US4508872A - High toughness propylene polymer compositions - Google Patents
High toughness propylene polymer compositions Download PDFInfo
- Publication number
- US4508872A US4508872A US06/582,417 US58241784A US4508872A US 4508872 A US4508872 A US 4508872A US 58241784 A US58241784 A US 58241784A US 4508872 A US4508872 A US 4508872A
- Authority
- US
- United States
- Prior art keywords
- composition according
- propylene
- ethylene
- peroxide
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
- C08L2023/40—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds changing molecular weight
- C08L2023/42—Depolymerisation, vis-breaking or degradation
Definitions
- This invention relates to modified propylene polymer compositions of improved flow and impact resistance. More particularly, the invention relates to blends of sequentially polymerized propylene copolymers with high density ethylene homopolymers and linear low density ethylene copolymers and the visbreaking of these blends to higher flow products.
- Polypropylene is a well known commercial polymer, used for a variety of products such as packaging films and extruded and molded shapes. It is produced by polymerization of propylene over transition metal coordination catalysts, specifically titanium halide containing catalysts. Commercial polypropylene is deficient in resistance to impact at low temperatures, i.e., 0° C. and below. It is known that incorporation of some elastomers, particularly elastomeric copolymers of ethylene and propylene, improves the low temperature impact resistance of polypropylene.
- One method of incorporating elastomeric ethylene-propylene copolymers into polypropylene is by sequential polymerization of propylene and ethylene-propylene mixtures.
- propylene homopolymer is formed in one stage and the copolymer is formed in a separate stage, in the presence of the homopolymer and of the original catalyst.
- Mutiple stage processes of this type are also known.
- Products of such sequential polymerization processes are sometimes referred to as "block copolymers" but it is now understood that such products may rather be intimate blends of polypropylene and ethylene-propylene elastomer.
- the products of such sequential polymerization of propylene and ethylene-propylene mixtures are, referred to herein as sequentially polymerized propylene-ethylene copolymers or as in-situ produced copolymers.
- sequentially polymerized propylene-ethylene copolymers or as in-situ produced copolymers.
- the total copolymer composition is referred to as impact-improved propylene-ethylene copolymer which has a specified content of an elastomeric ethylene-propylene copolymer fraction and which is the product of sequential polymerization of propylene and a propylene-ethylene mixture.
- Such blends have good impact resistance without excessive loss of stiffness. While such blends are useful in applications requiring high impact resistance, there are applications that require improved flow performance and fabricating performance. It is known by those familiar with the manufacture of propylene polymers that production of high flow polymers in the reactor may be difficult due to chain transfer limitations, and the products thereof may suffer embrittlement. Visbreaking in extrusion equipment provides an alternative route to high flow without these adverse effects. Accordingly, we have now discovered a new composition that has such improved flow performance as obtained through visbreaking with peroxide, along with retention of substantial impact resistance.
- the present invention deals with compositions having not only excellent flow characteristics, but also possessing excellent impact strengths (especially at low temperature) along with ease of manufacture. Specifically, the present invention deals with compositions having melt flows between about 5 and about 50 dg/min (ASTM D1238-Condition L), and high impact values, said compositions being obtained by peroxide-contacting the blend of 50-90% by weight of an impact-modified propylene polymer, 3 to 45% by weight of a high density ethylene homopolymer and 3 to 45% by weight of a linear low density ethylene copolymer, wherein:
- said impact-modified propylene polymer has a melt flow (ASTM D1238-Condition L) of about 0.5-15 dg/min and an elastomeric propylene-ethylene copolymer content of 5-50% by weight, the copolymer fraction having an ethylene content of 30-95% by weight, which copolymer fraction is the product of an essentially random polymerization of a propylene-ethylene mixture over a titanium halide-containing coordination catalyst;
- said high density ethylene homopolymer has a density in the range from 0.941 to 0.965 g/cc and a melt index (ASTM D1238 Cond. E) in the range from 0 to 20 dg/min;
- said linear low density ethylene copolymer is the product of random polymerization of ethylene with up to 15 mole percent of at least one C 3 -C 8 alpha olefin monomer over a transition metal-based coordination catalyst and which has a density in the range from 0.912 and 0.935 g/cc and a melt index (ASTM D-1238-Condition E) not exceeding 16; and
- the weight ratio of high density ethylene homopolymer to linear low density ethylene copolymer is between 80:20 and 20:80.
- the impact-modified propylene copolymer is peroxide-contacted (visbroken) separately, and the high density ethylene homopolymer and linear low density ethylene copolymer are melt blended with the visbroken propylene copolymer.
- the present invention also contemplates compositions obtained by first peroxide-contacting an impact-modified propylene polymer and then mixing the resulting visbroken propylene polymer with a linear low density ethylene copolymer and a high density ethylene homopolymer, wherein:
- said impact-modified propylene polymer has a melt flow of (ASTM D1238-Condition L) of about 0.5-15 dg/min and an elastomeric propylene-ethylene coolymer content of 5-50% by weight, the copolymer fraction having an ethylene content of 30-95% by weight, which copolymer fraction is the product of an essentially random polymerization of a propylene-ethylene mixture over a titanium halide-containing coordination catalyst;
- said high density ethylene homopolymer has a density in the range from 0.941 to 0.965 grams per cubic centimeter and a melt index (ASTM D1238-Condition E) in the range from 0 to 20 dg/min;
- said linear low density ethylene copolymer is the product of random polymerization of ethylene with up to 15 mole percent of at least one C 3 -C 8 alpha olefin monomer over a transition metal-based coordination catalyst and which has a density in the range from 0.912 to 0.935 and a melt index (ASTM D1238-Condition E) not exceeding 16; and
- said composition comprises 50-90% by weight of said impact-modified propylene polymer, 3-45% by weight of said high density ethylene homopolymer, 3-45% by weight of said linear low density ethylene copolymer, wherein the weight ratio of said high density ethylene homopolymer to said linear low density ethylene copolymer is between 80:20 and 20:80.
- said LLDPE and HDPE to be used in combination for impact modification may be pre-combined by melt mixing, physical blending, or through slurry mixing within a process train so designed as to make both types of polyethylene independently.
- the HDPE and LLDPE may be separately added to the impact-modified propylene copolymer as one chooses in melt compounding equipment, including that used for final product fabrication.
- compositions according to this invention have unexpectedly high notched impact strength.
- the significance of improved notched impact strength lies in expectations for improved toughness for a variety of molded parts having sharp radii, grained or grooved/ribbed surfaces, etc.
- a notch resistant PP should open doors to greater part design flexibility.
- This invention is directed to modified polypropylene polymer molding compositions which provide good low temperature impact resistance and high flow characteristics at acceptable levels of stiffness in extruded or injection molded articles.
- Impact resistance may be measured by a variety of methods.
- a frequently employed method is the notched Izod impact test (ASTM D-256).
- ASTM D-256 the generally low notched impact strength of even impact-improved polypropylene has been a matter of record, and the industry has designed parts such that sharp radii and grained or grooved surfaces are generally minimized.
- falling weight impact has historically been the primary indicator of toughness, and it remains a key discriminator between materials.
- the falling weight method employed in this description is the Gardner impact test. In that method an impacting device having a 5/8 inch diameter rounded tip rests on the injection molded circular sample disk (125 mil thick) which is supported at the rim.
- the sample disk is one of a series from the same composition, which has, in this case, been cooled to -30° C.
- a weight is dropped on the impacting device from a variable measured height.
- the sample disk is replaced after each drop; the height from which the weight is dropped is varied until the breaking point of the series of disks is defined.
- the impact strength reported in units of Joules, ft-lbs or in-lbs, is the product of the mass of the dropped weight and the height of drop at which 50% of the disks resist breaking.
- the stiffness of test strips molded from various compositions is reported as the 1% secant flexural modulus, determined in a standard test (ASTM D790) performed at 0.05 inch per minute. Flexural modulus may be reported in units of megapascals (MPa) or pounds per square inch (psi).
- low temperature impact resistance of propylene homopolymers is deficient for uses where articles may be exposed to temperatures of 0° C. or below.
- low temperature impact resistance of propylene polymers is improved by blending polypropylene homopolymers with certain elastomers, particularly ethylene-propylene copolymers, or with mixtures of such elastomers with high density polyethylene, or by introducing ethylene-propylene elastomer into the propylene polymer during polymerization by a sequential polymerization process.
- impact resistance increases with increasing amounts of elastomer in the total composition.
- Impact improved propylene polymers are often referred to in the trade as “medium impact”, “high impact”, and “extra/super high impact” polypropylene. Typical ranges of properties for commercial products of this type are as follows:
- Sequentially polymerized propylene-ethylene copolymers which are improved according to this invention are materials of commerce. They may be produced by sequential polymerization of propylene and propylene-ethylene mixtures by contact with Ziegler-Natta coordination catalysts, specifically those in which the transition metal is titanium, by well known methods. Such methods are described, for example, in the literature cited above.
- the catalysts generally employed in commercial processes are combinations of a violet TiCl 3 composition with an aluminum alkyl compound such as diethyl aluminum chloride.
- Newer types of coordination catalysts such as compositions of TiCl 4 supported on magnesium chloride and modified with an electron donor, which are used with an aluminum trialkyl cocatalyst and a selectivity control agent such as an aromatic ester, may also be used to produce the sequentially polymerized copolymers.
- the sequentially polymerized propylene-ethylene copolymers should have compositions and properties in the following ranges:
- High density polyethylenes typically having densities in the range of 0.941 to 0.965 g/cc, may be produced by means of transition metal catalysts of the Ziegler-Natta type or Phillips Petroleum Company's chromia type in processes operating at relatively low pressures. They may also be referred to as low pressure polyethylenes. HDPEs are characterized by linearity and crystallinity. Minor amounts of typically butene-1 monomer may be copolymerized with the ethylene in order to improve stress crack resistance.
- Linear low-density polyethylenes which may be blended with said propylene-ethylene copolymers and high density ethylene homopolymers according to this invention are random copolymers of ethylene with 1-15 mole percent, and typically with no more than 10%, of higher alpha-olefin co-monomer, e.g., propylene, n-butene-1, n-hexene-1, n-octene-1 or 4-methylpentene-1, produced over transition metal coordination catalysts. As shown in the examples which follow, a much preferred comonomer is 1-butene. Such polymers are commercially available. Commercial products generally are produced in liquid phase or vapor phase polymerization processes. LLDPE polymers suitable for use in this invention should have properties in the following ranges:
- blended compositions of this invention contain sequentially polymerized propylene-ethylene copolymer, high density ethylene homopolymer (HDPE) and LLDPE in the following proportions:
- the proportions of components as well as the properties of the blended components may be selected to provide the best balance of properties and cost for any particular intended use. In some cases a lower performance level may be relatively satisfactory and may be commercially preferred if it can be achieved at a lower cost. Generally, the cost of LLDPE and HDPE is lower than that of sequentially polymerized propylene-ethylene copolymer.
- the weight ratio should be between 80:20 and 20:80, and the best ratio is at about 30% HDPE-70% LLDPE. This weight ratio is important because it relates to notched Izod toughness.
- a critical aspect of the present invention is the visbreaking or peroxide reacting of the components in an extruder.
- Peroxide-reacting or peroxide-contacting refers to the process of contacting the polymer blend or individual components (impact propylene-ethylene sequential copolymer, HDPE and LLDPE) in an extruder in the presence of a small but effective amount of a free-radical initiator (i.e., a peroxide).
- Standard techniques for the peroxide cracking of polymers in an extruder are well known and include the processes disclosed in U.S. Pat. No. 3,144,436 and U.S. Pat. No. 3,887,534.
- Preferred peroxides are those which have relatively high decomposition temperatures and produce volatile decomposition products, the latter being relatively non-toxic and with minimal residual odor.
- the peroxide of choice is 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane (PX-1).
- Other peroxides of interest include those which have half-lives of decomposition of the order of seconds at the reaction temperature (about 230° C.) but which are safely stable at storage and ambient temperatures.
- Decomposition products should preferably be volatile and relatively non-toxic. Many peroxides fit this category and choice is determined by economic considerations and physical form of the peroxide relative to efficiency of utilization.
- dialkyl peroxides are dialkyl peroxides but are not limited to this class. Specific examples are dicumyl peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide and 2,5,dimethyl-2,5-bis(t-butylperoxy)hexyne-3.
- the amount of peroxide and the cracking temperature depend upon the melt flows of the starting polymers and the desired melt flow of the final composition. If desired, the peroxide may be added in a masterbatch with mineral oil or other polymer.
- Typical amounts of peroxide are between about 150 parts by weight per million parts by weight total polymer (ppmw) and about 1000 ppmw, preferably between about 400 ppmw and about 700 ppmw.
- Typical cracking temperatures are between about 190° C. and about 260° C., preferably between about 220° C. and about 240° C.
- the order in which the components are mixed and contacted with the peroxide are important considerations in achieving the desired properties. As mentioned earlier, the best property balances are obtained when the propylene copolymer is visbroken separately, and the HDPE and LLDPE are then melt blended with the visbroken propylene copolymer. Depending on the peroxide used, its addition point, and the melt compounding temperatures, the desired separation of processes might be achieved in one melt compounding machine, having for example two feed and melt compounding sections. Good properties may also be obtained by pre-dispersion of the polyethylenes in a first melt compounding step followed by a second melt compounding step wherein the peroxide treatment takes place. It is again understood that this sequence of melt compounding steps could be effected in one suitably equipped melt compounding machine.
- the peroxide can also be included in a melt compounding step in which the HDPE and LLDPE are pre-mixed to form a masterbatch.
- Crosslinking rather than visbreaking, is then the major chemical transformation. Notched Izod impact of the product of melt compounding the masterbatch with the propylene copolymer is improved relative to compositions wherein the masterbatch is not crosslinked.
- compositions of this invention may of course contain stabilizers and additives conventionally employed in similar polyolefin compositions, such as antioxidants, stabilizers against actinic radiation, antistatic additives, crystallinity nucleating agents, pigments and mineral fillers.
- stabilizers and additives conventionally employed in similar polyolefin compositions, such as antioxidants, stabilizers against actinic radiation, antistatic additives, crystallinity nucleating agents, pigments and mineral fillers.
- nucleation is a process well known in the art. See, e.g., U.S. Pat. No. 3,207,739 and 3,268,499, which are herein incorporated by reference.
- Acceptable nucleating agents include metal benzoates and alkyl substituted metal benzoates. Specific nucleating agents include sodium benzoate, aluminum benzoate, lithium benzoate, and magnesium benzoate, with sodium benzoate being most preferred.
- the amount of nucleating agent employed where desired is between about 0.1 and 5.0 percent by weight of the total composition, preferably between 0.3 and 2.0 percent by weight.
- compositions of the invention are suitable for the same uses as the commercially used impact-improved polypropylenes, e.g., for automobile trim parts, battery containers, tote boxes, crates, bottles, appliance parts and the like.
- the LLDPE grades compared in this example were PE-1 and PE-2.
- Materials 5-7 show that good impact strength is retained on visbreaking the composition with PE-1 (butene-1 co-monomer) to ca 18 dg/min.
- Materials 8 and 9 show that PE-2 (octene-1 co-monomer) is a less effective impact modifier for visbroken compositions.
- the visbroken base copolymer Gardner impact result (ca-30° C.) is a factor of 3 or more greater (material 15); hence, the visbroken LLDPE blend compositions gave correspondingly high Gardner toughness values.
- Illustrative Embodiment #1 shows the remarkable notched toughness obtained with compositions according to the present invention.
- the polyethylene modifiers for this embodiment were prepared by extruding dry mixtures of appropriate compositions on a 1-inch Killion extruder (500° F.; ca. 1800 psi back pressure). These pelletized modifiers were then let-down at 15 or 20%w in the PP-4 base copolymer. Table 5 includes results of testing these formulations, including those for which peroxide was added in either masterbatching (Nos. 3, 4) or in final product cracking (Nos. 5, 6).
- Base copolymer properties can affect the overall property envelope, with copolymer rubber content (F c ) and melt flow being most critical. Property improvements are seen with increasing F c and decreasing melt flow.
- the base copolymer used (PP-4) had an F c of 15%w and a melt flow of 4.2 dg/min.
- polyethylene selection also appears important, and lower melt index polyethylenes such as those used in this work are considered best based on available data.
- Illustrative Embodiment #2 shows the advantages of visbreaking the propylene copolymer separately, and then blending the visbroken propylene copolymer with the HDPE and LLDPE. All compositions to be discussed in this example contained PP-4 as base copolymer. For two-step compounding, the modifiers were pre-extruded, and were then let-down at a prescribed level (e.g. 20%w) in the precracked base copolymer with a 1-inch Killion extruder.
- PP-4 base copolymer
- Co-cracking generally involved dry mixing all the blend components, including peroxide, and then extruder cracking the mixture under conditions similar to those used for final product formation in the two-step procedure (ca 450° F.; ca 100 rpm; ca 400-500 psi back pressure).
- the product hybrid containing high density and linear low density polyethylene was itself cracked in a second melt compounding step using similar extrusion conditions.
- Table 6 contains all formulation information as well as the results of testing. All mechanical properties were obtained on injection molded specimens. For the key comparisons (Nos. 1-3) between one-step and two-step compounding, compositionally identical formulations were used, including the amount of dialkyl peroxide concentrate (2%w basis the final product).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
______________________________________ Medium Extra/Super Property Impact High Impact High Impact ______________________________________ 1% Secant flexural 1000-1430 800-1200 700-1100 modulus, MPa Impact Strength (125 mil disks) Gardner at -30° C., J 1-15 15-30 30-45 Izod, notched, 60-100 100-300 300-No break at 23° C., J/m ______________________________________
______________________________________ Suitable Preferred Best ______________________________________ Homopolymer, % Weight 50-95 80-95 85-92 Ethylene-Propylene Copolymer, 50-5 20-5 15-8 % Weight Ethylene Content of Copolymer 30-95 40-70 45-65 Fraction, % Weight Melt Flow, dg/min .5-15 .5-15 .5-15 ______________________________________
______________________________________ Suitable Preferred Best ______________________________________ Melt Index, dg/min 1-16 1-12 1-7 (ASTM D1238 Cond. E) Density, g/cc 0.912-0.935 0.917-0.935 0.917-0.925 Tensile Properties (ASTM D638) Yield, MPa 8-17 8-15 8-12 Break, MPa 8-25 10-25 15-25 Elongation at Break, % 100-1200 400-1200 600-1200 Brittleness Temp., °C. < -80 < -80 < -80 ______________________________________
______________________________________ Suitable Preferred Best ______________________________________ Copolymer % w 50-90 70-90 75-85 HDPE % w 3-45 3-25 5-20 LLDPE % w 3-45 3-25 5-20 ______________________________________
TABLE 1 ______________________________________ Ethylene Copolymer Content of Melt Flow, dg/min Fraction, Copolymer ASTM D-1238 PP # % Fraction, % w Cond. L ______________________________________ PP-1 13 53 4.9 PP-2 14 51 3.5 PP-3 ca 14 ca 50 4.5 PP-4 15 51 4.2 ______________________________________
TABLE 2 ______________________________________ Melt Index (ASTM D-1238 Cond. E), Co-monomer Density PE # dg/min type g/cc Source ______________________________________ PE-1 1 butene-1 0.918 A PE-2 1 octene-1 0.920 B PE-3 5 butene-1 0.934 C ______________________________________ A = Exxon B = Dow C = Union Carbide
TABLE 3 __________________________________________________________________________ Blend Flexural Modulus Gardner Melt Tangent 1% Secant Impact Peroxide Material LLDPE Base Flow 0.05 in/min 0.05 in/min -30° C. Master- No. Grade % w Copolymer dg/min MPa MPa J (in-lb) batch, % w __________________________________________________________________________ 1 -- -- PP-1 4.9 1100 1055 1.8 (16.3) 0 2 -- -- .sup. PP-1.sup.a 5.2 1075 1010 1.8 (16.2) 0 3 -- -- PP-1 16.1 967 956 3.1 (21.7) 1 4 -- -- PP-1 39.9 991 961 1.9 (17.0) 3 5 PE-1 20 PP-1 6.7 899 874 30.1 (266) 0.5 6 PE-1 20 PP-1 8.4 915 877 27.0 (239) 1 7 PE-1 20 PP-1 17.8 816 790 12.8 (113) 3 8 PE-2 20 PP-1 8.2 868 848 25.4 (225) 1 9 PE-2 20 PP-1 17.9 815 788 3.6 (31.9) 3 10 PE-1 20 PP-2 3.4 981 951 29.4 (260) 0 11 PE-2 20 PP-2 4.0 999 957 27.9 (247) 0 __________________________________________________________________________ .sup.a Material No. 2 is a reextrusion of Material No. 1.
TABLE 4 __________________________________________________________________________ Properties/Samples #15 #16 #17 #18 #19 #20 #21 __________________________________________________________________________ Weight percent PE-3 0 4 8 12 16 20 24 Melt Flow; dg/min 22.0 22.1 25.8 24.8 23.3 21.5 19.7 Tensile Yield Strength @ 0.2 MPa: 24.9 23.9 21.9 21.2 20.8 21.0 19.8 in/min; psi 3610 3470 3180 3070 3020 3050 2870 1% Secant Modulus MPa: 1250 1140 1050 1020 986 965 841 @ 0.2 in/min; psi 181,000 165,000 152,000 148,000 143,000 140,000 122,000 Tensile Yield Strength @ 2.0 MPa: 27.0 25.9 25.1 24.3 23.9 23.6 22.7 in/min; psi 3910 3760 3640 3530 3460 3430 3290 Yield Elongation @ 7.3 7.3 7.7 8.4 8.6 8.6 9.7 2.0 in/min; % 1% Secant Flexural Modulus @ 0.05 MPa: 1010 993 903 883 841 807 807 in/min; psi 147,000 144,000 131,000 128,000 122,000 117,000 117,000 Heat Deflection 195 175 185 187 177 163 182 Temp. @ 66 psi; - °F. Unnotched Izod 16.7 20.1 19.3 20.7 23.0 26.9 25.9 Impact Strength @ -18° C.; ft-lb/in Gardner Impact Strength @ -18° C.; in-lb 108 170 199 177 190 209 272 @ -29° C.; in-lb 56 93 104 158 170 177 192 DIF @ -29° C.; ft-lb/in 67 142 118 148 225 206 235 Hardness, Rockwell "R" 89 85 80 78 76 72 69 Weld Line Strength.sup.a, % 8.9 7.7 6.7 5.5 5.0 4.5 3.9 __________________________________________________________________________ .sup.a Tensile elongation to break on doublegated tensile specimens teste at 5 in/min rate of strain.
TABLE 5 __________________________________________________________________________ PRODUCT DATA GARDNER PRODUCT MODIFIER IMPACT COMPOSITION.sup.a PRODUCT FLEX. MOD. (125 mil Perox. MODIFIER MELT 0.05 in/min IZOD IMPACT (NOTCHED).sup.f DISK) HDPE.sup.b LLDPE.sup.c Conc..sup.d CONTENT.sup.e FLOW MPa 23° C. 0° C. -18° C. -30° C. NO. % w % w % w % w dg/min Tan. 1% Sec. J/m J/m J/m J __________________________________________________________________________ (in-lb) 1 30.0 70.0 -- 15 3.1 1080 1030 250 (1/3 PB) 51 37 22.6 (200) 2 30.0 70.0 -- 20 2.8 1070 1000 5NB 58 39 27.1 (240) 3 29.7 69.3 1 15 2.7 1060 1010 170 (2H; 3NB) 57 37 20.0 (177) 4 29.7 69.3 1 20 2.4 1010 974 5NB 67 43 21.1 (186) 5 Composition No. 1 - Cracked.sup.g 15 10.8 867 843 204 68 38 16.0 (142) 6 Composition No. 2 - Cracked.sup.g 20 8.1 892 856 560 (5PB) 85 43 21.7 __________________________________________________________________________ (192) .sup.a Modifiers containing both HDPE and LLDPE possibly with peroxide concentrate were preextruded on a 1inch Killion extruder (500° F.; 1800 psi back pressure). Percent of each polyethylene in the modifier is shown. .sup.b Allied HDPE (density = 0.960 g/cc and melt index = 0.3 dg/min). .sup.c PE2. .sup.d LDPEbased peroxide concentrate (4.6% w active peroxide). The concentrate was added 1% w basis the polyethylene portion of the product for Nos. 3 and 4. .sup.e Modifier level in final product. .sup.f Notched Izod impact strengths were measured in accordance with AST D256, with the convention that letter symbols stand for: H = hinge break, PB = partial break, NB = nonbreak. Numbers in front of symbols stand for the number of breaks of the indicated type, i.e., the number of specimens that broke in the manner given. .sup.g The indicated hybrid products (Nos. 1 and 2) were extruded again under standard conditions in the presence of 2% w of peroxide concentrate
TABLE 6 __________________________________________________________________________ PRODUCT DATA __________________________________________________________________________ BASE PRODUCT MODIFIER PRODUCT CRACKING COPOLYMER PRODUCT Flex. Mod. COMPOSITION MODIFIER PRODUCT ROUTE.sup.a MELT MELT (0.05 in/min) HDPE LLDPE MIXING CONTENT PEROX. (STEPS DESIG- FLOW FLOW MPa NO. % w % w EQUIP. % w SOURCE w/BLEND) NATION dg/min dg/min Tan 1% __________________________________________________________________________ Sec. 1 30.sup.c 70.sup.d Ext..sup.e 20 LDPE Conc..sup.f 2 PP-5-Crk 18.2 10.8 900 857 2 30.sup.c 70.sup.d N.A..sup.g 20 LDPE Conc. 1 PP-5 4.8 8.1 980 922 .sup. 3.sup.h 30.sup.c 70.sup.d Ext. 20 LDPE Conc. 2.sup.i PP-5 4.8 8.1 892 856 4 100.sup.j -- 14 Oil Conc..sup.k 1 PP-5 4.8 16.8 923 892 5 100.sup.j -- 14 Oil Conc. 1 PP-5 4.8 30.7 923 880 6 100.sup.l -- 20 LDPE Conc. 2 PP-5-Crk 18.2 11.7 769 743 __________________________________________________________________________ TENSILE PROPERTIES PRODUCT MODIFIER (2 in/min.) IZOD IMPACT Gardner Impact COMPOSITION Yld. Yld. Brk. Brk. (Notched).sup.b (125 mil Disk) HDPE LLDPE MIXING Str. El. Str. El. 23° C. 0° C. -30° C., NO. % w % w EQUIP. MPa % MPa % J/m J/m J __________________________________________________________________________ (in-lb) 1 30.sup.c 70.sup.d Ext..sup.e 22.3 10.1 -- 70 440 68 15.8 (140) (1H; 4PB) 2 30.sup.c 70.sup.d N.A..sup.g 22.9 8.4 15.0 20 150 62 7.5 (66.5) (2/5 H) .sup. 3.sup.h 30.sup.c 70.sup.d Ext. 23.5 8.6 -- 25 560 85 21.7 (192) (5PB) 4 100.sup.j -- 23.9 8.5 16.2 58 66 43 4.5 (39.5) 5 100.sup.j -- 23.3 8.1 16.8 18 64 33 5.4 (48.1) 6 100.sup.l -- 20.8 10.4 -- ≧330 130 51 26.9 (238) __________________________________________________________________________ .sup.a The cocracking route is denoted "1" (for onestep), and the copolymer precrack followed by modifier blending is denoted "2" (for twostep). .sup.b Notched Izod impact strengths were measured in accordance with AST D256, with the convention that letter symbols stand for: H = hinge break and PB = partial break. .sup.c Allied HDPE (density = 0.960 and melt index = 0.3 dg/min). .sup.d PE2. .sup.e Modifier was preextruded on 1inch Killion before extrusion blendin with the base copolymer. .sup.f 4.6% w active peroxide. .sup.g N.A. = Not Applicable (The hybrid components were dryblended and then cocracked with peroxide during extrusion). .sup.h These data (less the tensile properties) are given as No. 6 in Table 5. .sup.i The melt compounded product of the given composition was visbroken in a second extrusion step. .sup.j PE3. .sup.k 20% w active peroxide. .sup.l PE1.
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/582,417 US4508872A (en) | 1984-02-22 | 1984-02-22 | High toughness propylene polymer compositions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/582,417 US4508872A (en) | 1984-02-22 | 1984-02-22 | High toughness propylene polymer compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US4508872A true US4508872A (en) | 1985-04-02 |
Family
ID=24329068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/582,417 Expired - Lifetime US4508872A (en) | 1984-02-22 | 1984-02-22 | High toughness propylene polymer compositions |
Country Status (1)
Country | Link |
---|---|
US (1) | US4508872A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4614764A (en) * | 1985-03-06 | 1986-09-30 | Mobil Oil Corporation | Linear low density ethylene polymers blended with modified linear low density ethylene polymers |
US4801637A (en) * | 1986-06-18 | 1989-01-31 | Shell Oil Company | Nucleation process for inducing crystallization in poly(alpha olefins) |
US5258464A (en) * | 1990-01-29 | 1993-11-02 | Shell Oil Company | Impact copolymer compositions |
US5270369A (en) * | 1992-10-21 | 1993-12-14 | Phillips Petroleum Company | Additive to improve polymer clarity and viscosity |
US5362782A (en) * | 1990-05-14 | 1994-11-08 | Shell Oil Company | Polymer compositions |
US5639818A (en) * | 1994-03-11 | 1997-06-17 | Quantum Chemical Corporation | Peroxide modified PP/PE blends with superior melt strength |
US6716921B1 (en) | 1999-09-07 | 2004-04-06 | Chisso Corporation | Propylene resin composition |
EP1449878A1 (en) * | 2003-02-24 | 2004-08-25 | Borealis Technology Oy | Polypropylene compositions |
US6783844B2 (en) | 2000-07-12 | 2004-08-31 | Chisso Corporation | Polypropylene resin foam-molded article |
US20050214558A1 (en) * | 2001-07-31 | 2005-09-29 | Rodick Ronald G | Conformable holographic labels |
US7217463B2 (en) | 2002-06-26 | 2007-05-15 | Avery Dennison Corporation | Machine direction oriented polymeric films and methods of making the same |
US20070203305A1 (en) * | 2006-02-27 | 2007-08-30 | Scheie Andrew J | Solid state modification of propylene polymers |
US20080199647A1 (en) * | 2006-07-17 | 2008-08-21 | Blackwell Christopher J | Asymmetric Multilayered Polymeric Film And Label Stock And Label Thereof |
US20080206583A1 (en) * | 2007-02-23 | 2008-08-28 | Tam Thi Minh Phan | Olefin based compositions and floor coverings containing the same |
WO2009019280A1 (en) * | 2007-08-09 | 2009-02-12 | Borealis Technology Oy | Novel polyolefin compositions and drawn tapes, fibres and filaments produced therefrom |
US20100003435A1 (en) * | 2006-11-20 | 2010-01-07 | Harry Oysaedm | Article |
US20100009156A1 (en) * | 2006-12-21 | 2010-01-14 | Hans Georg Daviknes | Film |
US20100304062A1 (en) * | 2006-12-21 | 2010-12-02 | Hans Georg Daviknes | Film |
US20110028665A1 (en) * | 2007-12-05 | 2011-02-03 | Borealis Technology Oy | Polymer |
US20110132864A1 (en) * | 2007-08-10 | 2011-06-09 | Borealis Technology Oy | Article |
US8674024B2 (en) | 2010-01-29 | 2014-03-18 | Borealis Ag | Moulding composition |
US8759448B2 (en) | 2010-01-29 | 2014-06-24 | Borealis Ag | Polyethylene moulding composition with improved stress crack/stiffness relationship and impact resistance |
US9636895B2 (en) | 2006-06-20 | 2017-05-02 | Avery Dennison Corporation | Multilayered polymeric film for hot melt adhesive labeling and label stock and label thereof |
US9662867B2 (en) | 2006-06-14 | 2017-05-30 | Avery Dennison Corporation | Conformable and die-cuttable machine direction oriented labelstocks and labels, and process for preparing |
US9676532B2 (en) | 2012-08-15 | 2017-06-13 | Avery Dennison Corporation | Packaging reclosure label for high alcohol content products |
US11459488B2 (en) | 2014-06-02 | 2022-10-04 | Avery Dennison Corporation | Films with enhanced scuff resistance, clarity, and conformability |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3200173A (en) * | 1960-02-08 | 1965-08-10 | Hercules Powder Co Ltd | Process for preparing blends of polypropylene with copolymers of ethylene and propylene |
US3207739A (en) * | 1962-04-26 | 1965-09-21 | Shell Oil Co | Polymer crystallization method |
US3268499A (en) * | 1965-09-10 | 1966-08-23 | Shell Oil Co | Polymer crystallization method |
US3318976A (en) * | 1965-12-03 | 1967-05-09 | Shell Oil Co | Production of modified polyolefin |
US3514501A (en) * | 1967-01-09 | 1970-05-26 | Dart Ind Inc | Process for preparing block polymers from alpha-olefins |
US3937758A (en) * | 1973-03-26 | 1976-02-10 | Dart Industries Inc. | Process for the production of high impact compositions of polyethylene and polypropylene block copolymers |
US4140732A (en) * | 1976-09-18 | 1979-02-20 | Bayer Aktiengesellschaft | Thermoplastic rubber compositions comprising polyolefin and sequential E/P or EPDM |
US4359553A (en) * | 1981-09-14 | 1982-11-16 | Eastman Kodak Company | Polyethylene extrusion coating compositions |
US4375531A (en) * | 1982-01-11 | 1983-03-01 | Northern Petrochemical Company | High impact visbroken polymeric blends |
-
1984
- 1984-02-22 US US06/582,417 patent/US4508872A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3200173A (en) * | 1960-02-08 | 1965-08-10 | Hercules Powder Co Ltd | Process for preparing blends of polypropylene with copolymers of ethylene and propylene |
US3207739A (en) * | 1962-04-26 | 1965-09-21 | Shell Oil Co | Polymer crystallization method |
US3268499A (en) * | 1965-09-10 | 1966-08-23 | Shell Oil Co | Polymer crystallization method |
US3318976A (en) * | 1965-12-03 | 1967-05-09 | Shell Oil Co | Production of modified polyolefin |
US3514501A (en) * | 1967-01-09 | 1970-05-26 | Dart Ind Inc | Process for preparing block polymers from alpha-olefins |
US3937758A (en) * | 1973-03-26 | 1976-02-10 | Dart Industries Inc. | Process for the production of high impact compositions of polyethylene and polypropylene block copolymers |
US4140732A (en) * | 1976-09-18 | 1979-02-20 | Bayer Aktiengesellschaft | Thermoplastic rubber compositions comprising polyolefin and sequential E/P or EPDM |
US4359553A (en) * | 1981-09-14 | 1982-11-16 | Eastman Kodak Company | Polyethylene extrusion coating compositions |
US4375531A (en) * | 1982-01-11 | 1983-03-01 | Northern Petrochemical Company | High impact visbroken polymeric blends |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4614764A (en) * | 1985-03-06 | 1986-09-30 | Mobil Oil Corporation | Linear low density ethylene polymers blended with modified linear low density ethylene polymers |
US4801637A (en) * | 1986-06-18 | 1989-01-31 | Shell Oil Company | Nucleation process for inducing crystallization in poly(alpha olefins) |
US5258464A (en) * | 1990-01-29 | 1993-11-02 | Shell Oil Company | Impact copolymer compositions |
US5362782A (en) * | 1990-05-14 | 1994-11-08 | Shell Oil Company | Polymer compositions |
US5270369A (en) * | 1992-10-21 | 1993-12-14 | Phillips Petroleum Company | Additive to improve polymer clarity and viscosity |
US5639818A (en) * | 1994-03-11 | 1997-06-17 | Quantum Chemical Corporation | Peroxide modified PP/PE blends with superior melt strength |
US6716921B1 (en) | 1999-09-07 | 2004-04-06 | Chisso Corporation | Propylene resin composition |
US6783844B2 (en) | 2000-07-12 | 2004-08-31 | Chisso Corporation | Polypropylene resin foam-molded article |
US20050214558A1 (en) * | 2001-07-31 | 2005-09-29 | Rodick Ronald G | Conformable holographic labels |
US7410706B2 (en) | 2001-07-31 | 2008-08-12 | Avery Dennison Corporation | Machine direction only oriented films |
US7217463B2 (en) | 2002-06-26 | 2007-05-15 | Avery Dennison Corporation | Machine direction oriented polymeric films and methods of making the same |
USRE46911E1 (en) | 2002-06-26 | 2018-06-26 | Avery Dennison Corporation | Machine direction oriented polymeric films and methods of making the same |
CN100408623C (en) * | 2003-02-24 | 2008-08-06 | 博里利斯技术公司 | Polypropylene compositions |
AU2004213164B2 (en) * | 2003-02-24 | 2007-04-26 | Borealis Technology Oy | Polypropylene compositions |
WO2004074370A1 (en) * | 2003-02-24 | 2004-09-02 | Borealis Technology Oy | Polypropylene compositions |
EP1449878A1 (en) * | 2003-02-24 | 2004-08-25 | Borealis Technology Oy | Polypropylene compositions |
US20070203305A1 (en) * | 2006-02-27 | 2007-08-30 | Scheie Andrew J | Solid state modification of propylene polymers |
US7750086B2 (en) | 2006-02-27 | 2010-07-06 | Equistar Chemicals, Lp | Solid state modification of propylene polymers |
US9662867B2 (en) | 2006-06-14 | 2017-05-30 | Avery Dennison Corporation | Conformable and die-cuttable machine direction oriented labelstocks and labels, and process for preparing |
US9636895B2 (en) | 2006-06-20 | 2017-05-02 | Avery Dennison Corporation | Multilayered polymeric film for hot melt adhesive labeling and label stock and label thereof |
US8105686B2 (en) | 2006-07-17 | 2012-01-31 | Avery Dennison Corporation | Asymmetric multilayered polymeric film and label stock and label thereof |
US20080199647A1 (en) * | 2006-07-17 | 2008-08-21 | Blackwell Christopher J | Asymmetric Multilayered Polymeric Film And Label Stock And Label Thereof |
US20100003435A1 (en) * | 2006-11-20 | 2010-01-07 | Harry Oysaedm | Article |
US20100304062A1 (en) * | 2006-12-21 | 2010-12-02 | Hans Georg Daviknes | Film |
US20100009156A1 (en) * | 2006-12-21 | 2010-01-14 | Hans Georg Daviknes | Film |
US20080206583A1 (en) * | 2007-02-23 | 2008-08-28 | Tam Thi Minh Phan | Olefin based compositions and floor coverings containing the same |
US7833611B2 (en) | 2007-02-23 | 2010-11-16 | Mannington Mills, Inc. | Olefin based compositions and floor coverings containing the same |
WO2008103887A1 (en) * | 2007-02-23 | 2008-08-28 | Mannington Mills, Inc. | Olefin based compositions and floor coverings containing the same |
CN101668808B (en) * | 2007-02-23 | 2013-09-04 | 曼宁顿米勒斯股份有限公司 | Olefin based compositions and floor coverings containing the same |
EP2025712A1 (en) * | 2007-08-09 | 2009-02-18 | Borealis Technology Oy | Novel polyolefin compositions and drawn tapes, fibres and filaments produced therefrom |
US8138267B2 (en) | 2007-08-09 | 2012-03-20 | Borealis Technology Oy | Polyolefin compositions and drawn tapes, fibres and filaments produced therefrom |
CN101679698B (en) * | 2007-08-09 | 2012-10-10 | 博里利斯技术有限公司 | Novel polyolefin compositions and drawn tapes, fibres and filaments produced therefrom |
WO2009019280A1 (en) * | 2007-08-09 | 2009-02-12 | Borealis Technology Oy | Novel polyolefin compositions and drawn tapes, fibres and filaments produced therefrom |
US20100152391A1 (en) * | 2007-08-09 | 2010-06-17 | Borealis Technology Oy | Novel polyolefin compositions and drawn tapes, fibres and filaments produced therefrom |
US9139709B2 (en) | 2007-08-10 | 2015-09-22 | Borealis Technology Oy | Article |
US20110132864A1 (en) * | 2007-08-10 | 2011-06-09 | Borealis Technology Oy | Article |
US20110028665A1 (en) * | 2007-12-05 | 2011-02-03 | Borealis Technology Oy | Polymer |
US8461280B2 (en) | 2007-12-05 | 2013-06-11 | Borealis Technology Oy | Multi-stage process for producing multimodal linear low density polyethylene polymers |
US8759448B2 (en) | 2010-01-29 | 2014-06-24 | Borealis Ag | Polyethylene moulding composition with improved stress crack/stiffness relationship and impact resistance |
US8674024B2 (en) | 2010-01-29 | 2014-03-18 | Borealis Ag | Moulding composition |
US9676532B2 (en) | 2012-08-15 | 2017-06-13 | Avery Dennison Corporation | Packaging reclosure label for high alcohol content products |
US11459488B2 (en) | 2014-06-02 | 2022-10-04 | Avery Dennison Corporation | Films with enhanced scuff resistance, clarity, and conformability |
US12065598B2 (en) | 2014-06-02 | 2024-08-20 | Avery Dennison Corporation | Films with enhanced scuff resistance, clarity, and conformability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4508872A (en) | High toughness propylene polymer compositions | |
US4493923A (en) | High notched impact toughness propylene polymer compositions | |
US4535125A (en) | High flow propylene polymer compositions | |
US4588775A (en) | High toughness propylene polymer compositions | |
US6140420A (en) | Impact-modified thermoplastic polyolefins and articles fabricated therefrom | |
CA2142733C (en) | Impact modification of thermoplastics | |
EP1358266B1 (en) | Polyolefin compositions with improved properties | |
CN1946791B (en) | Scratch resistant propylene polymer composition | |
CA1338330C (en) | Thermoplastic olefin alloys and method for producing the same | |
US5777020A (en) | Thermoplastic resin composition | |
US5066723A (en) | Impact-modified polymers (p-1304) | |
US6201069B1 (en) | Polypropylene/propylene-ethylene copolymer composition and process for the preparation thereof | |
US4536537A (en) | Rubberless high impact polypropylene | |
US4459385A (en) | Propylene polymer compositions | |
CA2617935A1 (en) | Improved appearance propylene polymer composition | |
US3354239A (en) | Polyolefin blend | |
US6730728B2 (en) | Propylene resin composition excellent in moldability and physical properties | |
US4957972A (en) | Blends of linear low density ethylene copolymers | |
US6777497B2 (en) | Polypropylene-based resin composition, process for producing the same and injection molded article | |
EP0942021A1 (en) | Polypropylene/propylene-ethylene copolymer composition and process for the preparation thereof | |
US5712344A (en) | Modified polypropylene impact copolymer compositions | |
US4716201A (en) | Films of blends of linear ethylene polymers and aromatic polymers | |
JPH02255845A (en) | Polymer improved in impact resistance | |
AU669503B2 (en) | Impact-resistant polyolefin molding composition | |
US6087429A (en) | Propylene resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHELL OIL COMPANY, A CORP. OF DE. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MC CULLOUGH, J. DOUGLAS JR.;REEL/FRAME:004350/0337 Effective date: 19840217 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SHELL POLYPROPYLENE COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:007639/0465 Effective date: 19950612 |
|
AS | Assignment |
Owner name: UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY CORP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL POLYPROPYLENE COMPANY;REEL/FRAME:008239/0212 Effective date: 19960522 |
|
FPAY | Fee payment |
Year of fee payment: 12 |