US5376120A - Biocompatible implant and method of using same - Google Patents
Biocompatible implant and method of using same Download PDFInfo
- Publication number
- US5376120A US5376120A US07/964,197 US96419792A US5376120A US 5376120 A US5376120 A US 5376120A US 96419792 A US96419792 A US 96419792A US 5376120 A US5376120 A US 5376120A
- Authority
- US
- United States
- Prior art keywords
- bone plug
- cavity
- poly
- flange
- living tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0095—Packages or dispensers for prostheses or other implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30721—Accessories
- A61F2/30723—Plugs or restrictors for sealing a cement-receiving space
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
- A61F7/03—Compresses or poultices for effecting heating or cooling thermophore, i.e. self-heating, e.g. using a chemical reaction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V30/00—Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B2050/001—Temperature-modifying means
- A61B2050/0016—Heating means
- A61B2050/0017—Chemical heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B2050/002—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers having adhesive means, e.g. an adhesive strip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/30—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
- A61B2050/314—Flexible bags or pouches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
- A61F2/3662—Femoral shafts
- A61F2/3676—Distal or diaphyseal parts of shafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2/4603—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2/4614—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of plugs for sealing a cement-receiving space
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30062—(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30092—Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30112—Rounded shapes, e.g. with rounded corners
- A61F2002/30113—Rounded shapes, e.g. with rounded corners circular
- A61F2002/30118—Rounded shapes, e.g. with rounded corners circular concentric circles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30795—Blind bores, e.g. of circular cross-section
- A61F2002/30797—Blind bores, e.g. of circular cross-section internally-threaded
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30884—Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30891—Plurality of protrusions
- A61F2002/30892—Plurality of protrusions parallel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2002/4631—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor the prosthesis being specially adapted for being cemented
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
- A61F2007/0292—Compresses or poultices for effecting heating or cooling using latent heat produced or absorbed during phase change of materials, e.g. of super-cooled solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0006—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S623/00—Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
- Y10S623/901—Method of manufacturing prosthetic device
Definitions
- This invention relates generally to medical implant devices, and more particularly to a biocompatible implant that is deformable at elevated temperatures and relatively rigid at body temperature.
- a natural joint in the human body such as a hip joint may undergo degenerative changes due to a variety of etiologies. When these degenerative changes become advanced and are irreversible, it may ultimately become necessary to replace the natural joint with a prosthetic joint.
- a prosthetic joint is often formed from a high strength material that is not only able to accommodate the various loading conditions that the artificial joint may encounter, but is also biocompatible with the human body. Examples of such high strength materials used for the manufacture of prosthetic joints include metal alloys such as titanium or cobalt chrome alloys, metal alloys having metallic porous coatings secured to the outside thereof, and composite materials.
- the stem portion of the prosthetic hip is then inserted into the cavity formed in the intramedullary canal, so that the stem portion becomes secured to the bone surrounding the cavity by the bone cement.
- a proper bonding of the external surface of the stem portion of the prosthetic hip to the wall of the cavity formed in the intramedullary canal requires that the bone cement be pressurized. This pressurization allows the bone cement to interdigitate with the wall of the intramedullary canal, as well as the external surface geometry of the stem portion of the prosthetic hip.
- bioresorbable plugs made from bioresorbable materials have also been described in literature and have the advantage of being absorbed by the body over a period of time so as to allow for bone or fibrous material to grow into the space previously occupied by a bioresorbable plug.
- Such bioresorbable plugs are described as being made from a polymer such as polylactic acid. While these bioresorbable plugs may be capable of limiting the flow of bone cement into the lower portion of the cavity, they are presumably relatively rigid which would limit their ability to be easily manipulated into the desired location within the cavity unless they are made in a variety of sizes.
- An advantage of the present invention is to provide a biocompatible implant that is relatively rigid at a first thermochemical state after implantation within a living body and relatively deformable at a second thermochemical state to which the implant is temporarily brought prior to implantation.
- Another advantage of the present invention is to provide a biocompatible implant which is relatively rigid at body temperature and relatively deformable at another temperature.
- a further advantage of the present invention is to provide a bone plug that is able to restrict the flow of bone cement in a cavity formed in the intramedullary canal from a region laterally adjacent to a prosthetic implant to a position below the prosthetic implant.
- a related advantage of the present invention is to provide a bone plug that is both resorbable and deformable.
- Another advantage of the present invention is to provide a bioresorbable implant that is relatively easy to insert into a cavity formed within living tissue yet is able to be relatively rigidly secured to the tissue.
- a further advantage of the present invention is to provide a biocompatible implant that is deformable when the implant is being inserted into a cavity formed within human tissue but becomes relatively rigid once the biocompatible implant is located in its final position.
- the present invention in one form thereof, provides a biocompatible implant for forming an enclosed pressure region within a cavity formed in living tissue.
- the biocompatible implant includes a main body which is operable to be inserted into the cavity.
- the biocompatible implant further includes means for securing the main body in a substantially stationary position within the cavity.
- the means for securing the main body is relatively rigid at a first temperature and is deformable at a second temperature that is above the first temperature.
- the biocompatible implant of the present invention comprises a substantially cylindrical main body having one or more planar flanges extending outwardly therefrom.
- Each flange includes a plurality of ridges on one surface which contact the wall of the cavity formed in the intramedullary canal upon insertion.
- the flanges serve to maintain the biocompatible implant in a substantially stationary position within the cavity formed within the intramedullary canal.
- the flanges restrict the flow of bone cement in the cavity away from a position well below the implant prosthesis.
- the invention in another form thereof, provides a method for implanting a biocompatible implant into human tissue that includes the steps of heating the implant to a temperature substantially that of its glass transition temperature to allow the biocompatible implant to be deformed. The biocompatible implant is then inserted into a cavity formed within the tissue to a preselected position. The biocompatible implant is then allowed to cool to a temperature where it becomes relatively rigid.
- FIG. 1 is a cross-sectional view of a biocompatible implant according to the teachings of the preferred embodiment of the present invention shown in association with a hip joint prosthesis;
- FIG. 2 is an enlarged elevational view of a biocompatible implant shown in FIG. 2 according to the teachings of the preferred embodiment of the present invention
- FIG. 3 is a view of a biocompatible implant accordance with a preferred embodiment of the present invention taken in the direction of line 3--3 in FIG. 2;
- FIG. 4 is a cross-sectional view of a thermal packaging unit used for heating the biocompatible implant shown in FIG. 2 according to the teaching of a preferred embodiment of the present invention
- FIG. 5 is an enlarged cross-sectional view of a bioresorbable implant according to the teachings of the preferred embodiment of the present invention shown as being disposed within a cavity formed within the intramedullary canal of a femur.
- FIG. 6 is a cross-sectional view of a thermal packaging unit used for heating the biocompatible implant shown in FIG. 2 according to the teaching of another preferred embodiment of the present invention
- FIG. 7 is a cross-sectional view of a thermal packaging unit used for heating the biocompatible implant shown in FIG. 2 according to the teaching of yet another preferred embodiment of the present invention.
- FIG. 8 is an elevational view of a thermal packaging unit used for heating the biocompatible implant shown in FIG. 2 according to the teaching of yet another preferred embodiment of the present invention.
- FIG. 9 is a cross-sectional view of the thermal packaging unit shown in FIG. 8.
- FIG. 1 there is shown a biocompatible implant 10 according to the preferred embodiments of the present invention.
- the biocompatible implant 10 is shown as being disposed within a cavity 12 formed in the intramedullary canal of a femur 14.
- a hip joint prosthesis generally designated by the numeral 16 is positioned within the cavity 12.
- the hip joint prosthesis 16 is shown to include a head component 18 for engaging an acetabular component 20 that is secured to the pelvis 22.
- the hip joint prosthesis 16 further includes a stem portion 24 that is inserted into the cavity 12 and that is used to secure the hip joint prosthesis 16 to the femur 14.
- the biocompatible implant 10 is positioned within the cavity 12 beyond the distal end of the stem portion 24 of the hip joint prosthesis 16.
- thermochemical state as used in describing the present invention is defined as a combination of thermal and chemical conditions resulting from exposure to certain thermal and chemical environments. Although one type of change in thermochemical state occurs by a change of temperature alone, changes in thermochemical state of a biocompatible implant of the present invention should be understood as not limited only to changes in temperature.
- the biocompatible implant 10 includes a main body 26 having a rounded lower end 28 and an upper end 30.
- the upper end 30 includes an open recess 32 that is defined by an annular wall 34 and is used to receive an insertion tool (not shown).
- the annular wall 34 is shown to include a plurality of threads 36 that are disposed on the inner surface of the annular wall 34.
- the threads 36 are sized to receive a matching threaded end of the insertion tool that allows the biocompatible implant 10 to be removably secured to the insertion tool. It will be appreciated, however, that any other suitable means for allowing the biocompatible implant 10 to be inserted into the cavity 12 by an insertion tool may be used.
- the biocompatible implant 10 further includes an upper first flange 38 and a lower second flange 40 that extend radially from the main body 26.
- Both the first and second flanges 38 and 40 are planar and circular in nature, with the diameter of the first flange 38 being larger than the diameter of the second flange 40.
- the first and second flanges 38 and 40 are used for engaging the wall of the cavity 12 when biocompatible implant 10 is inserted into the cavity 12.
- the flanges 38 and 40 also enhance a seal for restricting the flow of bone cement from the portion of the cavity 12 above the biocompatible implant 10 to the portion of the cavity 12 directly below the biocompatible implant 10. While the biocompatible implant 10 has been shown to include the first and second flanges 38 and 40, other suitable means for securing the biocompatible implant 10 within the cavity 12 may be used.
- the first flange 38 includes a plurality of concentric ridges 42 disposed on its lower surface while the second flange 40 also has a plurality of concentric ridges 44 disposed on its lower surface as shown in FIG. 3.
- the ridges 42 and 44 serve to enhance the positional stability of the biocompatible implant 10 within the cavity 12 by engaging the walls of the cavity 12 upon insertion therein of the biocompatible implant 10.
- the biocompatible implant 10 is formed from a bioresorbable material that is substantially rigid at body temperature but becomes pliable or deformable at temperature somewhat above body temperature.
- a bioresorbable material that is substantially rigid at body temperature but becomes pliable or deformable at temperature somewhat above body temperature.
- One such material is an 82:18 copolymer of polylactic acid and polyglycolic acid.
- the glass transition temperature of this material is between approximately 40° C. and 60° C. so that heating of the biocompatible implant 10 to a deformable temperature preferably 5°-10° above the glass transition temperature allows the biocompatible implant 10 to be easily deformed as the biocompatible implant 10 is inserted into the cavity 12 in the manner described below. It should be understood that other suitable biocompatible materials may be used that have a glass transition temperature above body temperature.
- These materials include polymers, copolymers, fibers and films of polyglycolide, polylactide, polydioxanone, poly(glycolide-co-trimethylene carbonate), poly(ethylene carbonate), poly(iminocarbonates), polycaprolactone, polyhydroxybutyrate, polyesters, poly(amino acids), poly(ester-amides), poly(orthoesters), poly(anhydrides) and cyanoacrylates and copolymers and blends thereof.
- degradable synthetic implant materials is set forth in Barrows, T.H., Degradable Implant Materials: A Review of Synthetic Absorbable Polymers and their Applications, Clinical Materials 1986: 1: 233-257, which is hereby incorporated by reference.
- the biocompatible implant 10 may be heated by a thermal packaging unit 50.
- the thermal packaging unit 50 is able to generate thermal energy that is transferred to the biocompatible implant 10 so as to cause the temperature of the biocompatible implant 10 to be substantially that of its glass transition temperature. Because the biocompatible implant 10 is deformable at this elevated temperature, the biocompatible implant 10 may be relatively easily inserted into the cavity 12 of the femur 14. It will also be noted from the following discussion that the thermal packaging unit 50 is self-contained in that the elements used for heating the biocompatible device 10 are located within the thermal packaging unit 50.
- thermal packaging unit 50 includes a first compartment 56 that defines a storage area 52 for receiving the biocompatible implant 10, and a second compartment 58 that is disposed within the first compartment 56.
- the first compartment 56 includes an inner wall 60 that is disposed adjacent to the storage area 52 and an external surface defined by an outer wall 62.
- the inner wall 60 and outer wall 62 act as a barrier to moisture, microbes or other contaminants which enhances a relatively sterile and relatively dry condition within the storage area 52 thereby minimizing degradation of the biocompatible implant 10 by exposure to the environment.
- the inner wall 60 is preferably made from a laminate including a linear low density film of 3 to 4 mils thickness, a high temperature adhesive layer, an aluminum foil layer, a second high temperature adhesive layer and a second linear low density film of 3 to 4 mils thickness, although other suitable materials may be used.
- the outer wall 62 is preferably made from a laminate including a linear low density film of 3 to 4 mils thickness, a high temperature adhesive layer, an aluminum foil layer, a second high temperature adhesive layer and an insulating layer, although other suitable materials may be used.
- the insulating layer may be made from any flexible insulating material well known to those skilled in the art and is used to retain the thermal energy generated within the first compartment 56.
- the insulating layer is a laminate including a 60 to 100 gauge biaxial oriented nylon sheet, a high temperature adhesive layer, a microfoam-blown polypropylene layer and a non-woven film, such as nylon.
- first compartment 56 may be separated into segments by means of a separating wall 66.
- the separating wall 66 can also be constructed to provide two second compartments 58 within thermal packaging unit 50 thereby making each half of thermal packaging unit 50 independently activated.
- the thermal packaging unit 50 also includes a top seal 68 that maintains a relatively moisture-free environment within the storage area 52.
- the top seal 68 is preferably resealable so as to allow the biocompatible implant 10 to be reinserted into the storage area 52. This may be necessary when the temperature of the biocompatible implant 10 cools to a temperature below its glass transition temperature before the insertion process can be attempted or successfully completed.
- the first compartment 56 is operable to contain calcium chloride while the second compartment 58 is operable to contain water.
- water from the second compartment 58 is able to combine with the calcium chloride in the first compartment 56 in an exothermic reaction.
- thermal energy is transferred from the first compartment 56 to the biocompatible implant 10 which causes the temperature of the biocompatible implant 10 to rise.
- the biocompatible implant 10 becomes increasingly deformable and may be easily inserted into the cavity 12.
- the biocompatible implant 10 cools to body temperature which is below the glass transition temperature of the biocompatible implant 10. When this occurs, the bioresorbable implant 10 becomes relatively rigid so as to resist further movement within the cavity 12.
- thermal packaging unit 50 The use of thermal packaging unit 50 will now be described in greater detail. Shortly before the biocompatible implant 10 is to be implanted, an insertion tool (not shown) is removably attached to the biocompatible implant 10 by threading the insertion tool onto the plurality of threads 36 that are disposed on the inner surface of the annular wall 34. The biocompatible implant 10 and the attached end of the insertion tool are then inserted into the thermal packaging unit 50. To enhance the heating operation, the top seal 68 is substantially closed around the insertion tool, which protrudes from the thermal packaging unit 50. Activation of thermal packaging unit 50 is then accomplished by gently squeezing thermal packaging unit 50 from its exterior so as to rupture second compartment 58.
- the thermal packaging unit 50 is capable of maintaining this elevated temperature of the storage area 52 for approximately 15-20 minutes so as to allow the biocompatible implant 10 to be reheated if necessary.
- the top seal 68 of the thermal packaging unit 50 is opened from around the insertion tool and the biocompatible implant 10 and the insertion tool are removed from the thermal packaging unit 50 and are inserted, with the rounded lower end 28 of the biocompatible implant 10 first, into the cavity 12.
- the first and second flanges 38 and 40 deform in a direction toward the open recess 32.
- the biocompatible implant 10 is forced into the cavity 12 to a position approximately 1 to 2 centimeters past the expected position of the distal end of the stem 24 of the hip joint prosthesis 16. It should also be noted that it is possible to reinsert the biocompatible implant 10 into the thermal packaging unit 50 for reheating should a delay occur before the biocompatible implant 10 can be inserted into the cavity 12.
- the biocompatible implant 10 cools to a temperature below its glass transition temperature thereby returning to a relatively rigid condition. In this relatively rigid condition, the biocompatible implant 10 is secured in a substantially stationary position within cavity 12. After the biocompatible implant 10 is secured in this manner, the insertion tool is detached from the biocompatible implant 10 and is removed from the cavity 12.
- the biocompatible implant 10 may be placed within the thermal packaging unit 50 without being attached to the insertion tool.
- the top seal 68 can be substantially closed during the heating operation, and the insertion tool is attached to the biocompatible implant 10 immediately prior to the removal of the biocompatible implant 10 from the thermal packaging unit 50.
- the biocompatible implant 10 After the biocompatible implant 10 is properly secured within the cavity 12 and has cooled below its glass transition temperature, bone cement 72 is introduced into the cavity 12 and the stem portion 24 is thereafter inserted into the cavity 12.
- the action of inserting the stem portion 24 into the cavity 12 causes pressurization of the bone cement 72 within the cavity 12 which causes the bone cement 72 to interdigitate with the stem portion 24 and the wall of the cavity 12.
- the first and second flanges 38 and 40 of the biocompatible implant 10 restrict the flow of the bone cement 72 to a position below the biocompatible implant 10 within the cavity 12.
- the stem portion 24 becomes secured to the femur 14.
- the final position of biocompatible implant 10, the bone cement 72 and stem portion 24 within the cavity 12 of femur 14 is illustrated in FIG. 5.
- the biocompatible implant 10 is absorbed by natural functions within 1 to 11/2 years. During and after this time, bone cells or a fibrous tissue may fill into the space previously occupied by the biocompatible implant 10 and the portion of the cavity 12 below the biocompatible implant 10.
- the thermal packaging unit 50 may contain only one rupturable compartment whose contents may be introduced to air, water or an external activating compound in order to activate the exothermic or thermodynamic reaction which heats the biocompatible implant 10.
- three or more compartments may be used that can include different reactants that may be located within the first compartment 56. In this case, simultaneous exothermic reactions can occur by simultaneous rupturing of all barriers separating the compartments.
- the first compartment 56 may have multiple storage compartments for multiple supplies of the same chemical reactants. Such an arrangement would make it possible for sequential rupturing of these compartments so as to allow the duration of the thermal energy generated by the thermal packaging unit 50 to increase.
- the thermal packaging unit 50 may take the form shown in FIGS. 6-9. In these alternative embodiments, similar features common to those shown in FIG. 4 are referenced by numerals that are 100, 200 and 300 greater than the corresponding numerals in FIG. 4. Each of these alternative embodiments of the thermal packaging unit 50 will be more fully described below.
- the thermal packaging unit 150 shown in FIG. 6 includes a first compartment 156 that defines a storage area 152 for receiving the biocompatible implant 10.
- the first compartment 156 includes an inner wall 160 that is disposed adjacent to the storage area 152 and an external surface defined by an outer wall 162.
- the inner wall 160 and outer wall 162 act as a microbial and moisture barrier which maintains a relatively sterile and relatively dry condition within the storage area 152 thereby minimizing degradation of the biocompatible implant 110 by exposure to the environment.
- the inner wall 160 is preferably made from a laminate including a linear low density film of 3 to 4 mils thickness, a high temperature adhesive layer, an aluminum foil layer, a second high temperature adhesive layer and a second linear low density film of 3 to 4 mils thickness, although other suitable materials may be used.
- the outer wall 162 is made in a preferred embodiment from a laminate including a linear low density film of 3 to 4 mils thickness, a high temperature adhesive layer, an aluminum foil layer, a second high temperature adhesive layer and an insulating layer, although other suitable materials may be used.
- the insulating layer may be made from any flexible insulating material well known to those skilled in the art and is used to retain the thermal energy generated within the first compartment 156. In one preferred embodiment, the insulating layer is a laminate including a 60 to 100 gauge biaxial oriented nylon sheet, a high temperature adhesive layer, a microfoam-blown polypropylene layer and a non-woven film, such as nylon.
- the thermal packaging unit 150 also includes a top seal 168 that maintains a relatively moisture-free environment within the storage area 152.
- the top seal 168 is preferably resealable so as to allow the biocompatible implant 110 to be reinserted into the storage area 152. This may be necessary when the temperature of the biocompatible implant 110 cools to a temperature below its glass transition temperature before the insertion process can be attempted or successfully completed.
- an injection port 174 which is used to provide a resealable passageway from the external surface of the thermal packaging unit 150 to the first compartment 156.
- the injection port 174 is made from a compliant material that can be deformed and penetrated from an initial relatively sealed condition by an injection instrument such as a syringe or other suitable tool (not shown). It is preferred that the injection port 174 be located exterior to the outer wall 162 so as not to disturb the initial interior microbial and moisture conditions within the storage area 152.
- the injection port 174 preferably returns to a relatively sealed condition following the withdrawal of the injection instrument from the injection port 174.
- the first compartment 156 is operable to contain calcium chloride which is reacted with water introduced by an injection instrument through the injection port 174. As water combines with the calcium chloride in the first compartment 156, an exothermic or thermodynamic chemical reaction occurs whereby thermal energy is generated within the first compartment 156 and is subsequently transferred from the first compartment 156 to the biocompatible implant 110 which causes the temperature of the biocompatible implant 110 to rise.
- the first compartment 156 may contain a different chemical reactant which may be combined with water or a suitable activating solvent other than water in the same manner described above to produce the desired exothermic or thermodynamic chemical reaction. It will also be noted that the first compartment 156 may be separated into segments by means of a separating wall, with a second injection port added for making each half of thermal packaging unit 150 independently activated.
- the thermal packaging unit 250 includes a first compartment 256 that defines a storage area 252 for receiving the biocompatible implant.
- the first compartment 256 is operable to contain a supercooled solution of sodium acetate and water.
- a metal activation disk 280 Disposed within the solution is a metal activation disk 280, which is operable to crystallize the solution of sodium acetate and water upon bending.
- the activation disk 280 is available from Prism Technologies and is operable to crystallize the sodium acetate and water solution in a manner described below.
- the first compartment 256 includes an inner wall 260 that is disposed adjacent to the storage area 252 and an external surface defined by an outer wall 262.
- the inner wall 260 and outer wall 262 act as a microbial and moisture barrier which maintains a relatively sterile and relatively dry condition within the storage area 252 thereby minimizing degradation of the biocompatible implant 210 by exposure to the environment.
- the inner wall 260 is made in a preferred embodiment from a laminate including a linear low density film of 3 to 4 mils thickness, a high temperature adhesive layer, a clear foil layer, a second high temperature adhesive layer and a second linear low density film of 3 to 4 mils thickness, although other suitable materials may be used.
- the outer wall 262 is made in a preferred embodiment from a laminate including a linear low density film of 3 to 4 mils thickness, a high temperature adhesive layer, a clear foil layer, a second high temperature adhesive layer and an insulating layer, although other suitable materials may be used.
- the insulating layer may be made from any flexible insulating material well known to those skilled in the art and is used to retain the thermal energy generated within the first compartment 256.
- the insulating layer is a laminate including a 60 to 100 gauge biaxial oriented nylon sheet, a high temperature adhesive layer, a microfoam-blown polypropylene layer and a non-woven film, such as nylon.
- the thermal packaging unit 250 also includes a top seal 268 that maintains a relatively moisture-free environment within the storage area 252.
- the top seal 268 is preferably resealable so as to allow the biocompatible implant 210 to be reinserted into the storage area 252. This may be necessary when the temperature of the biocompatible implant 210 cools to a temperature below its glass transition temperature before the insertion process can be attempted or successfully completed.
- the activation disk 280 is bent to initiate the reaction. Crystallization of the sodium acetate solution generates thermal energy within the first compartment 256 that is subsequently transferred from the first compartment 256 to the biocompatible implant 210, thereby causing the temperature of the biocompatible implant 210 to rise.
- the thermal packaging unit 250 can be reused for at least one additional use by boiling the thermal packaging unit 250 for a time sufficient to return the sodium acetate and water solution within the first compartment 256 to its previous state. Subsequent activation of the thermal packaging unit 250 is then accomplished in the same manner described above.
- first compartment 256 may contain a different chemical reactant which may be combined with a different suitable activating agent in the same manner described above to produce the desired exothermic or thermodynamic chemical reaction. It will also be noted that the first compartment 256 may be separated into segments by means of a separating wall, with a second activation disk added for making each half of thermal packaging unit 250 independently activated.
- the thermal packaging unit 350 is shown to include a first compartment 388 defined by the outer wall 390, which is partially separated into two portions by a perforated seal 382 extending through the central portion of the first compartment 388.
- an injection port 386 Disposed near the center top portion of the thermal packaging unit 350 is an injection port 386 for introducing an activation compound for initiating an exothermic or thermodynamic chemical reaction.
- the injection port 386 is preferably mounted upon the external surface of the outer wall 390 thereby providing a resealable passageway through the outer wall 390 from the external surface of the thermal packaging unit 350 to the first compartment 388.
- the injection port 386 is made from a compliant material that can be deformed and penetrated from an initial relatively sealed condition to accept an injection instrument such as a syringe or other suitable tool (not shown).
- the injection port 386 preferably returns to a relatively sealed condition following the withdrawal of the injection instrument as before.
- the thermal packaging unit 350 further includes a pocket 384 disposed on one side for defining a storage space 392 for holding a biocompatible implant (not shown) and enhancing heat transfer and retention.
- the thermal packaging unit 350 is initially in a flat orientation. After the biocompatible implant to be heated is located within the pocket 384, the thermal packaging unit 350 is folded about the perforated seal 382 to substantially surround the biocompatible implant. This arrangement promotes convenience in inserting the biocompatible implant into and removing it from the thermal packaging unit 350.
- the thermal packaging unit 350 further includes an insulating layer 394 disposed upon the opposite surface of the thermal packaging unit 350 from the pocket 384.
- the insulating layer 394 may be made from any flexible insulating material well known to those skilled in the art and is used to retain the thermal energy generated within the first compartment 388 after the thermal packaging unit 350 is activated and is folded to surround the biocompatible bone plug being heated.
- the insulating layer 394 is a laminate including a 60 to 100 gauge biaxial oriented nylon sheet, a high temperature adhesive layer, a microfoam-blown polypropylene layer and a non-woven film, such as nylon.
- the first compartment 388 is operative to contain calcium chloride which is reacted with water introduced by an injection instrument through the injection port 386. As water combines with the calcium chloride in the first compartment 388, an exothermic or thermodynamic chemical reaction occurs whereby thermal energy is generated within the first compartment 386. When the thermal packaging unit 350 is in a folded condition, this generated heat is transferred from the first compartment 388 to the biocompatible implant stored within the pocket 384 which causes the temperature of the biocompatible implant to rise. It will be noted that the first compartment may contain a different chemical reactant which may be combined with water or a suitable activating solvent other than water in the same manner described above to produce the desired exothermic or thermodynamic chemical reaction.
- the biocompatible implant can be removed from and reinserted into the pocket 384 as desired for satisfying the particular heating needs of an application. This may be necessary when the temperature of the biocompatible implant cools to a temperature below its glass transition temperature before the insertion process can be attempted or successfully completed. It should be noted that the folded condition of the thermal packaging unit 350 is more effective for developing a fully heated condition, as well as for maintaining a heated condition when a biocompatible implant is inserted into the pocket 384 and following removal of the implant, should a reheating become necessary.
- the implant used in the present invention may be of a biocompatible or bioresorbable material.
- the deformability characteristics of the implant may be altered by any change in thermochemical condition of the implant, such as exposure to one or more chemical compounds which react with the implant material so as to render it temporarily deformable prior to implantation.
- the thermal packaging unit may be supplied with an implant already positioned within the storage area or it may be supplied empty for insertion of an implant before activation.
- the thermal packaging unit may be used to enhance the sterility of the biocompatible implant from when the biocompatible implant is manufactured until immediately before the biocompatible implant is implanted.
- the use of the thermal packaging unit to enhance the sterility of the biocompatible implant reduces the costs which would otherwise be associated with enhancing the sterility of the biocompatible implant before implantation.
- the implant described herein may be used in connection with other types of surgical applications and with other types of tissue.
- other means such as a heated water bath, a stove or an iron may be used for heating the biocompatible implant.
- the present invention will therefore be understood as susceptible to modification, alteration and variation by those skilled in the art without deviating from the scope and meaning of the following claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Transplantation (AREA)
- Biomedical Technology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Cardiology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
Claims (27)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/964,373 US5263991A (en) | 1992-10-21 | 1992-10-21 | Method for heating biocompatible implants in a thermal packaging line |
US07/964,197 US5376120A (en) | 1992-10-21 | 1992-10-21 | Biocompatible implant and method of using same |
PCT/US1993/011432 WO1995015129A1 (en) | 1992-10-21 | 1993-11-23 | Thermal packaging unit for biocompatible implants |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/964,373 US5263991A (en) | 1992-10-21 | 1992-10-21 | Method for heating biocompatible implants in a thermal packaging line |
US07/964,197 US5376120A (en) | 1992-10-21 | 1992-10-21 | Biocompatible implant and method of using same |
PCT/US1993/011432 WO1995015129A1 (en) | 1992-10-21 | 1993-11-23 | Thermal packaging unit for biocompatible implants |
Publications (1)
Publication Number | Publication Date |
---|---|
US5376120A true US5376120A (en) | 1994-12-27 |
Family
ID=27377432
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/964,373 Expired - Lifetime US5263991A (en) | 1992-10-21 | 1992-10-21 | Method for heating biocompatible implants in a thermal packaging line |
US07/964,197 Expired - Lifetime US5376120A (en) | 1992-10-21 | 1992-10-21 | Biocompatible implant and method of using same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/964,373 Expired - Lifetime US5263991A (en) | 1992-10-21 | 1992-10-21 | Method for heating biocompatible implants in a thermal packaging line |
Country Status (2)
Country | Link |
---|---|
US (2) | US5263991A (en) |
WO (1) | WO1995015129A1 (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5643266A (en) | 1995-06-05 | 1997-07-01 | Li Medical Technologies, Inc. | Method and apparatus for securing ligaments |
US5645589A (en) * | 1994-08-22 | 1997-07-08 | Li Medical Technologies, Inc. | Anchor and method for securement into a bore |
WO1997025940A1 (en) * | 1996-01-17 | 1997-07-24 | Sunmed, Inc. | Intramedullary bone plug |
US5690649A (en) * | 1995-12-05 | 1997-11-25 | Li Medical Technologies, Inc. | Anchor and anchor installation tool and method |
US5702215A (en) * | 1995-06-05 | 1997-12-30 | Li Medical Technologies, Inc. | Retractable fixation device |
US5707395A (en) | 1997-01-16 | 1998-01-13 | Li Medical Technologies, Inc. | Surgical fastener and method and apparatus for ligament repair |
US5741300A (en) * | 1996-09-10 | 1998-04-21 | Li Medical Technologies, Inc. | Surgical anchor and package and cartridge for surgical anchor |
US5766178A (en) * | 1996-12-13 | 1998-06-16 | Howmedia Inc. | Bone plug |
WO1998035635A1 (en) * | 1997-02-13 | 1998-08-20 | Chan Kwan Ho | Bone cement plug for deployment in a bone canal |
FR2763500A1 (en) * | 1997-05-21 | 1998-11-27 | Landanger Camus Sa | Stopper for diaphysis canal specially of hip prosthesis |
US5843127A (en) * | 1994-08-22 | 1998-12-01 | Le Medical Technologies, Inc. | Fixation device and method for installing same |
US5861043A (en) * | 1996-02-26 | 1999-01-19 | Sunmed Inc. | Intramedullary bone plug |
US5879403A (en) * | 1997-03-27 | 1999-03-09 | Johnson & Johnson Professional, Inc. | Bistable cement restrictor |
US5906631A (en) * | 1997-12-05 | 1999-05-25 | Surface Genesis, Inc. | Method and device for sealing vascular puncture wounds |
US5964807A (en) * | 1996-08-08 | 1999-10-12 | Trustees Of The University Of Pennsylvania | Compositions and methods for intervertebral disc reformation |
US5972034A (en) * | 1997-07-29 | 1999-10-26 | Joint Enterprises, L.C. A Limited Corporation | Self-venting intramedullary cement restrictor |
US6051272A (en) * | 1996-03-15 | 2000-04-18 | The Board Of Trustees Of The University Of Illinois | Method for synthesizing organoapatites on to surgical metal alloys |
US6117161A (en) * | 1995-06-06 | 2000-09-12 | Li Medical Tecnologies, Inc. | Fastener and fastening method, particularly for fastening sutures to bone |
US6146406A (en) | 1998-02-12 | 2000-11-14 | Smith & Nephew, Inc. | Bone anchor |
GB2357774A (en) * | 1999-09-29 | 2001-07-04 | Chemence Inc | Bioabsorbable cyanoacrylate tissue adhesives |
US6302916B1 (en) * | 1998-12-24 | 2001-10-16 | Biopro, Inc. | Polyurethane and so forth containing joints |
WO2002039946A2 (en) * | 2000-10-31 | 2002-05-23 | Smith & Nephew, Inc. | Packaging and delivery system for bone graft particles |
US6471725B1 (en) * | 2001-07-16 | 2002-10-29 | Third Millenium Engineering, Llc | Porous intervertebral distraction spacers |
US6482210B1 (en) | 1998-11-12 | 2002-11-19 | Orthopaedic Biosystems, Ltd., Inc. | Soft tissue/ligament to bone fixation device with inserter |
US20030014116A1 (en) * | 2001-07-16 | 2003-01-16 | Ralph James D. | Intervertebral spacer having a flexible wire mesh vertebral body contact element |
US6607535B1 (en) | 1999-02-04 | 2003-08-19 | Kwan-Ho Chan | Universal bone cement plug and method of use |
US20030187514A1 (en) * | 2002-03-26 | 2003-10-02 | Mcminn Derek James Wallace | Hip joint prosthesis |
US20030220692A1 (en) * | 2002-02-09 | 2003-11-27 | Shapiro Irving M. | Preparations of nucleus pulposus cells and methods for their generation, identification, and use |
US20050055095A1 (en) * | 2001-07-16 | 2005-03-10 | Errico Joseph P. | Artificial intervertebral disc trials having a cylindrical engagement surface |
US20050125064A1 (en) * | 2001-02-15 | 2005-06-09 | Spinecore, Inc. | Intervertebral spacer device |
WO2005063319A1 (en) * | 2003-12-24 | 2005-07-14 | Novartis Ag | Parmaceutical compositions |
US6984247B2 (en) | 1999-10-20 | 2006-01-10 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US6986788B2 (en) | 1998-01-30 | 2006-01-17 | Synthes (U.S.A.) | Intervertebral allograft spacer |
US7004970B2 (en) | 1999-10-20 | 2006-02-28 | Anulex Technologies, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
US7052516B2 (en) | 1999-10-20 | 2006-05-30 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
US20060149282A1 (en) * | 2004-12-21 | 2006-07-06 | Timothy Vendrely | Cement restrictor with integrated pressure transducer and method of measuring the pressure at the distal end of a bone canal |
US7255712B1 (en) | 1997-04-15 | 2007-08-14 | Active Implants Corporation | Bone growth promoting implant |
US7300465B2 (en) | 1998-01-30 | 2007-11-27 | Synthes (U.S.A.) | Intervertebral allograft spacer |
US20080033577A1 (en) * | 2004-07-01 | 2008-02-07 | Lawrence Kohan | Hip Resurfacing Component |
US20080045627A1 (en) * | 2003-07-19 | 2008-02-21 | John Rose | High Strength Bioreabsorbable Co-Polymers |
EP1974698A2 (en) | 1999-10-20 | 2008-10-01 | Anulex Technologies, Inc. | Spinal disc annulus stent |
US7455674B2 (en) | 2002-01-31 | 2008-11-25 | Smith & Nephew Plc | High strength bioresorbables containing poly-glycolic acid |
US7524891B2 (en) | 2001-07-04 | 2009-04-28 | Smith & Nephew Plc | Biodegradable polymer systems |
US7572295B2 (en) | 2001-12-04 | 2009-08-11 | Active Implants Corporation | Cushion bearing implants for load bearing applications |
EP2139432A2 (en) * | 2007-04-24 | 2010-01-06 | Novalign Orthopaedics, Inc. | Deformable implant systems and methods |
US7708780B2 (en) | 2003-03-06 | 2010-05-04 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US20100136648A1 (en) * | 2007-04-18 | 2010-06-03 | Smith & Nephew, Plc | Expansion Moulding of Shape Memory Polymers |
US20100145448A1 (en) * | 2007-04-19 | 2010-06-10 | Smith & Nephew, Inc. | Graft Fixation |
US7749273B2 (en) | 1999-10-20 | 2010-07-06 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US7758653B2 (en) | 2002-05-23 | 2010-07-20 | Active Implants Corporation | Implants |
US7771477B2 (en) | 2001-10-01 | 2010-08-10 | Spinecore, Inc. | Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves |
US20100241233A1 (en) * | 2002-04-12 | 2010-09-23 | Spinecore, Inc. | Spacerless artificial disc replacements |
US7935147B2 (en) | 1999-10-20 | 2011-05-03 | Anulex Technologies, Inc. | Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus |
US7951201B2 (en) | 1999-10-20 | 2011-05-31 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US20110144751A1 (en) * | 2007-04-19 | 2011-06-16 | Smith & Nephew, Inc | Multi-Modal Shape Memory Polymers |
US8029568B2 (en) | 2001-10-18 | 2011-10-04 | Spinecore, Inc. | Intervertebral spacer device having a slotted partial circular domed arch strip spring |
US8043377B2 (en) | 2006-09-02 | 2011-10-25 | Osprey Biomedical, Inc. | Implantable intervertebral fusion device |
US8128698B2 (en) | 1999-10-20 | 2012-03-06 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
EP2433492A1 (en) | 2004-03-17 | 2012-03-28 | Revivicor Inc. | Tissue products derived from animals lacking any expression of functional alpha 1,3 galactosyltransferase |
US8163022B2 (en) | 2008-10-14 | 2012-04-24 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US8227246B2 (en) | 2007-07-12 | 2012-07-24 | Discgenics | Compositions of adult disc stem cells for the treatment of degenerative disc disease |
US8460319B2 (en) | 2010-01-11 | 2013-06-11 | Anulex Technologies, Inc. | Intervertebral disc annulus repair system and method |
US8470041B2 (en) | 2002-04-12 | 2013-06-25 | Spinecore, Inc. | Two-component artificial disc replacements |
US8556977B2 (en) | 1999-10-20 | 2013-10-15 | Anulex Technologies, Inc. | Tissue anchoring system and method |
US8722783B2 (en) | 2006-11-30 | 2014-05-13 | Smith & Nephew, Inc. | Fiber reinforced composite material |
US9120919B2 (en) | 2003-12-23 | 2015-09-01 | Smith & Nephew, Inc. | Tunable segmented polyacetal |
US9220599B2 (en) | 2010-08-24 | 2015-12-29 | Biomet Manufacturing, Llc | Acetabular cup having deformation resistant features |
US9737294B2 (en) | 2013-01-28 | 2017-08-22 | Cartiva, Inc. | Method and system for orthopedic repair |
US10179012B2 (en) | 2013-01-28 | 2019-01-15 | Cartiva, Inc. | Systems and methods for orthopedic repair |
US20200246511A1 (en) * | 2019-02-04 | 2020-08-06 | Armis Biopharma, Inc. | Methods and devices to reduce the risk of infection |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5472415A (en) * | 1994-04-26 | 1995-12-05 | Zimmer, Inc. | Disposable provisional instrument component for evaluating the fit of an orthopaedic implant |
US5885295A (en) * | 1996-08-07 | 1999-03-23 | Biomet, Inc. | Apparatus and method for positioning an orthopedic implant |
JP4067637B2 (en) * | 1997-05-06 | 2008-03-26 | デピュイ・オーソピーディックス・インコーポレイテッド | Cement restrictor |
US6251141B1 (en) * | 1998-10-23 | 2001-06-26 | Pierson, Iii Raymond H. | Bone canal plug, method of making, and method of using |
ITMI990084A1 (en) * | 1999-01-19 | 2000-07-19 | Istituto Profilattico Italiano | PROCEDURE AND DEVICE FOR THE APPLICATION OF COSMETIC PRODUCTS CONTROLLED TEMPERATURE |
US7207993B1 (en) | 2000-02-03 | 2007-04-24 | Pioneer Laboratories, Inc. | Apparatus and method for repairing the femur |
EP1197191A1 (en) * | 2000-10-12 | 2002-04-17 | IsoTis N.V. | Plug for insertion into a bone canal |
WO2001060288A1 (en) * | 2000-02-18 | 2001-08-23 | Isotis N.V. | Plug for insertion into a bone canal |
DE10032799B4 (en) * | 2000-06-28 | 2005-09-22 | Coty B.V. | Multi-chamber packaging for cooling or heating products |
US6547063B1 (en) | 2000-10-10 | 2003-04-15 | The Procter & Gamble Company | Article for the delivery of foam products |
US6484514B1 (en) | 2000-10-10 | 2002-11-26 | The Procter & Gamble Company | Product dispenser having internal temperature changing element |
WO2003002425A1 (en) | 2001-06-29 | 2003-01-09 | The Procter & Gamble Company | Self-heating/self-cooling package |
US20060083769A1 (en) | 2004-10-14 | 2006-04-20 | Mukesh Kumar | Method and apparatus for preparing bone |
US7670384B2 (en) * | 2004-10-14 | 2010-03-02 | Biomet Manufacturing Corp. | Bone graft composition comprising a bone material and a carrier comprising denatured demineralized bone |
US20070092494A1 (en) * | 2005-10-26 | 2007-04-26 | Biomet Manufacturing Corp. | Composition for wound healing using lyophilized skin or skin-derived collagen |
WO2007059122A1 (en) * | 2005-11-14 | 2007-05-24 | Heat Wave Technologies Llc | Self-heating container |
EP2083764B1 (en) | 2006-10-17 | 2015-08-26 | Rutgers, The State University | N-substituted monomers and polymers |
US20090078711A1 (en) * | 2007-09-26 | 2009-03-26 | Heat Wave Technologies, Llc | Self-heating apparatuses using solid chemical reactants |
US8556108B2 (en) | 2007-09-26 | 2013-10-15 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
US7993692B2 (en) | 2008-09-10 | 2011-08-09 | Cryovac, Inc. | Package assembly for on-demand marination and method for providing the same |
US8578926B2 (en) | 2009-03-09 | 2013-11-12 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
US8360048B2 (en) | 2009-03-09 | 2013-01-29 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
BR112012028812A2 (en) * | 2010-05-11 | 2016-07-26 | Bock Healthcare Gmbh | temperature reduction device |
DE102011011883B4 (en) * | 2011-02-21 | 2015-09-03 | Scaldopack Sprl. | Packaging for a liquid product and method and device for its production |
CN108289735B (en) * | 2015-09-14 | 2021-04-02 | 卡尔蔡司医疗技术股份公司 | Intraocular lens delivery system with heating element |
Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3585982A (en) * | 1969-06-25 | 1971-06-22 | Gillette Co | Self-heating composition |
US3804077A (en) * | 1971-08-05 | 1974-04-16 | Kay Laboratories Inc | Hot or cold pack |
US3889483A (en) * | 1973-04-30 | 1975-06-17 | Readi Temp | Heat transfer package with shaped frangible ampule |
US3906926A (en) * | 1974-09-19 | 1975-09-23 | Us Navy | Heat source for curing underwater adhesives |
US3980070A (en) * | 1975-01-08 | 1976-09-14 | Scotty Manufacturing Company | Heating pack containing a granular chemical composition |
US4057047A (en) * | 1974-05-31 | 1977-11-08 | American Medical Products Company | Magnesium sulfate anhydrous hot pack having an inner bag provided with a perforated seal |
US4077390A (en) * | 1976-08-02 | 1978-03-07 | Marc F. Fiedler | Reusable heat pack containing supercooled solution and means for activating same |
US4093424A (en) * | 1976-03-09 | 1978-06-06 | Toyo Ink Manufacturing Co,, Ltd. | Thermogenic compositions |
US4106478A (en) * | 1975-06-09 | 1978-08-15 | Sunao Higashijima | Packaged heat generator |
US4114591A (en) * | 1977-01-10 | 1978-09-19 | Hiroshi Nakagawa | Exothermic metallic composition |
US4211325A (en) * | 1979-06-07 | 1980-07-08 | Hancock Laboratories, Inc. | Heart valve holder |
US4245359A (en) * | 1978-03-28 | 1981-01-20 | Sulzer Brothers Limited | Plug for openings produced by operative procedures in medullated bones |
US4279249A (en) * | 1978-10-20 | 1981-07-21 | Agence Nationale De Valorisation De La Recherche (Anvar) | New prosthesis parts, their preparation and their application |
US4282005A (en) * | 1979-03-05 | 1981-08-04 | Kensen Co., Ltd. | Body warmer for heating by exothermic heat |
US4293962A (en) * | 1980-02-14 | 1981-10-13 | Zimmer Usa, Inc. | Bone plug inserting system |
US4302855A (en) * | 1979-04-27 | 1981-12-01 | Swanson Alfred B | Plug for the intramedallary canal of a bone and method |
US4337773A (en) * | 1980-10-20 | 1982-07-06 | Raftopoulos Demetrios D | Method of and device for placing a barrier in a cavity provided in a bone shaft |
US4344190A (en) * | 1979-07-25 | 1982-08-17 | University Of Exeter | Plugs for the medullary canal of a bone |
US4379448A (en) * | 1980-01-18 | 1983-04-12 | Kapralis Imants P | Trigger to initiate crystallization |
EP0086880A1 (en) * | 1982-02-23 | 1983-08-31 | GebràDer Sulzer Aktiengesellschaft | Clamp for centering the shaft of an endoprosthesis inserted into a hollow bone |
US4516564A (en) * | 1981-11-28 | 1985-05-14 | Japan Pionics Co., Ltd. | Heat generating body |
US4522190A (en) * | 1983-11-03 | 1985-06-11 | University Of Cincinnati | Flexible electrochemical heater |
USRE32026E (en) * | 1973-07-04 | 1985-11-12 | Asahi Kasei Kogyo Kabushiki Kaisha | Structure of warmer |
US4572158A (en) * | 1984-09-12 | 1986-02-25 | Topazon Limited | Trigger to activate aqueous salt solution for use in a heat pack and method of making the same |
EP0185453A2 (en) * | 1984-11-09 | 1986-06-25 | Ethicon, Inc. | Surgical fastener made from polymeric blends |
US4671410A (en) * | 1984-12-27 | 1987-06-09 | Nobelpharma Aktiebolag | Package for sterile and contamination-free storage of artificial implants |
US4686973A (en) * | 1984-10-12 | 1987-08-18 | Dow Corning Corporation | Method of making an intramedullary bone plug and bone plug made thereby |
US4712681A (en) * | 1984-12-27 | 1987-12-15 | Branemark Per Ingvar | Method of packaging artificial implants in sterile and contamination-free manner and a package therefor |
US4743257A (en) * | 1985-05-08 | 1988-05-10 | Materials Consultants Oy | Material for osteosynthesis devices |
US4750619A (en) * | 1987-08-10 | 1988-06-14 | Osteonics Corp. | Package with tray for securing and presenting a sterile prosthetic implant element |
US4872442A (en) * | 1988-09-06 | 1989-10-10 | Prism Technologies, Inc. | Activator for initiating reaction in a heat pack and method for making same |
US4880953A (en) * | 1988-12-23 | 1989-11-14 | Prism Technologies, Inc. | Method of recharging a heat pack by microwave energy |
US4891263A (en) * | 1987-12-17 | 1990-01-02 | Allied-Signal Inc. | Polycarbonate random copolymer-based fiber compositions and method of melt-spinning same and device |
US4916193A (en) * | 1987-12-17 | 1990-04-10 | Allied-Signal Inc. | Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides |
US4920203A (en) * | 1987-12-17 | 1990-04-24 | Allied-Signal Inc. | Medical devices fabricated from homopolymers and copolymers having recurring carbonate units |
US4923470A (en) * | 1985-04-25 | 1990-05-08 | American Cyanamid Company | Prosthetic tubular article made with four chemically distinct fibers |
US4950295A (en) * | 1988-04-22 | 1990-08-21 | Robert Mathys Co. | Bone prosthesis anchoring method using a resorbable marrow cavity closure |
US4997448A (en) * | 1989-02-13 | 1991-03-05 | Feiler Frederic C | Proximal cement sealing plug for hip prosthesis |
US5009666A (en) * | 1988-09-30 | 1991-04-23 | Syckle Peter B Van | Plug and method of use |
US5035230A (en) * | 1990-02-23 | 1991-07-30 | Steidl Gary V | Disposable food heater |
US5037442A (en) * | 1988-08-30 | 1991-08-06 | Sulzer Brothers Limited | Fixing stem for a prosthesis |
US5046479A (en) * | 1988-11-30 | 1991-09-10 | Mycoal Warmers Company Limited | Disposable body warmer |
US5061287A (en) * | 1989-02-13 | 1991-10-29 | Feiler Frederic C | Proximal cement sealing plug for hip prosthesis |
US5080665A (en) * | 1990-07-06 | 1992-01-14 | American Cyanamid Company | Deformable, absorbable surgical device |
US5092891A (en) * | 1990-03-08 | 1992-03-03 | Kummer Frederick J | Cement plug for the medullary canal of a bone and coacting tool for installing same |
US5117809A (en) * | 1991-03-04 | 1992-06-02 | Mainstream Engineering Corporation | Flameless heater product for ready-to-eat meals and process for making same |
-
1992
- 1992-10-21 US US07/964,373 patent/US5263991A/en not_active Expired - Lifetime
- 1992-10-21 US US07/964,197 patent/US5376120A/en not_active Expired - Lifetime
-
1993
- 1993-11-23 WO PCT/US1993/011432 patent/WO1995015129A1/en not_active Application Discontinuation
Patent Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3585982A (en) * | 1969-06-25 | 1971-06-22 | Gillette Co | Self-heating composition |
US3804077A (en) * | 1971-08-05 | 1974-04-16 | Kay Laboratories Inc | Hot or cold pack |
US3889483A (en) * | 1973-04-30 | 1975-06-17 | Readi Temp | Heat transfer package with shaped frangible ampule |
USRE32026E (en) * | 1973-07-04 | 1985-11-12 | Asahi Kasei Kogyo Kabushiki Kaisha | Structure of warmer |
US4057047A (en) * | 1974-05-31 | 1977-11-08 | American Medical Products Company | Magnesium sulfate anhydrous hot pack having an inner bag provided with a perforated seal |
US3906926A (en) * | 1974-09-19 | 1975-09-23 | Us Navy | Heat source for curing underwater adhesives |
US3980070A (en) * | 1975-01-08 | 1976-09-14 | Scotty Manufacturing Company | Heating pack containing a granular chemical composition |
US4106478A (en) * | 1975-06-09 | 1978-08-15 | Sunao Higashijima | Packaged heat generator |
US4093424A (en) * | 1976-03-09 | 1978-06-06 | Toyo Ink Manufacturing Co,, Ltd. | Thermogenic compositions |
US4077390A (en) * | 1976-08-02 | 1978-03-07 | Marc F. Fiedler | Reusable heat pack containing supercooled solution and means for activating same |
US4114591A (en) * | 1977-01-10 | 1978-09-19 | Hiroshi Nakagawa | Exothermic metallic composition |
US4245359A (en) * | 1978-03-28 | 1981-01-20 | Sulzer Brothers Limited | Plug for openings produced by operative procedures in medullated bones |
US4279249A (en) * | 1978-10-20 | 1981-07-21 | Agence Nationale De Valorisation De La Recherche (Anvar) | New prosthesis parts, their preparation and their application |
US4282005A (en) * | 1979-03-05 | 1981-08-04 | Kensen Co., Ltd. | Body warmer for heating by exothermic heat |
US4302855A (en) * | 1979-04-27 | 1981-12-01 | Swanson Alfred B | Plug for the intramedallary canal of a bone and method |
US4211325A (en) * | 1979-06-07 | 1980-07-08 | Hancock Laboratories, Inc. | Heart valve holder |
US4344190A (en) * | 1979-07-25 | 1982-08-17 | University Of Exeter | Plugs for the medullary canal of a bone |
US4379448A (en) * | 1980-01-18 | 1983-04-12 | Kapralis Imants P | Trigger to initiate crystallization |
US4293962A (en) * | 1980-02-14 | 1981-10-13 | Zimmer Usa, Inc. | Bone plug inserting system |
US4337773A (en) * | 1980-10-20 | 1982-07-06 | Raftopoulos Demetrios D | Method of and device for placing a barrier in a cavity provided in a bone shaft |
US4516564A (en) * | 1981-11-28 | 1985-05-14 | Japan Pionics Co., Ltd. | Heat generating body |
EP0086880A1 (en) * | 1982-02-23 | 1983-08-31 | GebràDer Sulzer Aktiengesellschaft | Clamp for centering the shaft of an endoprosthesis inserted into a hollow bone |
US4522190A (en) * | 1983-11-03 | 1985-06-11 | University Of Cincinnati | Flexible electrochemical heater |
US4572158A (en) * | 1984-09-12 | 1986-02-25 | Topazon Limited | Trigger to activate aqueous salt solution for use in a heat pack and method of making the same |
US4686973A (en) * | 1984-10-12 | 1987-08-18 | Dow Corning Corporation | Method of making an intramedullary bone plug and bone plug made thereby |
EP0185453A2 (en) * | 1984-11-09 | 1986-06-25 | Ethicon, Inc. | Surgical fastener made from polymeric blends |
US4671410A (en) * | 1984-12-27 | 1987-06-09 | Nobelpharma Aktiebolag | Package for sterile and contamination-free storage of artificial implants |
US4712681A (en) * | 1984-12-27 | 1987-12-15 | Branemark Per Ingvar | Method of packaging artificial implants in sterile and contamination-free manner and a package therefor |
US4923470A (en) * | 1985-04-25 | 1990-05-08 | American Cyanamid Company | Prosthetic tubular article made with four chemically distinct fibers |
US4743257A (en) * | 1985-05-08 | 1988-05-10 | Materials Consultants Oy | Material for osteosynthesis devices |
US4743257C1 (en) * | 1985-05-08 | 2002-05-28 | Materials Consultants Oy | Material for osteosynthesis devices |
US4750619A (en) * | 1987-08-10 | 1988-06-14 | Osteonics Corp. | Package with tray for securing and presenting a sterile prosthetic implant element |
US4891263A (en) * | 1987-12-17 | 1990-01-02 | Allied-Signal Inc. | Polycarbonate random copolymer-based fiber compositions and method of melt-spinning same and device |
US4916193A (en) * | 1987-12-17 | 1990-04-10 | Allied-Signal Inc. | Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides |
US4920203A (en) * | 1987-12-17 | 1990-04-24 | Allied-Signal Inc. | Medical devices fabricated from homopolymers and copolymers having recurring carbonate units |
US4950295A (en) * | 1988-04-22 | 1990-08-21 | Robert Mathys Co. | Bone prosthesis anchoring method using a resorbable marrow cavity closure |
US5037442A (en) * | 1988-08-30 | 1991-08-06 | Sulzer Brothers Limited | Fixing stem for a prosthesis |
US4872442A (en) * | 1988-09-06 | 1989-10-10 | Prism Technologies, Inc. | Activator for initiating reaction in a heat pack and method for making same |
US5009666A (en) * | 1988-09-30 | 1991-04-23 | Syckle Peter B Van | Plug and method of use |
US5046479A (en) * | 1988-11-30 | 1991-09-10 | Mycoal Warmers Company Limited | Disposable body warmer |
US4880953A (en) * | 1988-12-23 | 1989-11-14 | Prism Technologies, Inc. | Method of recharging a heat pack by microwave energy |
US4997448A (en) * | 1989-02-13 | 1991-03-05 | Feiler Frederic C | Proximal cement sealing plug for hip prosthesis |
US5061287A (en) * | 1989-02-13 | 1991-10-29 | Feiler Frederic C | Proximal cement sealing plug for hip prosthesis |
US5035230A (en) * | 1990-02-23 | 1991-07-30 | Steidl Gary V | Disposable food heater |
US5092891A (en) * | 1990-03-08 | 1992-03-03 | Kummer Frederick J | Cement plug for the medullary canal of a bone and coacting tool for installing same |
US5080665A (en) * | 1990-07-06 | 1992-01-14 | American Cyanamid Company | Deformable, absorbable surgical device |
US5117809A (en) * | 1991-03-04 | 1992-06-02 | Mainstream Engineering Corporation | Flameless heater product for ready-to-eat meals and process for making same |
Non-Patent Citations (2)
Title |
---|
Barrows, T. H., "Degradable implant materials: a review of synthetic absorbable polymers and their applications," Clinical Materials, 1986, 1, pp. 233-257. |
Barrows, T. H., Degradable implant materials: a review of synthetic absorbable polymers and their applications, Clinical Materials, 1986, 1, pp. 233 257. * |
Cited By (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5645589A (en) * | 1994-08-22 | 1997-07-08 | Li Medical Technologies, Inc. | Anchor and method for securement into a bore |
US5843127A (en) * | 1994-08-22 | 1998-12-01 | Le Medical Technologies, Inc. | Fixation device and method for installing same |
US5643266A (en) | 1995-06-05 | 1997-07-01 | Li Medical Technologies, Inc. | Method and apparatus for securing ligaments |
US5702215A (en) * | 1995-06-05 | 1997-12-30 | Li Medical Technologies, Inc. | Retractable fixation device |
US6117161A (en) * | 1995-06-06 | 2000-09-12 | Li Medical Tecnologies, Inc. | Fastener and fastening method, particularly for fastening sutures to bone |
US5690649A (en) * | 1995-12-05 | 1997-11-25 | Li Medical Technologies, Inc. | Anchor and anchor installation tool and method |
US5662657A (en) * | 1996-01-17 | 1997-09-02 | Sunmed, Inc. | Intramedullary bone plug |
WO1997025940A1 (en) * | 1996-01-17 | 1997-07-24 | Sunmed, Inc. | Intramedullary bone plug |
US5861043A (en) * | 1996-02-26 | 1999-01-19 | Sunmed Inc. | Intramedullary bone plug |
US6051272A (en) * | 1996-03-15 | 2000-04-18 | The Board Of Trustees Of The University Of Illinois | Method for synthesizing organoapatites on to surgical metal alloys |
US6569442B2 (en) | 1996-08-08 | 2003-05-27 | The Trustees Of The University Of Pennsylvania | Preparation of polymer foam having gelled sol coating for intervertebral disc reformation |
US6240926B1 (en) | 1996-08-08 | 2001-06-05 | The Trustees Of The University Of Pennsylvania | Compositions and methods for intervertebral disc reformation |
US5964807A (en) * | 1996-08-08 | 1999-10-12 | Trustees Of The University Of Pennsylvania | Compositions and methods for intervertebral disc reformation |
US5741300A (en) * | 1996-09-10 | 1998-04-21 | Li Medical Technologies, Inc. | Surgical anchor and package and cartridge for surgical anchor |
US5766178A (en) * | 1996-12-13 | 1998-06-16 | Howmedia Inc. | Bone plug |
US5707395A (en) | 1997-01-16 | 1998-01-13 | Li Medical Technologies, Inc. | Surgical fastener and method and apparatus for ligament repair |
US5935169A (en) * | 1997-02-13 | 1999-08-10 | Chan; Kwan-Ho | Bone cement plug for deployment in a bone canal |
WO1998035635A1 (en) * | 1997-02-13 | 1998-08-20 | Chan Kwan Ho | Bone cement plug for deployment in a bone canal |
US5879403A (en) * | 1997-03-27 | 1999-03-09 | Johnson & Johnson Professional, Inc. | Bistable cement restrictor |
US7255712B1 (en) | 1997-04-15 | 2007-08-14 | Active Implants Corporation | Bone growth promoting implant |
FR2763500A1 (en) * | 1997-05-21 | 1998-11-27 | Landanger Camus Sa | Stopper for diaphysis canal specially of hip prosthesis |
US5972034A (en) * | 1997-07-29 | 1999-10-26 | Joint Enterprises, L.C. A Limited Corporation | Self-venting intramedullary cement restrictor |
US5906631A (en) * | 1997-12-05 | 1999-05-25 | Surface Genesis, Inc. | Method and device for sealing vascular puncture wounds |
US6986788B2 (en) | 1998-01-30 | 2006-01-17 | Synthes (U.S.A.) | Intervertebral allograft spacer |
US7300465B2 (en) | 1998-01-30 | 2007-11-27 | Synthes (U.S.A.) | Intervertebral allograft spacer |
US6146406A (en) | 1998-02-12 | 2000-11-14 | Smith & Nephew, Inc. | Bone anchor |
US6482210B1 (en) | 1998-11-12 | 2002-11-19 | Orthopaedic Biosystems, Ltd., Inc. | Soft tissue/ligament to bone fixation device with inserter |
US6302916B1 (en) * | 1998-12-24 | 2001-10-16 | Biopro, Inc. | Polyurethane and so forth containing joints |
US6607535B1 (en) | 1999-02-04 | 2003-08-19 | Kwan-Ho Chan | Universal bone cement plug and method of use |
GB2357774B (en) * | 1999-09-29 | 2004-01-14 | Chemence Inc | Biioabsorbable cyanoacrylate tissue adhesives |
GB2357774A (en) * | 1999-09-29 | 2001-07-04 | Chemence Inc | Bioabsorbable cyanoacrylate tissue adhesives |
US9114025B2 (en) | 1999-10-20 | 2015-08-25 | Krt Investors, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
US7033395B2 (en) | 1999-10-20 | 2006-04-25 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US9095442B2 (en) | 1999-10-20 | 2015-08-04 | Krt Investors, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US8556977B2 (en) | 1999-10-20 | 2013-10-15 | Anulex Technologies, Inc. | Tissue anchoring system and method |
US7749273B2 (en) | 1999-10-20 | 2010-07-06 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US8128698B2 (en) | 1999-10-20 | 2012-03-06 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US7828850B2 (en) | 1999-10-20 | 2010-11-09 | Anulex Technologies, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
US8088165B2 (en) | 1999-10-20 | 2012-01-03 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
US8048160B2 (en) | 1999-10-20 | 2011-11-01 | Anulex Technologies, Inc. | Intervertebral disc annulus stent |
US6984247B2 (en) | 1999-10-20 | 2006-01-10 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US7670379B2 (en) | 1999-10-20 | 2010-03-02 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method |
US6997956B2 (en) | 1999-10-20 | 2006-02-14 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US7004970B2 (en) | 1999-10-20 | 2006-02-28 | Anulex Technologies, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
US8632590B2 (en) | 1999-10-20 | 2014-01-21 | Anulex Technologies, Inc. | Apparatus and methods for the treatment of the intervertebral disc |
US7052516B2 (en) | 1999-10-20 | 2006-05-30 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
US8034112B2 (en) | 1999-10-20 | 2011-10-11 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US7993405B2 (en) | 1999-10-20 | 2011-08-09 | Anulex Technologies, Inc. | Spinal disc annulus repair system and methods |
US9675347B2 (en) | 1999-10-20 | 2017-06-13 | Krt Investors, Inc. | Apparatus for the treatment of tissue |
US7909879B2 (en) | 1999-10-20 | 2011-03-22 | Anulex Technologies, Inc. | Intervertebral disc annulus stent |
US7985257B2 (en) | 1999-10-20 | 2011-07-26 | Anulex Technologies, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
US7951201B2 (en) | 1999-10-20 | 2011-05-31 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
EP1974698A2 (en) | 1999-10-20 | 2008-10-01 | Anulex Technologies, Inc. | Spinal disc annulus stent |
US7935147B2 (en) | 1999-10-20 | 2011-05-03 | Anulex Technologies, Inc. | Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus |
US7922768B2 (en) | 1999-10-20 | 2011-04-12 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
WO2002039946A2 (en) * | 2000-10-31 | 2002-05-23 | Smith & Nephew, Inc. | Packaging and delivery system for bone graft particles |
WO2002039946A3 (en) * | 2000-10-31 | 2003-04-17 | Smith & Nephew Inc | Packaging and delivery system for bone graft particles |
US20050125064A1 (en) * | 2001-02-15 | 2005-06-09 | Spinecore, Inc. | Intervertebral spacer device |
US7524891B2 (en) | 2001-07-04 | 2009-04-28 | Smith & Nephew Plc | Biodegradable polymer systems |
US8361153B2 (en) | 2001-07-16 | 2013-01-29 | Spinecore, Inc. | Porous intervertebral distraction spacers |
US6863689B2 (en) * | 2001-07-16 | 2005-03-08 | Spinecore, Inc. | Intervertebral spacer having a flexible wire mesh vertebral body contact element |
US6471725B1 (en) * | 2001-07-16 | 2002-10-29 | Third Millenium Engineering, Llc | Porous intervertebral distraction spacers |
US20030014116A1 (en) * | 2001-07-16 | 2003-01-16 | Ralph James D. | Intervertebral spacer having a flexible wire mesh vertebral body contact element |
US20050055095A1 (en) * | 2001-07-16 | 2005-03-10 | Errico Joseph P. | Artificial intervertebral disc trials having a cylindrical engagement surface |
US8357167B2 (en) | 2001-07-16 | 2013-01-22 | Spinecore, Inc. | Artificial intervertebral disc trials with baseplates having inward tool engagement holes |
US20100174371A9 (en) * | 2001-07-16 | 2010-07-08 | Errico Joseph P | Artificial intervertebral disc trials having a cylindrical engagement surface |
US20050187627A1 (en) * | 2001-07-16 | 2005-08-25 | Spinecore, Inc. | Intervertebral spacer having a flexible wire mesh vertebral body contact element |
US20040093089A1 (en) * | 2001-07-16 | 2004-05-13 | Ralph James D. | Porous intervertebral distraction spacers |
US7550008B2 (en) | 2001-07-16 | 2009-06-23 | Spinecore, Inc. | Intervertebral spacer having a flexible wire mesh vertebral body contact element |
US8092539B2 (en) | 2001-10-01 | 2012-01-10 | Spinecore, Inc. | Intervertebral spacer device having a belleville washer with concentric grooves |
US7771477B2 (en) | 2001-10-01 | 2010-08-10 | Spinecore, Inc. | Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves |
US20100268345A1 (en) * | 2001-10-01 | 2010-10-21 | Spinecore, Inc. | Intervertebral spacer device |
US8029568B2 (en) | 2001-10-18 | 2011-10-04 | Spinecore, Inc. | Intervertebral spacer device having a slotted partial circular domed arch strip spring |
US7572295B2 (en) | 2001-12-04 | 2009-08-11 | Active Implants Corporation | Cushion bearing implants for load bearing applications |
US8814946B2 (en) | 2001-12-04 | 2014-08-26 | Active Implants Corporation | Cushion bearing implants for load bearing applications |
EP2145604A1 (en) | 2001-12-04 | 2010-01-20 | Active Implants Corporation | Cushion bearing implants for load bearing applications |
US7455674B2 (en) | 2002-01-31 | 2008-11-25 | Smith & Nephew Plc | High strength bioresorbables containing poly-glycolic acid |
US20030220692A1 (en) * | 2002-02-09 | 2003-11-27 | Shapiro Irving M. | Preparations of nucleus pulposus cells and methods for their generation, identification, and use |
US8808391B2 (en) | 2002-03-26 | 2014-08-19 | T.J. Smith & Nephew, Limited | Hip joint prosthesis |
US20030187514A1 (en) * | 2002-03-26 | 2003-10-02 | Mcminn Derek James Wallace | Hip joint prosthesis |
US8177852B2 (en) | 2002-03-26 | 2012-05-15 | Smith & Nephew, Inc. | Hip joint prosthesis |
US7879106B2 (en) | 2002-03-26 | 2011-02-01 | Smith & Nephew, Inc. | Hip joint prosthesis |
US8277507B2 (en) | 2002-04-12 | 2012-10-02 | Spinecore, Inc. | Spacerless artificial disc replacements |
US8801789B2 (en) | 2002-04-12 | 2014-08-12 | Spinecore, Inc. | Two-component artificial disc replacements |
US8679182B2 (en) | 2002-04-12 | 2014-03-25 | Spinecore, Inc. | Spacerless artificial disc replacements |
US20100241233A1 (en) * | 2002-04-12 | 2010-09-23 | Spinecore, Inc. | Spacerless artificial disc replacements |
US10786363B2 (en) | 2002-04-12 | 2020-09-29 | Spinecore, Inc. | Spacerless artificial disc replacements |
US8470041B2 (en) | 2002-04-12 | 2013-06-25 | Spinecore, Inc. | Two-component artificial disc replacements |
US10271956B2 (en) | 2002-04-12 | 2019-04-30 | Spinecore, Inc. | Spacerless artificial disc replacements |
US9198773B2 (en) | 2002-04-12 | 2015-12-01 | Spinecore, Inc. | Spacerless artificial disc replacements |
US7758653B2 (en) | 2002-05-23 | 2010-07-20 | Active Implants Corporation | Implants |
EP2305183A1 (en) | 2002-12-24 | 2011-04-06 | Anulex Technologies, Inc. | Spinal disc reconstruction system |
US7708780B2 (en) | 2003-03-06 | 2010-05-04 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US8109979B2 (en) | 2003-03-06 | 2012-02-07 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US8231628B2 (en) | 2003-03-06 | 2012-07-31 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US20080045627A1 (en) * | 2003-07-19 | 2008-02-21 | John Rose | High Strength Bioreabsorbable Co-Polymers |
US9120919B2 (en) | 2003-12-23 | 2015-09-01 | Smith & Nephew, Inc. | Tunable segmented polyacetal |
AU2004308654B2 (en) * | 2003-12-24 | 2008-11-20 | Novartis Ag | Pharmaceutical Compositions |
US20070154520A1 (en) * | 2003-12-24 | 2007-07-05 | Michael Ausborn | Pharmaceutical compositions |
WO2005063319A1 (en) * | 2003-12-24 | 2005-07-14 | Novartis Ag | Parmaceutical compositions |
EP2433492A1 (en) | 2004-03-17 | 2012-03-28 | Revivicor Inc. | Tissue products derived from animals lacking any expression of functional alpha 1,3 galactosyltransferase |
US20080033577A1 (en) * | 2004-07-01 | 2008-02-07 | Lawrence Kohan | Hip Resurfacing Component |
US7976547B2 (en) * | 2004-12-21 | 2011-07-12 | Depuy Products, Inc. | Cement restrictor with integrated pressure transducer and method of measuring the pressure at the distal end of a bone canal |
US20060149282A1 (en) * | 2004-12-21 | 2006-07-06 | Timothy Vendrely | Cement restrictor with integrated pressure transducer and method of measuring the pressure at the distal end of a bone canal |
US8043377B2 (en) | 2006-09-02 | 2011-10-25 | Osprey Biomedical, Inc. | Implantable intervertebral fusion device |
US8722783B2 (en) | 2006-11-30 | 2014-05-13 | Smith & Nephew, Inc. | Fiber reinforced composite material |
US9815240B2 (en) | 2007-04-18 | 2017-11-14 | Smith & Nephew, Inc. | Expansion moulding of shape memory polymers |
US20100136648A1 (en) * | 2007-04-18 | 2010-06-03 | Smith & Nephew, Plc | Expansion Moulding of Shape Memory Polymers |
US20110144751A1 (en) * | 2007-04-19 | 2011-06-16 | Smith & Nephew, Inc | Multi-Modal Shape Memory Polymers |
US9308293B2 (en) | 2007-04-19 | 2016-04-12 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
US20100145448A1 (en) * | 2007-04-19 | 2010-06-10 | Smith & Nephew, Inc. | Graft Fixation |
US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
US9000066B2 (en) | 2007-04-19 | 2015-04-07 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
EP2139432A2 (en) * | 2007-04-24 | 2010-01-06 | Novalign Orthopaedics, Inc. | Deformable implant systems and methods |
EP2139432A4 (en) * | 2007-04-24 | 2013-05-22 | Flexfix Llc | Deformable implant systems and methods |
US9421045B2 (en) | 2007-04-24 | 2016-08-23 | Flexfix, Llc | Bone stabilization device and method |
US9487753B2 (en) | 2007-07-12 | 2016-11-08 | Discgenics | Compositions of adult disc stem cells and methods for the treatment of degenerative disc disease |
US8227246B2 (en) | 2007-07-12 | 2012-07-24 | Discgenics | Compositions of adult disc stem cells for the treatment of degenerative disc disease |
US11168305B2 (en) | 2007-07-12 | 2021-11-09 | Discgenics, Inc. | Methods for the treatment of degenerative disc disease |
US8163022B2 (en) | 2008-10-14 | 2012-04-24 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US9192372B2 (en) | 2008-10-14 | 2015-11-24 | Krt Investors, Inc. | Method for the treatment of tissue |
US8454697B2 (en) | 2008-10-14 | 2013-06-04 | Anulex Technologies, Inc. | Method and apparatus for the treatment of tissue |
US8460319B2 (en) | 2010-01-11 | 2013-06-11 | Anulex Technologies, Inc. | Intervertebral disc annulus repair system and method |
US9795372B2 (en) | 2010-01-11 | 2017-10-24 | Krt Investors, Inc. | Intervertebral disc annulus repair system and bone anchor delivery tool |
US8652153B2 (en) | 2010-01-11 | 2014-02-18 | Anulex Technologies, Inc. | Intervertebral disc annulus repair system and bone anchor delivery tool |
US9220599B2 (en) | 2010-08-24 | 2015-12-29 | Biomet Manufacturing, Llc | Acetabular cup having deformation resistant features |
US10179012B2 (en) | 2013-01-28 | 2019-01-15 | Cartiva, Inc. | Systems and methods for orthopedic repair |
US9737294B2 (en) | 2013-01-28 | 2017-08-22 | Cartiva, Inc. | Method and system for orthopedic repair |
US11471199B2 (en) | 2013-01-28 | 2022-10-18 | Cartiva, Inc. | Systems and methods for orthopedic repair |
US20200246511A1 (en) * | 2019-02-04 | 2020-08-06 | Armis Biopharma, Inc. | Methods and devices to reduce the risk of infection |
Also Published As
Publication number | Publication date |
---|---|
US5263991A (en) | 1993-11-23 |
WO1995015129A1 (en) | 1995-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5376120A (en) | Biocompatible implant and method of using same | |
JP4317659B2 (en) | Implantable tissue repair device | |
EP1563808B1 (en) | Intervertebral disc nucleus implants | |
US9757223B2 (en) | Spinal implants with stem cells | |
CN101563038B (en) | Orthopedic implant devices curable in vivo | |
US9358056B2 (en) | Orthopaedic implant | |
US7993404B2 (en) | Transformable spinal implants and methods of use | |
ES2313508T3 (en) | RESTORABLE IMPLANT WITH TITANIUM COATING. | |
US20070162135A1 (en) | Mechanical apparatus and method for artificial disc replacement | |
US20090228021A1 (en) | Matrix material | |
US20090105732A1 (en) | Mechanical apparatus and method for delivering materials into the inter-vertebral body space for nucleus replacement | |
BRPI0709084A2 (en) | self-expanding endovascular device for aneurysm occlusion | |
KR20090096729A (en) | Orthopedic implant devices curable in vivo | |
ZA200501343B (en) | Implant for implanting in bone tissue or in tissue supplemented with bone substitute material | |
US5466259A (en) | Orbital implant and method | |
KR20130138218A (en) | Implants, surgical methods, and instrumentation for use in femoroacetabular impingement surgeries | |
SK8232002A3 (en) | A prosthetic device | |
US5713955A (en) | Orbital implant | |
US20100003306A1 (en) | Pre-shaped user-formable micro-membrane implants | |
US20100310628A1 (en) | Pre-shaped user-formable micro-membrane implants | |
EP0731674A1 (en) | Thermal packaging unit for biocompatible implants | |
US6736834B1 (en) | Resorbable implant heating device | |
WO2012064473A1 (en) | Covered stent devices for use in treatment of fracture | |
CA2381083A1 (en) | Method for storing a shape memory alloy | |
JP2024510550A (en) | Multi-part implant with supporting and functional elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BIOMET, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SARVER, DAVID R.;WILEY, ROY C.;REEL/FRAME:006292/0365 Effective date: 19921016 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: BIOMET MANUFACTURING CORP., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOMET, INC.;REEL/FRAME:019051/0362 Effective date: 19990601 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT FOR Free format text: SECURITY AGREEMENT;ASSIGNORS:LVB ACQUISITION, INC.;BIOMET, INC.;REEL/FRAME:020362/0001 Effective date: 20070925 |
|
AS | Assignment |
Owner name: LVB ACQUISITION, INC., INDIANA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 020362/ FRAME 0001;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:037155/0133 Effective date: 20150624 Owner name: BIOMET, INC., INDIANA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 020362/ FRAME 0001;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:037155/0133 Effective date: 20150624 |