US5342400A - Defibrillator/cardioverter - Google Patents
Defibrillator/cardioverter Download PDFInfo
- Publication number
- US5342400A US5342400A US07/856,688 US85668892A US5342400A US 5342400 A US5342400 A US 5342400A US 85668892 A US85668892 A US 85668892A US 5342400 A US5342400 A US 5342400A
- Authority
- US
- United States
- Prior art keywords
- pulse generator
- defibrillator
- cardioverter
- electrodes
- capacitors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3956—Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
Definitions
- the present invention is directed to a defibrillator/cardioverter having a plurality of n (n being greater than or equal to three) electrodes which are connected to a means for generating electrical pulses.
- a defibrillator/cardioverter is disclosed in German OS 39 19 498, wherein one of a plurality of electrodes is arranged in the interior of the heart, and the other electrodes are placed outside at the heart. Either directly, or via discharge distances which form a short-circuit for high voltages, the outer electrodes are electrically connected to each other and are connected to a first of two output terminals of the pulse generator. The electrode disposed inside the heart is connected to a second output terminal.
- the electrical current density is distributed in the heart muscle according to the placement of the electrodes and thereby preferably penetrates the thickest zones of the heart muscle, which form the principal part of the heart muscle mass, in order to achieve successful defibrillation or cardioversion.
- defibrillator is disclosed in U.S. Pat. No. 4,548,203, having a plurality of electrodes which are connected in pairs to different outputs of a pulse generator, and are disposed at different locations relative to the heart, which are preferably on opposite sides of the heart.
- the individual electrode pairs are successively charged with an electrical pulse via the outputs of the pulse generator.
- the spatially and chronologically separated pulse output is intended to reduce the energy required for successful defibrillation.
- the distribution of the current in the heart can be set only on the basis of the positioning and size of the individual electrodes.
- the positioning of the electrodes, more specifically their spacing relative to each other and relative to the heart, is, however, limited by anatomical conditions.
- an electrode is required inside the heart, and an extremely high current density arises in close proximity to this electrode, so that damage to the heart tissue is possible in the event of an unfavorable placement of this inner electrode, or a dislocation of this inner electrode.
- a defibrillator/cardioverter constructed in accordance with the principles of the present invention having a plurality of n electrodes, and pulse generator means for establishing n-1 output circuits connected in series.
- the output circuits of the pulse generator have n terminals, to which the n electrodes are respectively connected to complete those circuits.
- the pulse generator simultaneously generates an electrical pulse in each of the output circuits.
- the distribution of current in the heart is not only dependent on the arrangement of the electrodes, but can also be additionally set via the electrical voltages at the outputs of the means for generating the electrical pulses. There is thus no risk of tissue damage associated with the delivery of the electrical pulses, because the pulse current can be individually set for each electrode.
- an “output circuit” means an electrical current path (which includes cardiac and other intervening tissue) traversed by a current at a voltage to pass current through the heart.
- the pulse generator means includes n-1 series-connected capacitors, which are connectable to a voltage source via a switch arrangement for charging the capacitors.
- the terminals of the individual capacitors are connected to the output terminals of the output circuits of the pulse generator via controllable switches. As long as the switch arrangement is closed, the series capacitor circuit is charged to the charging voltage prescribed by the voltage source.
- the relationship of the sub-voltages across the individual capacitors, and thus the voltages at the respective output terminals of the output circuits of the pulse generator is dependent on the capacitances of the individual capacitors, and is thus adjustable.
- inductances are preferably connected in the respective paths between the terminals of the capacitors and the output terminals of the output circuits of the pulse generator.
- a further advantage resulting from such inductances is that biphase current pulses, in the form of highly attenuated oscillations, are generated between the individual electrodes dependent on the value of the inductances and the electrical impedance of the heart tissue upon discharge of the capacitors. Such a pulse shape has proven particularly effective in view of the energy required for defibrillation.
- the pulse generator physically has two output poles, with a current divider circuit consisting of passive electrical components being connected between the two output poles and the n output terminals.
- the current divider circuit divides the defibrillation pulse from the pulse generator into different sub-pulses for the individual electrodes, with the shape and amplitude of the sub-pulses being defined by the selection and the arrangement of the passive electrical components (inductances, resistors, capacitors).
- the pulse generator is arranged in an implantable capsule housing and has a surface with at least regions of the surface being electrically conductive, so that those surface regions function as one of the electrodes for the defibrillator/cardioverter system.
- the capsule housing is implanted in the proximity of the heart for this purpose.
- the pulse generator and the current divider circuit can be respectively accommodated in separate, implantable housings connectable to each other via electrical leads.
- the current divider circuit in a separate housing can be implanted in a patient in whom a conventional pulse generator, which generates a defibrillation pulse between two output poles, is already implanted. Because the housing containing the current divider circuit can have smaller dimensions in comparison to the conventional housing including the pulse generator, the current divider circuit housing can be implanted in a relatively uncomplicated operation.
- FIG. 1 is a schematic circuit diagram of a first embodiment of a defibrillator/cardioverter constructed in accordance with the principles of the present invention, shown connected to a heart.
- FIG. 2 is a schematic circuit diagram of a portion of the defibrillator/cardioverter constructed in accordance with the principles of the present invention in an implantable housing which assumes the function of one electrode.
- FIG. 3 shows the arrangement of the defibrillator/cardioverter of FIG. 2, with two further electrodes in the human body.
- FIG. 4 is a schematic circuit diagram of a further embodiment of a defibrillator/cardioverter constructed in accordance with the principles of the present invention, including a current divider circuit.
- FIG. 5 is a schematic circuit diagram showing the embodiment of FIG. 4 with the pulse generator and the current divider circuit in separate, implantable housings.
- FIGS. 6, 7 and 8 show various examples for positioning the electrodes in the defibrillator/cardioverter constructed in accordance with the principles of the present invention.
- the reference numeral 1 designates generally a means for generating electrical pulses (pulse generator).
- the pulse generator 1 contains a voltage source 2, which can be connected across two capacitors 5 and 6 connected in series, via a switch arrangement 4 controllable by a control unit 3.
- the series circuit of the capacitors 5 and 6 has three different terminal locations 7, 8 and 9, which are respectively connected to output terminals 15, 16 and 17 of the pulse generator 1 through controllable switches 10, 11 and 12, and through respective inductances 13 and 14 in the case of the terminal locations 7 and 8.
- the controllable switches 10, 11 and 12 can be simultaneously driven by the control unit 3.
- the output terminals 15, 16 and 17 established two series-connected output circuits of the pulse generator 1, this number (two) corresponding to the number of series-connected capacitors.
- the two output circuits of the pulse generator 1 are connected via electrode lines 18, 19 and 20 to respective electrodes 22, 23 and 24 arranged at a heart 21, shown in cross section, to complete the output circuits by creating respective current paths through the heart 21.
- the number of electrodes can be expanded to n (n being greater than or equal to two) without difficulty, with n-1 capacitors in series establishing n-1 output circuits with n output terminals for the n electrodes.
- the switch arrangement 4 As long as the switch arrangement 4 is closed, the series circuit of the capacitors 5 and 6 is charged to the charging voltage prescribed by the voltage source 2, with the sub-voltages across the individual capacitors 5 and 6 being dependent on their capacitance.
- the switches 10, 11 and 12 are simultaneously closed, so that the capacitors 5 and 6 are discharged via the inductances 13 and 14 as well as via the heart tissue disposed between the electrodes 22, 23 and 24. Current pulses are thus respectively simultaneously supplied to the heart 21 via the electrodes 22, 23 and 24.
- the respective pulse amplitude and energy content of these current pulses are dependent on the sub-voltages across the capacitors 5 and 6, the values of the inductances 13 and 14, and the respective impedances of the current paths formed by the heart tissue between the electrodes 22 and 23, the electrodes 23 and 24, and the electrodes 22 and 24. Due to the presence of the inductances 13 and 14, the current pulses have the shape of a biphase, highly attenuated oscillation, which is especially beneficial for achieving effective defibrillation. The inductances 13 and 14 also serve to limit the current in the event of a short-circuit fault in the pulse generator 1.
- the heart muscle mass is non-uniformly distributed over the cross section of the heart 21. If a standardized value of "one" is set for the thickness of the heart muscle between the right ventricle 25 and the neighboring outside wall of the heart, the heart muscle mass between the right ventricle 25 and the left ventricle 26 will have a value of approximately "two," and the heart muscle mass between the left ventricle 26 and the outside wall of the heart in the region of the electrode 22 will have a value of approximately "three.” The heart muscle mass between the left ventricle 26 and the outside wall of the heart in the region of the electrode 23 will also have a value of approximately "two.” If the capacitance relationships of the capacitors 5 and 6 are selected so that the voltage across the capacitor 5 is approximately two-thirds of the magnitude of the total voltage across the terminal locations 7 and 9, and the voltage across the capacitor 6 is approximately one-third of the total voltage magnitude, a distribution of the current which uniformly covers all regions of the heart muscle will be achieved, and the energy required for defi
- the exemplary embodiment shown in FIG. 1 can be an embodied in an implantable or in a non-implantable defibrillator/cardioverter. Accordingly, the electrodes 22, 23 and 24 can be arranged at the heart 21 in vivo, or can be arranged on the body surface of the patient in an appropriate arrangement relative to the heart 21.
- FIG. 2 An exemplary embodiment of a pulse generator 1 is shown in FIG. 2 in an implantable capsule housing 27, preferably consisting of titanium.
- an implantable capsule housing 27 preferably consisting of titanium.
- the output terminals 15 and 17 connected to the terminal locations 7 and 9 are in the form of insulated bushings through the metal housing 27.
- electrode leads 18 and 20 are connected to these output terminals, the leads 18 and 20 respectively terminating in electrodes 22 and 24 applied directly to the heart 21.
- the terminal location 8 between the capacitors 5 and 6 is connected via the switch 11 directly to the metal housing 27, so that the metal housing 27 assumes the function of the electrode 23 discussed above, as also indicated in FIG. 3.
- FIG. 4 A further embodiment of a defibrillator/cardioverter of the invention is shown in FIG. 4, wherein the means for generating electrical pulses is in the form of a pulse generator 28 having two output poles 29 and 30.
- the pulse generator 28 is constructed in the manner of a conventional defibrillator, and contains a capacitor 31 which can be switched by a switching arrangement 32, controlled by a control unit 3, so that the capacitor 31 will either be charged by a voltage source 2, or will generate a defibrillation pulse as an output at the two output poles 29 and 30 of the pulse generator 28.
- the two output poles 29 and 30 are connected to the three output terminals 35, 36 and 37 of the overall means for generating pulses 1 via a current divider circuit consisting of passive electrical components.
- the current divider circuit is formed by an inductance 33 and a resistor 34.
- the output terminals 35, 26 and 37 are connected to leads (not shown) which terminate in electrodes for the delivery of stimulation pulses to the heart.
- the pulse generator 28 and the current divider circuit 38 are respectively accommodated in two separate, implantable housings 39 and 40, which are connected to each other via electrical leads 41 and 42.
- This embodiment permits conventional defibrillators (corresponding to the pulse generator 28 by itself) which may be "on the shelf” or already implanted, to be retrofitted in accordance with the principles of the present invention so as to be able to provide an output of different current pulses at a plurality of electrodes.
- the separate housing 40 can have smaller dimensions in comparison to the housing 39, the housing 40 can be implanted in the body of a patient in addition to the existing pulse generator 28 in a relatively uncomplicated operation.
- the housing 40 containing the current divider circuit 38 can also be fashioned as an electrode.
- the selection and arrangement of the passive components shown in FIGS. 4 and 5 will be understood as being but one example of many other possible combinations.
- FIGS. 6, 7 and 8 Three further examples for arranging the electrodes with respect to the heart 21 are shown in FIGS. 6, 7 and 8.
- a first electrode 43 is disposed in the superior vena cava 44
- a second electrode 45 is disposed in the inferior vena cava 46
- a third planar (patch) electrode 47 is disposed opposite the left ventricle 26 of the heart 21, preferably subcutaneously.
- subcutaneously means that the electrode is implanted just beneath the skin surface, rather than by invasive surgery to the thoracic cavity.
- no electrode is disposed inside the heart, which is advantageous for patients having a hypersensitive heart, for example a patient who has recently had a cardiac infarction.
- an electrode 48 is disposed in the right ventricle 25 of the heart 21, instead of in the superior vena cava 44.
- the other electrodes 45 and 47 are placed as described above in connection with the embodiment of FIG. 6.
- the electrode 43 in the superior vena cava 44 is provided in combination with the electrode 48 in the right ventricle 25, and in combination with subcutaneous planar electrode 47.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4110402A DE4110402A1 (de) | 1991-03-28 | 1991-03-28 | Defibrillator/konverter |
DE4110402 | 1991-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5342400A true US5342400A (en) | 1994-08-30 |
Family
ID=6428512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/856,688 Expired - Lifetime US5342400A (en) | 1991-03-28 | 1992-03-24 | Defibrillator/cardioverter |
Country Status (4)
Country | Link |
---|---|
US (1) | US5342400A (de) |
EP (1) | EP0505857B2 (de) |
JP (1) | JPH05115566A (de) |
DE (2) | DE4110402A1 (de) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5584865A (en) * | 1993-09-24 | 1996-12-17 | Pacesetter Ab | Defibrillator with output stage using switching network and three electrode |
US5899924A (en) * | 1996-04-12 | 1999-05-04 | Survivalink Corporation | Single capacitor truncated damped sinusoidal defibrillation waveform |
US20040210148A1 (en) * | 2003-04-16 | 2004-10-21 | Medtronic Physio-Control Manufacturing Corp. | ECG signal detection device |
US20050065559A1 (en) * | 2000-09-18 | 2005-03-24 | Cameron Health, Inc. | Monophasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator |
US20050277990A1 (en) * | 2000-09-18 | 2005-12-15 | Cameron Health, Inc. | Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator |
US20090076558A1 (en) * | 2005-09-09 | 2009-03-19 | Nassif Rabih C | Method and apparatus for variable capacitance defibrillation |
US8706217B2 (en) | 2000-09-18 | 2014-04-22 | Cameron Health | Cardioverter-defibrillator having a focused shocking area and orientation thereof |
US8718760B2 (en) | 2000-09-18 | 2014-05-06 | Cameron Health Inc. | Subcutaneous implantable cardioverter-defibrillator placement methods |
US8831720B2 (en) | 2000-09-18 | 2014-09-09 | Cameron Health, Inc. | Method of implanting and using a subcutaneous defibrillator |
US9138589B2 (en) | 2001-11-21 | 2015-09-22 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9144683B2 (en) | 2000-09-18 | 2015-09-29 | Cameron Health, Inc. | Post-shock treatment in a subcutaneous device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3359984A (en) * | 1964-11-03 | 1967-12-26 | Mine Safety Appliances Co | Electrical circuit for ventricular defibrillator |
US4168711A (en) * | 1978-06-08 | 1979-09-25 | American Optical Corporation | Reversal protection for RLC defibrillator |
US4545203A (en) * | 1982-07-29 | 1985-10-08 | Linde Aktiengesellschaft | Hydrostatic drive units |
US4566457A (en) * | 1982-08-04 | 1986-01-28 | Gunter Stemple | Defibrillator circuit and electrodes therefor |
US4821723A (en) * | 1987-02-27 | 1989-04-18 | Intermedics Inc. | Biphasic waveforms for defibrillation |
EP0326290A1 (de) * | 1988-01-19 | 1989-08-02 | Telectronics N.V. | Verfahren und Apparat zur Anwendung von asymmetrischen, zweiphasigen, abgeschnittenen exponentiellen Gegenschocks |
DE3919498A1 (de) * | 1988-06-15 | 1990-01-11 | Atesys Sa | Defibrillator zur therapeutischen behandlung des herzens |
US5111812A (en) * | 1990-01-23 | 1992-05-12 | Cardiac Pacemakers, Inc. | Defilbrillation electrode having smooth current distribution |
US5163427A (en) * | 1990-11-14 | 1992-11-17 | Medtronic, Inc. | Apparatus for delivering single and multiple cardioversion and defibrillation pulses |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4548203A (en) * | 1982-06-01 | 1985-10-22 | Purdue Research Foundation | Sequential-pulse, multiple pathway defibrillation method |
ATE34304T1 (de) * | 1983-08-03 | 1988-06-15 | Stemple G Gs Elektmed Geraete | Elektrische schockelektrodenschaltung fuer einen defibrillator. |
-
1991
- 1991-03-28 DE DE4110402A patent/DE4110402A1/de not_active Ceased
-
1992
- 1992-03-13 EP EP92104392A patent/EP0505857B2/de not_active Expired - Lifetime
- 1992-03-13 DE DE59204535T patent/DE59204535D1/de not_active Expired - Fee Related
- 1992-03-24 US US07/856,688 patent/US5342400A/en not_active Expired - Lifetime
- 1992-03-27 JP JP4102131A patent/JPH05115566A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3359984A (en) * | 1964-11-03 | 1967-12-26 | Mine Safety Appliances Co | Electrical circuit for ventricular defibrillator |
US4168711A (en) * | 1978-06-08 | 1979-09-25 | American Optical Corporation | Reversal protection for RLC defibrillator |
US4545203A (en) * | 1982-07-29 | 1985-10-08 | Linde Aktiengesellschaft | Hydrostatic drive units |
US4566457A (en) * | 1982-08-04 | 1986-01-28 | Gunter Stemple | Defibrillator circuit and electrodes therefor |
US4821723A (en) * | 1987-02-27 | 1989-04-18 | Intermedics Inc. | Biphasic waveforms for defibrillation |
EP0326290A1 (de) * | 1988-01-19 | 1989-08-02 | Telectronics N.V. | Verfahren und Apparat zur Anwendung von asymmetrischen, zweiphasigen, abgeschnittenen exponentiellen Gegenschocks |
DE3919498A1 (de) * | 1988-06-15 | 1990-01-11 | Atesys Sa | Defibrillator zur therapeutischen behandlung des herzens |
US5111812A (en) * | 1990-01-23 | 1992-05-12 | Cardiac Pacemakers, Inc. | Defilbrillation electrode having smooth current distribution |
US5163427A (en) * | 1990-11-14 | 1992-11-17 | Medtronic, Inc. | Apparatus for delivering single and multiple cardioversion and defibrillation pulses |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5584865A (en) * | 1993-09-24 | 1996-12-17 | Pacesetter Ab | Defibrillator with output stage using switching network and three electrode |
US5899924A (en) * | 1996-04-12 | 1999-05-04 | Survivalink Corporation | Single capacitor truncated damped sinusoidal defibrillation waveform |
US8831720B2 (en) | 2000-09-18 | 2014-09-09 | Cameron Health, Inc. | Method of implanting and using a subcutaneous defibrillator |
US20050277990A1 (en) * | 2000-09-18 | 2005-12-15 | Cameron Health, Inc. | Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator |
US7536222B2 (en) * | 2000-09-18 | 2009-05-19 | Cameron Health, Inc. | Nonvascular implantable defibrillator and method |
US9144683B2 (en) | 2000-09-18 | 2015-09-29 | Cameron Health, Inc. | Post-shock treatment in a subcutaneous device |
US8412320B2 (en) * | 2000-09-18 | 2013-04-02 | Cameron Health, Inc. | Nontransvenous and nonepicardial methods of cardiac treatment and stimulus |
US8706217B2 (en) | 2000-09-18 | 2014-04-22 | Cameron Health | Cardioverter-defibrillator having a focused shocking area and orientation thereof |
US8718760B2 (en) | 2000-09-18 | 2014-05-06 | Cameron Health Inc. | Subcutaneous implantable cardioverter-defibrillator placement methods |
US20050065559A1 (en) * | 2000-09-18 | 2005-03-24 | Cameron Health, Inc. | Monophasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator |
US9138589B2 (en) | 2001-11-21 | 2015-09-22 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9993653B2 (en) | 2001-11-21 | 2018-06-12 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9522283B2 (en) | 2001-11-21 | 2016-12-20 | Cameron Health Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US20040210148A1 (en) * | 2003-04-16 | 2004-10-21 | Medtronic Physio-Control Manufacturing Corp. | ECG signal detection device |
US7092750B2 (en) | 2003-04-16 | 2006-08-15 | Medtronic Emergency Response Systems, Inc. | ECG signal detection device |
US7962207B2 (en) | 2005-09-09 | 2011-06-14 | Cardiac Science Corporation | Method and apparatus for variable capacitance defibrillation |
US20090076558A1 (en) * | 2005-09-09 | 2009-03-19 | Nassif Rabih C | Method and apparatus for variable capacitance defibrillation |
Also Published As
Publication number | Publication date |
---|---|
EP0505857B1 (de) | 1995-12-06 |
DE59204535D1 (de) | 1996-01-18 |
EP0505857A2 (de) | 1992-09-30 |
EP0505857A3 (en) | 1992-12-30 |
EP0505857B2 (de) | 1999-03-24 |
DE4110402A1 (de) | 1992-10-01 |
JPH05115566A (ja) | 1993-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5601607A (en) | Implantable cardioverter defibrillator housing plated electrode | |
US6477414B1 (en) | Transformer assembly for implantable cardiac stimulation device | |
US6865417B2 (en) | H-bridge with sensing circuit | |
US5312440A (en) | Implantable defibrillator arrangement | |
US5447521A (en) | Safety system for an implantable defibrillator | |
US6999814B2 (en) | Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode | |
US5464429A (en) | Apparatus for producing heart defibrillation sequences from stimulation pulses and defibrillation shocks | |
US5385574A (en) | Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode | |
US4953551A (en) | Method of defibrillating a heart | |
JPS5835221Y2 (ja) | 心臓ペ−スメ−カ用焼灼保護回路 | |
EP0281219B1 (de) | Herzdefibrillator | |
US6094597A (en) | Implantable medical device incorporating distributed core, step-up transformer | |
US20030045904A1 (en) | Subcutaneous cardiac stimulator device and method generating uniform electric field through the heart | |
US8886314B2 (en) | Therapy delivery method and system for implantable medical devices | |
WO2000027465A1 (en) | Output circuit for cardiac control | |
EP2900320B1 (de) | Therapeutisches system für implantierbare medizinische vorrichtungen | |
US20020087196A1 (en) | Method and apparatus for cardiac shock therapy | |
US5342400A (en) | Defibrillator/cardioverter | |
US5376105A (en) | Defibrillator/cardioverter | |
US9168379B2 (en) | Therapy delivery method and system for implantable medical devices | |
CN117258150A (zh) | 植入式医疗设备系统中的抗心动过速起搏控制 | |
US6968231B1 (en) | High voltage converter for an implantable medical device | |
WO2005070498A1 (en) | Device and method for reducing implantable defibrillator volume | |
EP1524008B1 (de) | Implantierbares Herzstimulationsgerät mit Abgabe von beliebig geformten Defibrillationswellen | |
CA1262563A (en) | Protection circuit for implantable cardioverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIEMENS AKTIENGESELLSCHAFT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HIRSCHBERG, JAKUB;OBEL, MARTIN;REEL/FRAME:006107/0610 Effective date: 19920423 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: PACESETTER AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS AKTIENGESELLSCHAFT;REEL/FRAME:007308/0024 Effective date: 19940922 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |