US4357321A - Method and composition for treating clotting factor inhibitors - Google Patents
Method and composition for treating clotting factor inhibitors Download PDFInfo
- Publication number
- US4357321A US4357321A US06/262,286 US26228681A US4357321A US 4357321 A US4357321 A US 4357321A US 26228681 A US26228681 A US 26228681A US 4357321 A US4357321 A US 4357321A
- Authority
- US
- United States
- Prior art keywords
- units
- factor
- activation
- clotting
- activated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/647—Blood coagulation factors not provided for in a preceding group or according to more than one of the proceeding groups
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6429—Thrombin (3.4.21.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21005—Thrombin (3.4.21.5)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- This invention relates to the treatment of blood coagulation pathologies.
- the invention generally deals with novel methods for preparing new compositions useful in the management of hemorrhagic episodes in patients with inhibitors of blood clotting factors.
- the invention is concerned with the therapy of antihemophilic factor or plasma thromboplastin component inhibitors.
- Blood coagulation is an exceedingly complex process.
- the interaction of various blood components which eventually gives rise to a fibrin clot has been compared to a cascade of steps, each of which is dependent upon and regulated by preceding and following steps.
- the blood components which take part in the coagulation cascade are either proenzymes or enzyme modulators.
- the proenzymes are enzymatically inactive proteins which are converted to proteolytic enzymes by the action of an "activator", generally another proteolytic enzyme produced at an earlier stage in the coagulation cascade.
- Coagulation factors which have undergone such a conversion are hereafter defined as activated factors, and designated by the lower case postscript "a" while the proenzymes are referred to as precursor clotting factors.
- the enzyme modulators are principally cofactors such as calcium ions or nonenzyme proteins and most are essential if the enzymes to exhibit any catalytic activity at all. Such modulators are to be distinguished from enzyme substrates. Substrates are compounds which are covalently modified by an enzyme while modulators or cofactors merely bind to the enzyme without undergoing a change in structure.
- Blood coagulation is best visualized as a cascade of reactions between formed and soluble blood components in which most segments of the cascade are demarked by a proenzyme.
- An initial event such as the contact activation of Hageman factor (factor XII) will start one branch of the cascade. Basically, the product of this initial event then activates the next proenzyme in the cascade and so on in a sequential process until a fibrin clot is formed, the total rate of the cascade being dependent upon cofactors and modulators.
- AHF antihemophilic factor
- the second route of appearance for the inhibitors is not believed to be a function of the administration of therapeutic blood protein fractions. Rather, the inhibitor seemingly arises spontaneously in the manner of an idiopathic or autoimmune disease, frequently following on the heels of drug reactions or collagen disorders.
- the medical community has dealt with clotting factor inhibitors by (a) administering either extremely low or extremely high doses of the clotting factor which is being inhibited, with or without immunosuppression, (b) using clotting factor of non-human origin or (c) administering activated prothrombin complex concentrates (PCC), i.e., PCC in which at least a small proportion of the clotting factors have been converted to active enzymes.
- PCC prothrombin complex concentrates
- the first two techniques have not been widely used.
- the infusion of sufficiently large amounts of clotting factor to overwhelm the inhibitor existing in the patient's system becomes less and less effective with each treatment episode because inhibitor titers rise in response to each administration of clotting factor.
- non-human clotting factor creates a risk of severe immune reactions in treated patients.
- Activated PCC when used to treat factor-VIII inhibitor, has the advantage that the complex can be tailored to be sufficiently free of factor VIII antigen that an immune response in humans are not observed.
- the activated factors which are present in most of the prothrombin complex concentrates previously used to treat clotting factor inhibitors are artifacts of the plasma fractionation procedure in which prothrombin complex is enriched from Cohn fraction I supernatant; the activated factors were not induced by any special steps and as a result were often considered to be in too low or too variable a concentration to be satisfactory.
- the Eibl et al. method comprises activating a starting material selected from plasma, cryoprecipitate-poor plasma or Cohn fraction I supernatant by use of a contact activator, followed by adsorption of the FEIBA component and factors II, VII, IX and X onto a basic ion exchanger.
- Contact activators are well known substances such as silica or kaolin which initiate the intrinsic coagulation mechanism by activation of Hageman factor.
- thrombin or activated factor II in the product.
- Eibl et al. report thrombin levels of 0.05 and 0.07 NIH units/ml.
- Thrombin is not considered desirable because it is capable of acting directly on blood components to yield a fibrin clot while other activated clotting factors exert their effect earlier in the coagulation cascade and hence are more likely to be subject to modulation by blood components in vivo.
- the elevated thrombin levels reported by Eibl et al. are believed by applicant to be a function of the failure of Eibl et al. to adequately control the activation procedure.
- Eibl et al. do not screen the starting material for activation, thus failing to take into account the pre-existing activation state of each lot of plasma or plasma fraction used, and do not determine the in-process response to the lot to activation.
- Eibl et al. do suggest in Example 1 that variations in the clotting factor and FEIBA levels in various lots of final product may be compensated for by mixing bulk batches until the desired ratio of clotting factors to FEIBA is achieved. This is unsatisfactory because of costs, yield losses and contamination risk inherent in such a procedure. Further, thrombin is frequently undesirably elevated, even in products which were apparently manufactured by following this procedure.
- the principal object of this invention is accomplished by determining in advance of the completion of activation the conditions needed to achieve an activated PCC of substantially predetermined composition. This is in contrast to the passive approach to the unsolved problems of standardization and thrombogenicity which characterizes the published prior art, where conditions such as the time and temperature of activation are arbitrarily set and any difficulty with the resulting product is remedied, if possible, by selecting lots which when combined will yield the desired products. Accordingly, in a method wherein a prothrombin complex-containing blood protein fraction is activated under conditions which produce enzymatically active blood clotting factors, the improvement comprises
- the magnitude of the selected condition is determined in one of two ways, or a combination of both.
- the condition is determined by removing aliquots of the fraction after activation has been commenced, terminating the activation of each aliquot, determining the degree of activation of each aliquot and calculating the magnitude of the condition necessary to achieve a predetermined degree of activation of the fraction.
- condition magnitude may be determined by removing aliquots of the fraction prior to activation, varying the condition among the aliquots, activating the aliquots in accordance with the condition set for each aliquot, terminating the activation, determining the degree of activation of each aliquot and calculating the magnitude of the condition necessary to achieve a predetermined degree of activation of the fraction.
- Control of the activation process is also facilitated by selecting as starting materials only fractions which exhibit a low degree of spontaneous activation.
- the degree of activation is generally monitored by following the nonactivated partial thromboplastin (NAPT) or factor VIII correctional times although thrombin determinations are also useful. These assays are fully described below.
- NAPT nonactivated partial thromboplastin
- factor VIII factor VIII correctional times although thrombin determinations are also useful.
- An additional object of this invention is accomplished by activating an intermediate PCC produced during the method of U.S. Pat. No. 3,560,475. Selection of a particular point in the patented method to activate the PCC greatly facilitates the control of the activation procedure because of the presence in the PCC of an activation retardant.
- a further object is achieved by adding heparin to the activated product after the activation retardant has been neutralized or removed, generally immediately before the product is filled into containers and lyophilized.
- a further object is accomplished by including the stabilizers heparin and, optionally, antithrombin III in the final activated PCC. These substances inactivate thrombin and are believed to provide a margin of safety against thrombosis in susceptible patients, e.g., those with liver dysfunction.
- This invention also includes an improved activated PCC composition which comprises an aqueous solution having clotting factor activities, in units/ml, of F-II, 1-10; thrombin, less than about 0.003; F-VII, about from 37 to 190; F-VIIa, about from 8 to 80; total F-IX, about from 15 to 112; F-IX precursor, 0 to about 30; F-X, about from 1 to 30; and F-Xa, about from 1 to 10.
- an improved activated PCC composition which comprises an aqueous solution having clotting factor activities, in units/ml, of F-II, 1-10; thrombin, less than about 0.003; F-VII, about from 37 to 190; F-VIIa, about from 8 to 80; total F-IX, about from 15 to 112; F-IX precursor, 0 to about 30; F-X, about from 1 to 30; and F-Xa, about from 1 to 10.
- the improved activated PCC will contain certain delineated levels of total F-IX and F-IX precursor, F-VII and F-VIIa, F-X and F-Xa, F-VIII correctional activity and NAPT time, and will be sufficiently free of factor VIII antigen to not produce an immune response in patients to whom the activated PCC is administered.
- Suitable starting materials for use herein should at least contain clotting factors II, VII, IX, X, XI and XII.
- the starting compositions will generally be solutions of Cohn plasma fractions I+II+III, I and III, II and III, III, III-0, IV-1, or IV-1 and IV-4; IV-1 is preferred.
- the compositions should be dissolved in buffer or saline to a concentration of about 10% weight/volume at about 20° C. and then screened for clotting factor activity as described below to determine the degree of pre-existing spontaneous activation.
- the coagulation factors are then partially purified by adsorption onto a suitable known prothrombin complex adsorbent, e.g., tribasic calcium phosphate, as described in U.S. Pat. No. 3,560,475, or a diethylamino ethyl group substituted resin, followed by elution from the adsorbent in a volume of eluting solvent equal to about 4% of the volume of the dissolved Cohn fraction. None of these volumes or temperatures are critical.
- a suitable known prothrombin complex adsorbent e.g., tribasic calcium phosphate, as described in U.S. Pat. No. 3,560,475, or a diethylamino ethyl group substituted resin
- the starting materials are then preferably assayed to detect any which might have inadvertently been spontaneously activated to a high degree. Whether or not a starting composition is suitable is determined by assaying the NAPT time and, preferably, the factor VIII correctional time of the fraction.
- the former is a conventional assay, disclosed for example by Pepper et al., "British Journal of Haematology” 36:573 (1977) or Kingdon et al., Abstract #86 of the meeting of the American Society of Hematology, Atlanta (1974). It is preferred that the starting material be diluted within the range of 1:10 to 1:1000 in Tris buffered saline, optimally 1:100, before determination.
- the factor VIII correctional assay comprises the following steps, all conducted at 37° C. Aliquots of the composition to be tested are diluted in a barbital buffer to give dilutions of 1:20, 1:40, and 1:80.
- This barbital buffer is a modification of the diluting fluid (described in Proctor, et al., Am. J. Clin. Path. 36(3):214 (1961) which is made by mixing one part of diluting fluid with one part of water.
- 1:20, 1:40 and 1:80 dilutions of reference activated PCC having one unit of F-VIII correctional activity/ml are made into the diluting fluid as with the unknowns.
- 1 unit of factor VIII correctional activity is defined as that quantity of a 1:20 dilution into diluting fluid of activated PCC which, upon addition to factor VIII deficient or inhibitor plasma having less than 5% of the factor VIII activity of normal human plasma, will correct the clotting time of that plasma to 35 seconds under the conditions of the above assay.
- Reagent blanks are prepared in the same fashion as the standards.
- 0.1 ml of a mixture of soluble ellagic acid (available commerically from Dade under the trademark Actin) is added to a set of prewarmed fibrometer reaction cups.
- 0.1 ml of factor VIII deficient plasma having less than 5% of the factor VIII activity of normal pooled human plasma is then added to each cup.
- 0.1 ml each of aliquot, blank or standard dilution is added immediately to a cup containing the mixture of ellagic acid and factor VIII deficient plasma.
- 0.1 ml of 0.02 M CaCl 2 is added to each cup to initiate clotting. The clotting time is recorded and corrected for the reagent blank clotting, if necessary.
- the factor VIII correctional activity in units is calculated by averaging the replicates and plotting the reference concentrations, as established by the dilutions, against the respective clotting times.
- the concentration of each diluted sample can be located from the plot, corrected for its dilution and the average concentrations reported in units/ml. It is preferred to simply report the factor VIII correctional assay results in seconds where screening the starting materials or determining activation conditions. However, the potency of the final product is generally reported in units/ml.
- dilutions are made in a non-modified diluting fluid.
- Starting materials having a NAPT time of greater than about 200 seconds and a factor VIII correctional time of more than about 89 seconds are acceptable for use in the process of this invention.
- the NAPT time ranged from 144 to 294 seconds and the factor VIII correctional time from 82.7 to 98 seconds. It is preferred to screen the starting materials for thrombin as well, and, in such cases, starting material should not be used if it contains sufficient thrombin to form a clot within 2 hours in the assay described below, i.e., less than about 0.001 units/ml of thrombin.
- the starting materials should contain about from 0.4 to 1.0 units/ml of prothrombin, about from 0.5 to 3.0 units of F-VII/ml, 0.5-1.5 units of F-IX/ml and 0.5-3.0 units of F-X/ml.
- the effectiveness of feedback assays to establish the extent of activation can be improved by slowing the rate of activation sufficiently to allow a generous period in which to conduct the assays. This reduces the chance of exceeding the predetermined activation state while performing the assays.
- One convenient technique for slowing the activation rate is to activate the coagulation factors in the presence of a plasma component which will be referred to hereinafter as an activation retardant.
- the activation retardant slows the rate of activation and is defined as a substance which is removed or neutralized during the process of adsorbing a 10% solution of Cohn fraction IV-1 paste onto 0.5% by weight of tribasic calcium phosphate at pH 7.2, eluting from the calcium phosphate with 0.1 M sodium citrate and precipitating from the calcium phosphate elute at a PEG concentration of 5%.
- the identity of retardant is unknown, but has been hypothesized to be antithrombin III or unidentified diluent proteins which slow the rate of activation.
- the amount of antithrombin III remaining in the calcium phosphate eluate is about 1 International Unit/ml, while the product after PEG precipitation contains about 0.1 Unit/ml.
- a procedure is instituted to convert at least inactive proenzyme to the corresponding active blood clotting factor, hereinafter the activation procedure.
- This is conventionally done by contact activating plasma or plasma fractions. This is accomplished by mixing a contact activator such as kaolin, silica or silicates with the starting material and continuing to mix until the desired activation state is achieved.
- Contact activators are well known and the selection of any one is not critical. However, it is preferable to use an insoluble activator so as to facilitate its removal when the desired degree of activation is accomplished. Silica is preferred.
- the contact activator is used in a concentration of about from 0.05 to 5% weight by volume preferably about 0.06%.
- the average temperature of activation may range from 0° C. to about 30° C., and preferably is about 15° C.
- the pH may range about from 5.5 to 8.5, but is preferably about 7.2.
- the protein concentration ranges about from 0.3 to 0.9 gm%.
- the extent of activation is usually controlled by holding all of these conditions constant but one, and varying that one to yield the predetermined degree of activation. It is preferred to control the activation period by holding pH, temperature and other conditions constant while varying the reaction time. This is convenient because the reaction is readily terminated by centrifuging or filtering the reaction mixture, preferably by filtration through a cartridge filter having 1.2 micron pores. However, it is within the scope of this invention to hold the reaction time constant but vary another condition, e.g., if a bulk lot needed little activation the reaction could be conducted at a lower temperature than with a lot needing more vigorous treatment. Activation control by temperature offers an additional advantage in that at lower temperatures, i.e., 0° C. to about 10° C., the production of factor VIIa is favored in comparison to thrombin and factors IXa and Xa. Finally, more than one condition may be varied, but this generally is not preferred.
- the activation period will depend upon the extent of activation desired compared to that which has already occured spontaneously in the starting plasma as determined by screening the starting material.
- the preferred degree of activation, expressed in NAPT time is about from 70 to 100 seconds, preferably 75-95 seconds.
- the preferred degree of activation may also be expressed as a factor VIII correctional time of about from 70-90 seconds and preferably about 70-80 seconds.
- the factor VIII correctional time is not preferred for monitoring activation state because the change is clotting time during activation is not as large as that usually encountered in the NAPT time.
- NAPT time to the exclusion of the factor VIII correctional time assay as well as the thrombin generation time or FEIBA tests disclosed by Pepper et al., op cit.
- the clotting times reported herein, unless otherwise stated, are for samples immediately after activation. Further concentration of the activated PCC will reduce the NAPT and factor VIII correctional time, e.g. generally doubling the concentration of clotting factors will approximately halve the NAPT time. Further, a different degree of activation as represented by different predetermined NAPT and factor VIII correctional times may be selected depending upon the clinical uses to which the final product is to be put.
- the degree of activation may be determined by other assays, e.g., one or more of the activated clotting factor tests described below.
- the actual elapsed time per se is generally not material, but has been found to range about from 5 to 45 minutes, routinely 15 minutes.
- the preferred method for ascertaining the magnitude of time needed for activation for each individual bulk lot of starting material comprises first determining the activation period using aliquots withdrawn from the bulk lot before activation, and then monitoring the lot during activation as well.
- the first portion of this preferred method comprises removing a plurality of samples from the bulk lot before activation, activating each sample and then stopping the activation at different times.
- Each aliquot is subsequently assayed for its NAPT and factor VIII correctional times, a plot of the results is made and the period which must elapse for the attainment of the desired NAPT, and optionally factor VIII correctional times, is determined. Also, it is preferred that thrombin be determined as well.
- the bulk lot is then activated with this period in mind under the same conditions as were used with the aliquot samples. Aliquots of the lot during activation are also taken to confirm its progress.
- the first portion of the preferred embodiment comprises removing duplicate 110 ml aliquots of sample, mixing about 60 mg of silica with each aliquot at a temperature of 15° C.-20° C., allowing the activation to proceed for 5 minutes and multiples thereof up to 60 minutes, filtering the aliquots to separate the silica, recording the time of activation for each aliquot, and determining the average NAPT and factor VIII correctional times for each aliquot.
- the activation period required to attain NAPT and factor VIII correctional times, respectively, of about from 70-100 seconds and about from 70-90 seconds is then determined by interpolation. This entire procedure will ordinarily require less than 1.5 hours. During this time the bulk lot from which the samples were withdrawn can be simply held at 15°-20° C. without any significant changes in the levels of activated factors.
- the second portion of the preferred method for determining the proper activation time has the advantage that the effect of the activation procedure on the bulk lot itself is monitored, yielding a more direct result than following the activation of aliquots that are intended to be representative.
- This portion of the method comprises commencing activation of the screened starting material, withdrawing 10 ml samples from the reaction mixture at 5 minute intervals and assaying each for factor VIII correctional and NAPT times and, optionally, thrombin. When the predetermined factor VIII correctional or NAPT time is projected to be reached within a next 5 minute interval, the activation procedure is stopped by filtrative removal of the silica.
- the assays measure the state of activation at the time the sample is taken, and not at the time the results are read.
- the projection is conventionally based upon a plot of the factor VIII correctional and NAPT times observed earlier during the activation procedure. Any risk that the activation will overshoot the target parameters during the assays is small if the assays are expeditiously conducted.
- the clotting factors may be further purified to any desired degree, although it is not necessary to do so. It is preferred that the activated PCC be purified and concentrated by PEG precipitation as disclosed in U.S. Pat. No. 3,560,475 and discussed above.
- PEG precipitation as disclosed in U.S. Pat. No. 3,560,475 and discussed above.
- Other protein isolation techniques may be used, e.g., adsorption on ion exchange resins, gel chromatography or precipitation by such well known agents as alkanols or Pluronic polymers.
- the purified product is dissolved in a volume of aqueous solution equal to about 2% of the fraction IV-1 paste solution.
- This aqueous solution preferably contains 1 volume of 0.1 M sodium citrate, 4 volumes of 0.9% NaCl and from 1 to 2 units of heparin/ml.
- the pH is adjusted to a physiologically tolerable level, for example 7.0, clarified and sterile filtered by conventional techniques, dispensed into vials and lyophilized.
- the product is generally reconstituted into sterile water to yield the same concentration as before lyophilization.
- the reconstituted product will contain from about 0.5 to 1.5 units of heparin/ml, preferably greater than about 1.1 units/ml.
- Heparin should be added at the final dissolution of the activated PCC before lyophilization, although it may be added at any point after activation. It is preferable that the heparin be added just prior to lyophilization. Antithrombin III may also be added at this point, although since the product will ordinarily contain about 0.1 International unit of antithrombin/ml it may be unnecessary to add more antithrombin III. If necessary, sufficient antithrombin III and heparin are added to reduce any extraneous thrombin activity in the reconstituted activated PCC to a level lower than about 0.003 units of thrombin/ml.
- each assay will include making duplicate serial dilutions of test sample and a standard having an assigned potency of 1 unit/ml.
- the concentration in units/ml of the test sample may then be calculated by averaging the duplicates, plotting the results obtained with the standards against their respective percent concentrations as established by their previous serial dilution, reading the percent concentrations in the diluted test samples from the plot, correcting the test sample concentrations for the serial dilutions which were made; averaging the test sample percent concentrations and dividing the average by 100 to arrive at the units/ml of the assayed factor.
- assays for total clotting reactors use either lyophilized normal human plasma or frozen normal human plasma as standards.
- the lyophilized normal human plasma is standardized against three separate freshly drawn pools of normal human plasma. Each pool is prepared by collecting venous blood from 10 fasting, normal donors who are not taking oral contraceptives, anti-inflammatory drugs or arthritis medication. The donors must also have a prothrombin time of 11-15 seconds, an APTT of 30-45 seconds and a fibrinogen level of 200-400 mg/dl.
- the blood is collected into 3.8% sodium citrate at a ratio of 9 volumes of blood to 1 of anticoagulant, mixed, centrifuged at 1000 RCF for 15 minutes, after which equal volumes of each plasma supernatant are pooled.
- the plasma is assayed within one hour.
- the average potency of the three pools for each total factor assayed below is arbitrarily set at 1 unit/ml.
- the frozen normal human plasma is prepared in identical fashion to any one of the three freshly drawn pools described above, except that the pool is distributed in 1 ml volumes into plastic vials and frozen at -70° C.
- the frozen pools are used within 60 days. Each frozen pool is considered to contain 1 unit of each total factor/ml.
- plasma which contains standard unitage as established by either of the two foregoing techniques will be referred to as reference or standard plasma.
- the factor deficient plasma used in some assays are plasma obtained from donors that are congenitally deficient in the particular factor, i.e., who have a factor potency of less than about 5% of that present in normal pooled plasma.
- the F-IX assays detect total and precursor F-IX.
- the assay for total F-IX measures the sum of activated and unactivated F-IX activity, while the F-IX precursor assay substantially excludes the activated material. Therefore F-IXa may be estimated by subtracting the precursor activity from the total F-IX.
- the remaining analytical methods i.e., for factors II, VII, X, XI and XII, all measure the sum of active and proenzyme factor. However, in the interests of brevity the designation "total" will not be applied to these assays.
- the thrombin, VIIa and Xa methods disclosed below directly assay the active factors.
- Thrombin is determined by the following technique.
- a bovine thrombin standard which has been standardized against the NIH Thrombin Standard, lot B-3, is diluted in normal saline to 0.001, 0.002, 0.003, 0.005 and 0.010 u/ml.
- 2.0 ml of this diluted standard is added to 0.5 ml of fibrinogen substrate.
- the mixture is incubated at 28° C.
- the reaction tubes are checked every 2 minutes. First fibrin strand appearance is taken as the end point.
- the test sample is assayed identically, but with no dilution.
- 2.0 ml of the reconstituted test sample is added to 0.5 ml of the fibrinogen substrate and end point formation is observed at 2 minute intervals.
- the clotting times of the test sample are compared with the clotting times of the thrombin standard. The calculations are conducted as generally described above.
- Factor Xa is determined by a modification of the method of Yin et al., "J. Lab. Clin. Med.” 81:298(1973). All reagents, including the reference standard, are commercially available from the Sigma Chemical Company. Test samples are serially diluted in duplicate into the buffer employed by Yin et al. at dilutions of 1:8, 1:16 and 1:32, or higher (expressed in parts of sample to parts of buffer) until the clotting time of that dilution is longer than the clotting time of the factor Xa standard at a concentration of 0.01 units/ml.
- Standard factor Xa is initially diluted 1:4 into the same buffer, followed by serial dilutions in duplicate to 1:64.
- a 1:4 dilution of standard F-Xa is taken as 1 unit F-Xa/ml.
- Standard F-Xa is defined as that which will produce an average clotting time of 14 seconds at 1:2 dilution in the assay described herein.
- 0.1 ml of each final dilution is pipetted into a fibrometer cup, followed by 0.1 ml of 0.025 M CaCl 2 and 0.2 ml of a bovine plasma-rabbit cephalin solution to initiate clotting.
- the clotting time for each tube is determined and the F-Xa activity calculated as described above.
- F-Xa may also be determined by a chromogenic assay as an alternative to the clotting method described in the preceding paragraph. Unless otherwise stated by designation of the assay results as “chromogenic” it will be assumed that the F-Xa was determined by the clotting method.
- the chromogenic assay is essentially disclosed by Kosow in "Thrombosis Research" 1:565-573 (1976). It employs a synthetic substrate which is specifically hydrolyzed by F-Xa to yield a chromogen detectable by its adsorption of light at 405 nm.
- the substrate, S-2222 is commercially available from Ortho Diagnostics, Inc.
- Standard F-Xa is available from the Sigma Chemical Co., but is diluted 1:4 into 0.05 M Tris buffer at pH 8.3 containing 1.33% NaCl by weight before use. A 1:4 dilution of a standard containing 0.5 unit F-Xa/ml should exhibit an average optical density at 405 nm of 0.260 in the assay. In the practice of the assay, samples and diluted standard are serially diluted into the Tris buffer.
- each dilution is pipetted into a glass test tube, followed by 0.075 ml of a solution containing 0.5 M CaCl 2 and 0.1 M NaCl and, after 1 minute, 0.5 ml of an S-2222 solution in 0.05 M Tris buffer at pH 8.3 containing 0.9% NaCl by weight.
- 0.1 ml of 50% acetic acid is added after 3 minutes to stop the reaction and the absorbance is read against a buffer blank at 405 nm. The calculations are conducted as generally described above.
- Factor X is determined by a modification of the Bachmann et al. method described in "Thromb. et Diath.” 2:24(1958) except that factor X deficient plasma is used in place of Seitz filtered ox plasma, a fibrometer is used for end point detection and the diluting fluid is veronal buffer containing sodium chloride and sodium citrate as described by Proctor et al., "Am. J. Clin. Path.” 36(3):214(1961). Russell's viper venom and cephalin were obtained from Burroughs Wellcome & Co. and the Hyland Division of Travenol Laboratories, Inc., respectively. The calculations are made as generally described above.
- Prothrombin Fact II
- 0.1 ml of factor II deficient plasma prepared by the method of Pechet in Tocantins, Ed., Blood Coagulation, Hemorrhage and Thrombosis, volume 1, pp 144-148 (1964) is distributed into each of eight test tubes.
- a 100% reference plasma is prepared by diluting reference plasma 1:10 into 1.72% imidazole weight/volume buffer at pH 7.3. This reference plasma is then further diluted 1:5, 1:10, 1:20 and 1:40 into the same buffer.
- Duplicate 0.1 ml aliquots of each dilution are pipetted into the test tubes containing factor II deficient substrate.
- F-IX is determined by the following procedure, essentially that of Proctor et al., op cit. A minimum 1:20 predilution of the activated PCC test sample is prepared in normal saline. Reference plasma is not prediluted. Then duplicate 1:5, 1:10, 1:20 and 1:40 dilutions in barbital buffered saline of test sample and reference plasma are pipetted into test tubes already containing 0.1 ml of partial thromboplastin-kaolin described in the Proctor et al. procedure and 0.1 ml of F-IX congenitally deficient plasma having less than 5% of normal F-IX activity.
- F-IX precursor is assayed exactly as set forth above for total F-IX except that the initial minimum 1:20 dilutions of test sample are made up in the F-IX deficient substrate rather than normal saline.
- Factor VII is determined according to Esnouf et al. in Bang et al., Ed., "Thrombosis and Bleeding Disorders, Theory and Methods," pp 197-198, (1971) except that the clotting point was determined with a Clotek® device and the diluting fluid was that described by Proctor et al. op cit.
- Factor VIIa is assayed by first adsorbing the sample with a benzamidine-Sepharose affinity matrix.
- the benzamidine-Sepharose matrix is a well known affinity gel disclosed, for example, by Schmer, "Z. Physiol. Chem.” 353: 810-814 (1972).
- the non-adsorbed fraction is removed from the matrix by washing with 0.1 M NaHCO 3 , ph 7.8. Then, the same buffer containing 0.5 M NaCl and 0.3 M benzamidine HCl is used to remove the fraction containing VIIa.
- Assay of the latter fraction for VIIa is acomplished with the same assay and reference which are used for F-VII.
- the assay for factor XI is described by Rappaport et al. in "J. Lab. Clin. Med.” 57:771(1961), except that the CaCl 2 solution is 0.03 M, a cephalin-kaolin mixture commerically available from the Hyland Division of Travenol Laboratories, Inc. was employed, and the clotting point was determined with a Clotek® device.
- Factor XII is determined in essentially the same way as factor XI. However, here a factor XII deficient plasma is used and the assay is only conducted in contact with plastic ware.
- novel activated products of this invention are characterized by the amounts or activities of individual clotting factors, overall procoagulant activity as reflected in the NAPT and F-VIII correctional times, substantial freedom from thrombin activity and substances which induce an immune response to F-VIII in treated patients, greater than 1 unit of heparin/ml and the presence of about 0.1 to 3 units antithrombin III/ml in the final product. Combinations of any or all of the foregoing features also characterize the products of this invention.
- the typical, preferred and most preferred ranges of clotting factor activities in the activated PCC of this invention fall within the limits set forth in Table 1 below.
- the products may optionally also contain about from 3 to 65 units of F-XI and 1 to 30 units of F-XII/ml.
- a preferred composition of this invention comprises, in units/ml, about from 20 to 112 units of F-IX and from 0 to about 30 units of F-IX precursor.
- composition of this invention comprises, in units/ml, about from 37 to 190 units of F-VII and about from 25 to 80 units of F-VIIa.
- a further preferred composition of this invention comprises, in units/ml, about from 1 to 13 units of F-X and about from 4 to 10 units of F-Xa.
- This invention also includes a product comprising factors VIIa, IXa and Xa and having a F-VIII correctional activity of about from 1 to 35 units/ml and a NAPT time of about from 27 to 70 seconds/ml.
- the preferred composition exhibits a F-VIII correctional activity of about from 7 to 30 units/ml.
- the activated PCC of this invention may be administered to patients in the same fashion as PCC has heretofore been administered.
- the contents of vials containing lyophilized, activated PCC are reconstituted in sterile water and infused at a therapeutically effective dosage, generally ranging about from 8 to 160 F-VIII correctional units/kg and preferably about from 10 to 80 F-VIII correctional units/kg.
- a therapeutically effective dosage generally ranging about from 8 to 160 F-VIII correctional units/kg and preferably about from 10 to 80 F-VIII correctional units/kg.
- Optimal results are obtained with dosages of greater than about 25 F-VIII correctional units/kg, preferably 50 units/kg. If required, the dosage may be repeated at 6 to 8 hour intervals.
- Total dosages of activated PCC on rare occasions have ranged up to about 2000 F-VIII correctional units/kg; satisfactory therapy is usually seen at total dosages of about from 8 to 300 F-VIII correctional units/kg, preferably about from 10 to 100 F-VIII correctional units/kg. Since total dosage refers to the quantity of F-VIII correctional activity administered during a bleeding episode rather than the amount administered during any one infusion, it can be seen that one infusion is frequently effective in achieving clinically satisfactory results.
- One embodiment of therapeutic treatment is the administration of a therapeutically effective dose of an aqueous composition comprising about from 20 to 112 units of F-IX/ml and from 0 to about 30 units of F-IX precursor/ml to a patient exhibiting a clotting factor inhibitor.
- Another embodiment of the therapeutic method of this invention contemplates the administration of a therapeutically effective dose of an aqueous composition comprising about from 37 to 110 units of F-VII/ml and about from 8 to 80 units of V-VIIa/ml to a patient exhibiting a clotting factor inhibitor.
- An additional embodiment of this invention is the administration of a therapeutically effective dose of an aqueous composition comprising about from 1 to 50 units of F-X/ml and about from 4 to 10 units of F-Xa/ml to a patient exhibiting a clotting factor inhibitor.
- This example discloses a typical manufacturing run for the controlled preparation of an activated PCC.
- the coagulation factors in the supernatant are then activated by adding 20.9 gm of silica to the supernatant and continuously mixing. 10 ml samples are withdrawn at 5 minute intervals and the degree of activation determined by the NAPT and factor VIII correctional times, and thrombin assays described above.
- the silica induced activation is terminated by filtration of the reaction mixture through a 1.2 micron cartridge when the NAPT and factor VIII correctional times reached 90 and within 70-90 seconds, respectively.
- the thrombin activity at this point was below 0.003 units/ml.
- the activated PCC is next further purified by the PEG precipitation steps disclosed in U.S. Pat. No. 3,560,475.
- the filtrate from the silica removal step is brought to 5% weight/volume PEG by the addition of 1.4 kg PEG having an average molecular weight of 4000 (PEG-4000).
- the suspension is centrifuged after mixing for approximately 15 minutes, its pH adjusted to 5.2 and the supernatant brought to 20% PEG-4000 by the further addition of 4.1 kgs of PEG.
- the suspension is centrifuged after mixing for approximately 15 minutes, and the precipitate collected.
- the precipitate is dissolved in 0.02 M sodium citrate containing 0.72% NaCl and 1.5 units heparin/ml, the pH adjusted to 7.0, clarified, sterile filtered, filled into 30 ml vials and lyophilized.
- the factor VIII correctional and NAPT activities and the levels of clotting factors in this preparation reconstituted in water are set forth in Table 2.
- Example I The process of Example I was substantially repeated on 10 more lots of PCC. The results are shown in Table 3 below.
- the products of this invention were distributed to 13 investigators for an evaluation of clinical efficacy. 33 patients in all were treated for a total of 74 bleeding episodes. All of the patients but one exhibited various levels of factor VIII antibody; the patient not having factor VIII antibody is additionally reported in Example IV. The bleeding episodes among these patients predominantly involved the joints (59.5%), while soft tissue (14.8%) and combination joint and soft tissue bleeds (5.4%) accounted for the bulk of the remainder. Of the remaining 15 patients ten (13.5%) were surgically oriented, three exhibited hematuria, one hematemesis and one intracranial bleed.
- the population of total administered doses ranged from 9 to 1,861 factor VIII correctional units/kg.
- the distribution of doses is further discussed below in connection with patient prothrombin time (PT) and activated partial thromboplastin time (PTT), Tables 4 and 5.
- PT patient prothrombin time
- PTT activated partial thromboplastin time
- Each dosage was administered by infusion in sterile water for injection. In most cases a single infusion of about 30 ml was sufficient to achieve a moderate or excellent clinical response, although more than one dose was administered in a number of the bleeding episodes.
- Clinical performance of the activated PCC was subjectively evaluated by each investigator within eight hours after the infusion. While evaluations were made on the overall clinical response the investigators focused on hemostasis, pain relief and improvements in joint motion. In general, an “excellent” overall clinical response meant abrupt pain relief and unequivocal decrease in joint or bleed site size, usually within eight hours after a single infusion. A “moderate” overall clinical response was defined as definite but slightly delayed pain and bleed site relief which, in some cases, required more than one infusion. A “fair” overall clinical response meant an unclear, but probable beneficial effect requiring still more infusions. An overall clinical response designated as "none” meant no effect relative to pain, range of joint motion, or degree of swelling of the bleeding site.
- Table 3 further shows that of the 50 bleeding episodes receiving doses greater than 50 units of factor VIII correctional activity/kg, 33 or 66% exhibited an excellent clinical response while only 10 (or 41.6%) of the 24 episodes dosed with less than 50 units had an excellent response. Thus it is concluded that a dosage of greater than 50 units of factor VIII correctional activity/kg is preferred for the best therapeutic treatment of bleeding episodes.
- the second patient exhibited slight improvement after the first of three infusions of 31.8 units/kg. However, the subsequent doses proved to be of no benefit and the patient was switched to factor VIII therapy. After three doses of factor VIII (3,500 units) slow improvement in the bleed occurred.
- the third patient received only a small, single infusion of product (39.1 units/kg).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Hematology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
TABLE 1 ______________________________________ ACTIVATED PCC CLOTTING FACTOR LEVELS Range in units/ml Factor Typical Preferred Most Preferred ______________________________________ II 1-10 3.6-8.9 3.6-5.9 VII 37-190 37-122 39-88 VIIa 8-80 25-78 25-60 IX 15-112 20-81 50-80 IX Precursor 0-30 5-20 5-12 X 1-30 1-25 1-13 Xa 1-20 1-10 4-10 Xa(Chromogenic 1-10 1-8 1-5 Thrombin 0.003 0.002 0.001 ______________________________________
TABLE 2 ______________________________________ Activity (in units/ml Factor or Activity unless otherwise noted) ______________________________________ II 7.8 VII 47.6 VIIa 58.8 IX 39.2 IX Precursor 11.5 X 9.3 Xa 1.6 Thrombin 0.002 Factor VIII correctional 21.2 NAPT time (1:100 dilution) 45.6 (seconds) ______________________________________
TABLE 3 __________________________________________________________________________ RESULTS OF TESTS PERFORMED ON FINAL CONTAINERS OF 10 LOTS OF ACTIVATED PCC (All potency values expressed as units/ml except as otherwise noted) F-VIII F-IX NAPT Lot Number F-II F-VII F-VIIa Correction F-IX Precursor F-X F-Xa Thrombin (Seconds) __________________________________________________________________________ 0650D010 7.1 63.4 77.8 25.8 (11.6.sup.a) 66.7 8.6 11.1 7.2 0.002 27.3 0650D012 3.6 39.0 25.4 7.7.sup.a 23.2 6.1 10.4 3.5 0.001 41.1 0650D013 7.1 47.0 58.8 9.0.sup.a 40.3 6.3 12.5 5.2 0.001 39.7 0650D014 7.2 65.9 39.2 9.9.sup.a 55.2 10.3 10.2 4.1 0.001 39.7 0650D018 5.6 68.3 32.5 8.8.sup.a 54.8 10.3 14.7 4.8 0.001 37.3 0650D021 5.3 65.5 40.1 14.5 34.7 8.3 11.0 2.2 0.001 54.4 0650D024 8.9 63.5 36.0 27.6 112.3 36.3 24.2 7.6 0.001 38.9 0650E021 3.8 71.9 25.8 16.7 70.1 5.0 10.4 6.8 0.001 34.1 0650D028 5.2 77.0 N.D..sup.b 14.9 50.9 9.5 11.7 4.3 0.001 35.5 0650E003 7.1 88.0 N.D. 20.0 54.1 N.D. 9.1 2.2 0.001 39.5 __________________________________________________________________________ .sup.a Kaolin was substituted for soluble ellagic acid in the assay. .sup.b N.D. = not done.
TABLE 3 ______________________________________ Overall Clinical Response Patients Dosed With greater than less than % 50 U/kg 50 U/kg Rating Total Total (Total) (Total) ______________________________________ Excellent 43 58.1 33/50 (66.0%) 10/24 (41.6%) Moderate 22 29.7 10/50 (20.0%) 12/24 (50.0%) Fair 6 8.1 5/50 (10.0%) 1/24 (4.2%) None 3 4.1 2/50 (4.0%) 1/24 (4.2%) TOTAL 74 100.0 50/74 (67.6%) 24/74 (32.4%) ______________________________________
TABLE 4 ______________________________________ Overall Clinical Response After A Single Dose % Patients' Initial Dose Rating Total Total >50 U/kg <50 U/kg ______________________________________ Excellent 40 66.6 28 (87.5%) 12 (42.8%) Moderate 18 30.0 3 (9.4%) 15 (53.6%) Fair 1 1.7 1 (3.1%) 0 (0%) None 1 1.7 0 (0%) 1 (3.6%) TOTAL 60 100.0 32/60 (53.3%) 28/60 (46.7%) ______________________________________
TABLE 5 ______________________________________ Change in PTT after Initial Infusion Dose Δ PTT Number of Clinical Responses Range Range Ex- Moder- (U/kg) (Sec.) Total cellent ate Fair None ______________________________________ 7.9-39.1 1.1-14.5 21 9 11 0 1 31.5-50.1 16.0-61.5 4 2 2 0 0 52.0-100.0 16.9-46.3 20 15 3 1 1 57.5-103.0 1.6-14.5 6 5 1 0 0 ______________________________________
TABLE 6 ______________________________________ Change in PT after Initial Infusion Dose Δ PT Number of Clinical Responses Range Range Ex- Moder- (U/kg) (Sec.) Total cellent ate Fair None ______________________________________ 5.3-39.1 1.3-1.9 5 2 2 0 1 7.9-50.0 2.4-5.2 21 9 12 0 0 52.0-103.0 2.0-7.0 21 17 3 0 1 55.0-100.0 0.5-1.7 6 5 1 0 0 ______________________________________
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/262,286 US4357321A (en) | 1980-01-28 | 1981-05-11 | Method and composition for treating clotting factor inhibitors |
US06/360,305 US4459288A (en) | 1981-05-11 | 1982-03-22 | Therapeutic blood clotting factor compositions and their use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/116,186 US4287180A (en) | 1980-01-28 | 1980-01-28 | Method for treating blood clotting factor inhibitors |
US06/262,286 US4357321A (en) | 1980-01-28 | 1981-05-11 | Method and composition for treating clotting factor inhibitors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/116,186 Division US4287180A (en) | 1980-01-28 | 1980-01-28 | Method for treating blood clotting factor inhibitors |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/360,305 Division US4459288A (en) | 1981-05-11 | 1982-03-22 | Therapeutic blood clotting factor compositions and their use |
Publications (1)
Publication Number | Publication Date |
---|---|
US4357321A true US4357321A (en) | 1982-11-02 |
Family
ID=26813965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/262,286 Expired - Lifetime US4357321A (en) | 1980-01-28 | 1981-05-11 | Method and composition for treating clotting factor inhibitors |
Country Status (1)
Country | Link |
---|---|
US (1) | US4357321A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4470969A (en) * | 1983-12-02 | 1984-09-11 | Miles Laboratories, Inc. | Process for producing a concentrate of coagulation factors VII and VIIa |
US4473553A (en) * | 1983-12-02 | 1984-09-25 | Miles Laboratories, Inc. | Process for producing a lipoprotein-poor concentrate of coagulation factors VII and VIIa |
EP0225160A2 (en) * | 1985-11-26 | 1987-06-10 | Novo Nordisk A/S | Compositions and methods for the treatment of bleeding disorders |
EP0543178A2 (en) * | 1991-11-19 | 1993-05-26 | BEHRINGWERKE Aktiengesellschaft | Process of preparation of a virus-free thrombin concentrate |
US5714370A (en) * | 1991-11-04 | 1998-02-03 | Immuno Aktiengesellschaft | Thrombin and method of producing the same |
US6538113B1 (en) | 1987-08-19 | 2003-03-25 | Dade Behring Marburg Gmbh | Methods of obtaining antibody directed against prothrombin fragments F2/F1+2 |
US20030060411A1 (en) * | 1999-12-24 | 2003-03-27 | Yasushi Nakatomi | Medicinal compositions for treating and preventing diseases based on abnormal blood coagulation |
US6541275B1 (en) | 1988-02-03 | 2003-04-01 | Dade Behring Inc. | Immunoassay for F1.2 prothrombin fragment |
US20030186862A1 (en) * | 2002-04-02 | 2003-10-02 | Nelsestuen Gary L. | Factor VIIa compositions |
US6777390B1 (en) * | 1998-06-17 | 2004-08-17 | Baxter Aktiengesellschaft | Stable blood coagulation inhibitor-free factor vii preparation and method for preparing same |
US20050209149A1 (en) * | 2004-03-19 | 2005-09-22 | Shane Donovan | Factor IXa for the treatment of bleeding disorders |
-
1981
- 1981-05-11 US US06/262,286 patent/US4357321A/en not_active Expired - Lifetime
Non-Patent Citations (3)
Title |
---|
Broze et al.--Chem. Abst., vol. 92 (1980) p. 144,161a. * |
Jesty--Chem. Abst., vol. 88 (1978) p. 72136p. * |
Nemerson et al.--Chem. Abst., vol. 93 (1980) p. 147184s. * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4470969A (en) * | 1983-12-02 | 1984-09-11 | Miles Laboratories, Inc. | Process for producing a concentrate of coagulation factors VII and VIIa |
US4473553A (en) * | 1983-12-02 | 1984-09-25 | Miles Laboratories, Inc. | Process for producing a lipoprotein-poor concentrate of coagulation factors VII and VIIa |
EP0225160A2 (en) * | 1985-11-26 | 1987-06-10 | Novo Nordisk A/S | Compositions and methods for the treatment of bleeding disorders |
EP0225160A3 (en) * | 1985-11-26 | 1988-03-30 | Novo Industri A/S | Compositions and methods for the treatment of bleeding disorders |
US6538113B1 (en) | 1987-08-19 | 2003-03-25 | Dade Behring Marburg Gmbh | Methods of obtaining antibody directed against prothrombin fragments F2/F1+2 |
US6566085B1 (en) | 1987-08-19 | 2003-05-20 | Dade Behring Marburg Gmbh | Synthetic peptides, antibodies directed against them, and the use thereof |
US20040053372A1 (en) * | 1987-08-19 | 2004-03-18 | Hermann Pelzer | Synthetic peptides, antibodies directed against them, and the use thereof |
US6541275B1 (en) | 1988-02-03 | 2003-04-01 | Dade Behring Inc. | Immunoassay for F1.2 prothrombin fragment |
US20030219845A1 (en) * | 1988-02-03 | 2003-11-27 | Ruiz Juan A. | Immunoassay for F1.2 prothrombin fragment |
US5714370A (en) * | 1991-11-04 | 1998-02-03 | Immuno Aktiengesellschaft | Thrombin and method of producing the same |
EP0543178A3 (en) * | 1991-11-19 | 1994-07-06 | Behringwerke Ag | Process of preparation of a virus-free thrombin concentrate |
US5723123A (en) * | 1991-11-19 | 1998-03-03 | Behringwerke Aktiengesellschaft | Process for the production of a virus-free concentrate of thrombin |
EP0543178A2 (en) * | 1991-11-19 | 1993-05-26 | BEHRINGWERKE Aktiengesellschaft | Process of preparation of a virus-free thrombin concentrate |
US6777390B1 (en) * | 1998-06-17 | 2004-08-17 | Baxter Aktiengesellschaft | Stable blood coagulation inhibitor-free factor vii preparation and method for preparing same |
US6881721B2 (en) * | 1999-12-24 | 2005-04-19 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | Medicinal compositions for treating and preventing diseases based on abnormal blood coagulation |
US20030060411A1 (en) * | 1999-12-24 | 2003-03-27 | Yasushi Nakatomi | Medicinal compositions for treating and preventing diseases based on abnormal blood coagulation |
US20030186862A1 (en) * | 2002-04-02 | 2003-10-02 | Nelsestuen Gary L. | Factor VIIa compositions |
US20050209149A1 (en) * | 2004-03-19 | 2005-09-22 | Shane Donovan | Factor IXa for the treatment of bleeding disorders |
JP2007529518A (en) * | 2004-03-19 | 2007-10-25 | バクスター・インターナショナル・インコーポレイテッド | Factor IXA for the treatment of bleeding disorders |
US7425539B2 (en) * | 2004-03-19 | 2008-09-16 | Baxter International Inc. | Factor IXa for the treatment of bleeding disorders |
US20090069543A1 (en) * | 2004-03-19 | 2009-03-12 | Baxter International Inc. | Factor IXa for the treatment of bleeding disorders |
US7767647B2 (en) | 2004-03-19 | 2010-08-03 | Baxter International Inc. | Method of the invention preparations of factor IXa |
AU2005228945B2 (en) * | 2004-03-19 | 2010-09-30 | Baxter Healthcare S.A. | Factor IXa for the treatment of bleeding disorders |
JP2012126743A (en) * | 2004-03-19 | 2012-07-05 | Baxter Internatl Inc | Factor ixa for treatment of bleeding disorder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4287180A (en) | Method for treating blood clotting factor inhibitors | |
US6165974A (en) | Pharmaceutical preparation for treating blood coagulation disorders | |
EP0082182B1 (en) | Composition based on the hemostatic agent factor viia and method of preparing same | |
US4456591A (en) | Therapeutic method for activating factor VII | |
Kim et al. | Purified factor IX using monoclonal immunoaffinity technique: clinical trials in hemophilia B and comparison to prothrombin complex concentrates | |
US4404132A (en) | Blood coagulation promoting product | |
EP0044343B1 (en) | Prothrombin-containing therapeutic compositions and methods of producing enzymatically active blood clotting factors from prothrombin-containing blood fractions | |
HU180816B (en) | Process for producing composition from human nlood plasma for improving agglutination of blood | |
US3717708A (en) | Blood coagulation complex | |
US4479938A (en) | Therapeutic composition containing factor VIIa | |
AU2008203028A1 (en) | Pharmaceutically stable hemostatic compositions | |
JPH01193229A (en) | Anticoagulant | |
US4357321A (en) | Method and composition for treating clotting factor inhibitors | |
US4286056A (en) | Method for making therapeutic enzyme compositions | |
US4459288A (en) | Therapeutic blood clotting factor compositions and their use | |
US4663164A (en) | Aqueous compositions for treating blood clotting factor inhibitors | |
Suomela et al. | Preparation and properties of a therapeutic factor IX concentrate | |
US4361510A (en) | Blood coagulation promoting product | |
Costa et al. | Partial characterization of an autoantibody recognizing the secondary binding site (s) of thrombin in a patient with recurrent spontaneous arterial thrombosis | |
EP0041174B1 (en) | Blood coagulation promoting product and process of preparing same | |
JP2535547B2 (en) | Factor VIII Therapeutic agent for factor-resistant hemophilia A and method for producing the same | |
Ratnoff | A. The Physiology of Blood Coagulation | |
Wuepper | Plasma prekallikrein: Its characterization, mechanism of activation, and inherited deficiency in man | |
Dubber et al. | Studies with a preparation of urokinase | |
Edwards et al. | Recombinant coagulation factor IX (BeneFix®) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, PL 96-517 (ORIGINAL EVENT CODE: M176); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M170); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M171); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M185); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: BAXTER INTERNATIONAL, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NABI;REEL/FRAME:008545/0540 Effective date: 19970516 |
|
AS | Assignment |
Owner name: NABI, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER INTERNATIONAL INC.;REEL/FRAME:008698/0063 Effective date: 19970516 |