US5134311A - Self-adjusting impedance matching driver - Google Patents
Self-adjusting impedance matching driver Download PDFInfo
- Publication number
- US5134311A US5134311A US07/534,406 US53440690A US5134311A US 5134311 A US5134311 A US 5134311A US 53440690 A US53440690 A US 53440690A US 5134311 A US5134311 A US 5134311A
- Authority
- US
- United States
- Prior art keywords
- impedance
- driver
- output
- pull
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/028—Arrangements specific to the transmitter end
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0005—Modifications of input or output impedance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/40006—Architecture of a communication node
- H04L12/40039—Details regarding the setting of the power status of a node according to activity on the bus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0278—Arrangements for impedance matching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
Definitions
- the present invention relates generally to a digital driver circuit, and more particularly relates to a digital driver circuit that drives a network having an unknown impedance within a predetermined range.
- Digital drivers in computer processor systems may be called upon to drive a load having an impedance that may be any value within a predetermined range, depending upon the overall computer processor system configuration.
- a processor 10 such as a PC
- a processor 10 has connected to it typically a number of accessories, such as a printer 12, hard disk drive 14, and memory cards 16 and 18.
- Signals are sent between the processor 10 and these auxiliary devices by way of one or more buses 20.
- the number of such auxiliary devices that may be connected to the system buses 20 can vary, depending upon what the user has provided for the system.
- the impedance seen by any one driver for digital signals from the processor 10 to the buses 20 can be any one of a number of different impedances within a range.
- the drivers for bus 20 in printer 12 and in memory card 18 see a characteristic impedance of the buses 20 different from that seen by hard drive 14 and memory card 16, for that one configuration.
- Typical memory cards contain two major divisions: The logic modules 24 and the memory modules 26.
- the logic modules 24 are used to access the memory modules 26 in an organized fashion, to provide control functions, to provide error correction capabilities and direct memory addressing capabilities.
- Each memory card's memory modules 28 are organized in an array manner. Within this array, they are divided into any number of memory banks, two such memory banks, memory bank A and memory bank B, being shown in FIG. 2.
- Drivers used in this type of a configuration drive signals from the logic modules 24 to the array modules 28.
- the signals are driven to ten or twenty modules at a time.
- a typical card has between forty and eighty modules on it.
- a given memory card 22 will have a variable number of modules 28 on it, depending upon how the card is configured. Consequently, the impedance seen by the drivers in the logic modules 24 will vary, depending upon the configuration of the card 22. Nonetheless, the load seen by the driver in the logic modules 24, must be driven properly and with the correct termination. Otherwise, the reflections created by the mismatch must settle out before the signal can be assumed valid, thus increasing the signal delay time. Depending upon the load and driver, such delay could be very long. Hence, in this situation as well it is very important to have the driver impedance match the load impedance.
- the present invention meets these needs.
- the present invention provides a self-adjusting impedance matching driver for a digital circuit that drives a load having an unknown impedance within a predetermined range, that includes a driver for driving digital signals to the digital circuit, the driver having a predetermined impedance.
- a selectable impedance element coupled to the driver causes selectable changes to the predetermined impedance to a desired, different impedance.
- a final element coupled to the selectable impedance element senses the impedance difference between the output of the driver and the digital circuit, and selects automatically the impedance for the driver to obtain the optimum impedance match of the driver to the digital circuit.
- a self-adjusting impedance matching driver for a digital circuit.
- the driver has an input and an output, and drives a load having an unknown impedance within a predetermined range.
- a driver amplifier is connected to the driver input.
- This driver amplifier comprises a pull-up amplifier connected to the supply voltage source for the circuit, and of a pull-down amplifier connected to the circuit ground.
- a first plurality of transistors is provided, connected in parallel between the output of the driver amplifier and the supply voltage source.
- the second plurality of transistors is connected in parallel between the output of the driver amplifier and the circuit ground.
- An element is provided for selectively enabling any combination of the first plurality of transistors and, independently, any combination of the second plurality of transistors, such that any of a plurality of impedances may be selected for the output of the driver, independently for both the pull-up and pull-down transitions of the driver amplifier.
- an element is provided for sensing the impedance difference between the output of the driver and the digital circuit, for automatically selecting a first combination of the first plurality of transistors and the second combination of the second plurality of transistors, and for enabling the same. The first and second combinations are selected to provide the optimum impedance match to the particular impedance of the load.
- the application of the principles of the present invention is advantageous in configurable systems because the impedance of driver loads can vary greatly from configuration to configuration.
- Application of the principles disclosed herein improve the noise, overshoot and undershoot problems by matching the load. Further advantages are obtained because the present invention automatically adjusts the output impedance of the driver to the impedance of the circuit that it drives.
- FIG. 1 shows a prior art computer processor system configuration.
- FIG. 2 shows a prior art memory card including two memory module banks, each being driven by a logic module.
- FIG. 3 is a block diagram of a preferred embodiment of the present invention.
- FIG. 4 is a table showing combinations and corresponding output impedance values for various selections of the transistors shown in FIG. 3.
- FIG. 5 is a logic diagram of the predriver stage shown in FIG. 3.
- FIG. 6 is a circuit diagram of the output stage of the driver shown in FIG. 3.
- FIG. 7 is a circuit diagram of the comparator shown in FIG. 3.
- FIGS. 8A and 8B are circuit diagrams of two latch circuits employed in the set of latches 36 shown in FIG. 3.
- FIG. 9 is a circuit diagram of a timing generation circuit used in the embodiment shown in FIG. 3.
- FIG. 10 is a diagram showing control circuitry critical timing for the implementation depicted in FIG. 3.
- FIGS. 11A and 11B are flow chart diagrams illustrating the sequence of events for pull-up pairs and pull-down pairs of gates, respectively.
- FIG. 3 is a block diagram of the preferred embodiment of the present invention.
- the basic components are a predriver 30, an output stage 32, a comparator 34, a set of latches 36 and a control logic block 38.
- the output of the output stage 32 drives a load 40 which, in general, has a fixed, but unknown impedance within a known range.
- the output stage 32 comprises an array of p-type and n-type MOS transistors, the preferred embodiment being implemented in CMOS technology.
- the primary driver devices are p-type device 42 and n-type device 44.
- Device 42 is a pull-up transistor, while device 44 is a pull-down transistor.
- VDD is the circuit supply voltage, GND being circuit ground.
- Also included in output stage 32 are three pairs of p-type devices 46-48, 50-52 and 54-56, connected between the output line and VDD.
- Devices 48, 52 and 56 are gated by the output of predriver 30, while devices 46, 50 and 54 are gated independently by the outputs of the set of latches 36.
- three pairs of n-type devices 58-60, 62-64 and 66-68 are provided between the output line and ground, the operation thereof being similar to that of the three pairs of p-type devices just described.
- the primary driver devices 42, 44 have a characteristic impedance equal to the highest anticipated impedance to be presented under normal conditions by load 40.
- Each of the pairs of devices just described has a preselected characteristic impedance which, when added in parallel to the impedance of devices 42 and 44, as the case may be, serves to reduce the characteristic impedance of the output stage 32 in a selectable manner.
- the addition or omission of the pairs of devices just described, referred to herein as "incremental impedance pairs,” or “incremental impedance devices,” is controlled by the operation of the set of latches 36 under control of the control logic 38, in a manner which is described below.
- an input signal and an enable signal are applied to the predriver 30 causing an output signal to appear on the output of output stage 32.
- Sufficient time is allowed for the enabled input signal to propagate through the drive circuitry, and for any transient components to substantially subside at the output.
- the output signal is then considered to be at a "plateau”.
- This output signal plateau voltage is applied to comparator 34 where it is compared against a reference voltage.
- the impedance of output stage 32 and the impedance of load 40 are substantially the same, representing a balanced impedance condition, the voltage appearing at the output of output stage 32 is substantially one half of VDD.
- the reference voltage is set at VDD/2.
- test sequence continues through several tests in which the aforementioned voltage comparison is made. All incremental impedance pairs are initially on. In any such test, if the result of the comparison is, in the case of the p-type devices, that the output voltage is more than the reference voltage (less, in the case of the n-type devices), additional gate pairs are incrementally gated off subtracting impedance in parallel with the impedance with the primary output driver devices 42, 44. When the result of the comparison is the opposite, additional gate pairs are left on.
- the impedances associated with the respective incremental impedance pairs are not all the same. Rather, they are provided in values spanning roughly continuously across a range, from highest to lowest, representing, in a sense, the least significant bit to most significant bit of incremental impedance contribution.
- a successive approximation algorithm is utilized to determine which pairs of gates are enabled to adjust the impedance to its optimum value. Rather than simply turning on the gate pair representing the highest impedance, and then continuing successively to that having the smallest resistance, or vice versa, all gate pairs are initially turned on. The gate pair having the smallest impedance, representing the most significant bit, is then turned off first, setting the overall impedance in the midrange of the entire range.
- the impedance should approximately, and optimally for this configuration, match the load impedance after the third iteration of this successive approximation algorithm.
- This impedance matching scheme can match up to eight different resistances by sending out just three pulses (the pull-up portion is matched on the rising transitions and the pull-down portion is matched on the falling transitions).
- Typical impedance values in conventional digital circuitry requiring I/O drivers range from 20 to 100 ohms. Using this range in the preferred embodiment allows the designer to use this driver in almost all situations without having to worry about the impedance. As mentioned above, with three bits there are eight different resistances. However, the weighting of the incremental impedance values determines the spread of the resistances. The preferred embodiment was developed for use in a design system that previously provided impedances of 20, 40, and 80 ohms. Consequently, an attempt was made to provide these specific values. However, practical considerations lead to the dropping of the 20 ohm value.
- the highest impedance should be set around 100 ohms, because the highest impedance seen by the driver will be actually around 85 ohms. With all the incremental impedance added, thereby achieving the lowest impedance, providing the necessary incremental impedance to get the overall impedance down to 20 ohms requires devices that are impractically large. Therefore, for the preferred embodiment the sizes were chosen so that resistances range from 32 ohms to 100 ohms in a nominal process.
- the target resistance values in the preferred embodiment of the present invention are as follows: (a) The main driver 100 ohms, (b) first increment 75 ohms, (c) second increment 200 ohms, (d) third increment 400 ohms. These resistances provide output impedances in the range of 100 to 32 ohms, as shown in Table One (FIG. 4).
- driver 3 The following is a more detailed description of each of the elements of the driver shown in driver 3.
- FIG. 5 is a logic diagram of predriver 30 shown in FIG. 3.
- the function of the predriver is to gate the driver enable signal with the driver input signal, while still allowing the output stage to provide a high impedance signal. This is accomplished by the utilization of NAND gate 70, inverter 72 and NOR gate 74, interconnected as shown Predriver 30 ensures that: a) With logic input “1" only the pull-up devices are turned on, b) with logic input "0" only the pull-down devices are turned on, and c) in the high impedance state both the pull-up and pull-down devices are turned off, all of which is conventional for a so-called three-state driver.
- FIG. 6 shows the output-stage 32 of FIG. 3.
- the function of the output stage 32 is to provide current for the load.
- the output stage 32 is used by the feedback circuitry (comparator 34, latches stage 36, and predriver 30) to match the impedance to that of the load 40.
- incremental impedance components are provided as pairs of devices, for example p-type devices 46 and 48, that are enabled to add their incremental impedance in parallel with the other driver output impedance to reduce the overall output impedance by a predetermined amount.
- the signal lines BIT1-6 control this enabling, and are provided from the latch circuits described below in connection with FIGS. 8A and 8B.
- FIG. 7 is a circuit diagram of comparator 34 of FIG. 3.
- Transistors 80, 82, 84, 86 and 88 comprise a conventional MOS differential amplifier.
- Devices 90, 92 and 94 comprise a voltage bias string that sets the bias for devices 88 and 102, device 90 also providing a switching function to turn the string on and off.
- the reference voltage, VREF, for the aforementioned comparison function is set by devices 96 and 98, also comprising a voltage bias string.
- devices 100 and 102 comprise an amplifier stage which, in addition to providing amplification also provides a level shift so that the output switches around a center at VDD/2.
- the output signal, COMP is inverted and provided to the latches, as described below.
- FIGS. 8A and 8B are circuit diagrams of the two kinds of latches employed in the set of latches 36 shown in FIG. 3. Three sets are used in set 36.
- the latch shown in FIG. 8A hereinafter referred to as latch 1, 2 or 3, as the case may be, is used to control the inclusion or omission of the device pairs 58-60, 62-64, and 66-68, respectively, shown in FIG. 3, hereinafter designated as n-pair 1, 2 and 3.
- the latch shown in FIG. 8B hereinafter referred to as latch 4, 5 or 6, as the case may be, is used to control the inclusion or deletion of gate pairs 46-48, 50-52 and 54-56, respectively, shown in FIG. 3, hereinafter referred to as p-pairs 4, 5 and 6.
- devices 104, 106, 108 and 110 comprise a conventional latch, with devices 112, 114 and 116 providing strobe, set, and reset functions, respectively.
- the strobe signal applied to device 112, STRB1, 2 or 3, as the case may be, enables latching of the data signal "COMP," at the input of the latch.
- the circuit for generating the strobe signal is described below.
- the input signal is the inverted output signal from the comparator circuit described above in connection with FIG. 7.
- Each of the latches 1, 2 and 3, having the configuration shown in FIG. 8A gets, respectively, one of the signals SETN1, SETN2, or SETN3, as the case may be. These signals enable the strobing of the results of the comparator test to the latch, thus enabling the deletion of the associated gate pair from the output stage 32 in the sequence described above.
- the RESETB signal simply provides a reset function for the latch.
- FIG. 8B is a circuit diagram for latches 4, 5 and 6 of set 36.
- the operation of this latch circuit is substantially the same as that as the circuit described above in connection with FIG. 8A.
- the polarities of the devices 114' and 116' are reversed from those of devices 114 and 116 of FIG. 8A, to accommodate the different device polarities of device pairs 46-48, 50-52 and 54-56. Otherwise, operation of the circuit is the same.
- FIG. 9 is a block diagram of the timing circuits used to generate the aforementioned strobe signal from the system clock.
- the clock signal is applied to a first input of a NAND gate 118, and to a slow inverter 120, the output of which is connected to the second input of NAND gate 118.
- the circuit comprising manner gate 118 and slow inverter 120 is effectively a one shot circuit.
- the output of NAND gate 118 is provided to a first input of NOR gate 122 associated with latch 1, while a control signal from control logic 38 (FIG. 3) is provided to the second input thereof.
- the output of NOR gate 122 is the strobe signal for latch 1. It should be noted that in a given IC, the inverter 120 and NAND gate 118 are provided only once, with NOR gate 122 being provided in parallel for each latch in latch set 36, as shown by NOR gates 122', 122".
- Control logic 38 is comprised of conventional logic circuitry, the particular configuration of which is well within the design skills of one of ordinary skill in this art.
- the particular circuit configuration is not particularly pertinent, the significant aspect of control logic 38 being the timing of the various signals produced thereby and applied to the other parts of the circuit shown in FIG. 3. It should be noted that in adapting the preferred embodiment to its design system, the control logic 38 is provided only once for a given IC circuit, the remainder of the driver circuitry being provided with each driver throughout the IC circuit.
- the control logic 38 sends out test voltage pulses, and when the impedance matching is complete turns the feedback circuity off. Control logic 38 carries out the sequence of tests involved in impedance matching the output stage 32 to the load, as described above.
- the control logic 38 is the interface between the digital data system (not shown) and the driver, and is intended to be transparent to the system, except that the system, after powering up, sends a signal to the control logic 38 causing the control logic 38 to initiate the test sequence, after which the control logic sends a signal to the system indicating that set-up is complete.
- the Enable signal is activated to allow the predriver 30 (FIG. 3) to send data signals to the output stage 32, rather than remain in a high impedance state.
- the Test signal is applied, which powers up the comparator 34.
- the RESET and RESETB signals are pulsed, causing the latches 36 to be set in a state which causes all the incremental impedance gate pairs in the output stage 32 to be enabled.
- the SETP4 line is pulsed, setting the latch associated with the most significant bit of p-channel impedance, latch 4, removing it from the output stage 32.
- a positive going input pulse is applied to the Input line of the predriver 30.
- the CNRTL4 line is brought low, and the CLK signal is pulsed, capturing the results of the comparator 34 comparison in the latch associated with bit 4, allowing for propagation delays and settling of the output signal, the timing of this being determined by the CLK signal.
- the SETN1 signal is then pulsed, turning off the most significant bit of n-channel impedance, followed by the negative going transition of the Input signal, the CNTRL1 signal, and the CLK signal, as above, capturing the results of the test in the latch associated with bit 1.
- the sequence continues, alternating between p-channel and n-channel test, testing with respect to the next significant bit, and finally, the least significant bit, completing the test.
- FIG. 11A is a flow chart illustrating the above-described sequence in terms of logic flow, and connecting the logic flow to the sequence of signals, for the pull-up incremental impedance pairs.
- FIG. 11B is a flow chart like that of FIG. 11A, but for the pull-down pairs. In implementation, these charts are, in effect, "interleaved,” as the test proceeds alternatingly on “rising” transitions and “falling” transitions of the input signal, adjusting alternatingly the pull-up pairs and then the pull-down pairs, incrementally.
- word This word corresponds to the three bits of incremental impedance, indicating whether a particular incremental impedance pair in "ON” (bit “1”) or "OFF” (bit “0").
- a value of "X” indicates that in that branch of the flow chart, such bit has whatever value was set for that bit position in the previous operation or operations.
- a word value of 1, 0, 1 corresponds to a condition where the most and least significant bit are “ON,” while the “next” significant bit is “OFF.”
- a word value of 1, X, 0 corresponds to a condition where the most significant bit is “ON,” the least significant bit is “OFF,” and the next significant bit is whatever value it was set in the previous operation or operations. Refer to Table 1 (FIG. 4) for the next output impedance value any particular word value represents.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Computing Systems (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Logic Circuits (AREA)
- Memory System (AREA)
- Electronic Switches (AREA)
- Networks Using Active Elements (AREA)
- Dram (AREA)
Abstract
Description
Claims (3)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/534,406 US5134311A (en) | 1990-06-07 | 1990-06-07 | Self-adjusting impedance matching driver |
DE69120606T DE69120606T2 (en) | 1990-06-07 | 1991-04-25 | Self-adjusting driver for impedance matching |
EP91106666A EP0463316B1 (en) | 1990-06-07 | 1991-04-25 | Self-adjusting impedance matching driver |
JP3101511A JP2700042B2 (en) | 1990-06-07 | 1991-05-07 | Self-adjusting impedance matching driver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/534,406 US5134311A (en) | 1990-06-07 | 1990-06-07 | Self-adjusting impedance matching driver |
Publications (1)
Publication Number | Publication Date |
---|---|
US5134311A true US5134311A (en) | 1992-07-28 |
Family
ID=24129900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/534,406 Expired - Fee Related US5134311A (en) | 1990-06-07 | 1990-06-07 | Self-adjusting impedance matching driver |
Country Status (4)
Country | Link |
---|---|
US (1) | US5134311A (en) |
EP (1) | EP0463316B1 (en) |
JP (1) | JP2700042B2 (en) |
DE (1) | DE69120606T2 (en) |
Cited By (212)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5212801A (en) * | 1990-08-31 | 1993-05-18 | Advanced Micro Devices, Inc. | Apparatus for responding to completion of each transition of a driver output signal for damping noise by increasing driver output impedance |
US5254883A (en) * | 1992-04-22 | 1993-10-19 | Rambus, Inc. | Electrical current source circuitry for a bus |
US5294845A (en) * | 1990-12-24 | 1994-03-15 | Motorola, Inc. | Data processor having an output terminal with selectable output impedances |
US5296756A (en) * | 1993-02-08 | 1994-03-22 | Patel Hitesh N | Self adjusting CMOS transmission line driver |
US5298800A (en) * | 1991-06-28 | 1994-03-29 | At&T Bell Laboratories | Digitally controlled element sizing |
US5341039A (en) * | 1991-04-19 | 1994-08-23 | Mitsubishi Denki Kabushiki Kaisha | High frequency integrated circuit device including a circuit for decreasing reflected signals in wiring formed on a semiconductor substrate |
US5347177A (en) * | 1993-01-14 | 1994-09-13 | Lipp Robert J | System for interconnecting VLSI circuits with transmission line characteristics |
US5399919A (en) * | 1993-02-25 | 1995-03-21 | Texas Instruments Incorporated | Apparatus for detecting switch actuation |
US5404056A (en) * | 1992-04-28 | 1995-04-04 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device with independently operable output buffers |
US5448182A (en) * | 1994-05-02 | 1995-09-05 | Motorola Inc. | Driver circuit with self-adjusting impedance matching |
US5457407A (en) * | 1994-07-06 | 1995-10-10 | Sony Electronics Inc. | Binary weighted reference circuit for a variable impedance output buffer |
US5486782A (en) * | 1994-09-27 | 1996-01-23 | International Business Machines Corporation | Transmission line output driver |
US5502400A (en) * | 1994-02-15 | 1996-03-26 | International Business Machines Corporation | Logically configurable impedance matching input terminators for VLSI |
US5528166A (en) * | 1995-03-14 | 1996-06-18 | Intel Corporation | Pulse controlled impedance compensated output buffer |
US5568064A (en) * | 1995-01-23 | 1996-10-22 | International Business Machines Corporation | Bidirectional transmission line driver/receiver |
US5568068A (en) * | 1995-06-08 | 1996-10-22 | Mitsubishi Denki Kabushiki Kaisha | Buffer circuit for regulating driving current |
US5578939A (en) * | 1995-01-23 | 1996-11-26 | Beers; Gregory E. | Bidirectional transmission line driver/receiver |
US5596285A (en) * | 1993-08-19 | 1997-01-21 | Bull S.A. | Impedance adaptation process and device for a transmitter and/or receiver, integrated circuit and transmission system |
US5600267A (en) * | 1994-06-24 | 1997-02-04 | Cypress Semiconductor Corporation | Apparatus for a programmable CML to CMOS translator for power/speed adjustment |
US5602494A (en) * | 1995-03-09 | 1997-02-11 | Honeywell Inc. | Bi-directional programmable I/O cell |
US5606275A (en) * | 1995-09-05 | 1997-02-25 | Motorola, Inc. | Buffer circuit having variable output impedance |
US5619146A (en) * | 1995-02-21 | 1997-04-08 | Nec Corporation | Switching speed fluctuation detecting apparatus for logic circuit arrangement |
US5621335A (en) * | 1995-04-03 | 1997-04-15 | Texas Instruments Incorporated | Digitally controlled output buffer to incrementally match line impedance and maintain slew rate independent of capacitive output loading |
US5621740A (en) * | 1993-05-14 | 1997-04-15 | Matsushita Electric Industrial Co., Ltd. | Output pad circuit for detecting short faults in integrated circuits |
US5634014A (en) * | 1993-06-18 | 1997-05-27 | Digital Equipment Corporation | Semiconductor process, power supply voltage and temperature compensated integrated system bus termination |
US5644252A (en) * | 1995-03-09 | 1997-07-01 | Nec Corporation | Driver for interfacing integrated circuits to transmission lines |
US5677639A (en) * | 1994-12-08 | 1997-10-14 | Seagate Technology, Inc. | Autonomous selection of output buffer characteristics as determined by load matching |
US5680060A (en) * | 1994-12-22 | 1997-10-21 | Alcatel Nv | Method of and circuit arrangement for terminating a line connected to a CMOS integrated circuit |
US5687330A (en) * | 1993-06-18 | 1997-11-11 | Digital Equipment Corporation | Semiconductor process, power supply and temperature compensated system bus integrated interface architecture with precision receiver |
US5694055A (en) * | 1996-02-27 | 1997-12-02 | Philips Electronic North America Corp. | Zero static power programmable logic cell |
DE19646684C1 (en) * | 1996-11-12 | 1998-03-05 | Ericsson Telefon Ab L M | Output buffer circuit for high-speed data transmission line control |
US5757206A (en) * | 1991-11-27 | 1998-05-26 | Philips Electronics North America Corp. | Electronic circuit with programmable gradual power consumption control |
US5764093A (en) * | 1981-11-28 | 1998-06-09 | Advantest Corporation | Variable delay circuit |
DE19639230C1 (en) * | 1996-09-24 | 1998-07-16 | Ericsson Telefon Ab L M | Output buffer circuit for driving a transmission line |
US5787291A (en) * | 1996-02-05 | 1998-07-28 | Motorola, Inc. | Low power data processing system for interfacing with an external device and method therefor |
US5789937A (en) * | 1996-08-14 | 1998-08-04 | International Business Machines Corporation | Impedence self-adjusting driver circuit |
US5804987A (en) * | 1992-05-26 | 1998-09-08 | Kabushiki Kaisha Toshiba | LSI chip having programmable buffer circuit |
US5811984A (en) * | 1995-10-05 | 1998-09-22 | The Regents Of The University Of California | Current mode I/O for digital circuits |
US5815107A (en) * | 1996-12-19 | 1998-09-29 | International Business Machines Corporation | Current source referenced high speed analog to digitial converter |
US5821783A (en) * | 1993-07-19 | 1998-10-13 | Sharp Kabushiki Kaisha | Buffer circuits with changeable drive characteristic |
US5838177A (en) * | 1997-01-06 | 1998-11-17 | Micron Technology, Inc. | Adjustable output driver circuit having parallel pull-up and pull-down elements |
US5870347A (en) * | 1997-03-11 | 1999-02-09 | Micron Technology, Inc. | Multi-bank memory input/output line selection |
WO1999006845A2 (en) * | 1997-07-29 | 1999-02-11 | Intel Corporation | Impedance control circuit |
US5872736A (en) * | 1996-10-28 | 1999-02-16 | Micron Technology, Inc. | High speed input buffer |
WO1999010982A1 (en) * | 1997-08-29 | 1999-03-04 | Rambus Incorporated | Current control technique |
WO1999025065A1 (en) * | 1997-11-12 | 1999-05-20 | Alcatel U.S.A. Sourcing, L.P. | Front end interface circuit and method of tuning the same |
US5917758A (en) * | 1996-11-04 | 1999-06-29 | Micron Technology, Inc. | Adjustable output driver circuit |
US5920518A (en) * | 1997-02-11 | 1999-07-06 | Micron Technology, Inc. | Synchronous clock generator including delay-locked loop |
US5923594A (en) * | 1998-02-17 | 1999-07-13 | Micron Technology, Inc. | Method and apparatus for coupling data from a memory device using a single ended read data path |
US5923276A (en) * | 1996-12-19 | 1999-07-13 | International Business Machines Corporation | Current source based multilevel bus driver and converter |
US5926047A (en) * | 1997-08-29 | 1999-07-20 | Micron Technology, Inc. | Synchronous clock generator including a delay-locked loop signal loss detector |
WO1999038258A1 (en) * | 1998-01-22 | 1999-07-29 | Intel Corporation | Slew rate control circuit |
US5940608A (en) * | 1997-02-11 | 1999-08-17 | Micron Technology, Inc. | Method and apparatus for generating an internal clock signal that is synchronized to an external clock signal |
US5946244A (en) * | 1997-03-05 | 1999-08-31 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US5949254A (en) * | 1996-11-26 | 1999-09-07 | Micron Technology, Inc. | Adjustable output driver circuit |
US5953284A (en) * | 1997-07-09 | 1999-09-14 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing of a clock signal used to latch digital signals, and memory device using same |
US5955894A (en) * | 1997-06-25 | 1999-09-21 | Sun Microsystems, Inc. | Method for controlling the impedance of a driver circuit |
US5956502A (en) * | 1997-03-05 | 1999-09-21 | Micron Technology, Inc. | Method and circuit for producing high-speed counts |
US5982191A (en) * | 1997-06-25 | 1999-11-09 | Sun Microsystems, Inc. | Broadly distributed termination for buses using switched terminator logic |
US5990701A (en) * | 1997-06-25 | 1999-11-23 | Sun Microsystems, Inc. | Method of broadly distributing termination for buses using switched terminators |
US6011732A (en) * | 1997-08-20 | 2000-01-04 | Micron Technology, Inc. | Synchronous clock generator including a compound delay-locked loop |
US6014759A (en) * | 1997-06-13 | 2000-01-11 | Micron Technology, Inc. | Method and apparatus for transferring test data from a memory array |
US6016282A (en) * | 1998-05-28 | 2000-01-18 | Micron Technology, Inc. | Clock vernier adjustment |
US6026456A (en) * | 1995-12-15 | 2000-02-15 | Intel Corporation | System utilizing distributed on-chip termination |
US6029250A (en) * | 1998-09-09 | 2000-02-22 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing offset between a clock signal and digital signals transmitted coincident with that clock signal, and memory device and system using same |
US6031389A (en) * | 1997-10-16 | 2000-02-29 | Exar Corporation | Slew rate limited output driver |
US6044429A (en) * | 1997-07-10 | 2000-03-28 | Micron Technology, Inc. | Method and apparatus for collision-free data transfers in a memory device with selectable data or address paths |
US6084426A (en) * | 1997-12-24 | 2000-07-04 | Intel Corporation | Compensated input receiver with controlled switch-point |
US6094075A (en) * | 1997-08-29 | 2000-07-25 | Rambus Incorporated | Current control technique |
US6101197A (en) * | 1997-09-18 | 2000-08-08 | Micron Technology, Inc. | Method and apparatus for adjusting the timing of signals over fine and coarse ranges |
US6101561A (en) * | 1998-02-06 | 2000-08-08 | International Business Machines Corporation | System for providing an increase in digital data transmission rate over a parallel bus by converting binary format voltages to encoded analog format currents |
US6107819A (en) * | 1997-06-30 | 2000-08-22 | Intel Corporation | Universal non volatile logic gate |
US6115318A (en) * | 1996-12-03 | 2000-09-05 | Micron Technology, Inc. | Clock vernier adjustment |
US6118310A (en) * | 1998-11-04 | 2000-09-12 | Agilent Technologies | Digitally controlled output driver and method for impedance matching |
US6124747A (en) * | 1998-04-24 | 2000-09-26 | Mitsubishi Denki Kabushiki Kaisha | Output buffer circuit capable of controlling through rate |
US6130563A (en) * | 1997-09-10 | 2000-10-10 | Integrated Device Technology, Inc. | Output driver circuit for high speed digital signal transmission |
US6173432B1 (en) | 1997-06-20 | 2001-01-09 | Micron Technology, Inc. | Method and apparatus for generating a sequence of clock signals |
US6204684B1 (en) * | 1997-12-31 | 2001-03-20 | Intel Corporation | Method for topology dependent slew rate control |
US6208168B1 (en) * | 1997-06-27 | 2001-03-27 | Samsung Electronics Co., Ltd. | Output driver circuits having programmable pull-up and pull-down capability for driving variable loads |
US6269451B1 (en) | 1998-02-27 | 2001-07-31 | Micron Technology, Inc. | Method and apparatus for adjusting data timing by delaying clock signal |
US6275119B1 (en) | 1999-08-25 | 2001-08-14 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US6278306B1 (en) | 1999-06-07 | 2001-08-21 | Sun Microsystems, Inc. | Method for an output driver with improved slew rate control |
US6279090B1 (en) | 1998-09-03 | 2001-08-21 | Micron Technology, Inc. | Method and apparatus for resynchronizing a plurality of clock signals used in latching respective digital signals applied to a packetized memory device |
US6281714B1 (en) | 1997-06-25 | 2001-08-28 | Sun Microsystems, Inc. | Differential receiver |
US6281729B1 (en) | 1999-06-07 | 2001-08-28 | Sun Microsystems, Inc. | Output driver with improved slew rate control |
US6281740B1 (en) * | 1994-03-23 | 2001-08-28 | Telefonaktiebolaget Lm Ericsson | Connecting arrangement for selectively presenting resistive properties using transistors |
US6285215B1 (en) | 1999-09-02 | 2001-09-04 | Micron Technology, Inc. | Output driver having a programmable edge rate |
US6285209B1 (en) * | 1998-09-16 | 2001-09-04 | Nec Corporation | Interface circuit and input buffer integrated circuit including the same |
US6294924B1 (en) | 1999-09-20 | 2001-09-25 | Sun Microsystems, Inc. | Dynamic termination logic driver with improved slew rate control |
US6297677B1 (en) | 1999-09-20 | 2001-10-02 | Sun Microsystems, Inc. | Method for a dynamic termination logic driver with improved slew rate control |
US6313659B1 (en) * | 2000-09-22 | 2001-11-06 | Sun Microsystems, Inc. | Controlled impedance CMOS receiver for integrated circuit communication between circuits |
US6326802B1 (en) * | 1999-09-30 | 2001-12-04 | Intel Corporation | On-die adaptive arrangements for continuous process, voltage and temperature compensation |
US6335638B1 (en) | 2000-06-29 | 2002-01-01 | Pericom Semiconductor Corp. | Triple-slope clock driver for reduced EMI |
US6338127B1 (en) | 1998-08-28 | 2002-01-08 | Micron Technology, Inc. | Method and apparatus for resynchronizing a plurality of clock signals used to latch respective digital signals, and memory device using same |
US6339351B1 (en) | 1999-06-07 | 2002-01-15 | Sun Microsystems, Inc. | Output driver with improved impedance control |
US6342794B1 (en) | 1996-05-28 | 2002-01-29 | Altera Corporation | Interface for low-voltage semiconductor devices |
US6347850B1 (en) * | 1999-12-23 | 2002-02-19 | Intel Corporation | Programmable buffer circuit |
US6349399B1 (en) | 1998-09-03 | 2002-02-19 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US6366139B1 (en) | 1999-06-07 | 2002-04-02 | Sun Microsystems, Inc. | Method for an output driver with improved impedance control |
US6374360B1 (en) | 1998-12-11 | 2002-04-16 | Micron Technology, Inc. | Method and apparatus for bit-to-bit timing correction of a high speed memory bus |
US6405280B1 (en) | 1998-06-05 | 2002-06-11 | Micron Technology, Inc. | Packet-oriented synchronous DRAM interface supporting a plurality of orderings for data block transfers within a burst sequence |
US6411131B1 (en) | 1997-06-25 | 2002-06-25 | Sun Microsystems, Inc. | Method for differentiating a differential voltage signal using current based differentiation |
US6420913B1 (en) | 1999-09-20 | 2002-07-16 | Sun Microsystems, Inc. | Dynamic termination logic driver with improved impedance control |
US6430696B1 (en) | 1998-11-30 | 2002-08-06 | Micron Technology, Inc. | Method and apparatus for high speed data capture utilizing bit-to-bit timing correction, and memory device using same |
US6437610B1 (en) * | 2001-02-15 | 2002-08-20 | Infineon Technologies Ag | High-speed output driver |
US6442718B1 (en) * | 1999-08-23 | 2002-08-27 | Sun Microsystems, Inc. | Memory module test system with reduced driver output impedance |
US6445245B1 (en) | 2000-10-06 | 2002-09-03 | Xilinx, Inc. | Digitally controlled impedance for I/O of an integrated circuit device |
US6484293B1 (en) | 2000-07-14 | 2002-11-19 | Sun Microsystems, Inc. | Method for determining optimal configuration for multinode bus |
US6486698B2 (en) * | 2000-01-31 | 2002-11-26 | Fujitsu Limited | LSI device capable of adjusting the output impedance to match the characteristic impedance |
US6496037B1 (en) * | 2000-06-06 | 2002-12-17 | International Business Machines Corporation | Automatic off-chip driver adjustment based on load characteristics |
US6509756B1 (en) * | 2000-03-31 | 2003-01-21 | Rambus Inc. | Method and apparatus for low capacitance, high output impedance driver |
US6529037B1 (en) * | 2001-09-13 | 2003-03-04 | Intel Corporation | Voltage mode bidirectional port with data channel used for synchronization |
US6535987B1 (en) | 1998-07-31 | 2003-03-18 | Stmicroelectronics S.A. | Amplifier with a fan-out variable in time |
US6541996B1 (en) * | 1999-12-21 | 2003-04-01 | Ati International Srl | Dynamic impedance compensation circuit and method |
US6541997B1 (en) * | 2001-10-23 | 2003-04-01 | International Business Machines Corporation | Clockless impedance controller |
US6556038B2 (en) * | 2001-02-05 | 2003-04-29 | Samsung Electronics Co., Ltd. | Impedance updating apparatus of termination circuit and impedance updating method thereof |
US6563337B2 (en) * | 2001-06-28 | 2003-05-13 | Intel Corporation | Driver impedance control mechanism |
US6567338B1 (en) | 1996-04-19 | 2003-05-20 | Integrated Device Technology, Inc. | Fully synchronous pipelined RAM |
US6573747B2 (en) | 2001-09-28 | 2003-06-03 | Intel Corporation | Digital update scheme for adaptive impedance control of on-die input/output circuits |
US6587014B2 (en) | 2000-01-25 | 2003-07-01 | Paradigm Wireless Communications Llc | Switch assembly with a multi-pole switch for combining amplified RF signals to a single RF signal |
US20030122586A1 (en) * | 2001-04-16 | 2003-07-03 | Intel Corporation | Differential cascode current mode driver |
US6591354B1 (en) | 1998-02-23 | 2003-07-08 | Integrated Device Technology, Inc. | Separate byte control on fully synchronous pipelined SRAM |
US20030167374A1 (en) * | 1999-07-02 | 2003-09-04 | Stanley A. Hronik | Double data rate synchronous sram with 100% bus utilization |
US6624659B1 (en) * | 2000-06-30 | 2003-09-23 | Intel Corporation | Dynamically updating impedance compensation code for input and output drivers |
US20030189441A1 (en) * | 2001-08-15 | 2003-10-09 | Huy Nguyen | Circuit and method for interfacing to a bus channel |
US6639433B1 (en) * | 2002-04-18 | 2003-10-28 | Johnson Controls Technology Company | Self-configuring output circuit and method |
US6642742B1 (en) | 2002-03-21 | 2003-11-04 | Advanced Micro Devices, Inc. | Method and apparatus for controlling output impedance |
US6670828B2 (en) * | 2002-01-31 | 2003-12-30 | Texas Instruments Incorporated | Programmable termination for CML I/O |
US20040000926A1 (en) * | 2002-07-01 | 2004-01-01 | Takeshi Ooshita | Impedance control circuit for controlling multiple different impedances with single control circuit |
EP1378997A2 (en) * | 2002-06-28 | 2004-01-07 | NEC Electronics Corporation | Output buffer apparatus capable of adjusting output impedance in synchronization with data signal |
US6690211B1 (en) | 2002-11-28 | 2004-02-10 | Jmicron Technology Corp. | Impedance matching circuit |
US6693450B1 (en) * | 2000-09-29 | 2004-02-17 | Intel Corporation | Dynamic swing voltage adjustment |
US20040080338A1 (en) * | 2001-06-28 | 2004-04-29 | Haycock Matthew B. | Bidirectional port with clock channel used for synchronization |
US6771675B1 (en) | 2000-08-17 | 2004-08-03 | International Business Machines Corporation | Method for facilitating simultaneous multi-directional transmission of multiple signals between multiple circuits using a single transmission line |
US20040150420A1 (en) * | 2003-01-31 | 2004-08-05 | Alan Fiedler | Resistor mirror |
US20040165693A1 (en) * | 2003-02-25 | 2004-08-26 | Lee Kueck Hock | Output calibrator with dynamic precision |
US20040184326A1 (en) * | 2001-11-28 | 2004-09-23 | Martin Chris G. | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US6798237B1 (en) | 2001-08-29 | 2004-09-28 | Altera Corporation | On-chip impedance matching circuit |
US6801989B2 (en) | 2001-06-28 | 2004-10-05 | Micron Technology, Inc. | Method and system for adjusting the timing offset between a clock signal and respective digital signals transmitted along with that clock signal, and memory device and computer system using same |
US6812734B1 (en) * | 2001-12-11 | 2004-11-02 | Altera Corporation | Programmable termination with DC voltage level control |
US20040243753A1 (en) * | 1999-10-19 | 2004-12-02 | Rambus Inc. | Memory device having programmable drive strength setting |
US6836144B1 (en) | 2001-12-10 | 2004-12-28 | Altera Corporation | Programmable series on-chip termination impedance and impedance matching |
US6836142B2 (en) | 2002-07-12 | 2004-12-28 | Xilinx, Inc. | Asymmetric bidirectional bus implemented using an I/O device with a digitally controlled impedance |
US6859064B1 (en) | 2003-08-20 | 2005-02-22 | Altera Corporation | Techniques for reducing leakage current in on-chip impedance termination circuits |
US20050040878A1 (en) * | 1997-08-29 | 2005-02-24 | Garrett Billy Wayne | Memory device having an adjustable voltage swing setting |
US20050088199A1 (en) * | 2003-10-28 | 2005-04-28 | Bales Tim J. | Mos linear region impedance curvature correction |
US6888370B1 (en) | 2003-08-20 | 2005-05-03 | Altera Corporation | Dynamically adjustable termination impedance control techniques |
US6888369B1 (en) | 2003-07-17 | 2005-05-03 | Altera Corporation | Programmable on-chip differential termination impedance |
US20050105294A1 (en) * | 2003-11-17 | 2005-05-19 | Cho Geun-Hee | Data output driver that controls slew rate of output signal according to bit organization |
US20050116736A1 (en) * | 2003-12-01 | 2005-06-02 | Blodgett Greg A. | Method and circuit for off chip driver control, and memory device using same |
US20050127947A1 (en) * | 2003-12-10 | 2005-06-16 | Arnold Barry J. | Output buffer slew rate control using clock signal |
US20050127978A1 (en) * | 2003-12-10 | 2005-06-16 | Cranford Hayden C.Jr. | Electronic component value trimming systems |
US6909305B1 (en) | 2003-08-08 | 2005-06-21 | Ami Semiconductor, Inc. | Digitally controlled impedance driver matching for wide voltage swings at input/output node and having programmable step size |
US6912680B1 (en) | 1997-02-11 | 2005-06-28 | Micron Technology, Inc. | Memory system with dynamic timing correction |
US6931086B2 (en) | 1999-03-01 | 2005-08-16 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US20050233701A1 (en) * | 2004-04-20 | 2005-10-20 | Martinez Boris N | Systems and methods for adjusting an output driver |
US6963218B1 (en) | 2002-08-09 | 2005-11-08 | Xilinx, Inc. | Bi-directional interface and communication link |
US20050253744A1 (en) * | 2004-05-13 | 2005-11-17 | Johnson Controls Technology Company | Configurable output circuit and method |
US20060104151A1 (en) * | 1999-10-19 | 2006-05-18 | Rambus Inc. | Single-clock, strobeless signaling system |
US7051130B1 (en) | 1999-10-19 | 2006-05-23 | Rambus Inc. | Integrated circuit device that stores a value representative of a drive strength setting |
US7057397B1 (en) * | 2005-03-03 | 2006-06-06 | Lattice Semiconductor Corporation | Output impedance measurement techniques |
US20060181312A1 (en) * | 2005-02-17 | 2006-08-17 | Fujitsu Limited | Semiconductor device with adjustable signal drive power |
US7095788B1 (en) | 2000-08-17 | 2006-08-22 | International Business Machines Corporation | Circuit for facilitating simultaneous multi-directional transmission of multiple signals between multiple circuits using a single transmission line |
US20060187740A1 (en) * | 2005-02-18 | 2006-08-24 | Micron Technology, Inc. | System and method for mode register control of data bus operating mode and impedance |
US7109744B1 (en) | 2001-12-11 | 2006-09-19 | Altera Corporation | Programmable termination with DC voltage level control |
US20060220707A1 (en) * | 2005-03-31 | 2006-10-05 | Hynix Semiconductor Inc. | Output driver for semiconductor device |
US20060255990A1 (en) * | 2002-02-13 | 2006-11-16 | Micron Technology, Inc. | Methods and apparatus for adaptively adjusting a data receiver |
US7168027B2 (en) | 2003-06-12 | 2007-01-23 | Micron Technology, Inc. | Dynamic synchronization of data capture on an optical or other high speed communications link |
US7218155B1 (en) | 2005-01-20 | 2007-05-15 | Altera Corporation | Techniques for controlling on-chip termination resistance using voltage range detection |
US7222208B1 (en) * | 2000-08-23 | 2007-05-22 | Intel Corporation | Simultaneous bidirectional port with synchronization circuit to synchronize the port with another port |
US7221193B1 (en) | 2005-01-20 | 2007-05-22 | Altera Corporation | On-chip termination with calibrated driver strength |
US20070115026A1 (en) * | 2003-12-23 | 2007-05-24 | Rohini Krishnan | Load-aware circuit arrangement |
US7234070B2 (en) | 2003-10-27 | 2007-06-19 | Micron Technology, Inc. | System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding |
US20070139123A1 (en) * | 2005-12-01 | 2007-06-21 | Jian Liu | Apparatus of Impedance Matching for Output Driver and Method Thereof |
US20070176649A1 (en) * | 2006-01-05 | 2007-08-02 | Infineon Technologies Ag | Circuit for differential signals |
US20070252624A1 (en) * | 2006-04-28 | 2007-11-01 | Young-Soo Sohn | Output driver having pre-emphasis capability |
US20080061818A1 (en) * | 2006-08-22 | 2008-03-13 | Altera Corporation | Techniques For Providing Calibrated On-Chip Termination Impedance |
US20080122511A1 (en) * | 2006-11-03 | 2008-05-29 | Micron Technology, Inc. | Output slew rate control |
US20080122510A1 (en) * | 2006-11-03 | 2008-05-29 | Micron Technology, Inc. | Output slew rate control |
US20080123771A1 (en) * | 2006-11-08 | 2008-05-29 | International Business Machines Corporation | Systems and Arrangements for Controlling an Impedance on a Transmission Path |
US20080122478A1 (en) * | 2006-11-03 | 2008-05-29 | Micron Technology, Inc. | Output slew rate control |
US20080143393A1 (en) * | 2006-12-15 | 2008-06-19 | Yi-Lin Chen | Output signal driving circuit and method thereof |
US7391229B1 (en) | 2006-02-18 | 2008-06-24 | Altera Corporation | Techniques for serially transmitting on-chip termination control signals |
US7417452B1 (en) | 2006-08-05 | 2008-08-26 | Altera Corporation | Techniques for providing adjustable on-chip termination impedance |
US7420386B2 (en) | 2006-04-06 | 2008-09-02 | Altera Corporation | Techniques for providing flexible on-chip termination control on integrated circuits |
US7443194B1 (en) | 2008-04-24 | 2008-10-28 | International Business Machines Corporation | I/O driver for integrated circuit with output impedance control |
US20080290908A1 (en) * | 2007-05-23 | 2008-11-27 | International Business Machines Corporation | Variable Power Write Driver Circuit |
US20080303546A1 (en) * | 2007-06-08 | 2008-12-11 | Mosaid Technologies Incorporated | Dynamic impedance control for input/output buffers |
US20090160479A1 (en) * | 2005-02-24 | 2009-06-25 | Klaus Lange | Transceiver Having an Adjustable Terminating Network for a Control Device |
US20090237122A1 (en) * | 2008-03-19 | 2009-09-24 | Infineon Technologies Ag | Line Driver Method and Apparatus |
US20100014202A1 (en) * | 2008-07-17 | 2010-01-21 | Ralf Forster | Control Circuit for a Power Field-Effect Transistor and Method for Configuring a Control Circuit for a Power Field-Effect Transistor |
US20100026393A1 (en) * | 2008-07-30 | 2010-02-04 | Qualcomm Incorporated | Driver amplifier having a programmable output impedance adjustment circuit |
US7679397B1 (en) | 2005-08-05 | 2010-03-16 | Altera Corporation | Techniques for precision biasing output driver for a calibrated on-chip termination circuit |
US20100156505A1 (en) * | 2008-12-19 | 2010-06-24 | Infineon Technologies Austria Ag | Circuit arrangement and method for generating a drive signal for a transistor |
US20100164471A1 (en) * | 2008-12-30 | 2010-07-01 | M2000 | Calibration of programmable i/o components using a virtual variable external resistor |
US20110019760A1 (en) * | 2009-07-21 | 2011-01-27 | Rambus Inc. | Methods and Systems for Reducing Supply and Termination Noise |
US7961000B1 (en) * | 2004-09-01 | 2011-06-14 | Cypress Semiconductor Corporation | Impedance matching circuit and method |
DE102005031904B4 (en) * | 2005-03-02 | 2011-08-18 | Hynix Semiconductor Inc., Kyonggi | Output driver for a semiconductor device |
US8086100B2 (en) | 2001-02-05 | 2011-12-27 | Finisar Corporation | Optoelectronic transceiver with digital diagnostics |
US20130009689A1 (en) * | 2011-07-05 | 2013-01-10 | Paulo Santos | Circuit and Method For Dynamic Biasing of an Output Stage |
US8766663B2 (en) | 2012-06-18 | 2014-07-01 | International Business Machines Corporation | Implementing linearly weighted thermal coded I/O driver output stage calibration |
US20140253207A1 (en) * | 2013-03-05 | 2014-09-11 | Silicon Image, Inc. | Calibration of Single-Ended High-Speed Interfaces |
US9184748B2 (en) | 2011-12-30 | 2015-11-10 | Stmicroelectronics International N.V. | Adaptive buffer |
US20150347341A1 (en) * | 2014-05-30 | 2015-12-03 | Luke A. Johnson | Apparatus for providing a shared reference device |
US20160105181A1 (en) * | 2014-10-13 | 2016-04-14 | International Business Machines Corporation | Receiving an i/o signal in multiple voltage domains |
US9548734B1 (en) * | 2015-12-26 | 2017-01-17 | Intel Corporation | Smart impedance matching for high-speed I/O |
US10756737B1 (en) * | 2019-09-24 | 2020-08-25 | Nanya Technology Corporation | Off chip driver circuit, off chip driver compensation system and signal compensation method |
US10998904B1 (en) * | 2019-11-15 | 2021-05-04 | Xilinx, Inc. | Programmable termination circuits for programmable devices |
US11190188B2 (en) * | 2019-12-12 | 2021-11-30 | Electronics And Telecommunications Research Institute | Memory interface circuit including output impedance monitor and method of calibrating output impedance thereof |
US11316512B2 (en) * | 2020-08-05 | 2022-04-26 | Nanya Technology Corporation | Off chip driving system and signal compensation method |
US11522544B2 (en) * | 2003-09-08 | 2022-12-06 | Rambus Inc. | Calibration methods and circuits to calibrate drive current and termination impedance |
WO2023250313A3 (en) * | 2022-06-22 | 2024-02-01 | Rambus Inc. | A high-speed, low-power, and area-efficient transmitter |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4034043A1 (en) * | 1990-10-26 | 1992-04-30 | Standard Elektrik Lorenz Ag | CIRCUIT ARRANGEMENT FOR PROVIDING AN OUTPUT CURRENT FOR A DATA DRIVER |
US5337254A (en) * | 1991-12-16 | 1994-08-09 | Hewlett-Packard Company | Programmable integrated circuit output pad |
US5410188A (en) * | 1992-12-22 | 1995-04-25 | National Semiconductor Corporation | Enhanced integrated waveshaping circuit |
DE4441523C1 (en) * | 1994-11-22 | 1996-05-15 | Itt Ind Gmbh Deutsche | Digital driver circuit for an integrated circuit |
FR2730367A1 (en) * | 1995-02-08 | 1996-08-09 | Bull Sa | INPUT COUPLER OUTPUT OF INTEGRATED CIRCUIT |
US5729158A (en) * | 1995-07-07 | 1998-03-17 | Sun Microsystems, Inc. | Parametric tuning of an integrated circuit after fabrication |
DE19545904C2 (en) * | 1995-12-08 | 1998-01-15 | Siemens Ag | Integrated circuit with programmable pad driver |
US6060905A (en) * | 1996-02-07 | 2000-05-09 | International Business Machines Corporation | Variable voltage, variable impedance CMOS off-chip driver and receiver interface and circuits |
US5783963A (en) * | 1996-02-29 | 1998-07-21 | Lexmark International, Inc. | ASIC with selectable output drivers |
US6009487A (en) * | 1996-05-31 | 1999-12-28 | Rambus Inc. | Method and apparatus for setting a current of an output driver for the high speed bus |
US8604828B1 (en) | 1996-05-31 | 2013-12-10 | International Business Machines Corporation | Variable voltage CMOS off-chip driver and receiver circuits |
DE29825203U1 (en) * | 1997-08-29 | 2006-01-19 | Rambus Inc., Los Altos | Flow control technology |
US6114895A (en) * | 1997-10-29 | 2000-09-05 | Agilent Technologies | Integrated circuit assembly having output pads with application specific characteristics and method of operation |
EP0926829A1 (en) | 1997-12-22 | 1999-06-30 | Alcatel | Output circuit for digital integrated circuit devices |
US6163178A (en) | 1998-12-28 | 2000-12-19 | Rambus Incorporated | Impedance controlled output driver |
US6308232B1 (en) | 1999-09-01 | 2001-10-23 | Rambus Inc. | Electronically moveable terminator and method for using same in a memory system |
US7124221B1 (en) | 1999-10-19 | 2006-10-17 | Rambus Inc. | Low latency multi-level communication interface |
US6396329B1 (en) | 1999-10-19 | 2002-05-28 | Rambus, Inc | Method and apparatus for receiving high speed signals with low latency |
US6448815B1 (en) * | 2000-10-30 | 2002-09-10 | Api Networks, Inc. | Low voltage differential receiver/transmitter and calibration method thereof |
JP3810739B2 (en) | 2000-11-30 | 2006-08-16 | 株式会社ルネサステクノロジ | Semiconductor integrated circuit and data processing system |
EP1360766B1 (en) * | 2001-02-15 | 2006-06-14 | Infineon Technologies AG | High -speed output driver |
DE10124176B4 (en) * | 2001-05-17 | 2005-10-06 | Infineon Technologies Ag | Apparatus and method for reducing reflections in a memory bus system |
US6741095B2 (en) | 2001-05-21 | 2004-05-25 | Aucid Corporation, Limited | Data transmission system, circuit and method |
US7292629B2 (en) | 2002-07-12 | 2007-11-06 | Rambus Inc. | Selectable-tap equalizer |
US8861667B1 (en) | 2002-07-12 | 2014-10-14 | Rambus Inc. | Clock data recovery circuit with equalizer clock calibration |
DE10338077A1 (en) * | 2003-08-19 | 2005-03-17 | Infineon Technologies Ag | Tuning of drive impedance of integrated circuit chip by incrementally changing the impedance in a comparison process |
US7088127B2 (en) | 2003-09-12 | 2006-08-08 | Rambus, Inc. | Adaptive impedance output driver circuit |
JP4537145B2 (en) * | 2004-07-30 | 2010-09-01 | 富士通株式会社 | Interface circuit and configuration method thereof |
KR100588601B1 (en) * | 2005-06-09 | 2006-06-14 | 삼성전자주식회사 | Impedance control circuit |
KR100849065B1 (en) * | 2005-12-15 | 2008-07-30 | 주식회사 하이닉스반도체 | Method for calibrating a driver and an ODT of a synchronous memory device |
TWI369855B (en) * | 2006-02-22 | 2012-08-01 | Novatek Microelectronics Corp | Impedance match circuit |
EP2338243A4 (en) * | 2008-09-18 | 2015-08-26 | David Denoon-Stevens | Communication network |
JP2011066681A (en) * | 2009-09-17 | 2011-03-31 | Nec Corp | Integrated circuit having automatic adjusting function for driving current |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4845390A (en) * | 1984-11-09 | 1989-07-04 | Lsi Logic Corporation | Delay control circuit |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2537383C3 (en) * | 1975-08-22 | 1979-09-20 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Circuit arrangement with a suitably terminated transmission line for the transmission of signals, in particular binary data signals |
NL8403693A (en) * | 1984-12-05 | 1986-07-01 | Philips Nv | ADAPTIVE ELECTRONIC BUFFER SYSTEM. |
CA1241084A (en) * | 1985-06-10 | 1988-08-23 | Terry O. Wilson | Bidirectional bus arrangement for a digital communication system |
JP2644725B2 (en) * | 1985-08-14 | 1997-08-25 | 株式会社日立製作所 | Output circuit |
US4707620A (en) * | 1986-07-22 | 1987-11-17 | Tektronix, Inc. | Adjustable impedance driver network |
JPS6420720A (en) * | 1987-07-16 | 1989-01-24 | Fujitsu Ltd | Output buffer circuit |
US4859877A (en) * | 1988-01-04 | 1989-08-22 | Gte Laboratories Incorporated | Bidirectional digital signal transmission system |
DE58909214D1 (en) * | 1988-10-18 | 1995-06-08 | Ant Nachrichtentech | Bus coupling circuit. |
IT1232421B (en) * | 1989-07-26 | 1992-02-17 | Cselt Centro Studi Lab Telecom | AUTOMATIC SYSTEM FOR ADJUSTING THE OUTPUT IMPEDANCE OF FAST DRIVING CIRCUITS IN CMOS TECHNOLOGY |
-
1990
- 1990-06-07 US US07/534,406 patent/US5134311A/en not_active Expired - Fee Related
-
1991
- 1991-04-25 EP EP91106666A patent/EP0463316B1/en not_active Expired - Lifetime
- 1991-04-25 DE DE69120606T patent/DE69120606T2/en not_active Expired - Fee Related
- 1991-05-07 JP JP3101511A patent/JP2700042B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4845390A (en) * | 1984-11-09 | 1989-07-04 | Lsi Logic Corporation | Delay control circuit |
Cited By (420)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5764093A (en) * | 1981-11-28 | 1998-06-09 | Advantest Corporation | Variable delay circuit |
US5212801A (en) * | 1990-08-31 | 1993-05-18 | Advanced Micro Devices, Inc. | Apparatus for responding to completion of each transition of a driver output signal for damping noise by increasing driver output impedance |
US5294845A (en) * | 1990-12-24 | 1994-03-15 | Motorola, Inc. | Data processor having an output terminal with selectable output impedances |
US5859541A (en) * | 1990-12-24 | 1999-01-12 | Motorola, Inc. | Data processor having an output terminal with selectable output impedances |
US5341039A (en) * | 1991-04-19 | 1994-08-23 | Mitsubishi Denki Kabushiki Kaisha | High frequency integrated circuit device including a circuit for decreasing reflected signals in wiring formed on a semiconductor substrate |
US5298800A (en) * | 1991-06-28 | 1994-03-29 | At&T Bell Laboratories | Digitally controlled element sizing |
US5757206A (en) * | 1991-11-27 | 1998-05-26 | Philips Electronics North America Corp. | Electronic circuit with programmable gradual power consumption control |
US5254883A (en) * | 1992-04-22 | 1993-10-19 | Rambus, Inc. | Electrical current source circuitry for a bus |
US5404056A (en) * | 1992-04-28 | 1995-04-04 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device with independently operable output buffers |
US5804987A (en) * | 1992-05-26 | 1998-09-08 | Kabushiki Kaisha Toshiba | LSI chip having programmable buffer circuit |
US5347177A (en) * | 1993-01-14 | 1994-09-13 | Lipp Robert J | System for interconnecting VLSI circuits with transmission line characteristics |
US5296756A (en) * | 1993-02-08 | 1994-03-22 | Patel Hitesh N | Self adjusting CMOS transmission line driver |
US5399919A (en) * | 1993-02-25 | 1995-03-21 | Texas Instruments Incorporated | Apparatus for detecting switch actuation |
US5621740A (en) * | 1993-05-14 | 1997-04-15 | Matsushita Electric Industrial Co., Ltd. | Output pad circuit for detecting short faults in integrated circuits |
US5634014A (en) * | 1993-06-18 | 1997-05-27 | Digital Equipment Corporation | Semiconductor process, power supply voltage and temperature compensated integrated system bus termination |
US5687330A (en) * | 1993-06-18 | 1997-11-11 | Digital Equipment Corporation | Semiconductor process, power supply and temperature compensated system bus integrated interface architecture with precision receiver |
US5821783A (en) * | 1993-07-19 | 1998-10-13 | Sharp Kabushiki Kaisha | Buffer circuits with changeable drive characteristic |
US5596285A (en) * | 1993-08-19 | 1997-01-21 | Bull S.A. | Impedance adaptation process and device for a transmitter and/or receiver, integrated circuit and transmission system |
US5502400A (en) * | 1994-02-15 | 1996-03-26 | International Business Machines Corporation | Logically configurable impedance matching input terminators for VLSI |
US6281740B1 (en) * | 1994-03-23 | 2001-08-28 | Telefonaktiebolaget Lm Ericsson | Connecting arrangement for selectively presenting resistive properties using transistors |
US5448182A (en) * | 1994-05-02 | 1995-09-05 | Motorola Inc. | Driver circuit with self-adjusting impedance matching |
US5600267A (en) * | 1994-06-24 | 1997-02-04 | Cypress Semiconductor Corporation | Apparatus for a programmable CML to CMOS translator for power/speed adjustment |
US5457407A (en) * | 1994-07-06 | 1995-10-10 | Sony Electronics Inc. | Binary weighted reference circuit for a variable impedance output buffer |
US5719509A (en) * | 1994-09-27 | 1998-02-17 | International Business Machines Corporation | Method of controlling transmission of binary pulses on a transmission line |
US5486782A (en) * | 1994-09-27 | 1996-01-23 | International Business Machines Corporation | Transmission line output driver |
US5677639A (en) * | 1994-12-08 | 1997-10-14 | Seagate Technology, Inc. | Autonomous selection of output buffer characteristics as determined by load matching |
US5680060A (en) * | 1994-12-22 | 1997-10-21 | Alcatel Nv | Method of and circuit arrangement for terminating a line connected to a CMOS integrated circuit |
US5578939A (en) * | 1995-01-23 | 1996-11-26 | Beers; Gregory E. | Bidirectional transmission line driver/receiver |
US5568064A (en) * | 1995-01-23 | 1996-10-22 | International Business Machines Corporation | Bidirectional transmission line driver/receiver |
US5619146A (en) * | 1995-02-21 | 1997-04-08 | Nec Corporation | Switching speed fluctuation detecting apparatus for logic circuit arrangement |
US5602494A (en) * | 1995-03-09 | 1997-02-11 | Honeywell Inc. | Bi-directional programmable I/O cell |
US5644252A (en) * | 1995-03-09 | 1997-07-01 | Nec Corporation | Driver for interfacing integrated circuits to transmission lines |
US5528166A (en) * | 1995-03-14 | 1996-06-18 | Intel Corporation | Pulse controlled impedance compensated output buffer |
US5621335A (en) * | 1995-04-03 | 1997-04-15 | Texas Instruments Incorporated | Digitally controlled output buffer to incrementally match line impedance and maintain slew rate independent of capacitive output loading |
US5808478A (en) * | 1995-04-03 | 1998-09-15 | Texas Instruments Incorporated | Digitally controlled output buffer to incrementally match line impedance and maintain slew rate independent of capacitive output loading |
US5568068A (en) * | 1995-06-08 | 1996-10-22 | Mitsubishi Denki Kabushiki Kaisha | Buffer circuit for regulating driving current |
US5606275A (en) * | 1995-09-05 | 1997-02-25 | Motorola, Inc. | Buffer circuit having variable output impedance |
US5811984A (en) * | 1995-10-05 | 1998-09-22 | The Regents Of The University Of California | Current mode I/O for digital circuits |
US6026456A (en) * | 1995-12-15 | 2000-02-15 | Intel Corporation | System utilizing distributed on-chip termination |
US6119240A (en) * | 1996-02-05 | 2000-09-12 | Motorola, Inc. | Low power data processing system for interfacing with an external device and method therefor |
US5787291A (en) * | 1996-02-05 | 1998-07-28 | Motorola, Inc. | Low power data processing system for interfacing with an external device and method therefor |
US5951688A (en) * | 1996-02-05 | 1999-09-14 | Motorola, Inc. | Low power data processing system for interfacing with an external device and method therefor |
US5694055A (en) * | 1996-02-27 | 1997-12-02 | Philips Electronic North America Corp. | Zero static power programmable logic cell |
US6567338B1 (en) | 1996-04-19 | 2003-05-20 | Integrated Device Technology, Inc. | Fully synchronous pipelined RAM |
US6433585B1 (en) * | 1996-05-28 | 2002-08-13 | Altera Corporation | Overvoltage-tolerant interface for integrated circuits |
US6342794B1 (en) | 1996-05-28 | 2002-01-29 | Altera Corporation | Interface for low-voltage semiconductor devices |
US5789937A (en) * | 1996-08-14 | 1998-08-04 | International Business Machines Corporation | Impedence self-adjusting driver circuit |
DE19639230C1 (en) * | 1996-09-24 | 1998-07-16 | Ericsson Telefon Ab L M | Output buffer circuit for driving a transmission line |
US6175250B1 (en) | 1996-09-24 | 2001-01-16 | Telefonaktiebolaget L M Ericsson (Publ) | Output buffer circuit for driving a transmission line |
US5872736A (en) * | 1996-10-28 | 1999-02-16 | Micron Technology, Inc. | High speed input buffer |
US5910920A (en) * | 1996-10-28 | 1999-06-08 | Micron Technology, Inc. | High speed input buffer |
US5917758A (en) * | 1996-11-04 | 1999-06-29 | Micron Technology, Inc. | Adjustable output driver circuit |
US6437600B1 (en) | 1996-11-04 | 2002-08-20 | Micron Technology, Inc. | Adjustable output driver circuit |
US6326810B1 (en) | 1996-11-04 | 2001-12-04 | Micron Technology, Inc. | Adjustable output driver circuit |
DE19646684C1 (en) * | 1996-11-12 | 1998-03-05 | Ericsson Telefon Ab L M | Output buffer circuit for high-speed data transmission line control |
US5949254A (en) * | 1996-11-26 | 1999-09-07 | Micron Technology, Inc. | Adjustable output driver circuit |
US6084434A (en) * | 1996-11-26 | 2000-07-04 | Micron Technology, Inc. | Adjustable output driver circuit |
US6115318A (en) * | 1996-12-03 | 2000-09-05 | Micron Technology, Inc. | Clock vernier adjustment |
US5923276A (en) * | 1996-12-19 | 1999-07-13 | International Business Machines Corporation | Current source based multilevel bus driver and converter |
US5815107A (en) * | 1996-12-19 | 1998-09-29 | International Business Machines Corporation | Current source referenced high speed analog to digitial converter |
US6069504A (en) * | 1997-01-06 | 2000-05-30 | Micron Technnology, Inc. | Adjustable output driver circuit having parallel pull-up and pull-down elements |
US5838177A (en) * | 1997-01-06 | 1998-11-17 | Micron Technology, Inc. | Adjustable output driver circuit having parallel pull-up and pull-down elements |
US5940608A (en) * | 1997-02-11 | 1999-08-17 | Micron Technology, Inc. | Method and apparatus for generating an internal clock signal that is synchronized to an external clock signal |
US6340904B1 (en) | 1997-02-11 | 2002-01-22 | Micron Technology, Inc. | Method and apparatus for generating an internal clock signal that is synchronized to an external clock signal |
US5920518A (en) * | 1997-02-11 | 1999-07-06 | Micron Technology, Inc. | Synchronous clock generator including delay-locked loop |
US6912680B1 (en) | 1997-02-11 | 2005-06-28 | Micron Technology, Inc. | Memory system with dynamic timing correction |
US6490224B2 (en) | 1997-03-05 | 2002-12-03 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US5956502A (en) * | 1997-03-05 | 1999-09-21 | Micron Technology, Inc. | Method and circuit for producing high-speed counts |
US6400641B1 (en) | 1997-03-05 | 2002-06-04 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US6256259B1 (en) | 1997-03-05 | 2001-07-03 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US6262921B1 (en) | 1997-03-05 | 2001-07-17 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US6483757B2 (en) | 1997-03-05 | 2002-11-19 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US6490207B2 (en) | 1997-03-05 | 2002-12-03 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US5946244A (en) * | 1997-03-05 | 1999-08-31 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US5870347A (en) * | 1997-03-11 | 1999-02-09 | Micron Technology, Inc. | Multi-bank memory input/output line selection |
US6256255B1 (en) | 1997-03-11 | 2001-07-03 | Micron Technology, Inc. | Multi-bank memory input/output line selection |
US6122217A (en) * | 1997-03-11 | 2000-09-19 | Micron Technology, Inc. | Multi-bank memory input/output line selection |
US6014759A (en) * | 1997-06-13 | 2000-01-11 | Micron Technology, Inc. | Method and apparatus for transferring test data from a memory array |
US6519719B1 (en) | 1997-06-13 | 2003-02-11 | Micron Technology, Inc. | Method and apparatus for transferring test data from a memory array |
US6954097B2 (en) | 1997-06-20 | 2005-10-11 | Micron Technology, Inc. | Method and apparatus for generating a sequence of clock signals |
US7889593B2 (en) | 1997-06-20 | 2011-02-15 | Round Rock Research, Llc | Method and apparatus for generating a sequence of clock signals |
US7415404B2 (en) | 1997-06-20 | 2008-08-19 | Micron Technology, Inc. | Method and apparatus for generating a sequence of clock signals |
US8565008B2 (en) | 1997-06-20 | 2013-10-22 | Round Rock Research, Llc | Method and apparatus for generating a sequence of clock signals |
US20110122710A1 (en) * | 1997-06-20 | 2011-05-26 | Round Rock Research, Llc | Method and apparatus for generating a sequence of clock signals |
US6173432B1 (en) | 1997-06-20 | 2001-01-09 | Micron Technology, Inc. | Method and apparatus for generating a sequence of clock signals |
US6281714B1 (en) | 1997-06-25 | 2001-08-28 | Sun Microsystems, Inc. | Differential receiver |
US5955894A (en) * | 1997-06-25 | 1999-09-21 | Sun Microsystems, Inc. | Method for controlling the impedance of a driver circuit |
US5990701A (en) * | 1997-06-25 | 1999-11-23 | Sun Microsystems, Inc. | Method of broadly distributing termination for buses using switched terminators |
US6411131B1 (en) | 1997-06-25 | 2002-06-25 | Sun Microsystems, Inc. | Method for differentiating a differential voltage signal using current based differentiation |
US5982191A (en) * | 1997-06-25 | 1999-11-09 | Sun Microsystems, Inc. | Broadly distributed termination for buses using switched terminator logic |
US6362656B2 (en) * | 1997-06-27 | 2002-03-26 | Samsung Electronics Co., Ltd. | Integrated circuit memory devices having programmable output driver circuits therein |
US6208168B1 (en) * | 1997-06-27 | 2001-03-27 | Samsung Electronics Co., Ltd. | Output driver circuits having programmable pull-up and pull-down capability for driving variable loads |
US6107819A (en) * | 1997-06-30 | 2000-08-22 | Intel Corporation | Universal non volatile logic gate |
US6026050A (en) * | 1997-07-09 | 2000-02-15 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing of a clock signal used to latch digital signals, and memory device using same |
US5953284A (en) * | 1997-07-09 | 1999-09-14 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing of a clock signal used to latch digital signals, and memory device using same |
US6044429A (en) * | 1997-07-10 | 2000-03-28 | Micron Technology, Inc. | Method and apparatus for collision-free data transfers in a memory device with selectable data or address paths |
US6560668B2 (en) | 1997-07-10 | 2003-05-06 | Micron Technology, Inc. | Method and apparatus for reading write-modified read data in memory device providing synchronous data transfers |
US6789175B2 (en) | 1997-07-10 | 2004-09-07 | Micron Technology, Inc. | Method and apparatus for synchronous data transfers in a memory device with selectable data or address paths |
US6415340B1 (en) | 1997-07-10 | 2002-07-02 | Micron Technology, Inc. | Method and apparatus for synchronous data transfers in a memory device with selectable data or address paths |
US6272608B1 (en) | 1997-07-10 | 2001-08-07 | Micron Technology, Inc. | Method and apparatus for synchronous data transfers in a memory device with lookahead logic for detecting latency intervals |
US6611885B2 (en) | 1997-07-10 | 2003-08-26 | Micron Technology, Inc. | Method and apparatus for synchronous data transfers in a memory device with selectable data or address paths |
US6614698B2 (en) | 1997-07-10 | 2003-09-02 | Micron Technology, Inc. | Method and apparatus for synchronous data transfers in a memory device with selectable data or address paths |
US6556483B2 (en) | 1997-07-10 | 2003-04-29 | Micron Technology, Inc. | Method and apparatus for synchronous data transfers in a memory device with selectable data or address paths |
US6087847A (en) * | 1997-07-29 | 2000-07-11 | Intel Corporation | Impedance control circuit |
WO1999006845A2 (en) * | 1997-07-29 | 1999-02-11 | Intel Corporation | Impedance control circuit |
WO1999006845A3 (en) * | 1997-07-29 | 1999-09-10 | Intel Corp | Impedance control circuit |
US6011732A (en) * | 1997-08-20 | 2000-01-04 | Micron Technology, Inc. | Synchronous clock generator including a compound delay-locked loop |
US6556052B2 (en) * | 1997-08-29 | 2003-04-29 | Rambus Inc | Semiconductor controller device having a controlled output driver characteristic |
US7167039B2 (en) | 1997-08-29 | 2007-01-23 | Rambus Inc. | Memory device having an adjustable voltage swing setting |
US6462591B2 (en) | 1997-08-29 | 2002-10-08 | Rambus Inc. | Semiconductor memory device having a controlled output driver characteristic |
US6294934B1 (en) | 1997-08-29 | 2001-09-25 | Rambus Inc. | Current control technique |
US6094075A (en) * | 1997-08-29 | 2000-07-25 | Rambus Incorporated | Current control technique |
US6201424B1 (en) | 1997-08-29 | 2001-03-13 | Micron Technology, Inc. | Synchronous clock generator including a delay-locked loop signal loss detector |
US6870419B1 (en) | 1997-08-29 | 2005-03-22 | Rambus Inc. | Memory system including a memory device having a controlled output driver characteristic |
US5926047A (en) * | 1997-08-29 | 1999-07-20 | Micron Technology, Inc. | Synchronous clock generator including a delay-locked loop signal loss detector |
US20050040878A1 (en) * | 1997-08-29 | 2005-02-24 | Garrett Billy Wayne | Memory device having an adjustable voltage swing setting |
WO1999010982A1 (en) * | 1997-08-29 | 1999-03-04 | Rambus Incorporated | Current control technique |
US6608507B2 (en) | 1997-08-29 | 2003-08-19 | Rambus Inc. | Memory system including a memory device having a controlled output driver characteristic |
US6130563A (en) * | 1997-09-10 | 2000-10-10 | Integrated Device Technology, Inc. | Output driver circuit for high speed digital signal transmission |
US6959016B1 (en) | 1997-09-18 | 2005-10-25 | Micron Technology, Inc. | Method and apparatus for adjusting the timing of signals over fine and coarse ranges |
US6101197A (en) * | 1997-09-18 | 2000-08-08 | Micron Technology, Inc. | Method and apparatus for adjusting the timing of signals over fine and coarse ranges |
US6031389A (en) * | 1997-10-16 | 2000-02-29 | Exar Corporation | Slew rate limited output driver |
US5910731A (en) * | 1997-11-12 | 1999-06-08 | Alcatel Usa Sourcing, L.P. | Front end interface circuit and method of tuning the same |
WO1999025065A1 (en) * | 1997-11-12 | 1999-05-20 | Alcatel U.S.A. Sourcing, L.P. | Front end interface circuit and method of tuning the same |
US6084426A (en) * | 1997-12-24 | 2000-07-04 | Intel Corporation | Compensated input receiver with controlled switch-point |
US6204684B1 (en) * | 1997-12-31 | 2001-03-20 | Intel Corporation | Method for topology dependent slew rate control |
WO1999038258A1 (en) * | 1998-01-22 | 1999-07-29 | Intel Corporation | Slew rate control circuit |
US6075379A (en) * | 1998-01-22 | 2000-06-13 | Intel Corporation | Slew rate control circuit |
US6101561A (en) * | 1998-02-06 | 2000-08-08 | International Business Machines Corporation | System for providing an increase in digital data transmission rate over a parallel bus by converting binary format voltages to encoded analog format currents |
US6091646A (en) * | 1998-02-17 | 2000-07-18 | Micron Technology, Inc. | Method and apparatus for coupling data from a memory device using a single ended read data path |
US5923594A (en) * | 1998-02-17 | 1999-07-13 | Micron Technology, Inc. | Method and apparatus for coupling data from a memory device using a single ended read data path |
US6591354B1 (en) | 1998-02-23 | 2003-07-08 | Integrated Device Technology, Inc. | Separate byte control on fully synchronous pipelined SRAM |
US6499111B2 (en) | 1998-02-27 | 2002-12-24 | Micron Technology, Inc. | Apparatus for adjusting delay of a clock signal relative to a data signal |
US6378079B1 (en) | 1998-02-27 | 2002-04-23 | Micron Technology, Inc. | Computer system having memory device with adjustable data clocking |
US6643789B2 (en) | 1998-02-27 | 2003-11-04 | Micron Technology, Inc. | Computer system having memory device with adjustable data clocking using pass gates |
US6269451B1 (en) | 1998-02-27 | 2001-07-31 | Micron Technology, Inc. | Method and apparatus for adjusting data timing by delaying clock signal |
US6327196B1 (en) | 1998-02-27 | 2001-12-04 | Micron Technology, Inc. | Synchronous memory device having an adjustable data clocking circuit |
US6124747A (en) * | 1998-04-24 | 2000-09-26 | Mitsubishi Denki Kabushiki Kaisha | Output buffer circuit capable of controlling through rate |
US6016282A (en) * | 1998-05-28 | 2000-01-18 | Micron Technology, Inc. | Clock vernier adjustment |
US6405280B1 (en) | 1998-06-05 | 2002-06-11 | Micron Technology, Inc. | Packet-oriented synchronous DRAM interface supporting a plurality of orderings for data block transfers within a burst sequence |
US6535987B1 (en) | 1998-07-31 | 2003-03-18 | Stmicroelectronics S.A. | Amplifier with a fan-out variable in time |
US6338127B1 (en) | 1998-08-28 | 2002-01-08 | Micron Technology, Inc. | Method and apparatus for resynchronizing a plurality of clock signals used to latch respective digital signals, and memory device using same |
US7657813B2 (en) | 1998-09-03 | 2010-02-02 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US7954031B2 (en) | 1998-09-03 | 2011-05-31 | Round Rock Research, Llc | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US7373575B2 (en) | 1998-09-03 | 2008-05-13 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US6279090B1 (en) | 1998-09-03 | 2001-08-21 | Micron Technology, Inc. | Method and apparatus for resynchronizing a plurality of clock signals used in latching respective digital signals applied to a packetized memory device |
US6647523B2 (en) | 1998-09-03 | 2003-11-11 | Micron Technology, Inc. | Method for generating expect data from a captured bit pattern, and memory device using same |
US6349399B1 (en) | 1998-09-03 | 2002-02-19 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US6477675B2 (en) | 1998-09-03 | 2002-11-05 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US7085975B2 (en) | 1998-09-03 | 2006-08-01 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US6029250A (en) * | 1998-09-09 | 2000-02-22 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing offset between a clock signal and digital signals transmitted coincident with that clock signal, and memory device and system using same |
US6285209B1 (en) * | 1998-09-16 | 2001-09-04 | Nec Corporation | Interface circuit and input buffer integrated circuit including the same |
US6118310A (en) * | 1998-11-04 | 2000-09-12 | Agilent Technologies | Digitally controlled output driver and method for impedance matching |
US6430696B1 (en) | 1998-11-30 | 2002-08-06 | Micron Technology, Inc. | Method and apparatus for high speed data capture utilizing bit-to-bit timing correction, and memory device using same |
US6374360B1 (en) | 1998-12-11 | 2002-04-16 | Micron Technology, Inc. | Method and apparatus for bit-to-bit timing correction of a high speed memory bus |
US6662304B2 (en) | 1998-12-11 | 2003-12-09 | Micron Technology, Inc. | Method and apparatus for bit-to-bit timing correction of a high speed memory bus |
US6931086B2 (en) | 1999-03-01 | 2005-08-16 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US7016451B2 (en) | 1999-03-01 | 2006-03-21 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US6952462B2 (en) | 1999-03-01 | 2005-10-04 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US8433023B2 (en) | 1999-03-01 | 2013-04-30 | Round Rock Research, Llc | Method and apparatus for generating a phase dependent control signal |
US7602876B2 (en) | 1999-03-01 | 2009-10-13 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US8107580B2 (en) | 1999-03-01 | 2012-01-31 | Round Rock Research, Llc | Method and apparatus for generating a phase dependent control signal |
US7418071B2 (en) | 1999-03-01 | 2008-08-26 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US6281729B1 (en) | 1999-06-07 | 2001-08-28 | Sun Microsystems, Inc. | Output driver with improved slew rate control |
US6278306B1 (en) | 1999-06-07 | 2001-08-21 | Sun Microsystems, Inc. | Method for an output driver with improved slew rate control |
US6339351B1 (en) | 1999-06-07 | 2002-01-15 | Sun Microsystems, Inc. | Output driver with improved impedance control |
US6366139B1 (en) | 1999-06-07 | 2002-04-02 | Sun Microsystems, Inc. | Method for an output driver with improved impedance control |
US7069406B2 (en) | 1999-07-02 | 2006-06-27 | Integrated Device Technology, Inc. | Double data rate synchronous SRAM with 100% bus utilization |
US20030167374A1 (en) * | 1999-07-02 | 2003-09-04 | Stanley A. Hronik | Double data rate synchronous sram with 100% bus utilization |
US6442718B1 (en) * | 1999-08-23 | 2002-08-27 | Sun Microsystems, Inc. | Memory module test system with reduced driver output impedance |
US6469591B2 (en) | 1999-08-25 | 2002-10-22 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US6657512B2 (en) | 1999-08-25 | 2003-12-02 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US6958661B2 (en) | 1999-08-25 | 2005-10-25 | Micron Technology, Inc. | Variable resistance circuit |
US20060028287A1 (en) * | 1999-08-25 | 2006-02-09 | Micron Technology, Inc. | Variable resistance circuit |
US6545561B2 (en) | 1999-08-25 | 2003-04-08 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US6445259B1 (en) | 1999-08-25 | 2002-09-03 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US6275119B1 (en) | 1999-08-25 | 2001-08-14 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US7180386B2 (en) | 1999-08-25 | 2007-02-20 | Micron Technology, Inc. | Variable resistance circuit |
US6556095B2 (en) | 1999-08-25 | 2003-04-29 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US6545560B1 (en) | 1999-08-25 | 2003-04-08 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US6384714B2 (en) | 1999-08-25 | 2002-05-07 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US20030206075A1 (en) * | 1999-08-25 | 2003-11-06 | Micron Technology, Inc. | Method to find a value within a range using weighted subranges |
US6285215B1 (en) | 1999-09-02 | 2001-09-04 | Micron Technology, Inc. | Output driver having a programmable edge rate |
US6294924B1 (en) | 1999-09-20 | 2001-09-25 | Sun Microsystems, Inc. | Dynamic termination logic driver with improved slew rate control |
US6297677B1 (en) | 1999-09-20 | 2001-10-02 | Sun Microsystems, Inc. | Method for a dynamic termination logic driver with improved slew rate control |
US6608506B2 (en) | 1999-09-20 | 2003-08-19 | Sun Microsystems, Inc. | Dynamic termination logic driver with improved impedance control |
US6420913B1 (en) | 1999-09-20 | 2002-07-16 | Sun Microsystems, Inc. | Dynamic termination logic driver with improved impedance control |
US6326802B1 (en) * | 1999-09-30 | 2001-12-04 | Intel Corporation | On-die adaptive arrangements for continuous process, voltage and temperature compensation |
US9852105B2 (en) | 1999-10-19 | 2017-12-26 | Rambus Inc. | Flash controller to provide a value that represents a parameter to a flash memory |
US20040243753A1 (en) * | 1999-10-19 | 2004-12-02 | Rambus Inc. | Memory device having programmable drive strength setting |
US8775705B2 (en) | 1999-10-19 | 2014-07-08 | Rambus Inc. | Chip having register to store value that represents adjustment to reference voltage |
US20090248971A1 (en) * | 1999-10-19 | 2009-10-01 | Horowitz Mark A | System and Dynamic Random Access Memory Device Having a Receiver |
US7663966B2 (en) | 1999-10-19 | 2010-02-16 | Rambus, Inc. | Single-clock, strobeless signaling system |
US20100146321A1 (en) * | 1999-10-19 | 2010-06-10 | Rambus Inc. | Single-clock, strobeless signaling system |
US7565468B2 (en) | 1999-10-19 | 2009-07-21 | Rambus Inc. | Integrated circuit memory device and signaling method for adjusting drive strength based on topography of integrated circuit devices |
US7546390B2 (en) | 1999-10-19 | 2009-06-09 | Rambus, Inc. | Integrated circuit device and signaling method with topographic dependent equalization coefficient |
US9110828B2 (en) | 1999-10-19 | 2015-08-18 | Rambus Inc. | Chip having register to store value that represents adjustment to reference voltage |
US9135967B2 (en) | 1999-10-19 | 2015-09-15 | Rambus Inc. | Chip having register to store value that represents adjustment to output drive strength |
US7539802B2 (en) | 1999-10-19 | 2009-05-26 | Rambus Inc. | Integrated circuit device and signaling method with phase control based on information in external memory device |
US20080267000A1 (en) * | 1999-10-19 | 2008-10-30 | Rambus Inc. | Single-clock, strobeless signaling system |
US8001305B2 (en) | 1999-10-19 | 2011-08-16 | Rambus Inc. | System and dynamic random access memory device having a receiver |
US7397725B2 (en) | 1999-10-19 | 2008-07-08 | Rambus Inc. | Single-clock, strobeless signaling system |
US8102730B2 (en) | 1999-10-19 | 2012-01-24 | Rambus, Inc. | Single-clock, strobeless signaling system |
US20080052434A1 (en) * | 1999-10-19 | 2008-02-28 | Rambus Inc. | Integrated Circuit Device and Signaling Method with Topographic Dependent Equalization Coefficient |
US8214570B2 (en) | 1999-10-19 | 2012-07-03 | Rambus Inc. | Memory controller and method utilizing equalization co-efficient setting |
US7051129B2 (en) | 1999-10-19 | 2006-05-23 | Rambus Inc. | Memory device having programmable drive strength setting |
US7051130B1 (en) | 1999-10-19 | 2006-05-23 | Rambus Inc. | Integrated circuit device that stores a value representative of a drive strength setting |
US10366045B2 (en) | 1999-10-19 | 2019-07-30 | Rambus Inc. | Flash controller to provide a value that represents a parameter to a flash memory |
US20060104151A1 (en) * | 1999-10-19 | 2006-05-18 | Rambus Inc. | Single-clock, strobeless signaling system |
US9135186B2 (en) | 1999-10-19 | 2015-09-15 | Rambus Inc. | Chip having port to receive value that represents adjustment to output driver parameter |
US9411767B2 (en) | 1999-10-19 | 2016-08-09 | Rambus Inc. | Flash controller to provide a value that represents a parameter to a flash memory |
US20080071951A1 (en) * | 1999-10-19 | 2008-03-20 | Horowitz Mark A | Integrated Circuit Device and Signaling Method with Phase Control Based on Information in External Memory Device |
US8458385B2 (en) | 1999-10-19 | 2013-06-04 | Rambus Inc. | Chip having register to store value that represents adjustment to reference voltage |
US9323711B2 (en) | 1999-10-19 | 2016-04-26 | Rambus Inc. | Chip having port to receive value that represents adjustment to transmission parameter |
US20080052440A1 (en) * | 1999-10-19 | 2008-02-28 | Horowitz Mark A | Integrated Circuit Memory Device and Signaling Method with Topographic Dependent Signaling |
US9152581B2 (en) | 1999-10-19 | 2015-10-06 | Rambus Inc. | Chip storing a value that represents adjustment to output drive strength |
US6541996B1 (en) * | 1999-12-21 | 2003-04-01 | Ati International Srl | Dynamic impedance compensation circuit and method |
US6347850B1 (en) * | 1999-12-23 | 2002-02-19 | Intel Corporation | Programmable buffer circuit |
US6587014B2 (en) | 2000-01-25 | 2003-07-01 | Paradigm Wireless Communications Llc | Switch assembly with a multi-pole switch for combining amplified RF signals to a single RF signal |
US6486698B2 (en) * | 2000-01-31 | 2002-11-26 | Fujitsu Limited | LSI device capable of adjusting the output impedance to match the characteristic impedance |
US7002367B2 (en) | 2000-03-31 | 2006-02-21 | Rambus, Inc. | Method and apparatus for low capacitance, high output impedance driver |
US20030141896A1 (en) * | 2000-03-31 | 2003-07-31 | Leung Yu | Method and apparatus for low capacitance, high output impedance driver |
US7199605B2 (en) | 2000-03-31 | 2007-04-03 | Rambus Inc. | Method and apparatus for low capacitance, high output impedance driver |
US6509756B1 (en) * | 2000-03-31 | 2003-01-21 | Rambus Inc. | Method and apparatus for low capacitance, high output impedance driver |
US20050226088A1 (en) * | 2000-03-31 | 2005-10-13 | Leung Yu | Method and apparatus for low capacitance, high output impedance driver |
US6496037B1 (en) * | 2000-06-06 | 2002-12-17 | International Business Machines Corporation | Automatic off-chip driver adjustment based on load characteristics |
US6335638B1 (en) | 2000-06-29 | 2002-01-01 | Pericom Semiconductor Corp. | Triple-slope clock driver for reduced EMI |
US6624659B1 (en) * | 2000-06-30 | 2003-09-23 | Intel Corporation | Dynamically updating impedance compensation code for input and output drivers |
US6484293B1 (en) | 2000-07-14 | 2002-11-19 | Sun Microsystems, Inc. | Method for determining optimal configuration for multinode bus |
US7095788B1 (en) | 2000-08-17 | 2006-08-22 | International Business Machines Corporation | Circuit for facilitating simultaneous multi-directional transmission of multiple signals between multiple circuits using a single transmission line |
US6771675B1 (en) | 2000-08-17 | 2004-08-03 | International Business Machines Corporation | Method for facilitating simultaneous multi-directional transmission of multiple signals between multiple circuits using a single transmission line |
US7222208B1 (en) * | 2000-08-23 | 2007-05-22 | Intel Corporation | Simultaneous bidirectional port with synchronization circuit to synchronize the port with another port |
US6313659B1 (en) * | 2000-09-22 | 2001-11-06 | Sun Microsystems, Inc. | Controlled impedance CMOS receiver for integrated circuit communication between circuits |
US6693450B1 (en) * | 2000-09-29 | 2004-02-17 | Intel Corporation | Dynamic swing voltage adjustment |
US6489837B2 (en) | 2000-10-06 | 2002-12-03 | Xilinx, Inc. | Digitally controlled impedance for I/O of an integrated circuit device |
US6445245B1 (en) | 2000-10-06 | 2002-09-03 | Xilinx, Inc. | Digitally controlled impedance for I/O of an integrated circuit device |
US8515284B2 (en) | 2001-02-05 | 2013-08-20 | Finisar Corporation | Optoelectronic transceiver with multiple flag values for a respective operating condition |
DE10151745B4 (en) * | 2001-02-05 | 2006-02-09 | Samsung Electronics Co., Ltd., Suwon | An impedance matching device for a termination circuit and impedance matching method therefor |
US9184850B2 (en) | 2001-02-05 | 2015-11-10 | Finisar Corporation | Method of monitoring an optoelectronic transceiver with multiple flag values for a respective operating condition |
US6556038B2 (en) * | 2001-02-05 | 2003-04-29 | Samsung Electronics Co., Ltd. | Impedance updating apparatus of termination circuit and impedance updating method thereof |
US10291324B2 (en) | 2001-02-05 | 2019-05-14 | Finisar Corporation | Method of monitoring an optoelectronic transceiver with multiple flag values for a respective operating condition |
US9577759B2 (en) | 2001-02-05 | 2017-02-21 | Finisar Corporation | Method of monitoring an optoelectronic transceiver with multiple flag values for a respective operating condition |
US8849123B2 (en) | 2001-02-05 | 2014-09-30 | Finisar Corporation | Method of monitoring an optoelectronic transceiver with multiple flag values for a respective operating condition |
US8086100B2 (en) | 2001-02-05 | 2011-12-27 | Finisar Corporation | Optoelectronic transceiver with digital diagnostics |
US6437610B1 (en) * | 2001-02-15 | 2002-08-20 | Infineon Technologies Ag | High-speed output driver |
US6774678B2 (en) | 2001-04-16 | 2004-08-10 | Intel Corporation | Differential cascode current mode driver |
US20030122586A1 (en) * | 2001-04-16 | 2003-07-03 | Intel Corporation | Differential cascode current mode driver |
US6791356B2 (en) | 2001-06-28 | 2004-09-14 | Intel Corporation | Bidirectional port with clock channel used for synchronization |
US6803790B2 (en) | 2001-06-28 | 2004-10-12 | Intel Corporation | Bidirectional port with clock channel used for synchronization |
US6801989B2 (en) | 2001-06-28 | 2004-10-05 | Micron Technology, Inc. | Method and system for adjusting the timing offset between a clock signal and respective digital signals transmitted along with that clock signal, and memory device and computer system using same |
US6563337B2 (en) * | 2001-06-28 | 2003-05-13 | Intel Corporation | Driver impedance control mechanism |
US20040080338A1 (en) * | 2001-06-28 | 2004-04-29 | Haycock Matthew B. | Bidirectional port with clock channel used for synchronization |
US7159092B2 (en) | 2001-06-28 | 2007-01-02 | Micron Technology, Inc. | Method and system for adjusting the timing offset between a clock signal and respective digital signals transmitted along with that clock signal, and memory device and computer system using same |
US6806728B2 (en) | 2001-08-15 | 2004-10-19 | Rambus, Inc. | Circuit and method for interfacing to a bus channel |
US20030189441A1 (en) * | 2001-08-15 | 2003-10-09 | Huy Nguyen | Circuit and method for interfacing to a bus channel |
US6798237B1 (en) | 2001-08-29 | 2004-09-28 | Altera Corporation | On-chip impedance matching circuit |
US7239171B1 (en) | 2001-08-29 | 2007-07-03 | Altera Corporation | Techniques for providing multiple termination impedance values to pins on an integrated circuit |
US6529037B1 (en) * | 2001-09-13 | 2003-03-04 | Intel Corporation | Voltage mode bidirectional port with data channel used for synchronization |
US6573747B2 (en) | 2001-09-28 | 2003-06-03 | Intel Corporation | Digital update scheme for adaptive impedance control of on-die input/output circuits |
US6541997B1 (en) * | 2001-10-23 | 2003-04-01 | International Business Machines Corporation | Clockless impedance controller |
US7106638B2 (en) | 2001-11-28 | 2006-09-12 | Micron Technology, Inc. | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US20050094468A1 (en) * | 2001-11-28 | 2005-05-05 | Martin Chris G. | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US6944071B2 (en) | 2001-11-28 | 2005-09-13 | Micron Technology, Inc. | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US8054703B2 (en) | 2001-11-28 | 2011-11-08 | Round Rock Research, Llc | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US20060109723A1 (en) * | 2001-11-28 | 2006-05-25 | Martin Chris G | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US7715256B2 (en) | 2001-11-28 | 2010-05-11 | Round Rock Research, Llc | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US20040184326A1 (en) * | 2001-11-28 | 2004-09-23 | Martin Chris G. | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US20060109722A1 (en) * | 2001-11-28 | 2006-05-25 | Martin Chris G | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US7187601B2 (en) | 2001-11-28 | 2007-03-06 | Micron Technology, Inc. | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US7382667B2 (en) | 2001-11-28 | 2008-06-03 | Micron Technology, Inc. | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US20100220537A1 (en) * | 2001-11-28 | 2010-09-02 | Round Rock Research, Llc | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US20050094444A1 (en) * | 2001-11-28 | 2005-05-05 | Martin Chris G. | Active termination circuit and method for controlling the impedance of external integrated circuit terminals |
US6836144B1 (en) | 2001-12-10 | 2004-12-28 | Altera Corporation | Programmable series on-chip termination impedance and impedance matching |
US6980022B1 (en) | 2001-12-11 | 2005-12-27 | Altera Corporation | Programmable termination with DC voltage level control |
US7109744B1 (en) | 2001-12-11 | 2006-09-19 | Altera Corporation | Programmable termination with DC voltage level control |
US6812734B1 (en) * | 2001-12-11 | 2004-11-02 | Altera Corporation | Programmable termination with DC voltage level control |
US6670828B2 (en) * | 2002-01-31 | 2003-12-30 | Texas Instruments Incorporated | Programmable termination for CML I/O |
US7521956B2 (en) | 2002-02-13 | 2009-04-21 | Micron Technology, Inc. | Methods and apparatus for adaptively adjusting a data receiver |
US20060255990A1 (en) * | 2002-02-13 | 2006-11-16 | Micron Technology, Inc. | Methods and apparatus for adaptively adjusting a data receiver |
US6642742B1 (en) | 2002-03-21 | 2003-11-04 | Advanced Micro Devices, Inc. | Method and apparatus for controlling output impedance |
US6639433B1 (en) * | 2002-04-18 | 2003-10-28 | Johnson Controls Technology Company | Self-configuring output circuit and method |
US6980019B2 (en) | 2002-06-28 | 2005-12-27 | Nec Electronics Corporation | Output buffer apparatus capable of adjusting output impedance in synchronization with data signal |
EP1378997A2 (en) * | 2002-06-28 | 2004-01-07 | NEC Electronics Corporation | Output buffer apparatus capable of adjusting output impedance in synchronization with data signal |
EP1378997A3 (en) * | 2002-06-28 | 2004-04-28 | NEC Electronics Corporation | Output buffer apparatus capable of adjusting output impedance in synchronization with data signal |
US20040080336A1 (en) * | 2002-06-28 | 2004-04-29 | Nec Electronics Corporation | Output buffer apparatus capable of adjusting output impedance in synchronization with data signal |
US20040000926A1 (en) * | 2002-07-01 | 2004-01-01 | Takeshi Ooshita | Impedance control circuit for controlling multiple different impedances with single control circuit |
US6815979B2 (en) * | 2002-07-01 | 2004-11-09 | Renesas Technology Corp. | Impedance control circuit for controlling multiple different impedances with single control circuit |
US6836142B2 (en) | 2002-07-12 | 2004-12-28 | Xilinx, Inc. | Asymmetric bidirectional bus implemented using an I/O device with a digitally controlled impedance |
US6963218B1 (en) | 2002-08-09 | 2005-11-08 | Xilinx, Inc. | Bi-directional interface and communication link |
US6690211B1 (en) | 2002-11-28 | 2004-02-10 | Jmicron Technology Corp. | Impedance matching circuit |
US6788100B2 (en) * | 2003-01-31 | 2004-09-07 | Blueheron Semiconductor Corporation | Resistor mirror |
US20040150420A1 (en) * | 2003-01-31 | 2004-08-05 | Alan Fiedler | Resistor mirror |
US7119549B2 (en) | 2003-02-25 | 2006-10-10 | Rambus Inc. | Output calibrator with dynamic precision |
US20040165693A1 (en) * | 2003-02-25 | 2004-08-26 | Lee Kueck Hock | Output calibrator with dynamic precision |
US7366275B2 (en) | 2003-02-25 | 2008-04-29 | Rambus Inc. | Output calibrator with dynamic precision |
US20060227927A1 (en) * | 2003-02-25 | 2006-10-12 | Lee Kueck H | Output calibrator with dynamic precision |
US8892974B2 (en) | 2003-06-12 | 2014-11-18 | Round Rock Research, Llc | Dynamic synchronization of data capture on an optical or other high speed communications link |
US7168027B2 (en) | 2003-06-12 | 2007-01-23 | Micron Technology, Inc. | Dynamic synchronization of data capture on an optical or other high speed communications link |
US8181092B2 (en) | 2003-06-12 | 2012-05-15 | Round Rock Research, Llc | Dynamic synchronization of data capture on an optical or other high speed communications link |
US6888369B1 (en) | 2003-07-17 | 2005-05-03 | Altera Corporation | Programmable on-chip differential termination impedance |
US6909305B1 (en) | 2003-08-08 | 2005-06-21 | Ami Semiconductor, Inc. | Digitally controlled impedance driver matching for wide voltage swings at input/output node and having programmable step size |
US7176710B1 (en) | 2003-08-20 | 2007-02-13 | Altera Corporation | Dynamically adjustable termination impedance control techniques |
US7064576B1 (en) | 2003-08-20 | 2006-06-20 | Altera Corporation | Techniques for reducing leakage current in on-chip impedance termination circuits |
US6888370B1 (en) | 2003-08-20 | 2005-05-03 | Altera Corporation | Dynamically adjustable termination impedance control techniques |
US6859064B1 (en) | 2003-08-20 | 2005-02-22 | Altera Corporation | Techniques for reducing leakage current in on-chip impedance termination circuits |
US11522544B2 (en) * | 2003-09-08 | 2022-12-06 | Rambus Inc. | Calibration methods and circuits to calibrate drive current and termination impedance |
US7234070B2 (en) | 2003-10-27 | 2007-06-19 | Micron Technology, Inc. | System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding |
US7461286B2 (en) | 2003-10-27 | 2008-12-02 | Micron Technology, Inc. | System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding |
US20050088199A1 (en) * | 2003-10-28 | 2005-04-28 | Bales Tim J. | Mos linear region impedance curvature correction |
US7579862B2 (en) | 2003-10-28 | 2009-08-25 | Micron Technology, Inc. | MOS linear region impedance curvature correction |
US20080061820A1 (en) * | 2003-10-28 | 2008-03-13 | Bales Tim J | MOS linear region impedance curvature correction |
US20080106298A1 (en) * | 2003-10-28 | 2008-05-08 | Bales Tim J | MOS linear region impedance curvature correction |
US7282948B2 (en) * | 2003-10-28 | 2007-10-16 | Micron Technology, Inc. | MOS linear region impedance curvature correction |
US7403033B2 (en) | 2003-10-28 | 2008-07-22 | Micron Technology, Inc. | MOS linear region impedance curvature correction |
US7236012B2 (en) * | 2003-11-17 | 2007-06-26 | Samsung Electronics Co., Ltd. | Data output driver that controls slew rate of output signal according to bit organization |
US20050105294A1 (en) * | 2003-11-17 | 2005-05-19 | Cho Geun-Hee | Data output driver that controls slew rate of output signal according to bit organization |
US7936181B2 (en) | 2003-12-01 | 2011-05-03 | Round Rock Research, Llc | Method and circuit for off chip driver control, and memory device using same |
US20090091350A1 (en) * | 2003-12-01 | 2009-04-09 | Micron Technology, Inc. | Method and circuit for off chip driver control, and memory device using same |
US7019553B2 (en) | 2003-12-01 | 2006-03-28 | Micron Technology, Inc. | Method and circuit for off chip driver control, and memory device using same |
US20050116736A1 (en) * | 2003-12-01 | 2005-06-02 | Blodgett Greg A. | Method and circuit for off chip driver control, and memory device using same |
US7463052B2 (en) | 2003-12-01 | 2008-12-09 | Micron Technology, Inc. | Method and circuit for off chip driver control, and memory device using same |
US20060125516A1 (en) * | 2003-12-01 | 2006-06-15 | Blodgett Greg A | Method and circuit for off chip driver control, and memory device using same |
US7081842B2 (en) | 2003-12-10 | 2006-07-25 | International Business Machines Corporation | Electronic component value trimming systems |
US20050127947A1 (en) * | 2003-12-10 | 2005-06-16 | Arnold Barry J. | Output buffer slew rate control using clock signal |
US7202702B2 (en) * | 2003-12-10 | 2007-04-10 | Hewlett-Packard Development Company, L.P. | Output buffer slew rate control using clock signal |
US20050127978A1 (en) * | 2003-12-10 | 2005-06-16 | Cranford Hayden C.Jr. | Electronic component value trimming systems |
US20070115026A1 (en) * | 2003-12-23 | 2007-05-24 | Rohini Krishnan | Load-aware circuit arrangement |
US7741866B2 (en) * | 2003-12-23 | 2010-06-22 | Nxp B.V. | Load-aware circuit arrangement |
US7248636B2 (en) | 2004-04-20 | 2007-07-24 | Hewlett-Packard Development Company, L.P. | Systems and methods for adjusting an output driver |
US20050233701A1 (en) * | 2004-04-20 | 2005-10-20 | Martinez Boris N | Systems and methods for adjusting an output driver |
US20050253744A1 (en) * | 2004-05-13 | 2005-11-17 | Johnson Controls Technology Company | Configurable output circuit and method |
US7961000B1 (en) * | 2004-09-01 | 2011-06-14 | Cypress Semiconductor Corporation | Impedance matching circuit and method |
US7221193B1 (en) | 2005-01-20 | 2007-05-22 | Altera Corporation | On-chip termination with calibrated driver strength |
US7218155B1 (en) | 2005-01-20 | 2007-05-15 | Altera Corporation | Techniques for controlling on-chip termination resistance using voltage range detection |
US7369443B2 (en) * | 2005-02-17 | 2008-05-06 | Fujitsu Limited | Semiconductor device with adjustable signal drive power |
US20060181312A1 (en) * | 2005-02-17 | 2006-08-17 | Fujitsu Limited | Semiconductor device with adjustable signal drive power |
US7280410B2 (en) | 2005-02-18 | 2007-10-09 | Micron Technology, Inc. | System and method for mode register control of data bus operating mode and impedance |
US7215579B2 (en) | 2005-02-18 | 2007-05-08 | Micron Technology, Inc. | System and method for mode register control of data bus operating mode and impedance |
US20070036006A1 (en) * | 2005-02-18 | 2007-02-15 | Janzen Jeffrey W | System and method for mode register control of data bus operating mode and impedance |
US20060187740A1 (en) * | 2005-02-18 | 2006-08-24 | Micron Technology, Inc. | System and method for mode register control of data bus operating mode and impedance |
US20090160479A1 (en) * | 2005-02-24 | 2009-06-25 | Klaus Lange | Transceiver Having an Adjustable Terminating Network for a Control Device |
US7746097B2 (en) | 2005-02-24 | 2010-06-29 | Volkswagen Ag | Transceiver having an adjustable terminating network for a control device |
DE102005031904B4 (en) * | 2005-03-02 | 2011-08-18 | Hynix Semiconductor Inc., Kyonggi | Output driver for a semiconductor device |
US7057397B1 (en) * | 2005-03-03 | 2006-06-06 | Lattice Semiconductor Corporation | Output impedance measurement techniques |
WO2006096366A1 (en) * | 2005-03-03 | 2006-09-14 | Lattice Semiconductor Corporation | Output impedance measurement techniques |
US20060220707A1 (en) * | 2005-03-31 | 2006-10-05 | Hynix Semiconductor Inc. | Output driver for semiconductor device |
US7679397B1 (en) | 2005-08-05 | 2010-03-16 | Altera Corporation | Techniques for precision biasing output driver for a calibrated on-chip termination circuit |
CN1980057B (en) * | 2005-12-01 | 2011-10-26 | 瑞昱半导体股份有限公司 | Impedance matching device for output drive circuit |
US20070139123A1 (en) * | 2005-12-01 | 2007-06-21 | Jian Liu | Apparatus of Impedance Matching for Output Driver and Method Thereof |
US7696775B2 (en) * | 2005-12-01 | 2010-04-13 | Realtek Semiconductor Corp. | Apparatus of impedance matching for output driver and method thereof |
US20070176649A1 (en) * | 2006-01-05 | 2007-08-02 | Infineon Technologies Ag | Circuit for differential signals |
US7474135B2 (en) * | 2006-01-05 | 2009-01-06 | Infineon Technologies Ag | Circuit for differential signals |
US7999568B1 (en) | 2006-02-18 | 2011-08-16 | Altera Corporation | Techniques for serially transmitting on-chip termination control signals |
US7391229B1 (en) | 2006-02-18 | 2008-06-24 | Altera Corporation | Techniques for serially transmitting on-chip termination control signals |
US7420386B2 (en) | 2006-04-06 | 2008-09-02 | Altera Corporation | Techniques for providing flexible on-chip termination control on integrated circuits |
US20070252624A1 (en) * | 2006-04-28 | 2007-11-01 | Young-Soo Sohn | Output driver having pre-emphasis capability |
US20090231040A1 (en) * | 2006-04-28 | 2009-09-17 | Samsung Electronics Co., Ltd. | Output driver having pre-emphasis capability |
US7825682B1 (en) | 2006-08-05 | 2010-11-02 | Altera Corporation | Techniques for providing adjustable on-chip termination impedance |
US7417452B1 (en) | 2006-08-05 | 2008-08-26 | Altera Corporation | Techniques for providing adjustable on-chip termination impedance |
US20080297193A1 (en) * | 2006-08-22 | 2008-12-04 | Altera Corporation | Techniques for Providing Calibrated On-Chip Termination Impedance |
US7423450B2 (en) | 2006-08-22 | 2008-09-09 | Altera Corporation | Techniques for providing calibrated on-chip termination impedance |
US7719309B2 (en) | 2006-08-22 | 2010-05-18 | Altera Corporation | Techniques for providing calibrated on-chip termination impedance |
US8004308B2 (en) | 2006-08-22 | 2011-08-23 | Altera Corporation | Techniques for providing calibrated on-chip termination impedance |
US20080061818A1 (en) * | 2006-08-22 | 2008-03-13 | Altera Corporation | Techniques For Providing Calibrated On-Chip Termination Impedance |
US8698520B2 (en) * | 2006-11-03 | 2014-04-15 | Micron Technology, Inc. | Output slew rate control |
US20080122478A1 (en) * | 2006-11-03 | 2008-05-29 | Micron Technology, Inc. | Output slew rate control |
US9231572B2 (en) | 2006-11-03 | 2016-01-05 | Micron Technology, Inc. | Output slew rate control |
US20120169381A1 (en) * | 2006-11-03 | 2012-07-05 | Micron Technology, Inc. | Output slew rate control |
US20080122510A1 (en) * | 2006-11-03 | 2008-05-29 | Micron Technology, Inc. | Output slew rate control |
US7656209B2 (en) | 2006-11-03 | 2010-02-02 | Micron Technology, Inc. | Output slew rate control |
US7902875B2 (en) * | 2006-11-03 | 2011-03-08 | Micron Technology, Inc. | Output slew rate control |
US20080122511A1 (en) * | 2006-11-03 | 2008-05-29 | Micron Technology, Inc. | Output slew rate control |
US7646229B2 (en) | 2006-11-03 | 2010-01-12 | Micron Technology, Inc. | Method of output slew rate control |
US20080123771A1 (en) * | 2006-11-08 | 2008-05-29 | International Business Machines Corporation | Systems and Arrangements for Controlling an Impedance on a Transmission Path |
US20080143393A1 (en) * | 2006-12-15 | 2008-06-19 | Yi-Lin Chen | Output signal driving circuit and method thereof |
US20080290908A1 (en) * | 2007-05-23 | 2008-11-27 | International Business Machines Corporation | Variable Power Write Driver Circuit |
US7688536B2 (en) | 2007-05-23 | 2010-03-30 | International Business Machines Corporation | Variable power write driver circuit |
US8847623B2 (en) | 2007-06-08 | 2014-09-30 | Conversant Intellectual Property Management Inc. | Dynamic impedance control for input/output buffers |
US20110043246A1 (en) * | 2007-06-08 | 2011-02-24 | Mosaid Technologies Incorporated | Dynamic impedance control for input/output buffers |
US20080303546A1 (en) * | 2007-06-08 | 2008-12-11 | Mosaid Technologies Incorporated | Dynamic impedance control for input/output buffers |
US8035413B2 (en) | 2007-06-08 | 2011-10-11 | Mosaid Technologies Incorporated | Dynamic impedance control for input/output buffers |
US7834654B2 (en) | 2007-06-08 | 2010-11-16 | Mosaid Technologies Incorporated | Dynamic impedance control for input/output buffers |
US8896351B2 (en) | 2008-03-19 | 2014-11-25 | Lantiq Deutschland Gmbh | Line driver method and apparatus |
US20090237122A1 (en) * | 2008-03-19 | 2009-09-24 | Infineon Technologies Ag | Line Driver Method and Apparatus |
US7443194B1 (en) | 2008-04-24 | 2008-10-28 | International Business Machines Corporation | I/O driver for integrated circuit with output impedance control |
US8149014B2 (en) | 2008-04-24 | 2012-04-03 | International Business Machines Corporation | I/O driver for integrated circuit with output impedance control |
US20100014202A1 (en) * | 2008-07-17 | 2010-01-21 | Ralf Forster | Control Circuit for a Power Field-Effect Transistor and Method for Configuring a Control Circuit for a Power Field-Effect Transistor |
US7924065B2 (en) * | 2008-07-17 | 2011-04-12 | Continental Automotive Gmbh | Control circuit for a power field-effect transistor and method for configuring a control circuit for a power field-effect transistor |
US20100026393A1 (en) * | 2008-07-30 | 2010-02-04 | Qualcomm Incorporated | Driver amplifier having a programmable output impedance adjustment circuit |
US8170505B2 (en) * | 2008-07-30 | 2012-05-01 | Qualcomm Incorporated | Driver amplifier having a programmable output impedance adjustment circuit |
US8866513B2 (en) | 2008-12-19 | 2014-10-21 | Infineon Technologies Austria Ag | Circuit arrangement and method for generating a drive signal for a transistor |
US9112497B2 (en) | 2008-12-19 | 2015-08-18 | Infineon Technologies Austria Ag | Circuit arrangement and method for generating a drive signal for a transistor |
US20100156505A1 (en) * | 2008-12-19 | 2010-06-24 | Infineon Technologies Austria Ag | Circuit arrangement and method for generating a drive signal for a transistor |
US8258820B2 (en) * | 2008-12-19 | 2012-09-04 | Infineon Technologies Austria Ag | Circuit arrangement and method for generating a drive signal for a transistor |
US9531369B2 (en) | 2008-12-19 | 2016-12-27 | Infineon Technologies Austria Ag | Circuit arrangement and method for generating a drive signal for a transistor |
US20100164471A1 (en) * | 2008-12-30 | 2010-07-01 | M2000 | Calibration of programmable i/o components using a virtual variable external resistor |
US20110019760A1 (en) * | 2009-07-21 | 2011-01-27 | Rambus Inc. | Methods and Systems for Reducing Supply and Termination Noise |
US8829945B2 (en) * | 2011-07-05 | 2014-09-09 | Silicon Laboratories Inc. | Circuit and method for dynamic biasing of an output stage |
US20130009689A1 (en) * | 2011-07-05 | 2013-01-10 | Paulo Santos | Circuit and Method For Dynamic Biasing of an Output Stage |
US9184748B2 (en) | 2011-12-30 | 2015-11-10 | Stmicroelectronics International N.V. | Adaptive buffer |
US8766663B2 (en) | 2012-06-18 | 2014-07-01 | International Business Machines Corporation | Implementing linearly weighted thermal coded I/O driver output stage calibration |
US9525571B2 (en) | 2013-03-05 | 2016-12-20 | Lattice Semiconductor Corporation | Calibration of single-ended high-speed interfaces |
US9276780B2 (en) * | 2013-03-05 | 2016-03-01 | Lattice Semiconductor Corporation | Calibration of single-ended high-speed interfaces |
US20140253207A1 (en) * | 2013-03-05 | 2014-09-11 | Silicon Image, Inc. | Calibration of Single-Ended High-Speed Interfaces |
US20150347341A1 (en) * | 2014-05-30 | 2015-12-03 | Luke A. Johnson | Apparatus for providing a shared reference device |
US9768780B2 (en) * | 2014-05-30 | 2017-09-19 | Intel Corporation | Apparatus for providing shared reference device with metal line formed from metal layer with lower resistivity compared to other metal layers in processor |
US10158362B2 (en) * | 2014-05-30 | 2018-12-18 | Intel Corporation | Apparatus for providing shared reference device wherein an internal device is calibrated using reference device via calibrated circuit |
US20160105181A1 (en) * | 2014-10-13 | 2016-04-14 | International Business Machines Corporation | Receiving an i/o signal in multiple voltage domains |
US9473141B2 (en) * | 2014-10-13 | 2016-10-18 | Globalfoundries Inc. | Receiving an I/O signal in multiple voltage domains |
US20160105180A1 (en) * | 2014-10-13 | 2016-04-14 | International Business Machines Corporation | Receiving an i/o signal in multiple voltage domains |
US9548734B1 (en) * | 2015-12-26 | 2017-01-17 | Intel Corporation | Smart impedance matching for high-speed I/O |
CN108604891A (en) * | 2015-12-26 | 2018-09-28 | 英特尔公司 | Intelligent impedance matching for High Speed I/O |
US10756737B1 (en) * | 2019-09-24 | 2020-08-25 | Nanya Technology Corporation | Off chip driver circuit, off chip driver compensation system and signal compensation method |
TWI722804B (en) * | 2019-09-24 | 2021-03-21 | 南亞科技股份有限公司 | Driver, off chip driver circuit, off chip driver compensation system and signal compensation method |
CN112634953A (en) * | 2019-09-24 | 2021-04-09 | 南亚科技股份有限公司 | Driver, off-chip driving circuit, compensation system and signal compensation method thereof |
CN112634953B (en) * | 2019-09-24 | 2023-12-08 | 南亚科技股份有限公司 | Driver, off-chip driving circuit, compensation system thereof and signal compensation method |
US10998904B1 (en) * | 2019-11-15 | 2021-05-04 | Xilinx, Inc. | Programmable termination circuits for programmable devices |
US11190188B2 (en) * | 2019-12-12 | 2021-11-30 | Electronics And Telecommunications Research Institute | Memory interface circuit including output impedance monitor and method of calibrating output impedance thereof |
US11316512B2 (en) * | 2020-08-05 | 2022-04-26 | Nanya Technology Corporation | Off chip driving system and signal compensation method |
WO2023250313A3 (en) * | 2022-06-22 | 2024-02-01 | Rambus Inc. | A high-speed, low-power, and area-efficient transmitter |
Also Published As
Publication number | Publication date |
---|---|
EP0463316A1 (en) | 1992-01-02 |
DE69120606T2 (en) | 1997-01-23 |
DE69120606D1 (en) | 1996-08-08 |
JP2700042B2 (en) | 1998-01-19 |
JPH06260922A (en) | 1994-09-16 |
EP0463316B1 (en) | 1996-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5134311A (en) | Self-adjusting impedance matching driver | |
US7091761B2 (en) | Impedance controlled output driver | |
US5732027A (en) | Memory having selectable output strength | |
EP1345327B1 (en) | Semiconductor integrated circuit with input/output interface adapted for small-amplitude operation | |
JP4916699B2 (en) | ZQ calibration circuit and semiconductor device including the same | |
KR100381987B1 (en) | Binary weighted reference circuit for a variable impedance output buffer | |
US5606275A (en) | Buffer circuit having variable output impedance | |
US6963218B1 (en) | Bi-directional interface and communication link | |
US7595645B2 (en) | Calibration circuit and semiconductor device incorporating the same | |
EP2242180B1 (en) | Resistance compensation method, circuit having a resistance compensation function, and circuit resistance test method | |
US5739715A (en) | Digital signal driver circuit having a high slew rate | |
KR100410978B1 (en) | Impedance matching circuit of a semiconductor memory device | |
US7368951B2 (en) | Data transmission circuit and data transmission method with two transmission modes | |
US6624655B2 (en) | Method and apparatus for dynamically controlling the performance of buffers under different performance conditions | |
JPH0514167A (en) | Output driver circuit | |
US5594377A (en) | Delay circuit for a write data precompensator system | |
US6922076B2 (en) | Scalable termination | |
US5159210A (en) | Line precharging circuits and methods | |
JPH08288821A (en) | Output driver with programmable driving characteristic | |
US7279924B1 (en) | Equalization circuit cells with higher-order response characteristics | |
US11296702B1 (en) | Signal transmission circuit of a semiconductor device | |
KR100559035B1 (en) | Off chip driver and data output circiut using the same | |
JPH03283814A (en) | Output circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BIBER, ALICE I.;STOUT, DOUGLAS W.;REEL/FRAME:005344/0981;SIGNING DATES FROM 19900604 TO 19900607 |
|
AS | Assignment |
Owner name: MILAN JANKOVIC, MONACO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARTOSSI S.R.L.;REEL/FRAME:007732/0268 Effective date: 19951109 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Expired due to failure to pay maintenance fee |
Effective date: 20040728 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |