US5229477A - Process for producing ethylene-propylene-diene monomer terpolymer - Google Patents
Process for producing ethylene-propylene-diene monomer terpolymer Download PDFInfo
- Publication number
- US5229477A US5229477A US07/749,807 US74980791A US5229477A US 5229477 A US5229477 A US 5229477A US 74980791 A US74980791 A US 74980791A US 5229477 A US5229477 A US 5229477A
- Authority
- US
- United States
- Prior art keywords
- propylene
- ethylene
- diene monomer
- monomer
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920001897 terpolymer Polymers 0.000 title claims abstract description 57
- 229920002943 EPDM rubber Polymers 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 30
- -1 titanium halide Chemical class 0.000 claims abstract description 37
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 30
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 16
- 239000002685 polymerization catalyst Substances 0.000 claims abstract description 10
- 239000010936 titanium Substances 0.000 claims abstract description 10
- 150000001336 alkenes Chemical class 0.000 claims abstract description 9
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 6
- 239000000178 monomer Substances 0.000 claims description 47
- 229920000642 polymer Polymers 0.000 claims description 35
- 150000001993 dienes Chemical class 0.000 claims description 24
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical group CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 claims description 18
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 13
- 239000005977 Ethylene Substances 0.000 claims description 13
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 13
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000009257 reactivity Effects 0.000 claims description 7
- BWZVCCNYKMEVEX-UHFFFAOYSA-N 2,4,6-Trimethylpyridine Chemical compound CC1=CC(C)=NC(C)=C1 BWZVCCNYKMEVEX-UHFFFAOYSA-N 0.000 claims description 6
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 claims description 6
- FINHMKGKINIASC-UHFFFAOYSA-N Tetramethylpyrazine Chemical compound CC1=NC(C)=C(C)N=C1C FINHMKGKINIASC-UHFFFAOYSA-N 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 125000001424 substituent group Chemical group 0.000 claims description 4
- AUHZEENZYGFFBQ-UHFFFAOYSA-N 1,3,5-Me3C6H3 Natural products CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 claims description 3
- QMAJEURKUOFRMD-UHFFFAOYSA-N 2,4,6-tripropylpyridine Chemical compound CCCC1=CC(CCC)=NC(CCC)=C1 QMAJEURKUOFRMD-UHFFFAOYSA-N 0.000 claims description 3
- WHTDCOSHHMXZNE-UHFFFAOYSA-N 2,6-diethylpyridine Chemical compound CCC1=CC=CC(CC)=N1 WHTDCOSHHMXZNE-UHFFFAOYSA-N 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- GFYHSKONPJXCDE-UHFFFAOYSA-N sym-collidine Natural products CC1=CN=C(C)C(C)=C1 GFYHSKONPJXCDE-UHFFFAOYSA-N 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 10
- 239000003054 catalyst Substances 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical compound C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 5
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- MGWAVDBGNNKXQV-UHFFFAOYSA-N diisobutyl phthalate Chemical compound CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C MGWAVDBGNNKXQV-UHFFFAOYSA-N 0.000 description 4
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 3
- 229920013728 elastomeric terpolymer Polymers 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- RJUCIROUEDJQIB-GQCTYLIASA-N (6e)-octa-1,6-diene Chemical compound C\C=C\CCCC=C RJUCIROUEDJQIB-GQCTYLIASA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- DNZZPKYSGRTNGK-PQZOIKATSA-N (1z,4z)-cycloocta-1,4-diene Chemical compound C1C\C=C/C\C=C/C1 DNZZPKYSGRTNGK-PQZOIKATSA-N 0.000 description 1
- JBVMSEMQJGGOFR-FNORWQNLSA-N (4e)-4-methylhexa-1,4-diene Chemical compound C\C=C(/C)CC=C JBVMSEMQJGGOFR-FNORWQNLSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 1
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- UWKQJZCTQGMHKD-UHFFFAOYSA-N 2,6-di-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=N1 UWKQJZCTQGMHKD-UHFFFAOYSA-N 0.000 description 1
- YHESWXAODSYVCO-UHFFFAOYSA-N 5-but-1-enylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=CCC)CC1C=C2 YHESWXAODSYVCO-UHFFFAOYSA-N 0.000 description 1
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 1
- RVDLHGSZWAELAU-UHFFFAOYSA-N 5-tert-butylthiophene-2-carbonyl chloride Chemical compound CC(C)(C)C1=CC=C(C(Cl)=O)S1 RVDLHGSZWAELAU-UHFFFAOYSA-N 0.000 description 1
- KUFDSEQTHICIIF-UHFFFAOYSA-N 6-methylhepta-1,5-diene Chemical compound CC(C)=CCCC=C KUFDSEQTHICIIF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical class [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- ZOLLIQAKMYWTBR-RYMQXAEESA-N cyclododecatriene Chemical compound C/1C\C=C\CC\C=C/CC\C=C\1 ZOLLIQAKMYWTBR-RYMQXAEESA-N 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- NHYFIJRXGOQNFS-UHFFFAOYSA-N dimethoxy-bis(2-methylpropyl)silane Chemical compound CC(C)C[Si](OC)(CC(C)C)OC NHYFIJRXGOQNFS-UHFFFAOYSA-N 0.000 description 1
- ZMXPNWBFRPIZFV-UHFFFAOYSA-M dipropylalumanylium;chloride Chemical compound [Cl-].CCC[Al+]CCC ZMXPNWBFRPIZFV-UHFFFAOYSA-M 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- GCPCLEKQVMKXJM-UHFFFAOYSA-N ethoxy(diethyl)alumane Chemical compound CCO[Al](CC)CC GCPCLEKQVMKXJM-UHFFFAOYSA-N 0.000 description 1
- ZPUKPAPWEWUPTC-UHFFFAOYSA-N ethyl 4-ethylbenzoate Chemical compound CCOC(=O)C1=CC=C(CC)C=C1 ZPUKPAPWEWUPTC-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- GEAWFZNTIFJMHR-UHFFFAOYSA-N hepta-1,6-diene Chemical compound C=CCCCC=C GEAWFZNTIFJMHR-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- CRGZYKWWYNQGEC-UHFFFAOYSA-N magnesium;methanolate Chemical compound [Mg+2].[O-]C.[O-]C CRGZYKWWYNQGEC-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000008039 phosphoramides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- OUULRIDHGPHMNQ-UHFFFAOYSA-N stibane Chemical class [SbH3] OUULRIDHGPHMNQ-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
- C08F210/18—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
Definitions
- This invention relates to improved terpolymers of ethylene, propylene and a diene monomer. More particularly, the invention relates to rubbery terpolymers of ethylene, propylene and a diene monomer characterized by a high degree of random polymerization.
- EPDM polymers The class of elastomeric terpolymers of ethylene, propylene and diene monomer, conventionally referred to as EPDM polymers, is well known and has gained substantial commercial acceptance.
- the terpolymers are known to be useful in the production of extruded or molded articles useful for construction applications and for housings in the automotive and electrical industries. It is also known that the terpolymers can be crosslinked or vulcanized by methods which are conventional in the rubber industry, e.g., treatment with sulfur and an accelerator. In certain applications, however, the elastomeric terpolymers are difficult to process unless compounded by relatively large amounts of other materials. In many instances, the ease of processing will depend upon how "rubbery" the terpolymer is and in general, the more elastomeric the terpolymer is, the more easily it will be processed.
- each monomer ethylene for example, can serve to disrupt the crystallinity of a portion of a polymerized other monomer, e.g., propylene, through the prevention of block polymerization of other monomer. This disruption results in less crystallinity in the terpolymer molecule and increased elastomeric character.
- the structure of the resulting terpolymer would be "blocky" and the elastomeric character would be relatively low.
- a highly random structure would lead to greater elastomeric character and an improvement in properties such as processability.
- the present invention provides ethylene-propylene-diene monomer terpolymers of improved properties. More particularly, the present invention provides elastomeric ethylene-propylene-diene monomer terpolymers having a high degree of random polymerization in the terpolymer.
- the present invention relates to certain ethylene-propylene-diene monomer terpolymers and to a process for the production thereof, which terpolymers are characterized by a high degree of random polymerization in the terpolymer chain.
- the terpolymers are produced by broadly conventional procedures but procedures which employ a particular type of nitrogen compound as a precursor of the polymerization catalyst.
- the terpolymers in addition to moieties of ethylene and propylene in the polymeric chain, also contain moieties of a diene monomer.
- the diene monomers suitably employed as reactants in the process of the invention have up to 20 carbon atoms and are non-conjugated dienes having no more than one carbon-carbon double bond within any polycyclic ring system.
- the dienes are cyclic or acyclic, and preferably are hydrocarbon dienes containing only atoms of carbon and hydrogen.
- non-conjugated dienes are acyclic dienes such as 1,4-hexadiene, 1,6-octadiene, 4-methyl-1,4-hexadiene,6-methyl-1,5-heptadiene, and 1,7-octadiene as well as cyclic dienes such as 1,4-cyclooctadiene, 5-ethylidine-2-norbornene, 5-methylene-2-norbornene, 5-(1-butenyl)-2-norbornene, vinylcyclohexene and 2,2'-dicyclopentadiene.
- 1,4-cyclooctadiene 5-ethylidine-2-norbornene, 5-methylene-2-norbornene, 5-(1-butenyl)-2-norbornene, vinylcyclohexene and 2,2'-dicyclopentadiene.
- diene monomers are certain hydrocarbon compounds having three carbon-carbon double bonds, no two of which bonds are conjugated, such as 1,5,9-cyclododecatriene.
- diene monomers as the third component of the terpolymers of the invention is well known and conventional.
- acyclic diene monomers such as 1,7-octadiene and 1,6-heptadiene is preferred.
- the polymerization process to produce the terpolymers of the invention is preferably a liquid phase process and employs a high activity, stereoregular olefin polymerization catalyst of a type more often associated with the production of homopolymeric polypropylene or polypropylene impact copolymer.
- the steroeregular polymerization catalysts of high activity contain a procatalyst which is usually a titanium halide-containing solid and often contains a magnesium halide, and which usually contains an election donor.
- Suitable electron donors for use in the process of the invention are ethers, esters, nitriles, phosphines, phosphates, stibines, arsines, phosphoramides and alcoholates which are employed singly or in combination.
- the preferred electron donors utilized in the procatalysts of the invention are esters, particularly alkyl esters of aromatic monocarboxylic or dicarboxylic acids, e.g., ethyl benzoate, ethyl p-ethylbenzoate and diisobutyl phthalate, or phenols such as resorcinol.
- the second catalyst constituent is an organoaluminum compound which is typically a trialkylaluminum compound such as triethylaluminum or triisobutylaluminum or alternatively is a dialkylaluminum compound including dialkylaluminum halides such as diethylaluminum chloride and dipropylaluminum chloride as well as dialkylaluminum alkoxides such as diethylaluminum ethoxide. Trialkylaluminum compounds are preferred, especially triethylaluminum.
- the cocatalyst is provided as such or as a partial or total complex with the third catalyst constituent which is termed a selectivity control agent.
- selectivity control agents are illustrated by esters, particularly aromatic esters, amines, particularly hindered amines, phosphites, phosphates, silanes including alkoxysilanes and aryloxysilanes, hindered phenols and mixtures thereof.
- selectivity control agents are conventionally found in the production of homopolymeric polypropylene and polypropylene impact copolymer but are not typically found in catalysts used for the production of ethylene-propylene-diene monomer terpolymers.
- the selectivity control agent is a member of a particular class of aromatic amines as is defined below.
- a typical stereoregular olefin polymerization catalyst contains as procatalyst a solid constituent comprising a magnesium halide, a tetravalent titanium halide and an electron donor such as ethyl benzoate.
- the halide moieties of such procatalysts are typically chloride moieties.
- the cocatalyst is the organoaluminum compound which is often at least partially complexed with the selectivity control agent.
- the catalysts are illustratively produced by reacting a magnesium compound, for example a magnesium alkoxide such as magnesium ethoxide, with a tetravalent titanium halide in the presence of the electron donor and optionally in the presence of a halohydrocarbon reaction diluent.
- a magnesium compound for example a magnesium alkoxide such as magnesium ethoxide
- a tetravalent titanium halide in the presence of the electron donor and optionally in the presence of a halohydrocarbon reaction diluent.
- the resulting solid is optionally treated with additional tetravalent titanium compound and is then washed, for example with light hydrocarbon, to remove unreacted titanium compounds.
- the solid catalyst is then contacted with the cocatalyst and the selectivity control agent.
- the selectivity control agent employed in the process of the invention is a moderately hindered aromatic heterocyclic amine containing monovalent hydrocarbon substituents on aromatic ring carbon atoms adjacent to the heterocyclic nitrogen, which substituents provide some degree of steric or electronic hindrance but not sufficient hindrance to prohibit the operation of the aromatic heterocyclic amine as a selectivity control agent.
- the presence of hydrogen substituents on adjacent ring carbon atoms as in the case of pyridine does not provide any substantial hindrance and the use of pyridine as the selectivity control agent does not result in the production of the improved terpolymer compositions of the invention.
- the preferred moderately hindered aromatic heterocyclic amines are those of from 1 to 2 aromatic rings with up to one additional heterocyclic atom which have straight-chain alkyl groups independently of up to 4 carbon atoms as a substituent on each aromatic ring carbon atom adjacent to each heterocyclic nitrogen atom.
- aromatic heterocyclic amines Illustrative of such aromatic heterocyclic amines are 2,6-lutidine, 2,4,6-collidine, tetramethylpyrazine, 2,6-diethylpyridine, and 2,4,6-tri-n-propylpyridine.
- the preferred substituent groups for the adjacent aromatic ring carbon atoms are methyl groups and particularly preferred as the aromatic heterocyclic amine for use as the selectivity control agent is 2,6-lutidine.
- the preferred processes for the production of the terpolymers are liquid phase processes employing a reaction diluent which may be a non-polymerizable diluent such as propane or a monomer of the polymerization such as propylene.
- a reaction diluent which may be a non-polymerizable diluent such as propane or a monomer of the polymerization such as propylene.
- Typical polymerization conditions include a reaction temperature of from about 30° C. to about 120° C., preferably from about 35° C. to about 90° C., and a pressure sufficient to maintain the reaction mixture in a liquid phase. Such pressures are up to about 20 atmospheres to about 15 atmospheres.
- the precise methods of conducting the polymerization and the control of the reaction conditions, including the use of molecular hydrogen to control molecular weight, are within the skill and knowledge of the art.
- the ethylene-propylene-diene monomer terpolymers of the invention are suitably somewhat variable in proportions.
- Either monoolefin is present in a major proportion, often from about 50% by weight to about 70% by weight, preferably from about 55% by weight to about 65% by weight.
- the proportion of the other monoolefin is a lesser amount, e.g., from about 25% by weight to about 45% by weight with proportions from about 25% by weight to about 40% by weight being preferred.
- the diene monomer is present in a relatively small, although significant proportion. Amounts of diene monomer from about 1% by weight to about 8% by weight are satisfactory.
- the ethylene-propylene-diene monomer terpolymers of the invention are characterized by a high degree of random polymerization as compared with EPDM polymers produced with conventional titanium-based catalysts. Expressed differently, the ethylene and propylene portions of the terpolymer are less "blocky". Due to the relatively small amount of the diene monomer present in the terpolymer, the diene monomer can be disregarded in considerations of the degree of random copolymerization. If the arrangement of ethylene and propylene moieties in the polymer chain is highly random, the location of diene monomer moieties will also be random.
- the highly random location of monomeric moieties in terpolymers of the invention is reflected in the improved properties of the ethylene-propylene-diene monomer terpolymers including an improved processability.
- the terpolymers have improved green strength and reasonably high tensile strength without the necessity for carbon black being present, thereby permitting the production of white EPDM polymers.
- the disclosures of the Billemeyer text relative to copolymers are applied to the production of the present terpolymers when the role of diene monomer in the degree of random polymerization is disregarded as is discussed above.
- the term "monomer reactivity ratio" is defined for the rate constants r 1 and r 2 for a polymer chain terminating in a first monomer (e.g., propylene) and a second monomer (e.g., ethylene), respectively, reacting with its own monomer as opposed to reacting with the other monomer.
- the magnitude of the value is related to the tendency to react with the same monomer as that terminating the growing polymer chain.
- r 1 For example, if the value of r 1 is greater than 1, it has the significance that a chain terminating in a first monomer (M 1 ) prefers to react with additional first monomer. A value of r 1 less than 1 sigfnifies that the M 1 -terminating polymer chain would prefer to react with the second monomer (M 2 ). Corresponding considerations apply to values of r 2 . This reference further describes the type of copolymerization in terms of the product of monomer reactivity ratios, i.e., r 1 r 2 .
- the value of r 1 r 2 is determined to be, the more blocky the polymeric chain will be. In the polymerizations of the invention the value of r 1 r 2 will be less than about 2.1 and preferably less than about 1.7.
- the mathematical derivation of the r 1 r 2 values is described in the above textbook reference.
- the r 1 r 2 value for a given polymer is traditionally determined by measuring the monomeric composition of the polymer as a function of the proportions of monomers in the feed, as is also described.
- An alternate and more direct method is based on the nuclear magnetic resonance (NMR) spectra of the polymer, particularly the 13 C-NMR spectra, as described by Kakugo et al, Macromolecules, 15, 1150 (1982).
- NMR nuclear magnetic resonance
- the use of the r 1 r 2 value is probably not a quantitative measure of the degree of random copolymerization in all cases but whenever similar molecular are used the value does give a good indication of the extent to which a polymer of at least two monomeric moieties is produced by random copolymerization.
- the polymeric compositions of the invention are therefore elastomeric ethylene-propylene-diene monomer terpolymers having a relatively high degree of random polymerization, i.e., a high degree of "randomness.”
- a variety of the conventional additives for this type of polymer including stabilizers, antioxidants, fillers, colorants, processing aids and mold release agents.
- the ethylene-propylene-diene monomer terpolymers are processable by conventional methods such as extrusion and injection molding and have established utility as a precursor of shaped parts such as automotive and electrical housings, wire and cable coatings, as construction materials and in blending applications with other polymers.
- the terpolymers are also crosslinked or vulcanized by reaction with conventional sulfur species. Because of the high degree of random polymerization the terpolymers are less blocky and less crystalline and more easily processable at lower processing temperatures.
- An olefin polymerization procatalyst precursor was prepared by dropwise addition of a trimethoxysilane-stabilized 12% solution of magnesium methoxide in methanol to a solution of 0.5 equivalent of 2-metholresorcinol in methanol.
- the precursor was a crystalline compound of the formula
- Partial azeotropic desolvation of this precursor was conducted by slurrying 40 g of the precursor in 300 g of cyclohexane containing 120 g of tetramethoxysilane and boiling the resulting mixture until a 20%-30% decrease in volume had occured.
- the olefin polymerization procatalyst was prepared by stirring 7.8 g of the partially desolvated procatalyst precursor with 2.5 ml (8.7 mmol) of diisobutyl phthalate in 200 ml of a 50/50 by volume solution of titanium tetrachloride and chlorobenzene for 1 hour at 115° C.
- the resulting solids were collected by filtering the solid-containing mixture while hot.
- the solids were treated with two washes at 115° C. with fresh 200 ml portions of the 50/50 solution, followed by a rinse of less than 10 minutes with 100 ml of fresh 50/50 solution.
- the solids were then washed once with isooctane at 90° C., twice with isooctane at room temperature, and were then dried under flowing nitrogen at 40° C.
- the titanium content of the resulting solids was 2.72% by weight.
- a portion of the dry procatalyst was then made into a 5% by weight slurry in mineral oil.
- EPDM terpolymers were produced by using a catalyst prepared from the procatalyst slurry of Illustrative Embodiment I, triethylaluminum (TEA) as a 0.28M solution in isooctane and 2,6-lutidine as the selectivity control agent (SCA).
- a comparative catalyst (CC) was produced using diisobutyldimethoxysilane as the selectivity control agent.
- the catalyst components were mixed in a TEA/SCA/Ti molar ratio of 0.70/0.20/0.01 and allowed to stand at ambient temperature for 20 minutes. The mixture was then injected into 2.7 liters of liquid propylene in a 1-gallon stainless steel autoclave also containing ethylene and diene termonomer. During polymerization, ethylene was added to the autoclave in a steady, continuous flow. The autoclave was then maintained at 60° C. for 90 minutes with continuous stirring and ethylene flow. The reactor was then cooled and the remaining propylene flashed. The resulting polymer was an amorphous solid. It was cut into small pieces and dried in air overnight and then for several hours under aspirator vacuum at 80° C.
- Tensile bars were then cut from the plate using a "D" die and the tensile properties of the bars were evaluated using the procedure of ASTM D 418-3.
- Tensile set is the residual elongation imparted to a sample after stretching to 300% elongation at a rate of 20 inches/minute.
- Tensile at break is the stress required to break the sample at an elongation rate of 20 inches/minute and elongation at break is the measured elongation at the point of break. The results of these tests are shown in Table II.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
Mg.sub.4 (OCH.sub.3).sub.6 (CH.sub.3 OH).sub.10 [1,3--(O,OH)--2--CH.sub.3 --C.sub.6 H.sub.3 [.sub.2.
TABLE I ______________________________________ Monomer Proportions Catalyst, Yield of Run Diene (remainder is propylene) ml Polymer, g. ______________________________________ 1 C.sub.8 100 ml C.sub.8, 12.9% C.sub.2 1.21 353 2 C.sub.8 100 ml C.sub.8, 46.9% C.sub.2 1.0 343 3 C.sub.8 50 ml C.sub.8, 28.5% C.sub.2 0.52 263 4 C.sub.8 100 ml C.sub.8, 20.6% C.sub.2 1.0 387 5 C.sub.8 ' 100 ml C.sub.8 ', 36.6% C.sub.2 1.0 200 6 ENB 100 ml ENB, 24.2% C.sub.2 1.0 162 CC C.sub.8 100 ml C.sub.8, 10.6% C.sub.2 0.50 172 ______________________________________
TABLE II ______________________________________ Polymer T set T break E of Run Additive (%) (psi) (%) ______________________________________ 1 A.sub.3, 0.3 g 81 1193 817 2 A.sub.2, 300 mg 93 549 850 3 A.sub.1, 130 mg 69 687 884 5 A.sub.2, 300 mg 104 619 867 6 A.sub.2, 390 mg 108 862 804 ______________________________________
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/749,807 US5229477A (en) | 1991-08-26 | 1991-08-26 | Process for producing ethylene-propylene-diene monomer terpolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/749,807 US5229477A (en) | 1991-08-26 | 1991-08-26 | Process for producing ethylene-propylene-diene monomer terpolymer |
Publications (1)
Publication Number | Publication Date |
---|---|
US5229477A true US5229477A (en) | 1993-07-20 |
Family
ID=25015279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/749,807 Expired - Fee Related US5229477A (en) | 1991-08-26 | 1991-08-26 | Process for producing ethylene-propylene-diene monomer terpolymer |
Country Status (1)
Country | Link |
---|---|
US (1) | US5229477A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5728783A (en) * | 1995-10-31 | 1998-03-17 | Societa 'italiana Additivi Per Carburanti S.R.L. | Process for preparing ethylene-based polymers having low molecular weight |
EP0907188A1 (en) * | 1997-10-02 | 1999-04-07 | Camco International Inc. | Multiconductor electrical cable |
US6100337A (en) * | 1998-05-18 | 2000-08-08 | Shell Oil Company | Functionalized thermoplastic elastomer |
US6228792B1 (en) | 1998-02-27 | 2001-05-08 | W. R. Grace & Co.-Conn. | Donor-modified olefin polymerization catalysts |
EP1339760A1 (en) * | 2000-11-09 | 2003-09-03 | Samsung General Chemicals Co., Ltd. | Method for producing homo- and co-polymers of ethylene |
US20050170950A1 (en) * | 2002-05-06 | 2005-08-04 | Job Robert C. | Mixed catalyst compositions for the production of polyolefins |
US20070167578A1 (en) * | 2004-03-17 | 2007-07-19 | Arriola Daniel J | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US20080262175A1 (en) * | 2005-03-17 | 2008-10-23 | Arriola Daniel J | Catalyst Composition Comprising Shuttling Agent for Regio-Irregular Multi-Block Copolymer Formation |
US20080311812A1 (en) * | 2004-03-17 | 2008-12-18 | Arriola Daniel J | Catalyst Composition Comprising Shuttling Agent for Higher Olefin Multi-Block Copolymer Formation |
EP2221329A1 (en) | 2004-03-17 | 2010-08-25 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP2327727A1 (en) | 2004-03-17 | 2011-06-01 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for ethylene copolymer formation |
EP2357206A2 (en) | 2005-03-17 | 2011-08-17 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for tactic/atactic multi-block copolymer formation |
US9410009B2 (en) | 2005-03-17 | 2016-08-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
CN110804117A (en) * | 2018-07-20 | 2020-02-18 | 中国科学院化学研究所 | A kind of cross-linked ethylene-propylene copolymer and its preparation method and application |
WO2021221987A1 (en) | 2020-04-30 | 2021-11-04 | Dow Global Technologies Llc | Ziegler-natta (pro)catalyst systems made with azaheterocyclic compound |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4125699A (en) * | 1976-05-21 | 1978-11-14 | Japan Ep Rubber Co., Ltd. | Ethylene-propylene rubbery copolymer |
US4377671A (en) * | 1979-10-06 | 1983-03-22 | Japan Ep Rubber Co., Ltd. | Process for producing olefinic copolymer rubbers |
JPS58217507A (en) * | 1982-06-12 | 1983-12-17 | Japan Synthetic Rubber Co Ltd | Production of rubber-like olefin copolymer |
US4506061A (en) * | 1981-12-28 | 1985-03-19 | Japan Synthetic Rubber Co., Ltd. | Process for producing olefin copolymer rubber |
US5001205A (en) * | 1988-06-16 | 1991-03-19 | Exxon Chemical Patents Inc. | Process for production of a high molecular weight ethylene α-olefin elastomer with a metallocene alumoxane catalyst |
-
1991
- 1991-08-26 US US07/749,807 patent/US5229477A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4125699A (en) * | 1976-05-21 | 1978-11-14 | Japan Ep Rubber Co., Ltd. | Ethylene-propylene rubbery copolymer |
US4377671A (en) * | 1979-10-06 | 1983-03-22 | Japan Ep Rubber Co., Ltd. | Process for producing olefinic copolymer rubbers |
US4506061A (en) * | 1981-12-28 | 1985-03-19 | Japan Synthetic Rubber Co., Ltd. | Process for producing olefin copolymer rubber |
JPS58217507A (en) * | 1982-06-12 | 1983-12-17 | Japan Synthetic Rubber Co Ltd | Production of rubber-like olefin copolymer |
US5001205A (en) * | 1988-06-16 | 1991-03-19 | Exxon Chemical Patents Inc. | Process for production of a high molecular weight ethylene α-olefin elastomer with a metallocene alumoxane catalyst |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5728783A (en) * | 1995-10-31 | 1998-03-17 | Societa 'italiana Additivi Per Carburanti S.R.L. | Process for preparing ethylene-based polymers having low molecular weight |
EP0907188A1 (en) * | 1997-10-02 | 1999-04-07 | Camco International Inc. | Multiconductor electrical cable |
US6228792B1 (en) | 1998-02-27 | 2001-05-08 | W. R. Grace & Co.-Conn. | Donor-modified olefin polymerization catalysts |
US6100337A (en) * | 1998-05-18 | 2000-08-08 | Shell Oil Company | Functionalized thermoplastic elastomer |
US6319990B1 (en) | 1998-05-18 | 2001-11-20 | Shell Oil Company | Functionalized thermoplastic elastomer |
US6552125B2 (en) | 1998-05-18 | 2003-04-22 | Shell Oil Company | Functionalized thermoplastic elastomer |
EP1339760A1 (en) * | 2000-11-09 | 2003-09-03 | Samsung General Chemicals Co., Ltd. | Method for producing homo- and co-polymers of ethylene |
EP1339760A4 (en) * | 2000-11-09 | 2005-01-12 | Samsung General Chemicals Co | Method for producing homo- and co-polymers of ethylene |
US20050170950A1 (en) * | 2002-05-06 | 2005-08-04 | Job Robert C. | Mixed catalyst compositions for the production of polyolefins |
US7166553B2 (en) * | 2002-05-06 | 2007-01-23 | Union Carbide Chemicals & Plastics Technology Corporation | Mixed catalyst compositions for the production of polyolefins |
US20110118416A1 (en) * | 2004-03-17 | 2011-05-19 | Arriola Daniel J | Catalyst Composition Comprising Shuttling Agent for Ethylene Multi-Block Copolymer Formation |
EP2357203A2 (en) | 2004-03-17 | 2011-08-17 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
US20080311812A1 (en) * | 2004-03-17 | 2008-12-18 | Arriola Daniel J | Catalyst Composition Comprising Shuttling Agent for Higher Olefin Multi-Block Copolymer Formation |
EP2221329A1 (en) | 2004-03-17 | 2010-08-25 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP2221328A2 (en) | 2004-03-17 | 2010-08-25 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US7858706B2 (en) | 2004-03-17 | 2010-12-28 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US20070167578A1 (en) * | 2004-03-17 | 2007-07-19 | Arriola Daniel J | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US20110124818A1 (en) * | 2004-03-17 | 2011-05-26 | Arriola Daniel J | Catalyst Composition Comprising Shuttling Agent for Ethylene Multi-Block Copolymer Formation |
US7951882B2 (en) | 2004-03-17 | 2011-05-31 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
EP2327727A1 (en) | 2004-03-17 | 2011-06-01 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for ethylene copolymer formation |
US9243090B2 (en) | 2004-03-17 | 2016-01-26 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP2792690A1 (en) | 2004-03-17 | 2014-10-22 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US8785551B2 (en) | 2004-03-17 | 2014-07-22 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US8198374B2 (en) | 2004-03-17 | 2012-06-12 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US8710143B2 (en) | 2004-03-17 | 2014-04-29 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP2357206A2 (en) | 2005-03-17 | 2011-08-17 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for tactic/atactic multi-block copolymer formation |
US20080262175A1 (en) * | 2005-03-17 | 2008-10-23 | Arriola Daniel J | Catalyst Composition Comprising Shuttling Agent for Regio-Irregular Multi-Block Copolymer Formation |
US8981028B2 (en) | 2005-03-17 | 2015-03-17 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
EP2894176A1 (en) | 2005-03-17 | 2015-07-15 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation |
US7981992B2 (en) | 2005-03-17 | 2011-07-19 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation |
US9410009B2 (en) | 2005-03-17 | 2016-08-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
EP3424966A1 (en) | 2005-03-17 | 2019-01-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
CN110804117A (en) * | 2018-07-20 | 2020-02-18 | 中国科学院化学研究所 | A kind of cross-linked ethylene-propylene copolymer and its preparation method and application |
WO2021221987A1 (en) | 2020-04-30 | 2021-11-04 | Dow Global Technologies Llc | Ziegler-natta (pro)catalyst systems made with azaheterocyclic compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5134209A (en) | Process of producing ethylene-propylene rubbery copolymer | |
US5229477A (en) | Process for producing ethylene-propylene-diene monomer terpolymer | |
US7332556B2 (en) | Crystalline polymers of propylene having improved processability in the molten state and process for their preparation | |
US6747103B1 (en) | High-stiffness propylene polymers and a process for the preparation thereof | |
EP0405201B1 (en) | Polypropylene resin compositions of high syndiotacticity and preparation process thereof | |
WO1995021203A1 (en) | Dual donor catalyst system for the polymerization of olefins | |
US6566294B2 (en) | Multi-donor catalyst system for the polymerization of olefins | |
CA2018829C (en) | Process for producing a high-stiffness polypropylene and a highly stereoregular polypropylene | |
CA1150883A (en) | Process for producing propylene-ethylene block copolymers | |
US6686433B1 (en) | Dual donor catalyst system for the polymerization of olefins | |
US7074871B2 (en) | Crystalline polymers of propylene having improved processability in the molten state and process for their preparation | |
US3798288A (en) | Ethylene/propylene block copolymers | |
KR20020021381A (en) | Catalyst for bulk polymerization, catalyst for vapor phase polymerization, method of polymerization using these, and olefin polymer obtained with these | |
US6156846A (en) | Flexible polypropylene resins, propylene bases elastomer compositions and process for production of olefin polymers | |
GB2087409A (en) | Propylene polymerization process | |
EP0528908B1 (en) | Olefin copolymers | |
GB2103628A (en) | Block copolymerization process | |
CA1339025C (en) | Block copolymer of propylene and a process for the production thereof | |
US5576400A (en) | Process for producing olefin polymer | |
CA1126899A (en) | Process for producing propylene-ethylene block copolymers | |
AU651161B2 (en) | Ethylene-propylene copolymer compositions | |
US3374213A (en) | Polypropylene polymerization process | |
JPH06136054A (en) | Production of propylene polymer | |
KR20010080614A (en) | Polymerization of copolymers of ethylene/propylene with higher olefins | |
US20020103302A1 (en) | Crystalline polymer of propylene having improved processability in the molten state and process for their preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHELL OIL COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:JOB, ROBERT C.;STERNA, LARRY L.;REEL/FRAME:006404/0436 Effective date: 19910828 |
|
AS | Assignment |
Owner name: SHELL POLYPROPYLENE COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:007496/0177 Effective date: 19950228 Owner name: SHELL POLYPROPYLENE COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:007846/0315 Effective date: 19950228 |
|
AS | Assignment |
Owner name: SHELL POLYPROPYLENE COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:007737/0146 Effective date: 19950228 |
|
AS | Assignment |
Owner name: UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY CORP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL POLYPROPYLENE COMPANY;REEL/FRAME:008239/0212 Effective date: 19960522 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20050720 |