonded to the thin film being transferred.
- porous ceramic materials used as temporary substrate 26 have advantages in allowing a chemical solvent to reach and dissolve the glue or resin 25 used for the temporary bond.
- the temporary bonding material 25 my comprise a material that can be released using a thermal, chemical, or photochemical process, for example. Selected portions of a thin film can be released and/or transferred by using a photosensitive glue and an optical mask to expose and release selected regions of the thin film layer onto specific spots of the new substrate. Likewise, if the glue is thermally releasable, certain regions can be heated while others are not to release and/or transfer only selected regions.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/165,050 US5391257A (en) | 1993-12-10 | 1993-12-10 | Method of transferring a thin film to an alternate substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/165,050 US5391257A (en) | 1993-12-10 | 1993-12-10 | Method of transferring a thin film to an alternate substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
US5391257A true US5391257A (en) | 1995-02-21 |
Family
ID=22597213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/165,050 Expired - Lifetime US5391257A (en) | 1993-12-10 | 1993-12-10 | Method of transferring a thin film to an alternate substrate |
Country Status (1)
Country | Link |
---|---|
US (1) | US5391257A (en) |
Cited By (167)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5476810A (en) * | 1994-01-31 | 1995-12-19 | U.S. Philips Corporation | Manufacture of electronic devices comprising thin-film circuits using a metal foil as a temporary support |
US5563084A (en) * | 1994-09-22 | 1996-10-08 | Fraunhofer-Gesellschaft zur F orderung der angewandten Forschung e.V. | Method of making a three-dimensional integrated circuit |
WO1997039481A1 (en) * | 1996-04-12 | 1997-10-23 | Northeastern University | An integrated complex-transition metal oxide device and a method of fabricating such a device |
EP0867918A2 (en) * | 1997-03-27 | 1998-09-30 | Canon Kabushiki Kaisha | Process for producing semiconductor substrate |
US5846844A (en) * | 1993-11-29 | 1998-12-08 | Toyoda Gosei Co., Ltd. | Method for producing group III nitride compound semiconductor substrates using ZnO release layers |
EP0924769A1 (en) * | 1997-07-03 | 1999-06-23 | Seiko Epson Corporation | Method of transferring thin film devices, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display, and electronic apparatus |
US5943563A (en) * | 1994-08-03 | 1999-08-24 | Siemens Aktiengesellschaft | Method for producing a three-dimensional circuit arrangement |
US5966622A (en) * | 1997-10-08 | 1999-10-12 | Lucent Technologies Inc. | Process for bonding crystalline substrates with different crystal lattices |
US5993677A (en) * | 1996-01-25 | 1999-11-30 | Commissariat A L'energie Atomique | Process for transferring a thin film from an initial substrate onto a final substrate |
US6004865A (en) * | 1993-09-06 | 1999-12-21 | Hitachi, Ltd. | Method of fabricating multi-layered structure having single crystalline semiconductor film formed on insulator |
US6027958A (en) * | 1996-07-11 | 2000-02-22 | Kopin Corporation | Transferred flexible integrated circuit |
EP1014452A1 (en) * | 1998-02-25 | 2000-06-28 | Seiko Epson Corporation | Method of detaching thin-film device, method of transferring thin-film device, thin-film device, active matrix substrate, and liquid crystal display |
US6100166A (en) * | 1996-12-18 | 2000-08-08 | Canon Kabushiki Kaisha | Process for producing semiconductor article |
US6114188A (en) * | 1996-04-12 | 2000-09-05 | Northeastern University | Method of fabricating an integrated complex-transition metal oxide device |
US6114256A (en) * | 1995-08-18 | 2000-09-05 | California Institute Of Technology | Stable metallization for diamond and other materials |
US6136667A (en) * | 1997-10-08 | 2000-10-24 | Lucent Technologies Inc. | Method for bonding two crystalline substrates together |
JP2000332270A (en) * | 1999-05-21 | 2000-11-30 | Canon Inc | Method of manufacturing photoelectric conversion device and photoelectric conversion device manufactured by the method |
US6190937B1 (en) * | 1996-12-27 | 2001-02-20 | Canon Kabushiki Kaisha | Method of producing semiconductor member and method of producing solar cell |
US6214733B1 (en) * | 1999-11-17 | 2001-04-10 | Elo Technologies, Inc. | Process for lift off and handling of thin film materials |
US6291314B1 (en) * | 1998-06-23 | 2001-09-18 | Silicon Genesis Corporation | Controlled cleavage process and device for patterned films using a release layer |
WO2001078132A2 (en) * | 2000-04-05 | 2001-10-18 | Hrl Laboratories, Llc. | Method for transferring semiconductor device layers to different substrates |
US6328796B1 (en) * | 1999-02-01 | 2001-12-11 | The United States Of America As Represented By The Secretary Of The Navy | Single-crystal material on non-single-crystalline substrate |
US6339010B2 (en) * | 1997-09-16 | 2002-01-15 | President Of Tokyo University Of Agriculture & Technology | Semiconductor element forming process having a step of separating film structure from substrate |
US6375738B1 (en) * | 1999-03-26 | 2002-04-23 | Canon Kabushiki Kaisha | Process of producing semiconductor article |
FR2816445A1 (en) * | 2000-11-06 | 2002-05-10 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING A STACKED STRUCTURE COMPRISING A THIN FILM ADHERING TO A TARGET SUBSTRATE |
US6436614B1 (en) | 2000-10-20 | 2002-08-20 | Feng Zhou | Method for the formation of a thin optical crystal layer overlying a low dielectric constant substrate |
FR2823012A1 (en) * | 2001-04-03 | 2002-10-04 | Commissariat Energie Atomique | METHOD FOR THE SELECTIVE TRANSFER OF AT LEAST ONE ELEMENT FROM AN INITIAL MEDIUM TO A FINAL MEDIUM |
US6468824B2 (en) * | 2001-03-22 | 2002-10-22 | Uni Light Technology Inc. | Method for forming a semiconductor device having a metallic substrate |
US6498073B2 (en) * | 2001-01-02 | 2002-12-24 | Honeywell International Inc. | Back illuminated imager with enhanced UV to near IR sensitivity |
US20030047280A1 (en) * | 2001-08-22 | 2003-03-13 | Toru Takayama | Peeling method and method of manufacturing semiconductor device |
US6555451B1 (en) | 2001-09-28 | 2003-04-29 | The United States Of America As Represented By The Secretary Of The Navy | Method for making shallow diffusion junctions in semiconductors using elemental doping |
US6562648B1 (en) * | 2000-08-23 | 2003-05-13 | Xerox Corporation | Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials |
US6562127B1 (en) | 2002-01-16 | 2003-05-13 | The United States Of America As Represented By The Secretary Of The Navy | Method of making mosaic array of thin semiconductor material of large substrates |
US6593212B1 (en) | 2001-10-29 | 2003-07-15 | The United States Of America As Represented By The Secretary Of The Navy | Method for making electro-optical devices using a hydrogenion splitting technique |
US6607969B1 (en) | 2002-03-18 | 2003-08-19 | The United States Of America As Represented By The Secretary Of The Navy | Method for making pyroelectric, electro-optical and decoupling capacitors using thin film transfer and hydrogen ion splitting techniques |
US20030170965A1 (en) * | 2001-12-27 | 2003-09-11 | Seiko Epson Corporation | Semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit |
US20030170946A1 (en) * | 2001-12-28 | 2003-09-11 | Seiko Epson Corporation | Semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit |
US6624050B2 (en) * | 1998-10-21 | 2003-09-23 | Sony Corporation | Method of manufacturing semiconductor device |
EP1363319A2 (en) * | 2002-05-17 | 2003-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Method of transferring a laminate and method of manufacturing a semiconductor device |
US6656271B2 (en) * | 1998-12-04 | 2003-12-02 | Canon Kabushiki Kaisha | Method of manufacturing semiconductor wafer method of using and utilizing the same |
US6677249B2 (en) * | 1998-01-27 | 2004-01-13 | Robert Bosch Gmbh | Method for manufacturing breakaway layers for detaching deposited layer systems |
US20040007709A1 (en) * | 2002-06-10 | 2004-01-15 | Seiko Epson Corporation | Semiconductor integrated circuit, signal transmitting device, electro-optical device, and electronic apparatus |
EP1385200A2 (en) * | 2002-07-24 | 2004-01-28 | Interuniversitaire Microelectronica Centrum vzw ( IMEC) | Method for making thin film devices intended for solar cells or SOI applications |
US20040016932A1 (en) * | 2002-05-30 | 2004-01-29 | Seiko Epson Corporation | Semiconductor unit, semiconductor apparatus, and method for making the same, electrooptic apparatus, and electronic apparatus |
US20040036074A1 (en) * | 2002-06-18 | 2004-02-26 | Seiko Epson Corporation | Optical interconnection integrated circuit, method of manufacturing optical interconnection integrated circuit, electro-optical apparatus, and electronic apparatus |
US20040036078A1 (en) * | 2002-06-20 | 2004-02-26 | Seiko Epson Corporation | Semiconductor device, method of manufacturing the same, electro-optic device and electronic apparatus |
US20040100677A1 (en) * | 2000-12-07 | 2004-05-27 | Reflectivity, Inc., A California Corporation | Spatial light modulators with light blocking/absorbing areas |
US6743697B2 (en) * | 2000-06-30 | 2004-06-01 | Intel Corporation | Thin silicon circuits and method for making the same |
US20040109629A1 (en) * | 2002-10-01 | 2004-06-10 | Seiko Epson Corporation | Optical interconnection circuit, manufacturing method thereof, electro-optical device and electronic equipment |
US6756289B1 (en) | 1996-12-27 | 2004-06-29 | Canon Kabushiki Kaisha | Method of producing semiconductor member and method of producing solar cell |
US20040126994A1 (en) * | 2002-12-31 | 2004-07-01 | Rafael Reif | Method of forming a multi-layer semiconductor structure having a seamless bonding interface |
US20040135158A1 (en) * | 2003-01-03 | 2004-07-15 | Supernova Optoelectronics Corp. | Method for manufacturing of a vertical light emitting device structure |
US20040136639A1 (en) * | 2002-11-20 | 2004-07-15 | Seiko Epson Corporation | Optical interconnection circuit between chips, electrooptical device and electronic equipment |
WO2004061953A2 (en) * | 2002-12-31 | 2004-07-22 | Massachusetts Institute Of Technology | Method of forming a multi-layer semiconductor structure incorporating a processing handle member |
US6767749B2 (en) | 2002-04-22 | 2004-07-27 | The United States Of America As Represented By The Secretary Of The Navy | Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting |
US20040149810A1 (en) * | 2003-02-04 | 2004-08-05 | Kuang-Neng Yang | Led stack manufacturing method and its structure thereof |
US20040166649A1 (en) * | 2003-01-24 | 2004-08-26 | Soitec & Cea | Layer transfer method |
US6797604B2 (en) * | 2000-05-08 | 2004-09-28 | International Business Machines Corporation | Method for manufacturing device substrate with metal back-gate and structure formed thereby |
US20040206444A1 (en) * | 2003-03-14 | 2004-10-21 | Fabrice Letertre | Methods for forming an assembly for transfer of a useful layer |
US20040214434A1 (en) * | 2001-04-17 | 2004-10-28 | Atwater Harry A. | Wafer bonded virtual substrate and method for forming the same |
US20040218874A1 (en) * | 2003-02-28 | 2004-11-04 | Seiko Epson Corporation | Fiber optic transceiver module, manufacturing method thereof, and electronic equipment |
US20040239827A1 (en) * | 2003-01-15 | 2004-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US20040253795A1 (en) * | 2003-06-11 | 2004-12-16 | Muriel Martinez | Methods of producing a heterogeneous semiconductor structure |
US20050020032A1 (en) * | 2002-07-24 | 2005-01-27 | Solanki Chetan Singh | Method for making thin film devices intended for solar cells or silicon-on-insulator (SOI) applications |
US20050026432A1 (en) * | 2001-04-17 | 2005-02-03 | Atwater Harry A. | Wafer bonded epitaxial templates for silicon heterostructures |
US20050048736A1 (en) * | 2003-09-02 | 2005-03-03 | Sebastien Kerdiles | Methods for adhesive transfer of a layer |
US20050104083A1 (en) * | 2000-08-31 | 2005-05-19 | Osram Opto Semiconductors Gmbh | Method for fabricating a radiation-emitting semiconductor chip based on Ill-V nitride semiconductor |
US20050227455A1 (en) * | 2004-03-29 | 2005-10-13 | Jongkook Park | Method of separating layers of material |
US20050282357A1 (en) * | 2001-08-10 | 2005-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling off and method of manufacturing semiconductor device |
US20060021565A1 (en) * | 2004-07-30 | 2006-02-02 | Aonex Technologies, Inc. | GaInP / GaAs / Si triple junction solar cell enabled by wafer bonding and layer transfer |
US7019339B2 (en) | 2001-04-17 | 2006-03-28 | California Institute Of Technology | Method of using a germanium layer transfer to Si for photovoltaic applications and heterostructure made thereby |
US20060112986A1 (en) * | 2004-10-21 | 2006-06-01 | Aonex Technologies, Inc. | Multi-junction solar cells and methods of making same using layer transfer and bonding techniques |
FR2880189A1 (en) * | 2004-12-24 | 2006-06-30 | Tracit Technologies Sa | Semi-conductor structure manufacturing method, involves forming bonding layer on electrically conductive or grounding plane forming layer, where binding layer has specific thickness |
US20060185582A1 (en) * | 2005-02-18 | 2006-08-24 | Atwater Harry A Jr | High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials |
US20060255341A1 (en) * | 2005-04-21 | 2006-11-16 | Aonex Technologies, Inc. | Bonded intermediate substrate and method of making same |
US20060273319A1 (en) * | 2005-06-03 | 2006-12-07 | Semiconductor Energy Laboratory Co., Ltd. | Integrated circuit device and manufacturing method thereof |
SG127711A1 (en) * | 2003-02-25 | 2006-12-29 | Sony Corp | Process for the fabrication of thin-film device and thin-film device |
US20070015349A1 (en) * | 2003-10-07 | 2007-01-18 | Patrice Aublanc | Method of producing a composite multilayer |
US20070020884A1 (en) * | 2005-07-25 | 2007-01-25 | Qi Wang | Semiconductor structures formed on substrates and methods of manufacturing the same |
US20070087644A1 (en) * | 2000-07-18 | 2007-04-19 | Sony Corporation | Method of producing image display unit |
US20070117289A1 (en) * | 2002-04-24 | 2007-05-24 | Yoshikazu Akiyama | thin film apparatus, a manufacturing method of the thin film apparatus, an active matrix substrate, a manufacturing method of the active matrix substrate, and an electro-optical apparatus having the active matrix substrate |
US20070243703A1 (en) * | 2006-04-14 | 2007-10-18 | Aonex Technololgies, Inc. | Processes and structures for epitaxial growth on laminate substrates |
US20070269960A1 (en) * | 2000-11-27 | 2007-11-22 | S.O.I.Tec Silicon On Insulator Technologies | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
US20080128751A1 (en) * | 2002-06-07 | 2008-06-05 | Amberwave Systems Corporation | Methods for forming iii-v semiconductor device structures |
US20080211061A1 (en) * | 2004-04-21 | 2008-09-04 | California Institute Of Technology | Method For the Fabrication of GaAs/Si and Related Wafer Bonded Virtual Substrates |
DE102007016995A1 (en) * | 2007-04-11 | 2008-10-16 | Beyer, André | Method for transferring a nanolayer |
US20090179259A1 (en) * | 2007-09-27 | 2009-07-16 | Qi Wang | Semiconductor device with (110)-oriented silicon |
US20090200550A1 (en) * | 2008-02-08 | 2009-08-13 | Roger Stanley Kerr | Method for forming an electronic device on a flexible substrate supported by a detachable carrier |
US20090199401A1 (en) * | 2008-02-08 | 2009-08-13 | Roger Stanley Kerr | Method for forming cast flexible substrate and resultant substrate and electronic device |
US20090239320A1 (en) * | 2001-07-16 | 2009-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
US20090278233A1 (en) * | 2007-07-26 | 2009-11-12 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
WO2009138138A2 (en) * | 2008-05-14 | 2009-11-19 | Robert Bosch Gmbh | Method for producing chips |
US7656002B1 (en) * | 2007-11-30 | 2010-02-02 | Rf Micro Devices, Inc. | Integrated bipolar transistor and field effect transistor |
EP2151852A1 (en) * | 2008-08-06 | 2010-02-10 | S.O.I. TEC Silicon | Relaxation and transfer of strained layers |
US20100035418A1 (en) * | 2008-08-06 | 2010-02-11 | Bruce Faure | Passivation of semiconductor structures having strained layers |
US20100032805A1 (en) * | 2008-08-06 | 2010-02-11 | Fabrice Letertre | Methods and structures for relaxation of strained layers |
WO2010025218A2 (en) * | 2008-08-28 | 2010-03-04 | The Regents Of The University Of California | Composite semiconductor substrates for thin-film device layer transfer |
US20100059797A1 (en) * | 2008-09-09 | 2010-03-11 | Tat Ngai | (110)-oriented p-channel trench mosfet having high-k gate dielectric |
US20100066683A1 (en) * | 2008-09-17 | 2010-03-18 | Shih-Chang Chang | Method for Transferring Thin Film to Substrate |
US7732301B1 (en) | 2007-04-20 | 2010-06-08 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
US20100176490A1 (en) * | 2008-09-24 | 2010-07-15 | Fabrice Letertre | Methods of forming relaxed layers of semiconductor materials, semiconductor structures, devices and engineered substrates including same |
US7820495B2 (en) | 2005-06-30 | 2010-10-26 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US20110127640A1 (en) * | 2008-08-25 | 2011-06-02 | Bruce Faure | Stiffening layers for the relaxation of strained layers |
US20110217825A1 (en) * | 2003-02-28 | 2011-09-08 | S.O.I.Tec Silicon On Insulator Technologies | Forming structures that include a relaxed or pseudo-relaxed layer on a substrate |
US8252664B2 (en) | 2000-11-27 | 2012-08-28 | Soitec | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
US8481408B2 (en) | 2008-08-06 | 2013-07-09 | Soitec | Relaxation of strained layers |
US20140014977A1 (en) * | 2011-02-24 | 2014-01-16 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor device and method for producing an optoelectronic semiconductor device |
US8637383B2 (en) | 2010-12-23 | 2014-01-28 | Soitec | Strain relaxation using metal materials and related structures |
US8836081B2 (en) | 2008-10-30 | 2014-09-16 | Soitec | Semiconductor structures, devices and engineered substrates including layers of semiconductor material having reduced lattice strain |
TWI462316B (en) * | 2008-03-03 | 2014-11-21 | Univ Nat Chunghsing | Solar cell having a thermal conductive substrate and a method for manufacturing the same |
US9214337B2 (en) | 2013-03-06 | 2015-12-15 | Rf Micro Devices, Inc. | Patterned silicon-on-plastic (SOP) technology and methods of manufacturing the same |
US20160126196A1 (en) | 2014-11-03 | 2016-05-05 | Rf Micro Devices, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
WO2016073460A1 (en) * | 2014-11-04 | 2016-05-12 | The Regents Of The University Of California | Solid-state wafer bonding of functional materials on substrates and self-aligned contacts |
EP1699091B1 (en) * | 2005-03-02 | 2017-01-25 | Oki Data Corporation | Semiconductor composite LED apparatus |
US9583414B2 (en) | 2013-10-31 | 2017-02-28 | Qorvo Us, Inc. | Silicon-on-plastic semiconductor device and method of making the same |
US9613831B2 (en) | 2015-03-25 | 2017-04-04 | Qorvo Us, Inc. | Encapsulated dies with enhanced thermal performance |
US20170194194A1 (en) * | 2015-12-31 | 2017-07-06 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
US9812350B2 (en) | 2013-03-06 | 2017-11-07 | Qorvo Us, Inc. | Method of manufacture for a silicon-on-plastic semiconductor device with interfacial adhesion layer |
US9824951B2 (en) | 2014-09-12 | 2017-11-21 | Qorvo Us, Inc. | Printed circuit module having semiconductor device with a polymer substrate and methods of manufacturing the same |
US20170358511A1 (en) | 2016-06-10 | 2017-12-14 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US20180019184A1 (en) | 2016-07-18 | 2018-01-18 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US20180044177A1 (en) | 2016-08-12 | 2018-02-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US9919515B2 (en) | 2016-01-28 | 2018-03-20 | Tracer Imaging Llc | Product alignment using a printed relief |
US9947568B2 (en) | 2013-02-20 | 2018-04-17 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method, semiconductor device, and peeling apparatus |
US9960145B2 (en) | 2015-03-25 | 2018-05-01 | Qorvo Us, Inc. | Flip chip module with enhanced properties |
US10020405B2 (en) | 2016-01-19 | 2018-07-10 | Qorvo Us, Inc. | Microelectronics package with integrated sensors |
US10032943B2 (en) | 2015-12-18 | 2018-07-24 | International Business Machines Corporation | Device layer thin-film transfer to thermally conductive substrate |
US10038055B2 (en) | 2015-05-22 | 2018-07-31 | Qorvo Us, Inc. | Substrate structure with embedded layer for post-processing silicon handle elimination |
US20180228030A1 (en) | 2014-10-01 | 2018-08-09 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US10062583B2 (en) | 2016-05-09 | 2018-08-28 | Qorvo Us, Inc. | Microelectronics package with inductive element and magnetically enhanced mold compound component |
US10068831B2 (en) | 2016-12-09 | 2018-09-04 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US10090339B2 (en) | 2016-10-21 | 2018-10-02 | Qorvo Us, Inc. | Radio frequency (RF) switch |
US10109550B2 (en) | 2016-08-12 | 2018-10-23 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10109502B2 (en) | 2016-09-12 | 2018-10-23 | Qorvo Us, Inc. | Semiconductor package with reduced parasitic coupling effects and process for making the same |
US20190013255A1 (en) | 2017-07-06 | 2019-01-10 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
US10189048B2 (en) | 2013-12-12 | 2019-01-29 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and peeling apparatus |
US20190074271A1 (en) | 2017-09-05 | 2019-03-07 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US20190074263A1 (en) | 2017-09-05 | 2019-03-07 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US10276495B2 (en) | 2015-09-11 | 2019-04-30 | Qorvo Us, Inc. | Backside semiconductor die trimming |
CN110050335A (en) * | 2016-11-08 | 2019-07-23 | 麻省理工学院 | Dislocation filtration system and method for layer transfer |
US10486963B2 (en) | 2016-08-12 | 2019-11-26 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
WO2019226711A1 (en) * | 2018-05-22 | 2019-11-28 | Etx Corporation | Method and apparatus for transfer of two-dimensional materials |
CN110970340A (en) * | 2019-10-31 | 2020-04-07 | 中国电子科技集团公司第五十五研究所 | A kind of flexible InP HBT device and preparation method thereof |
US20200235054A1 (en) | 2019-01-23 | 2020-07-23 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US10749518B2 (en) | 2016-11-18 | 2020-08-18 | Qorvo Us, Inc. | Stacked field-effect transistor switch |
US10773952B2 (en) | 2016-05-20 | 2020-09-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10784149B2 (en) | 2016-05-20 | 2020-09-22 | Qorvo Us, Inc. | Air-cavity module with enhanced device isolation |
US10804246B2 (en) | 2018-06-11 | 2020-10-13 | Qorvo Us, Inc. | Microelectronics package with vertically stacked dies |
US10964554B2 (en) | 2018-10-10 | 2021-03-30 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US11069590B2 (en) | 2018-10-10 | 2021-07-20 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US20210296199A1 (en) | 2018-11-29 | 2021-09-23 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
US11152363B2 (en) | 2018-03-28 | 2021-10-19 | Qorvo Us, Inc. | Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process |
CN113764968A (en) * | 2021-09-07 | 2021-12-07 | 中国科学院半导体研究所 | A kind of method of removing epitaxial wafer substrate |
US20220108938A1 (en) | 2019-01-23 | 2022-04-07 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US20220139862A1 (en) | 2019-01-23 | 2022-05-05 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US11387157B2 (en) | 2019-01-23 | 2022-07-12 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11646289B2 (en) | 2019-12-02 | 2023-05-09 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11923238B2 (en) | 2019-12-12 | 2024-03-05 | Qorvo Us, Inc. | Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive |
US12046483B2 (en) | 2019-01-23 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12046505B2 (en) | 2018-04-20 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation |
US12046535B2 (en) | 2018-07-02 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12062701B2 (en) | 2018-04-04 | 2024-08-13 | Qorvo Us, Inc. | Gallium-nitride-based module with enhanced electrical performance and process for making the same |
US12062571B2 (en) | 2021-03-05 | 2024-08-13 | Qorvo Us, Inc. | Selective etching process for SiGe and doped epitaxial silicon |
US12074086B2 (en) | 2019-11-01 | 2024-08-27 | Qorvo Us, Inc. | RF devices with nanotube particles for enhanced performance and methods of forming the same |
DE112013000499B4 (en) | 2012-01-05 | 2024-10-10 | Commissariat à l'énergie atomique et aux énergies alternatives | Backscattering device and light emitting device and manufacturing method thereof |
US12125825B2 (en) | 2019-01-23 | 2024-10-22 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12129168B2 (en) | 2019-12-23 | 2024-10-29 | Qorvo Us, Inc. | Microelectronics package with vertically stacked MEMS device and controller device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3959045A (en) * | 1974-11-18 | 1976-05-25 | Varian Associates | Process for making III-V devices |
US5013681A (en) * | 1989-09-29 | 1991-05-07 | The United States Of America As Represented By The Secretary Of The Navy | Method of producing a thin silicon-on-insulator layer |
US5073230A (en) * | 1990-04-17 | 1991-12-17 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Means and methods of lifting and relocating an epitaxial device layer |
US5261999A (en) * | 1991-05-08 | 1993-11-16 | North American Philips Corporation | Process for making strain-compensated bonded silicon-on-insulator material free of dislocations |
-
1993
- 1993-12-10 US US08/165,050 patent/US5391257A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3959045A (en) * | 1974-11-18 | 1976-05-25 | Varian Associates | Process for making III-V devices |
US5013681A (en) * | 1989-09-29 | 1991-05-07 | The United States Of America As Represented By The Secretary Of The Navy | Method of producing a thin silicon-on-insulator layer |
US5073230A (en) * | 1990-04-17 | 1991-12-17 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Means and methods of lifting and relocating an epitaxial device layer |
US5261999A (en) * | 1991-05-08 | 1993-11-16 | North American Philips Corporation | Process for making strain-compensated bonded silicon-on-insulator material free of dislocations |
Non-Patent Citations (8)
Title |
---|
C. Camperi Binestet et al., Alignable Epitaxial Liftoff of GaAs Materials with Selective Deposition Using Polyimide Diaphragms , IEEE Transactions Photonics Technology Letters , vol. 3, No. 12, pp. 1123 1126, Dec. 1991. * |
C. Camperi-Binestet et al., "Alignable Epitaxial Liftoff of GaAs Materials with Selective Deposition Using Polyimide Diaphragms", IEEE Transactions Photonics Technology Letters, vol. 3, No. 12, pp. 1123-1126, Dec. 1991. |
E. Yablonovitch et al., "Extreme selectivity in the lift-off of epitaxial GaAs films," Appl. Phys. Lett., vol. 51, No. 26, pp. 2222-2224, Dec. 28, 1987. |
E. Yablonovitch et al., "Van der Waals bonding of GaAs on Pd leads to a permanent, solid-phase-topotaxial, metallurgical bond," Appl. Phys. Lett., vol. 59, No. 24, pp. 3159-3161, Dec. 9, 1991. |
E. Yablonovitch et al., Extreme selectivity in the lift off of epitaxial GaAs films, Appl. Phys. Lett. , vol. 51, No. 26, pp. 2222 2224, Dec. 28, 1987. * |
E. Yablonovitch et al., Van der Waals bonding of GaAs on Pd leads to a permanent, solid phase topotaxial, metallurgical bond, Appl. Phys. Lett. , vol. 59, No. 24, pp. 3159 3161, Dec. 9, 1991. * |
J. Callahan et al., "Alignable Liftoff Transfer of Device Arrays via a Single Polymeric Carrier Membrane," Electronics Letters, vol. 29, No. 11, pp. 951-953, May 27, 1993. |
J. Callahan et al., Alignable Liftoff Transfer of Device Arrays via a Single Polymeric Carrier Membrane, Electronics Letters , vol. 29, No. 11, pp. 951 953, May 27, 1993. * |
Cited By (365)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004865A (en) * | 1993-09-06 | 1999-12-21 | Hitachi, Ltd. | Method of fabricating multi-layered structure having single crystalline semiconductor film formed on insulator |
US5846844A (en) * | 1993-11-29 | 1998-12-08 | Toyoda Gosei Co., Ltd. | Method for producing group III nitride compound semiconductor substrates using ZnO release layers |
US5476810A (en) * | 1994-01-31 | 1995-12-19 | U.S. Philips Corporation | Manufacture of electronic devices comprising thin-film circuits using a metal foil as a temporary support |
US5943563A (en) * | 1994-08-03 | 1999-08-24 | Siemens Aktiengesellschaft | Method for producing a three-dimensional circuit arrangement |
US5563084A (en) * | 1994-09-22 | 1996-10-08 | Fraunhofer-Gesellschaft zur F orderung der angewandten Forschung e.V. | Method of making a three-dimensional integrated circuit |
US6114256A (en) * | 1995-08-18 | 2000-09-05 | California Institute Of Technology | Stable metallization for diamond and other materials |
US5993677A (en) * | 1996-01-25 | 1999-11-30 | Commissariat A L'energie Atomique | Process for transferring a thin film from an initial substrate onto a final substrate |
WO1997039481A1 (en) * | 1996-04-12 | 1997-10-23 | Northeastern University | An integrated complex-transition metal oxide device and a method of fabricating such a device |
US6114188A (en) * | 1996-04-12 | 2000-09-05 | Northeastern University | Method of fabricating an integrated complex-transition metal oxide device |
US6027958A (en) * | 1996-07-11 | 2000-02-22 | Kopin Corporation | Transferred flexible integrated circuit |
US6534382B1 (en) | 1996-12-18 | 2003-03-18 | Canon Kabushiki Kaisha | Process for producing semiconductor article |
US6100166A (en) * | 1996-12-18 | 2000-08-08 | Canon Kabushiki Kaisha | Process for producing semiconductor article |
US6190937B1 (en) * | 1996-12-27 | 2001-02-20 | Canon Kabushiki Kaisha | Method of producing semiconductor member and method of producing solar cell |
US6756289B1 (en) | 1996-12-27 | 2004-06-29 | Canon Kabushiki Kaisha | Method of producing semiconductor member and method of producing solar cell |
EP0867918A3 (en) * | 1997-03-27 | 1998-12-16 | Canon Kabushiki Kaisha | Process for producing semiconductor substrate |
EP0867918A2 (en) * | 1997-03-27 | 1998-09-30 | Canon Kabushiki Kaisha | Process for producing semiconductor substrate |
US6258698B1 (en) | 1997-03-27 | 2001-07-10 | Canon Kabushiki Kaisha | Process for producing semiconductor substrate |
US6521511B1 (en) | 1997-07-03 | 2003-02-18 | Seiko Epson Corporation | Thin film device transfer method, thin film device, thin film integrated circuit device, active matrix board, liquid crystal display, and electronic apparatus |
EP0924769A1 (en) * | 1997-07-03 | 1999-06-23 | Seiko Epson Corporation | Method of transferring thin film devices, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display, and electronic apparatus |
US6878607B2 (en) | 1997-07-03 | 2005-04-12 | Seiko Epson Corporation | Thin film device transfer method, thin film device, thin film integrated circuit device, active matrix board, liquid crystal display, and electronic apparatus |
KR100494479B1 (en) * | 1997-07-03 | 2005-06-10 | 세이코 엡슨 가부시키가이샤 | Method for manufacturing an active matrix substrate |
EP0924769A4 (en) * | 1997-07-03 | 2001-11-14 | Seiko Epson Corp | METHOD FOR TRANSFERING THIN-LAYER COMPONENTS, THIN-LAYER COMPONENT, THIN-LAYER INTEGRATED CIRCUIT COMPONENT, ACTIVE MATRIX SUBSTRATE, LIQUID CRYSTAL DISPLAY AND ELECTRONIC DEVICE |
US6339010B2 (en) * | 1997-09-16 | 2002-01-15 | President Of Tokyo University Of Agriculture & Technology | Semiconductor element forming process having a step of separating film structure from substrate |
DE19842419B4 (en) * | 1997-09-16 | 2005-03-03 | President Of Tokyo University Of Agriculture & Technology | Method for forming a semiconductor element |
US6136667A (en) * | 1997-10-08 | 2000-10-24 | Lucent Technologies Inc. | Method for bonding two crystalline substrates together |
US5966622A (en) * | 1997-10-08 | 1999-10-12 | Lucent Technologies Inc. | Process for bonding crystalline substrates with different crystal lattices |
US6677249B2 (en) * | 1998-01-27 | 2004-01-13 | Robert Bosch Gmbh | Method for manufacturing breakaway layers for detaching deposited layer systems |
EP1014452A4 (en) * | 1998-02-25 | 2001-11-14 | Seiko Epson Corp | METHOD TO SEPARATE A THIN-LAYER COMPONENT, METHOD TO TRANSFER A THIN-LAYER COMPONENT, THIN-LAYER COMPONENT, ACTIVE MATRIX SUBSTRATE, AND LIQUID CRYSTAL DISPLAY |
US6885389B2 (en) | 1998-02-25 | 2005-04-26 | Seiko Epson Corporation | Method of separating thin film device, method of transferring thin film device, thin film device, active matrix substrate and liquid crystal display device |
US6700631B1 (en) | 1998-02-25 | 2004-03-02 | Seiko Epson Corporation | Method of separating thin-film device, method of transferring thin-film device, thin-film device, active matrix substrate, and liquid crystal display device |
US20030008437A1 (en) * | 1998-02-25 | 2003-01-09 | Seiko Epson Corporation | Method of separating thin film device, method of transferring thin film device, thin film device, active matrix substrate and liquid crystal display device |
EP1014452A1 (en) * | 1998-02-25 | 2000-06-28 | Seiko Epson Corporation | Method of detaching thin-film device, method of transferring thin-film device, thin-film device, active matrix substrate, and liquid crystal display |
US6291314B1 (en) * | 1998-06-23 | 2001-09-18 | Silicon Genesis Corporation | Controlled cleavage process and device for patterned films using a release layer |
US6624050B2 (en) * | 1998-10-21 | 2003-09-23 | Sony Corporation | Method of manufacturing semiconductor device |
US6656271B2 (en) * | 1998-12-04 | 2003-12-02 | Canon Kabushiki Kaisha | Method of manufacturing semiconductor wafer method of using and utilizing the same |
US6328796B1 (en) * | 1999-02-01 | 2001-12-11 | The United States Of America As Represented By The Secretary Of The Navy | Single-crystal material on non-single-crystalline substrate |
US6375738B1 (en) * | 1999-03-26 | 2002-04-23 | Canon Kabushiki Kaisha | Process of producing semiconductor article |
JP2000332270A (en) * | 1999-05-21 | 2000-11-30 | Canon Inc | Method of manufacturing photoelectric conversion device and photoelectric conversion device manufactured by the method |
US6214733B1 (en) * | 1999-11-17 | 2001-04-10 | Elo Technologies, Inc. | Process for lift off and handling of thin film materials |
US6589811B2 (en) | 2000-04-05 | 2003-07-08 | Hrl Laboratories, Llc | Method for transferring semiconductor device layers to different substrates |
WO2001078132A3 (en) * | 2000-04-05 | 2002-02-14 | Hrl Lab Llc | Method for transferring semiconductor device layers to different substrates |
WO2001078132A2 (en) * | 2000-04-05 | 2001-10-18 | Hrl Laboratories, Llc. | Method for transferring semiconductor device layers to different substrates |
US6797604B2 (en) * | 2000-05-08 | 2004-09-28 | International Business Machines Corporation | Method for manufacturing device substrate with metal back-gate and structure formed thereby |
US7145212B2 (en) | 2000-05-08 | 2006-12-05 | International Business Machines Corporation | Method for manufacturing device substrate with metal back-gate and structure formed thereby |
US20040188686A1 (en) * | 2000-06-30 | 2004-09-30 | Ravi Kramadhati V. | Thin silicon circuits and method for making the same |
US6743697B2 (en) * | 2000-06-30 | 2004-06-01 | Intel Corporation | Thin silicon circuits and method for making the same |
US8409886B2 (en) * | 2000-07-18 | 2013-04-02 | Sony Corporation | Method of producing image display unit |
US20070087644A1 (en) * | 2000-07-18 | 2007-04-19 | Sony Corporation | Method of producing image display unit |
US6562648B1 (en) * | 2000-08-23 | 2003-05-13 | Xerox Corporation | Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials |
US7105370B2 (en) * | 2000-08-31 | 2006-09-12 | Osram Gmbh | Method for fabricating a radiation-emitting semiconductor chip based on III-V nitride semiconductor |
US20050104083A1 (en) * | 2000-08-31 | 2005-05-19 | Osram Opto Semiconductors Gmbh | Method for fabricating a radiation-emitting semiconductor chip based on Ill-V nitride semiconductor |
US6436614B1 (en) | 2000-10-20 | 2002-08-20 | Feng Zhou | Method for the formation of a thin optical crystal layer overlying a low dielectric constant substrate |
US6974759B2 (en) * | 2000-11-06 | 2005-12-13 | Commissariat A L'energie Atomique | Method for making a stacked comprising a thin film adhering to a target substrate |
KR100855083B1 (en) * | 2000-11-06 | 2008-08-29 | 꼼미사리아 아 레네르지 아토미끄 | Method of manufacturing a laminated structure having a thin film bonded to a target substrate |
FR2816445A1 (en) * | 2000-11-06 | 2002-05-10 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING A STACKED STRUCTURE COMPRISING A THIN FILM ADHERING TO A TARGET SUBSTRATE |
US20040014299A1 (en) * | 2000-11-06 | 2004-01-22 | Hubert Moriceau | Method for making a stacked structure comprising a thin film adhering to a target substrate |
WO2002037556A1 (en) * | 2000-11-06 | 2002-05-10 | Commissariat A L'energie Atomique | Method for making a stacked structure comprising a thin film adhering to a target substrate |
US8679946B2 (en) | 2000-11-06 | 2014-03-25 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Manufacturing process for a stacked structure comprising a thin layer bonding to a target substrate |
US8481409B2 (en) | 2000-11-06 | 2013-07-09 | Commissariat A L'energie Atomique | Manufacturing process for a stacked structure comprising a thin layer bonding to a target substrate |
CN1327505C (en) * | 2000-11-06 | 2007-07-18 | 法国原子能委员会 | Method for making stacked structure comprising thin film adhering to target substrate |
US20060079071A1 (en) * | 2000-11-06 | 2006-04-13 | Hubert Moriceau | Manufacturing process for a stacked structure comprising a thin layer bonding to a target substrate |
JP2004513517A (en) * | 2000-11-06 | 2004-04-30 | コミツサリア タ レネルジー アトミーク | Method of making a laminated structure with at least one thin layer bonded to a target substrate |
US7888235B2 (en) * | 2000-11-27 | 2011-02-15 | S.O.I.Tec Silicon On Insulator Technologies | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
US8252664B2 (en) | 2000-11-27 | 2012-08-28 | Soitec | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
US20070269960A1 (en) * | 2000-11-27 | 2007-11-22 | S.O.I.Tec Silicon On Insulator Technologies | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
US8507361B2 (en) | 2000-11-27 | 2013-08-13 | Soitec | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
US10002763B2 (en) | 2000-11-27 | 2018-06-19 | Soitec | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
US20040100677A1 (en) * | 2000-12-07 | 2004-05-27 | Reflectivity, Inc., A California Corporation | Spatial light modulators with light blocking/absorbing areas |
US6498073B2 (en) * | 2001-01-02 | 2002-12-24 | Honeywell International Inc. | Back illuminated imager with enhanced UV to near IR sensitivity |
US6468824B2 (en) * | 2001-03-22 | 2002-10-22 | Uni Light Technology Inc. | Method for forming a semiconductor device having a metallic substrate |
FR2823012A1 (en) * | 2001-04-03 | 2002-10-04 | Commissariat Energie Atomique | METHOD FOR THE SELECTIVE TRANSFER OF AT LEAST ONE ELEMENT FROM AN INITIAL MEDIUM TO A FINAL MEDIUM |
US20040104272A1 (en) * | 2001-04-03 | 2004-06-03 | Christophe Figuet | Method for selectively transferring at least an element from an initial support onto a final support |
WO2002082502A2 (en) * | 2001-04-03 | 2002-10-17 | Commissariat A L'energie Atomique | Method for selectively transferring at least an element from an initial support onto a final support |
US6959863B2 (en) | 2001-04-03 | 2005-11-01 | Commissariat A L'engergie Atomique | Method for selectively transferring at least an element from an initial support onto a final support |
CN1322575C (en) * | 2001-04-03 | 2007-06-20 | 法国原子能委员会 | Method for selectively transferring at least an element for initial support onto a final support |
WO2002082502A3 (en) * | 2001-04-03 | 2003-11-06 | Commissariat Energie Atomique | Method for selectively transferring at least an element from an initial support onto a final support |
US7238622B2 (en) | 2001-04-17 | 2007-07-03 | California Institute Of Technology | Wafer bonded virtual substrate and method for forming the same |
US7019339B2 (en) | 2001-04-17 | 2006-03-28 | California Institute Of Technology | Method of using a germanium layer transfer to Si for photovoltaic applications and heterostructure made thereby |
US20040214434A1 (en) * | 2001-04-17 | 2004-10-28 | Atwater Harry A. | Wafer bonded virtual substrate and method for forming the same |
US20050142879A1 (en) * | 2001-04-17 | 2005-06-30 | California Institute Of Technology | Wafer bonded epitaxial templates for silicon heterostructures |
US7141834B2 (en) | 2001-04-17 | 2006-11-28 | California Institute Of Technology | Method of using a germanium layer transfer to Si for photovoltaic applications and heterostructure made thereby |
US20050085049A1 (en) * | 2001-04-17 | 2005-04-21 | California Institute Of Technology | Wafer bonded virtual substrate and method for forming the same |
US7341927B2 (en) | 2001-04-17 | 2008-03-11 | California Institute Of Technology | Wafer bonded epitaxial templates for silicon heterostructures |
US20050026432A1 (en) * | 2001-04-17 | 2005-02-03 | Atwater Harry A. | Wafer bonded epitaxial templates for silicon heterostructures |
US8367440B2 (en) | 2001-07-16 | 2013-02-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
US20090239320A1 (en) * | 2001-07-16 | 2009-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
US9608004B2 (en) | 2001-07-16 | 2017-03-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
US10586816B2 (en) | 2001-07-16 | 2020-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
US8415208B2 (en) | 2001-07-16 | 2013-04-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
US9202987B2 (en) | 2001-07-16 | 2015-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
US7361573B2 (en) | 2001-08-10 | 2008-04-22 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling off and method of manufacturing semiconductor device |
US20050282357A1 (en) * | 2001-08-10 | 2005-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling off and method of manufacturing semiconductor device |
US10529748B2 (en) | 2001-08-22 | 2020-01-07 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US9755148B2 (en) | 2001-08-22 | 2017-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US9842994B2 (en) | 2001-08-22 | 2017-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US8674364B2 (en) | 2001-08-22 | 2014-03-18 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US8338198B2 (en) | 2001-08-22 | 2012-12-25 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling thin film device and method of manufacturing semiconductor device using peeled thin film device |
US7825002B2 (en) | 2001-08-22 | 2010-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling thin film device and method of manufacturing semiconductor device using peeled thin film device |
US9281403B2 (en) | 2001-08-22 | 2016-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US20090042356A1 (en) * | 2001-08-22 | 2009-02-12 | Semiconductor Energy Laboratory Co., Ltd. | Peeling Method and Method of Manufacturing Semiconductor Device |
US11296131B2 (en) | 2001-08-22 | 2022-04-05 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US20030047280A1 (en) * | 2001-08-22 | 2003-03-13 | Toru Takayama | Peeling method and method of manufacturing semiconductor device |
US7351300B2 (en) | 2001-08-22 | 2008-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
US6555451B1 (en) | 2001-09-28 | 2003-04-29 | The United States Of America As Represented By The Secretary Of The Navy | Method for making shallow diffusion junctions in semiconductors using elemental doping |
US6593212B1 (en) | 2001-10-29 | 2003-07-15 | The United States Of America As Represented By The Secretary Of The Navy | Method for making electro-optical devices using a hydrogenion splitting technique |
US20030170965A1 (en) * | 2001-12-27 | 2003-09-11 | Seiko Epson Corporation | Semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit |
US7244662B2 (en) | 2001-12-27 | 2007-07-17 | Seiko Epson Corporation | Method for manufacturing semiconductor integrated circuit |
US6858518B2 (en) | 2001-12-28 | 2005-02-22 | Seiko Epson Corporation | Method for manufacturing semiconductor integrated circuit |
US20030170946A1 (en) * | 2001-12-28 | 2003-09-11 | Seiko Epson Corporation | Semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit |
US6562127B1 (en) | 2002-01-16 | 2003-05-13 | The United States Of America As Represented By The Secretary Of The Navy | Method of making mosaic array of thin semiconductor material of large substrates |
US6607969B1 (en) | 2002-03-18 | 2003-08-19 | The United States Of America As Represented By The Secretary Of The Navy | Method for making pyroelectric, electro-optical and decoupling capacitors using thin film transfer and hydrogen ion splitting techniques |
US6767749B2 (en) | 2002-04-22 | 2004-07-27 | The United States Of America As Represented By The Secretary Of The Navy | Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting |
US7422964B2 (en) * | 2002-04-24 | 2008-09-09 | Ricoh Company, Ltd. | Manufacturing method of the active matrix substrate, and an electro-optical apparatus having the active matrix substrate |
US20070117289A1 (en) * | 2002-04-24 | 2007-05-24 | Yoshikazu Akiyama | thin film apparatus, a manufacturing method of the thin film apparatus, an active matrix substrate, a manufacturing method of the active matrix substrate, and an electro-optical apparatus having the active matrix substrate |
US20070243352A1 (en) * | 2002-05-17 | 2007-10-18 | Semiconductor Energy Laboratory Co., Ltd. | Method of transferring a laminate and method of manufacturing a semiconductor device |
EP1363319A2 (en) * | 2002-05-17 | 2003-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Method of transferring a laminate and method of manufacturing a semiconductor device |
US7147740B2 (en) | 2002-05-17 | 2006-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of transferring a laminate and method of manufacturing a semiconductor device |
US20030217805A1 (en) * | 2002-05-17 | 2003-11-27 | Semiconductor Energy Laboratory Co. , Ltd. | Method of transferring a laminate and method of manufacturig a semiconductor device |
EP1363319A3 (en) * | 2002-05-17 | 2005-01-26 | Semiconductor Energy Laboratory Co., Ltd. | Method of transferring a laminate and method of manufacturing a semiconductor device |
US8945331B2 (en) | 2002-05-17 | 2015-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Method of transferring a laminate and method of manufacturing a semiconductor device |
US20040016932A1 (en) * | 2002-05-30 | 2004-01-29 | Seiko Epson Corporation | Semiconductor unit, semiconductor apparatus, and method for making the same, electrooptic apparatus, and electronic apparatus |
US7180924B2 (en) | 2002-05-30 | 2007-02-20 | Seiko Epson Corporation | Semiconductor apparatus and a semiconductor unit, the semiconductor unit including a functional layer including a semiconductor element, and a highly conductive layer |
US7838392B2 (en) | 2002-06-07 | 2010-11-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for forming III-V semiconductor device structures |
US20080128751A1 (en) * | 2002-06-07 | 2008-06-05 | Amberwave Systems Corporation | Methods for forming iii-v semiconductor device structures |
US20040007709A1 (en) * | 2002-06-10 | 2004-01-15 | Seiko Epson Corporation | Semiconductor integrated circuit, signal transmitting device, electro-optical device, and electronic apparatus |
US7368754B2 (en) | 2002-06-10 | 2008-05-06 | Seiko Epson Corporation | Semiconductor integrated circuit, signal transmitting device, electro-optical device, and electronic apparatus |
US6858872B2 (en) | 2002-06-18 | 2005-02-22 | Seiko Epson Corporation | Optical interconnection integrated circuit, method of manufacturing optical interconnection integrated circuit, electro-optical apparatus, and electronic apparatus |
US20040036074A1 (en) * | 2002-06-18 | 2004-02-26 | Seiko Epson Corporation | Optical interconnection integrated circuit, method of manufacturing optical interconnection integrated circuit, electro-optical apparatus, and electronic apparatus |
US7709283B2 (en) | 2002-06-20 | 2010-05-04 | Seiko Epson Corporation | Method of manufacturing a semiconductor device having an insulating protective film covering at least a portion of a tile-shaped element |
US20080277671A1 (en) * | 2002-06-20 | 2008-11-13 | Seiko Epson Corporation | Semiconductor device, method of manufacturing the same, electro-optic device and electronic apparatus |
US7435998B2 (en) | 2002-06-20 | 2008-10-14 | Seiko Epson Corporation | Semiconductor device, method of manufacturing the same, electro-optic device and electronic apparatus with a protective film |
US20040036078A1 (en) * | 2002-06-20 | 2004-02-26 | Seiko Epson Corporation | Semiconductor device, method of manufacturing the same, electro-optic device and electronic apparatus |
US20060184266A1 (en) * | 2002-07-24 | 2006-08-17 | Solanki Chetan S | Method for making thin film devices intended for solar cells or silicon-on-insulator (SOI) applications |
EP1385200A3 (en) * | 2002-07-24 | 2005-03-09 | Interuniversitaire Microelectronica Centrum vzw ( IMEC) | Method for making thin film devices intended for solar cells or SOI applications |
US20050020032A1 (en) * | 2002-07-24 | 2005-01-27 | Solanki Chetan Singh | Method for making thin film devices intended for solar cells or silicon-on-insulator (SOI) applications |
EP1385200A2 (en) * | 2002-07-24 | 2004-01-28 | Interuniversitaire Microelectronica Centrum vzw ( IMEC) | Method for making thin film devices intended for solar cells or SOI applications |
US7022585B2 (en) | 2002-07-24 | 2006-04-04 | Interuniversitair Microelektronica Centrum (Imec) | Method for making thin film devices intended for solar cells or silicon-on-insulator (SOI) applications |
US20040109629A1 (en) * | 2002-10-01 | 2004-06-10 | Seiko Epson Corporation | Optical interconnection circuit, manufacturing method thereof, electro-optical device and electronic equipment |
US7228018B2 (en) | 2002-10-01 | 2007-06-05 | Seiko Epson Corporation | Optical interconnection circuit, manufacturing method thereof, electro-optical device and electronic equipment |
US7092588B2 (en) | 2002-11-20 | 2006-08-15 | Seiko Epson Corporation | Optical interconnection circuit between chips, electrooptical device and electronic equipment |
US20040136639A1 (en) * | 2002-11-20 | 2004-07-15 | Seiko Epson Corporation | Optical interconnection circuit between chips, electrooptical device and electronic equipment |
US7067909B2 (en) | 2002-12-31 | 2006-06-27 | Massachusetts Institute Of Technology | Multi-layer integrated semiconductor structure having an electrical shielding portion |
WO2004061953A3 (en) * | 2002-12-31 | 2005-06-23 | Massachusetts Inst Technology | Method of forming a multi-layer semiconductor structure incorporating a processing handle member |
US20040219765A1 (en) * | 2002-12-31 | 2004-11-04 | Rafael Reif | Method of forming a multi-layer semiconductor structure incorporating a processing handle member |
WO2004061953A2 (en) * | 2002-12-31 | 2004-07-22 | Massachusetts Institute Of Technology | Method of forming a multi-layer semiconductor structure incorporating a processing handle member |
US20040126994A1 (en) * | 2002-12-31 | 2004-07-01 | Rafael Reif | Method of forming a multi-layer semiconductor structure having a seamless bonding interface |
US20060087019A1 (en) * | 2002-12-31 | 2006-04-27 | Rafael Reif | Multi-layer integrated semiconductor structure having an electrical shielding portion |
US20060099796A1 (en) * | 2002-12-31 | 2006-05-11 | Rafael Reif | Method of forming a multi-layer semiconductor structure having a seam-less bonding interface |
US7307003B2 (en) | 2002-12-31 | 2007-12-11 | Massachusetts Institute Of Technology | Method of forming a multi-layer semiconductor structure incorporating a processing handle member |
US7064055B2 (en) | 2002-12-31 | 2006-06-20 | Massachusetts Institute Of Technology | Method of forming a multi-layer semiconductor structure having a seamless bonding interface |
US6933160B2 (en) * | 2003-01-03 | 2005-08-23 | Supernova Optoelectronics Corp. | Method for manufacturing of a vertical light emitting device structure |
US20040135158A1 (en) * | 2003-01-03 | 2004-07-15 | Supernova Optoelectronics Corp. | Method for manufacturing of a vertical light emitting device structure |
US7714950B2 (en) | 2003-01-15 | 2010-05-11 | Semiconductor Energy Laboratory Co., Ltd | Peeling method and method for manufacturing display device using the peeling method |
US20070211189A1 (en) * | 2003-01-15 | 2007-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US9299879B2 (en) | 2003-01-15 | 2016-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US8228454B2 (en) | 2003-01-15 | 2012-07-24 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US20040239827A1 (en) * | 2003-01-15 | 2004-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US7245331B2 (en) | 2003-01-15 | 2007-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US8508682B2 (en) | 2003-01-15 | 2013-08-13 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US9013650B2 (en) | 2003-01-15 | 2015-04-21 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US8830413B2 (en) | 2003-01-15 | 2014-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
US7060590B2 (en) | 2003-01-24 | 2006-06-13 | S.O.I. Tec Silicon On Insulator Technologies S.A. | Layer transfer method |
US20040166649A1 (en) * | 2003-01-24 | 2004-08-26 | Soitec & Cea | Layer transfer method |
US6786390B2 (en) * | 2003-02-04 | 2004-09-07 | United Epitaxy Company Ltd. | LED stack manufacturing method and its structure thereof |
US20040149810A1 (en) * | 2003-02-04 | 2004-08-05 | Kuang-Neng Yang | Led stack manufacturing method and its structure thereof |
US7172708B2 (en) | 2003-02-25 | 2007-02-06 | Sony Corporation | Process for the fabrication of thin-film device and thin-film device |
SG127711A1 (en) * | 2003-02-25 | 2006-12-29 | Sony Corp | Process for the fabrication of thin-film device and thin-film device |
US20110217825A1 (en) * | 2003-02-28 | 2011-09-08 | S.O.I.Tec Silicon On Insulator Technologies | Forming structures that include a relaxed or pseudo-relaxed layer on a substrate |
US20070041685A1 (en) * | 2003-02-28 | 2007-02-22 | Seiko Epson Corporation | Fiber optic transceiver module, manufacturing method thereof, and electronic equipment |
US20040218874A1 (en) * | 2003-02-28 | 2004-11-04 | Seiko Epson Corporation | Fiber optic transceiver module, manufacturing method thereof, and electronic equipment |
US8173512B2 (en) | 2003-02-28 | 2012-05-08 | Soitec | Forming structures that include a relaxed or pseudo-relaxed layer on a substrate |
US20080258265A1 (en) * | 2003-03-14 | 2008-10-23 | S.O.I.Tec Silicon On Insulator Technologies | Methods for forming an assembly for transfer of a useful layer |
US7404870B2 (en) | 2003-03-14 | 2008-07-29 | S.O.I.Tec Silicon On Insulator Technologies | Methods for forming an assembly for transfer of a useful layer |
US20060231203A1 (en) * | 2003-03-14 | 2006-10-19 | S.O.I.Tec Silicon on Insulator Technologies S.A., a French company | Methods for forming an assembly for transfer of a useful layer |
US8093687B2 (en) | 2003-03-14 | 2012-01-10 | S.O.I.Tec Silicon On Insulator Technologies | Methods for forming an assembly for transfer of a useful layer using a peripheral recess area to facilitate transfer |
US20040206444A1 (en) * | 2003-03-14 | 2004-10-21 | Fabrice Letertre | Methods for forming an assembly for transfer of a useful layer |
US7122095B2 (en) | 2003-03-14 | 2006-10-17 | S.O.I.Tec Silicon On Insulator Technologies S.A. | Methods for forming an assembly for transfer of a useful layer |
US20040253795A1 (en) * | 2003-06-11 | 2004-12-16 | Muriel Martinez | Methods of producing a heterogeneous semiconductor structure |
US6858517B2 (en) * | 2003-06-11 | 2005-02-22 | S.O.I. Tec Silicon On Insulator Technologies S.A. | Methods of producing a heterogeneous semiconductor structure |
US20050048736A1 (en) * | 2003-09-02 | 2005-03-03 | Sebastien Kerdiles | Methods for adhesive transfer of a layer |
US20070015349A1 (en) * | 2003-10-07 | 2007-01-18 | Patrice Aublanc | Method of producing a composite multilayer |
US20050227455A1 (en) * | 2004-03-29 | 2005-10-13 | Jongkook Park | Method of separating layers of material |
US20060003553A1 (en) * | 2004-03-29 | 2006-01-05 | Jongkook Park | Method of separating layers of material |
US7202141B2 (en) | 2004-03-29 | 2007-04-10 | J.P. Sercel Associates, Inc. | Method of separating layers of material |
US7241667B2 (en) | 2004-03-29 | 2007-07-10 | J.P. Sercel Associates, Inc. | Method of separating layers of material |
US20080211061A1 (en) * | 2004-04-21 | 2008-09-04 | California Institute Of Technology | Method For the Fabrication of GaAs/Si and Related Wafer Bonded Virtual Substrates |
US20060021565A1 (en) * | 2004-07-30 | 2006-02-02 | Aonex Technologies, Inc. | GaInP / GaAs / Si triple junction solar cell enabled by wafer bonding and layer transfer |
US7846759B2 (en) | 2004-10-21 | 2010-12-07 | Aonex Technologies, Inc. | Multi-junction solar cells and methods of making same using layer transfer and bonding techniques |
US20060112986A1 (en) * | 2004-10-21 | 2006-06-01 | Aonex Technologies, Inc. | Multi-junction solar cells and methods of making same using layer transfer and bonding techniques |
US20080128868A1 (en) * | 2004-12-24 | 2008-06-05 | Tracit Technologies | Method of Transferring a Circuit Onto a Ground Plane |
FR2880189A1 (en) * | 2004-12-24 | 2006-06-30 | Tracit Technologies Sa | Semi-conductor structure manufacturing method, involves forming bonding layer on electrically conductive or grounding plane forming layer, where binding layer has specific thickness |
US8298915B2 (en) | 2004-12-24 | 2012-10-30 | S.O.I. Tec Silicon On Insulator Technologies | Method of transferring a circuit onto a ground plane |
WO2006070167A1 (en) * | 2004-12-24 | 2006-07-06 | Tracit Technologies | Method for transferring a circuit to a grounding plane |
US20060185582A1 (en) * | 2005-02-18 | 2006-08-24 | Atwater Harry A Jr | High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials |
US10374120B2 (en) | 2005-02-18 | 2019-08-06 | Koninklijke Philips N.V. | High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials |
EP1699091B1 (en) * | 2005-03-02 | 2017-01-25 | Oki Data Corporation | Semiconductor composite LED apparatus |
US8101498B2 (en) | 2005-04-21 | 2012-01-24 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
US20060255341A1 (en) * | 2005-04-21 | 2006-11-16 | Aonex Technologies, Inc. | Bonded intermediate substrate and method of making same |
US20060273319A1 (en) * | 2005-06-03 | 2006-12-07 | Semiconductor Energy Laboratory Co., Ltd. | Integrated circuit device and manufacturing method thereof |
US8492246B2 (en) | 2005-06-03 | 2013-07-23 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing integrated circuit device |
US7972910B2 (en) | 2005-06-03 | 2011-07-05 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of integrated circuit device including thin film transistor |
US8361845B2 (en) | 2005-06-30 | 2013-01-29 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US20110033987A1 (en) * | 2005-06-30 | 2011-02-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US7820495B2 (en) | 2005-06-30 | 2010-10-26 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
WO2007015951A3 (en) * | 2005-07-25 | 2007-08-16 | Fairchild Semiconductor | Semiconductor structures formed on substrates and methods of manufacturing the same |
US20100052046A1 (en) * | 2005-07-25 | 2010-03-04 | Fairchild Semiconductor Corporation | Semiconductor structures formed on substrates and methods of manufacturing the same |
WO2007015951A2 (en) * | 2005-07-25 | 2007-02-08 | Fairchild Semiconductor Corporation | Semiconductor structures formed on substrates and methods of manufacturing the same |
US20070020884A1 (en) * | 2005-07-25 | 2007-01-25 | Qi Wang | Semiconductor structures formed on substrates and methods of manufacturing the same |
US7635637B2 (en) * | 2005-07-25 | 2009-12-22 | Fairchild Semiconductor Corporation | Semiconductor structures formed on substrates and methods of manufacturing the same |
US20070243703A1 (en) * | 2006-04-14 | 2007-10-18 | Aonex Technololgies, Inc. | Processes and structures for epitaxial growth on laminate substrates |
DE102007016995A1 (en) * | 2007-04-11 | 2008-10-16 | Beyer, André | Method for transferring a nanolayer |
US7732301B1 (en) | 2007-04-20 | 2010-06-08 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
US20090278233A1 (en) * | 2007-07-26 | 2009-11-12 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
US8101500B2 (en) | 2007-09-27 | 2012-01-24 | Fairchild Semiconductor Corporation | Semiconductor device with (110)-oriented silicon |
US20090179259A1 (en) * | 2007-09-27 | 2009-07-16 | Qi Wang | Semiconductor device with (110)-oriented silicon |
US8338886B2 (en) | 2007-09-27 | 2012-12-25 | Fairchild Semiconductor Corporation | Semiconductor device with (110)-oriented silicon |
US7656002B1 (en) * | 2007-11-30 | 2010-02-02 | Rf Micro Devices, Inc. | Integrated bipolar transistor and field effect transistor |
US20090200550A1 (en) * | 2008-02-08 | 2009-08-13 | Roger Stanley Kerr | Method for forming an electronic device on a flexible substrate supported by a detachable carrier |
US9627420B2 (en) * | 2008-02-08 | 2017-04-18 | Carestream Health, Inc. | Method for forming an electronic device on a flexible substrate supported by a detachable carrier |
US7743492B2 (en) * | 2008-02-08 | 2010-06-29 | Carestream Health, Inc. | Method for forming cast flexible substrate and resultant substrate and electronic device |
US20090199401A1 (en) * | 2008-02-08 | 2009-08-13 | Roger Stanley Kerr | Method for forming cast flexible substrate and resultant substrate and electronic device |
TWI462316B (en) * | 2008-03-03 | 2014-11-21 | Univ Nat Chunghsing | Solar cell having a thermal conductive substrate and a method for manufacturing the same |
CN102026909B (en) * | 2008-05-14 | 2013-11-20 | 罗伯特·博世有限公司 | Method for producing chips |
US20110151620A1 (en) * | 2008-05-14 | 2011-06-23 | Torsten Kramer | Method for manufacturing chips |
WO2009138138A3 (en) * | 2008-05-14 | 2010-05-27 | Robert Bosch Gmbh | Method for producing chips |
US8389327B2 (en) | 2008-05-14 | 2013-03-05 | Robert Bosch Gmbh | Method for manufacturing chips |
WO2009138138A2 (en) * | 2008-05-14 | 2009-11-19 | Robert Bosch Gmbh | Method for producing chips |
US20100032793A1 (en) * | 2008-08-06 | 2010-02-11 | Pascal Guenard | Methods for relaxation and transfer of strained layers and structures fabricated thereby |
TWI456660B (en) * | 2008-08-06 | 2014-10-11 | Soitec Silicon On Insulator | Strain relaxation and transfer |
US8048693B2 (en) | 2008-08-06 | 2011-11-01 | S.O.I. Tec Silicon On Insulator Technologies | Methods and structures for relaxation of strained layers |
US20100032805A1 (en) * | 2008-08-06 | 2010-02-11 | Fabrice Letertre | Methods and structures for relaxation of strained layers |
WO2010015302A3 (en) * | 2008-08-06 | 2010-05-14 | S.O.I. Tec Silicon On Insulator Technologies | Relaxation and transfer of strained layers |
EP2151852A1 (en) * | 2008-08-06 | 2010-02-10 | S.O.I. TEC Silicon | Relaxation and transfer of strained layers |
WO2010015302A2 (en) * | 2008-08-06 | 2010-02-11 | S.O.I. Tec Silicon On Insulator Technologies | Relaxation and transfer of strained layers |
US8492244B2 (en) | 2008-08-06 | 2013-07-23 | Soitec | Methods for relaxation and transfer of strained layers and structures fabricated thereby |
US7981767B2 (en) | 2008-08-06 | 2011-07-19 | S.O.I.Tec Silicon On Insulator Technologies | Methods for relaxation and transfer of strained layers and structures fabricated thereby |
CN102113090B (en) * | 2008-08-06 | 2013-12-18 | 硅绝缘体技术有限公司 | Relaxation and transfer of strained layers |
US20100035418A1 (en) * | 2008-08-06 | 2010-02-11 | Bruce Faure | Passivation of semiconductor structures having strained layers |
US8481408B2 (en) | 2008-08-06 | 2013-07-09 | Soitec | Relaxation of strained layers |
US7736935B2 (en) | 2008-08-06 | 2010-06-15 | S.O.I.Tec Silicon On Insulator Technologies | Passivation of semiconductor structures having strained layers |
US8912081B2 (en) | 2008-08-25 | 2014-12-16 | Soitec | Stiffening layers for the relaxation of strained layers |
US20110127640A1 (en) * | 2008-08-25 | 2011-06-02 | Bruce Faure | Stiffening layers for the relaxation of strained layers |
WO2010025218A3 (en) * | 2008-08-28 | 2010-05-06 | The Regents Of The University Of California | Composite semiconductor substrates for thin-film device layer transfer |
US8624357B2 (en) | 2008-08-28 | 2014-01-07 | The Regents Of The University Of California | Composite semiconductor substrates for thin-film device layer transfer |
WO2010025218A2 (en) * | 2008-08-28 | 2010-03-04 | The Regents Of The University Of California | Composite semiconductor substrates for thin-film device layer transfer |
US20110221040A1 (en) * | 2008-08-28 | 2011-09-15 | The Regents Of The University Of California | Composite Semiconductor Substrates for Thin-Film Device Layer Transfer |
US20100059797A1 (en) * | 2008-09-09 | 2010-03-11 | Tat Ngai | (110)-oriented p-channel trench mosfet having high-k gate dielectric |
US8039877B2 (en) | 2008-09-09 | 2011-10-18 | Fairchild Semiconductor Corporation | (110)-oriented p-channel trench MOSFET having high-K gate dielectric |
US20100066683A1 (en) * | 2008-09-17 | 2010-03-18 | Shih-Chang Chang | Method for Transferring Thin Film to Substrate |
US20100176490A1 (en) * | 2008-09-24 | 2010-07-15 | Fabrice Letertre | Methods of forming relaxed layers of semiconductor materials, semiconductor structures, devices and engineered substrates including same |
US8486771B2 (en) | 2008-09-24 | 2013-07-16 | Soitec | Methods of forming relaxed layers of semiconductor materials, semiconductor structures, devices and engineered substrates including same |
US9368344B2 (en) | 2008-10-30 | 2016-06-14 | Soitec | Semiconductor structures, devices and engineered substrates including layers of semiconductor material having reduced lattice strain |
US8836081B2 (en) | 2008-10-30 | 2014-09-16 | Soitec | Semiconductor structures, devices and engineered substrates including layers of semiconductor material having reduced lattice strain |
US8637383B2 (en) | 2010-12-23 | 2014-01-28 | Soitec | Strain relaxation using metal materials and related structures |
US9312339B2 (en) | 2010-12-23 | 2016-04-12 | Soitec | Strain relaxation using metal materials and related structures |
US9076897B2 (en) * | 2011-02-24 | 2015-07-07 | Osram Opto Semiconductor Gmbh | Optoelectronic semiconductor device and method for producing an optoelectronic semiconductor device |
US20140014977A1 (en) * | 2011-02-24 | 2014-01-16 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor device and method for producing an optoelectronic semiconductor device |
DE112013000499B4 (en) | 2012-01-05 | 2024-10-10 | Commissariat à l'énergie atomique et aux énergies alternatives | Backscattering device and light emitting device and manufacturing method thereof |
US9947568B2 (en) | 2013-02-20 | 2018-04-17 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method, semiconductor device, and peeling apparatus |
US11355382B2 (en) | 2013-02-20 | 2022-06-07 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method, semiconductor device, and peeling apparatus |
US10636692B2 (en) | 2013-02-20 | 2020-04-28 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method, semiconductor device, and peeling apparatus |
US9812350B2 (en) | 2013-03-06 | 2017-11-07 | Qorvo Us, Inc. | Method of manufacture for a silicon-on-plastic semiconductor device with interfacial adhesion layer |
US10134627B2 (en) | 2013-03-06 | 2018-11-20 | Qorvo Us, Inc. | Silicon-on-plastic semiconductor device with interfacial adhesion layer |
US9214337B2 (en) | 2013-03-06 | 2015-12-15 | Rf Micro Devices, Inc. | Patterned silicon-on-plastic (SOP) technology and methods of manufacturing the same |
US9583414B2 (en) | 2013-10-31 | 2017-02-28 | Qorvo Us, Inc. | Silicon-on-plastic semiconductor device and method of making the same |
US10062637B2 (en) | 2013-10-31 | 2018-08-28 | Qorvo Us, Inc. | Method of manufacture for a semiconductor device |
US10189048B2 (en) | 2013-12-12 | 2019-01-29 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and peeling apparatus |
US9824951B2 (en) | 2014-09-12 | 2017-11-21 | Qorvo Us, Inc. | Printed circuit module having semiconductor device with a polymer substrate and methods of manufacturing the same |
US20180228030A1 (en) | 2014-10-01 | 2018-08-09 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US10492301B2 (en) | 2014-10-01 | 2019-11-26 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US10085352B2 (en) | 2014-10-01 | 2018-09-25 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US10121718B2 (en) | 2014-11-03 | 2018-11-06 | Qorvo Us, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US10199301B2 (en) | 2014-11-03 | 2019-02-05 | Qorvo Us, Inc. | Methods of manufacturing a printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US20160126196A1 (en) | 2014-11-03 | 2016-05-05 | Rf Micro Devices, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US10109548B2 (en) | 2014-11-03 | 2018-10-23 | Qorvo Us, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
WO2016073460A1 (en) * | 2014-11-04 | 2016-05-12 | The Regents Of The University Of California | Solid-state wafer bonding of functional materials on substrates and self-aligned contacts |
US10679964B2 (en) | 2014-11-04 | 2020-06-09 | The Regents Of The University Of California | Solid-state wafer bonding of functional materials on substrates and self-aligned contacts |
US9960145B2 (en) | 2015-03-25 | 2018-05-01 | Qorvo Us, Inc. | Flip chip module with enhanced properties |
US9613831B2 (en) | 2015-03-25 | 2017-04-04 | Qorvo Us, Inc. | Encapsulated dies with enhanced thermal performance |
US10020206B2 (en) | 2015-03-25 | 2018-07-10 | Qorvo Us, Inc. | Encapsulated dies with enhanced thermal performance |
US10038055B2 (en) | 2015-05-22 | 2018-07-31 | Qorvo Us, Inc. | Substrate structure with embedded layer for post-processing silicon handle elimination |
US10276495B2 (en) | 2015-09-11 | 2019-04-30 | Qorvo Us, Inc. | Backside semiconductor die trimming |
US10396220B2 (en) | 2015-12-18 | 2019-08-27 | International Business Machines Corporation | Device layer thin-film transfer to thermally conductive substrate |
US10243091B2 (en) | 2015-12-18 | 2019-03-26 | International Business Machines Corporation | Device layer thin-film transfer to thermally conductive substrate |
US10032943B2 (en) | 2015-12-18 | 2018-07-24 | International Business Machines Corporation | Device layer thin-film transfer to thermally conductive substrate |
US10867834B2 (en) * | 2015-12-31 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
CN107017197A (en) * | 2015-12-31 | 2017-08-04 | 台湾积体电路制造股份有限公司 | Semiconductor structure and method of manufacturing the same |
US10930547B2 (en) | 2015-12-31 | 2021-02-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure and manufacturing method thereof |
DE102016117028B4 (en) | 2015-12-31 | 2022-03-03 | Taiwan Semiconductor Manufacturing Co. Ltd. | Semiconductor structure and manufacturing method therefor |
US20170194194A1 (en) * | 2015-12-31 | 2017-07-06 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
CN107017197B (en) * | 2015-12-31 | 2020-08-07 | 台湾积体电路制造股份有限公司 | Semiconductor structure and method of making the same |
US12191191B2 (en) | 2015-12-31 | 2025-01-07 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
US10020405B2 (en) | 2016-01-19 | 2018-07-10 | Qorvo Us, Inc. | Microelectronics package with integrated sensors |
US10245825B2 (en) | 2016-01-28 | 2019-04-02 | Tracer Imaging Llc | Product alignment using a printed relief |
US10889107B2 (en) | 2016-01-28 | 2021-01-12 | Tracer Imaging Llc | Product alignment using a printed relief |
US9919515B2 (en) | 2016-01-28 | 2018-03-20 | Tracer Imaging Llc | Product alignment using a printed relief |
US10062583B2 (en) | 2016-05-09 | 2018-08-28 | Qorvo Us, Inc. | Microelectronics package with inductive element and magnetically enhanced mold compound component |
US10090262B2 (en) | 2016-05-09 | 2018-10-02 | Qorvo Us, Inc. | Microelectronics package with inductive element and magnetically enhanced mold compound component |
US10882740B2 (en) | 2016-05-20 | 2021-01-05 | Qorvo Us, Inc. | Wafer-level package with enhanced performance and manufacturing method thereof |
US10784149B2 (en) | 2016-05-20 | 2020-09-22 | Qorvo Us, Inc. | Air-cavity module with enhanced device isolation |
US10773952B2 (en) | 2016-05-20 | 2020-09-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US20180197803A1 (en) | 2016-06-10 | 2018-07-12 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US10262915B2 (en) | 2016-06-10 | 2019-04-16 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US20170358511A1 (en) | 2016-06-10 | 2017-12-14 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US10103080B2 (en) | 2016-06-10 | 2018-10-16 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US10468329B2 (en) | 2016-07-18 | 2019-11-05 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US20180019184A1 (en) | 2016-07-18 | 2018-01-18 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US10079196B2 (en) | 2016-07-18 | 2018-09-18 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US10486965B2 (en) | 2016-08-12 | 2019-11-26 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10804179B2 (en) | 2016-08-12 | 2020-10-13 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10486963B2 (en) | 2016-08-12 | 2019-11-26 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US20180044177A1 (en) | 2016-08-12 | 2018-02-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10109550B2 (en) | 2016-08-12 | 2018-10-23 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10109502B2 (en) | 2016-09-12 | 2018-10-23 | Qorvo Us, Inc. | Semiconductor package with reduced parasitic coupling effects and process for making the same |
US10985033B2 (en) | 2016-09-12 | 2021-04-20 | Qorvo Us, Inc. | Semiconductor package with reduced parasitic coupling effects and process for making the same |
US10090339B2 (en) | 2016-10-21 | 2018-10-02 | Qorvo Us, Inc. | Radio frequency (RF) switch |
CN110050335A (en) * | 2016-11-08 | 2019-07-23 | 麻省理工学院 | Dislocation filtration system and method for layer transfer |
US10903073B2 (en) * | 2016-11-08 | 2021-01-26 | Massachusetts Institute Of Technology | Systems and methods of dislocation filtering for layer transfer |
US10749518B2 (en) | 2016-11-18 | 2020-08-18 | Qorvo Us, Inc. | Stacked field-effect transistor switch |
US10068831B2 (en) | 2016-12-09 | 2018-09-04 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US10790216B2 (en) | 2016-12-09 | 2020-09-29 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US20180342439A1 (en) | 2016-12-09 | 2018-11-29 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US20190013255A1 (en) | 2017-07-06 | 2019-01-10 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
US10490471B2 (en) | 2017-07-06 | 2019-11-26 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
US10755992B2 (en) | 2017-07-06 | 2020-08-25 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
US20190074271A1 (en) | 2017-09-05 | 2019-03-07 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US10784233B2 (en) | 2017-09-05 | 2020-09-22 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US20190074263A1 (en) | 2017-09-05 | 2019-03-07 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US10366972B2 (en) | 2017-09-05 | 2019-07-30 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US11152363B2 (en) | 2018-03-28 | 2021-10-19 | Qorvo Us, Inc. | Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process |
US12062701B2 (en) | 2018-04-04 | 2024-08-13 | Qorvo Us, Inc. | Gallium-nitride-based module with enhanced electrical performance and process for making the same |
US12062700B2 (en) | 2018-04-04 | 2024-08-13 | Qorvo Us, Inc. | Gallium-nitride-based module with enhanced electrical performance and process for making the same |
US12125739B2 (en) | 2018-04-20 | 2024-10-22 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation |
US12046505B2 (en) | 2018-04-20 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation |
WO2019226711A1 (en) * | 2018-05-22 | 2019-11-28 | Etx Corporation | Method and apparatus for transfer of two-dimensional materials |
US10995409B2 (en) | 2018-05-22 | 2021-05-04 | Etx Corporation | Method and apparatus for transfer of two-dimensional materials |
US10804246B2 (en) | 2018-06-11 | 2020-10-13 | Qorvo Us, Inc. | Microelectronics package with vertically stacked dies |
US11063021B2 (en) | 2018-06-11 | 2021-07-13 | Qorvo Us, Inc. | Microelectronics package with vertically stacked dies |
US12165951B2 (en) | 2018-07-02 | 2024-12-10 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12046535B2 (en) | 2018-07-02 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US10964554B2 (en) | 2018-10-10 | 2021-03-30 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US11069590B2 (en) | 2018-10-10 | 2021-07-20 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US11942389B2 (en) | 2018-11-29 | 2024-03-26 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
US11646242B2 (en) | 2018-11-29 | 2023-05-09 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
US20210296199A1 (en) | 2018-11-29 | 2021-09-23 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
US20220108938A1 (en) | 2019-01-23 | 2022-04-07 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US11387157B2 (en) | 2019-01-23 | 2022-07-12 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11961813B2 (en) | 2019-01-23 | 2024-04-16 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12046483B2 (en) | 2019-01-23 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US20200235054A1 (en) | 2019-01-23 | 2020-07-23 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US11710680B2 (en) | 2019-01-23 | 2023-07-25 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12046570B2 (en) | 2019-01-23 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12057374B2 (en) | 2019-01-23 | 2024-08-06 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12125825B2 (en) | 2019-01-23 | 2024-10-22 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11923313B2 (en) | 2019-01-23 | 2024-03-05 | Qorvo Us, Inc. | RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same |
US20220139862A1 (en) | 2019-01-23 | 2022-05-05 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US12062623B2 (en) | 2019-01-23 | 2024-08-13 | Qorvo Us, Inc. | RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same |
US12112999B2 (en) | 2019-01-23 | 2024-10-08 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
CN110970340A (en) * | 2019-10-31 | 2020-04-07 | 中国电子科技集团公司第五十五研究所 | A kind of flexible InP HBT device and preparation method thereof |
US12074086B2 (en) | 2019-11-01 | 2024-08-27 | Qorvo Us, Inc. | RF devices with nanotube particles for enhanced performance and methods of forming the same |
US11646289B2 (en) | 2019-12-02 | 2023-05-09 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11923238B2 (en) | 2019-12-12 | 2024-03-05 | Qorvo Us, Inc. | Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive |
US12129168B2 (en) | 2019-12-23 | 2024-10-29 | Qorvo Us, Inc. | Microelectronics package with vertically stacked MEMS device and controller device |
US12062571B2 (en) | 2021-03-05 | 2024-08-13 | Qorvo Us, Inc. | Selective etching process for SiGe and doped epitaxial silicon |
CN113764968A (en) * | 2021-09-07 | 2021-12-07 | 中国科学院半导体研究所 | A kind of method of removing epitaxial wafer substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5391257A (en) | Method of transferring a thin film to an alternate substrate | |
US5286335A (en) | Processes for lift-off and deposition of thin film materials | |
US6335263B1 (en) | Method of forming a low temperature metal bond for use in the transfer of bulk and thin film materials | |
US5465009A (en) | Processes and apparatus for lift-off and bonding of materials and devices | |
US5641381A (en) | Preferentially etched epitaxial liftoff of InP material | |
US5244818A (en) | Processes for lift-off of thin film materials and for the fabrication of three dimensional integrated circuits | |
US7709353B2 (en) | Method for producing semiconductor device | |
CN100444318C (en) | Processes for the preparation of separable semiconductor components, especially substrates for the manufacture of electronic, optoelectronic and optical devices | |
US20030122141A1 (en) | Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials | |
US11152216B2 (en) | Method for manufacturing semiconductor device | |
KR102533932B1 (en) | Strain relief epitaxial lift-off with pre-patterned mesas | |
US8330036B1 (en) | Method of fabrication and structure for multi-junction solar cell formed upon separable substrate | |
US6974721B2 (en) | Method for manufacturing thin semiconductor chip | |
US20220148921A1 (en) | Semiconductor device manufacturing method and semiconductor device manufacturing system | |
US20050048736A1 (en) | Methods for adhesive transfer of a layer | |
JP3307186B2 (en) | Jig for semiconductor surface treatment | |
KR102656505B1 (en) | Die-to-wafer bonding utilizing micro-transfer printing | |
US5376229A (en) | Method of fabrication of adjacent coplanar semiconductor devices | |
US8033011B2 (en) | Method for mounting a thinned semiconductor wafer on a carrier substrate | |
JP7635838B2 (en) | Method for manufacturing compound semiconductor junction substrate | |
WO2020095610A1 (en) | Method for manufacturing semiconductor substrate for light-emitting element, and method for manufacturing light-emitting element | |
WO2022249675A1 (en) | Method for manufacturing compound semiconductor junction substrate, and compound semiconductor junction substrate | |
JP6836022B2 (en) | Semiconductor substrate, semiconductor substrate manufacturing method and semiconductor element manufacturing method | |
JP4168460B2 (en) | Method for manufacturing optoelectronic semiconductor integrated circuit device | |
JP2021077909A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROCKWELL INTERNATIONAL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SULLIVAN, GERARD J.;SZWED, MARY K.;CHANG, MAU-CHUNG F.;REEL/FRAME:006824/0556;SIGNING DATES FROM 19931207 TO 19931210 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: TELEDYNE SCIENTIFIC & IMAGING, LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ROCKWELL SCIENTIFIC COMPANY, LLC;REEL/FRAME:018855/0939 Effective date: 20060918 Owner name: ROCKWELL SCIENTIFIC COMPANY, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONEXANT SYSTEMS, INC.;REEL/FRAME:018855/0931 Effective date: 20011031 |
|
AS | Assignment |
Owner name: ROCKWELL SCIENCE CENTER, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCKWELL INTERNATIONAL CORPORATION;REEL/FRAME:019795/0862 Effective date: 19961115 Owner name: ROCKWELL SCIENCE CENTER, LLC, CALIFORNIA Free format text: MERGER;ASSIGNOR:ROCKWELL SCIENCE CENTER, INC.;REEL/FRAME:019795/0892 Effective date: 19970827 |
|
AS | Assignment |
Owner name: CONEXANT SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCKWELL SCIENCE CENTER, LLC;REEL/FRAME:019892/0269 Effective date: 19981210 |
|
AS | Assignment |
Owner name: SKYWORKS SOLUTIONS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TELEDYNE SCIENTIFIC & IMAGING, LLC;REEL/FRAME:020035/0776 Effective date: 20071029 |