[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3921697A - Method and apparatus for controlling the operating conditions in continuous metal casting machines having a revolving endless casting belt - Google Patents

Method and apparatus for controlling the operating conditions in continuous metal casting machines having a revolving endless casting belt Download PDF

Info

Publication number
US3921697A
US3921697A US494702A US49470274A US3921697A US 3921697 A US3921697 A US 3921697A US 494702 A US494702 A US 494702A US 49470274 A US49470274 A US 49470274A US 3921697 A US3921697 A US 3921697A
Authority
US
United States
Prior art keywords
belt
casting
molten metal
detectors
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US494702A
Inventor
Charles J Petry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazelett Strip Casting Corp
Original Assignee
Hazelett Strip Casting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US343884A external-priority patent/US3864973A/en
Application filed by Hazelett Strip Casting Corp filed Critical Hazelett Strip Casting Corp
Priority to US494702A priority Critical patent/US3921697A/en
Application granted granted Critical
Publication of US3921697A publication Critical patent/US3921697A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/182Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature

Definitions

  • ABSTRACT Method and apparatus for controlling the operating conditions in a continuous metal casting machine of the type having a revolving endless casting belt with a casting surface adapted to confine the molten metal and which is covered with a belt coating to insulate and protect the belt from the molten metal and a reverse surface adapted to be cooled by high velocity liquid coolant, such as water
  • the method and apparatus can be used to control molten metal pool level and also for control of the belt coating condition and include one or more series of at least two heat sensing detectors, mounted with their tips in bearing relation against the moving reverse. cooled surface of the casting belt in positions to be surrounded by the high velocity liquid coolant flow.
  • One series of these detectors extends in the direction of belt travel and spans the desired molten metal pool level.
  • the first series detects the molten metal pool level in the casting ap paratus by determining increases or decreases in belt temperature at various longitudinal belt locations along the direction of belt travel,
  • a series of detectors can be used to monitor the condition of the belt coating by measuring differentials in the belt temperature between various lateral locations across the belt width.
  • twin belt machine detectors may engage the reverse surfaces of both upper and lower belts.
  • the present invention relates to method and apparatus for controlling the operating conditions in a continuous metal casting machine of the type having an endless casting belt for confining the molten metal.
  • the method and apparatus embodying this invention can be used for controlling the molten metal pool level and can be used for control of the condition of the belt coating which protects and insulates the front surface of the belt from the molten metal in contact therewith.
  • Continuous casting machines are used to cast long lengths of metal strip or slab of preselected dimension directly from molten metal.
  • the molten metal is confined adjacent to the front surface of a flexible endless moving metal belt which is moved along with the metal being cast as the molten metal is introduced into the machine from an external source.
  • the molten metal is carried along by the casting belt as it solidifies, while a high velocity flow of coolant is applied along the reverse surface of the casting belt to cool it and to extract heat from the metal adjacent to the belt.
  • molten metal be introduced into the input region of the continuous casting machine at a rate which is effectively synchronized with the casting rate of the machine as determined by the belt travel so as to maintain the pool of molten metal in the input of the machine at a desired level.
  • the infeed rate exceeds the casting rate, the pool level will creep up until suddenly the molten metal spills out and overflows out of the input. Such an overflow necessitates a difficult and expensive clean up and is hazardous to personnel and to the casting installation.
  • the infeed rate is less than the casting rate, the pool level will creep down into the machine allowing the molten metal being introduced to cascade down too far before reaching the pool causing splashing and turbulence within the machine.
  • these casting belt machines can be run continuously for long periods to successfully and efficiently cast large tonnages of strip or slab product.
  • the insulative and protective coating on the front faces of the endless belt adjacent to the molten metal.
  • the effectiveness of this coating in performing its function is dependent upon its thickness, its density, its uniformity of distribution, and its insulative quality or its resistance to heat transfer.
  • the method and apparatus of the present invention may be used with advantage to control the pool level of molten metal being cast by a continuous belt metal Casting machine. Additionally, the method and apparatus may be used with advantage for control of the condition of the belt coating used in such machines on the front surface of the endless belt where it is directly in contact with the molten metal being cast.
  • the sensing of the pool level has been carried out by the use of beams of gamma rays from a radioactive cobalt source which are sent through the input region of the machine where the pool of molten metal is intended to be located.
  • This use of gamma ray pool level sensing techniques is expensive, complex and dangerous. In actual practice in many cases the gamma ray technique has not worked out much better than some of the earlier methods.
  • the method and apparatus of the present invention controls the molten metal pool level in a continuous casting machine of the type having an endless casting belt.
  • This method and apparatus can be used for control of the condition of the insulative and protective coating covering the casting belts.
  • the method and apparatus employ one or more series of at least two heat sensing detectors mounted with their tips bearing against the moving reverse, water cooled surface of the endless casting belt in positions to be surrounded by the coolant. The high velocity flow of liquid coolant is directed against the travels along this reverse belt surface.
  • the first detector series is mounted to bear against the reverse, cooled surface of one of the endless casting belts and extends longitudinally in the direction of belt travel. This detector series is positioned to span the desired molten metal pool level in the casting machine.
  • the temperature of the casting belt increases when it is in contact with the molten metal being cast. I have found that by taking the steps described further below, this increased temperature becomes distinguishable at the belt-liquid cooland interface, in spite of the presence of the high velocity coolant flow. Therefore, this first series of detectors determines the molten metal pool level by detecting such temperature increases or subsequent decreases at the various longitudinal detector locations. It is not necessary that temperature be accurately measured at each such detector bearing point. Each detector indicates when the temperature increases or decreases significantly at its location to thereby indicate when the pool level changes above or below that location.
  • a series of detectors extending laterally across the belt can be employed to sense the relative belt temperatures at the locations of each individual detector.
  • a series of detectors can be employed with both the upper and lower belts.
  • the best direct indication of coating condition is the temperature of the casting belt when it is in Contact with the molten metal being cast. It is impractical, how ever, to measure belt temperature at the belt-coating interface. However, by taking the steps described further below, the temperature of the belt at the beltliquid coolant interface can be directly, quantitatively related to various coating properties, particularly coating heat transfer resistance, which reveal coating condition. Therefore, by utilizing a suitable means of data interpretation, for example a temperature-heat transfer resistance table, the temperature of the casting belt at points spaced across the belt-liquid coolant interface measured by the second detector series can be related to the coating property being monitored.
  • a suitable means of data interpretation for example a temperature-heat transfer resistance table
  • Both the first and second series of detectors are mounted in a spaced fashion laterally across the belt so that minimal interference with the high velocity continuous flow of liquid coolant results.
  • Each series of detectors may be utilized in conjunction with any suitable equipment for monitoring the temperatures and temperature variation which they sense.
  • the first and second detector series may be used in conjunction with automatic equipment which controls the rate of feed of molten metal into the casting machine to maintain the desired pool level or which automatically stops the casting process when the belt coating has deteriorated or become non-uniform to a degree making it ineffective in insulating and protecting the casting belt or adversely affecting the uniformity of the cast product.
  • the detectors in each series include a voltage generating element, such as a thermistor or contact thermocouple, embedded in a matrix of waterproof insulating material which in turn is mounted with a bearing tip of metal of good heat conductivity. This bearing tip contacts the voltage generating element on its interior side and contacts the re verse belt surface on its exterior side.
  • a voltage generating element such as a thermistor or contact thermocouple
  • the detector is fitted into a streamlined jacket which presents little impedance to the high velocity flow of liquid coolant directed against it.
  • the detector assembly is associated with a spring-loaded member which is appropriately mounted on the casting machine frame to correctly position the detector in the desired location to form a series. The spring urges the bearing tip of the detector assembly into contact with the moving casting belt.
  • the detector assembly is also constructed so that the jacket shields the generating element from lateral thermal effects due to the continuous rushing flow of coolant.
  • the high conductivity bearing tip contacting the reverse belt surface transmits thermal energy from the belt surface.
  • Another aspect of the present invention enables the condition of the insulative and protective coating covering the casting belt to be continuously controlled in such a casting machine.
  • FIG. 1 is a side elevational sectional view of a continuous metal casting machine equipped with a series of heat sensing detectors which determine molten metal pool level, and/or belt coating condition.
  • FIG. 2 is an enlargement of a portion of FIG. 1.
  • FIG. 3 is an enlarged cross-sectional view of this apparatus taken through plane 3-3 in FIG. 2 looking up, which illustrates the locations of the individual heat sensing detectors of both detector series.
  • FIG. 4 is an enlarged elevational sectional view of two heat sensing detectors mounted in spring loaded tubes on mounting arms taken through the broken plane 44 in FIG. 3.
  • FIG. 5 is an enlarged cross-sectional view of one heat sensing detector taken through plane 5-5 of FIG. 4 looking upward showing the streamlined shape of the upper detector jacket body.
  • FIG. 6 is an enlarged cross-sectional view of the same heat sensing detector taken through plane 66 of FIG. 4 looking upward illustrating the circular shape of the lower detector jacket body mounted in a spring loaded tubular holder.
  • FIG. 1 An illustrative example of a continuous metal casting machine equipped with an embodiment of the present invention is shown in FIG. 1.
  • molten metal 12 is supplied from a pouring box or ladle l4 and flows down through a pouring spout 16 into a tundish 18.
  • the rate of flow from the ladle 14 to the tundish 18 is controlled by a tapered stopper 20 mounted on the end of a control rod 22.
  • the molten metal 12 is fed through a nozzle 24 into the input region 25 leading into a casting region C formed between spaced parallel surfaces of the upper and lower endless flexible casting belts 26 and 28, respectively.
  • the casting belts are fabricated from steel.
  • each belt is provided with a protective and insulative coating or dressing 29 on its casting surface which is sometimes called the front" surface.
  • the casting belts 26 and 28 are supported on and driven by an upper and lower carriage generally indicated at 30 and 32, respectively. Both carriages are mounted on a machine frame (not shown). Each carriage includes two main rolls which support, drive and steer the casting belts. These rolls include upper and lower input rolls, 34 and 36, and upper and lower output rolls, 38 and 40, respectively.
  • the casting belts 26 and 28 are guided by multiple finned back up rollers 41 (FIG. 4) so that the opposed belt casting surface are maintained in a preselected spaced relationship throughout the length of the casting region C.
  • These finned back up rollers 41 may be of the type shown and described in U.S. Pat. No. 3,l67,830.
  • a flexible, endless side metal retaining dam 44 is disposed on each side of the casting region between the casting belts, to define the side edges of the casting region for confining the molten metal.
  • the side dams 44 are guided at the input end of the casting apparatus 10 by guide members 46 which are mounted on the lower carriage 32, for example such as shown in said U.S. Pat. No. 3,167,830.
  • the two casting belts 26 and 28 are driven at the same linear speed by a driving mechanism 47 which is schematically illustrated and may, for example, be such as described in said patent.
  • a driving mechanism 47 which is schematically illustrated and may, for example, be such as described in said patent.
  • the upper and lower carriages are downwardly inclined in the downstream direction, so that the casting region between the casting belts IS inclined. This downward inclination facilitates flow of molten metal into the casting region C.
  • Tremendous heat flux is withdrawn through each casting belt by means of a high velocity moving layer 48 of liquid coolant, shown in FIGS. 2 and 4, traveling along the reverse, cooled surfaces, 50 and 52 of the upper and lower belts, respectively.
  • the liquid coolant shown in FIGS. 2 and 4, traveling along the reverse, cooled surfaces, 50 and 52 of the upper and lower belts, respectively.
  • water containing a suitable corrosion inhibitant is applied at high velocity, and the fast flowing layer 48 may be maintained in a manner as shown in said patent.
  • the casting After the casting has solidified as indicated at 58 at least on all external surfaces, and has been fed out of the casting machine, it may be conveyed and guided by a number of feed rollers 60, two of which are shown in FIG. 1.
  • each detector 62a-62e in this series is mounted with its tip bearing against the reverse, cooled surface 52 of the lower casting belt 28.
  • these heat sensing detectors 62u62e are positioned between the finned back up rollers 41 discussed above so that these detectors avoid interference with the back up rollers.
  • Each detector is mounted on an individual support arm 64a. 64b. 64c, 64d, and 64e, which is permanently mounted on and laterally extends from the lower carriage 32.
  • the first detector 620, or the first and second detectors 62a and 62b, or more of them, may be mounted in the grooves 63 of the lower input roll 36 between the ridges 65 of this roll so as to be beneath the upstream limit of the pool P.
  • a mounting finger 69 extends upstream from the arm 64c into the respective grooves 63 for supporting the respective detectors in the groove or grooves.
  • any suitable means for mounting the detectors in a fixed location in bearing relation with the reverse cooled belt surface may be employed.
  • all four series of detectors 62, 162, 70 and 170 may be used in a twin-belt casting machine. Alternatively, any combination of one, two, three or four of the series of detectors 62, 162, 70 and 170 can be used. It is noted that the detector series 162 and 170 for the upper belt are located further downstream than those for the lower belt because the downward inclination of the casting region C causes the molten surface meniscus of the pool P to be positioned at an oblique relationship to both casting belts 26 and 28, as seen in FIGS. 1 and 2.
  • the pool level detector series, 62a62e is positioned to span the desired molten metal pool position, that is,
  • the series 62 extends longitudinally, (i.e.. upstreamdownstream) in the direction of belt travel; the leading detector 62a is positioned at a point above the desired pool position; and the trailing detector 62 is positioned at a point below the desired pool position.
  • the remaining detectors, 62b. 62c. and 62d, are positioned intermediate the leading and trailing detectors. 62a and 620. respectively.
  • Each heat sensing detector is responsive to localized changes in belt temperature on the lower reverse cooled belt surface 52 adjacent to its own tip.
  • the detector series 62 senses an upstream or downstream shifting in position of the pool P by sensing a localized increase or decrease in belt temperature at the respective longitudinal locations of the detectors 62a. 62/) 62c. 62d and 62a or of the detectors 16211. I621). I620. l62d and 162s (or of all of them) in the direction of belt travel.
  • Each of these detectors in the series 62 or 162 (or bothl is connected to a pool level data output monitor 66 (FIG. 1 l. which may be any suitable monitor means for indicating the response to temperature change registered by individual detectors in this pool level series 62 or 162.
  • monitor 66 may include a sequence of electrical relays controlling colored lights, each relay being responsive to a corresponding detector 6211-621 or l62u-I62e. An electrical circuit associated with each relay causes the light to become energized when its corresponding detector senses a significant temperature increase.
  • the casting apparatus operator can then manually adjust control means 71 for regulating the flow of molten metal into the casting ma chine until he desired pool level is being maintained. Any other monitor means such as a sequence of recording pens or audible signals may similarly be employed.
  • the control means 71 may include a manually adjustable or motor driven feed screw for raising or lowering the stopper .0 to regulate the molten metal feed.
  • the pool level data output monitor and control 66 may include automatic control equipment to regulate the rate that molten metal 12 is fed into the casting machine. As shown in FIG. 1, the pool level monitor 66 is connected by circuits 67 to the feed control means 7] which moves the tappered stopper through the control rod 22 and thereby controls molten metal flow.
  • the motor driven feed screw control 71 may include a servomechanism operatively connected to the control equipment 66 so that the control of molten metal infeed is fully automatic.
  • the pool position detector series. 6211-620 is staggered across the belt width to avoid any significant obstruction from occurring in the continuous high velocity coolant layer 48.
  • the staggered detector arrangement shown interfers minimally with this coolant flow.
  • some of the detectors in the series 62 are positioned in the grooves 63 between the lands 65 of the roll 36.
  • the rate of molten metal infeed into the input region 25 is controlled either manually or automatically to match the metal infeed to the casting rate as determined by the rate of travel of the belts 26 and 28.
  • Another method which can be used in some cases to control the pool position is to stabilize the rate of infeed of the molten metal 12 at a desired value and then gradually to vary the speed of the machine by slight amounts to match the actual input of metal.
  • the pool level control equipment 66 is connected by electrical circuit means 73 to the drive mechanism 47 for the two belts 26 and 28. This drive mechanism turns the rolls 38 and 40 simultaneously and synchronously to revolve the belts as is indicated schematically in FIG 1.
  • the control equipment 66 is connected by circuit means 75 to the drive mechanism 76 for driving the outfeed conveyor rolls 60.
  • the speed of the casting machine and outfeed rolls can be automatically matched to the rate of infeed of mo]- ten metal to control the position of the pool P if the machine and roll speed is gradually varied by small amounts.
  • a second series or I70 (FIGS. 1, 2) of five heat sensing detectors 620, 70a, 70b, 70c, and 70d (FIG. 3) may be installed on one or both belts. These are preferably located as shown in FIG. 3 at uniformly spaced points across the width of the belt 28. As many of these detectors in series 70 or may be used as desired to provide a desired number of data sensing locations for closely monitoring the condition of the belt coating 29. Again. it is to be noted that the series 70 or 170 should not be of such a large number as would interfer with the flow F of the liquid coolant.
  • the trailing detector 62 in the pool level detector series 62 forms one of the detectors in the coating condition monitor series 70. This latter series is also mounted to bear against the reverse, cooled surface 52 of the lower casting belt 28.
  • all detectors may be mounted on a single support arm 64e or I64e upon which the detector 62s or 162e common to both series 62 and 70 (or 162 and 170) is mounted.
  • Any other suitable mounting means may be employed which fixes the coating condition detector series at a given location in bearing relation with the reverse, cooled surface of the casting belt.
  • the belt coating condition detector series 70 or 170 is positioned in line with the trailing pool level detector 622 or l62e because it is at this longitudinal belt location that molten metal should always be in positive contact with the full width of the casting belt.
  • An indication of coating condition is the temperature of the reverse belt surface when the coating on the front belt surface is in contact with the molten metal being cast. Therefore, the coating condition detector series is positioned at laterally spaced positions across the belt near the pool P.
  • the coating conditions detector series 62e, 70a, 70b, 70c. and 70d is connected to a coating condition data output monitor 72.
  • This monitor 72 includes a series of temperature indicators which register the respective temperatures sensed by these detectors. The casting machine operator may relate the temperatures to various belt coating properties using data interpretation tables based upon past operating experience for the type of coating 29 being used. It is to be understood that the detector series 170, if used. is connected to the monitor 72.
  • the coating condition data output monitor 72 may be connected to the drive mechanisms 47 and 76 to automatically stop the casting machine when the belt coating has deteriorated or become nonuniform to a degree making it ineffective of performing its insulative and protective functions for casting quality product.
  • FIG. 4 illustrates detectors 62c and 62d in elevational cross-section.
  • Each detector includes a jacket 80 which is fabricated from a smooth surfaced material of low heat conductivity such as polytetrafluoroethylene, e.g. Teflon which is streamlined to present little resistance to the flow F ofliquid coolant 48 rushing by on either side.
  • the jacket 80 is formed with a streamlined cross-section. This streamlined cross-section, indicated at 82 and shown in detail in FIG.
  • Each insulating jacket 80 is provided with an axial bore 94, into the end of which a thermally highly conductive metal sleeve 100, for example of copper, is press fitted.
  • This thermally conductive sleeve 100 mounted in the very tip of the insulating jacket 80 is formed with a closed end 102 which directly contacts and slides against the moving belt surface 52.
  • a heatresponsive voltage generating element 104 such as a thermistor or contact thermocouple, having lead wires 106, is inserted into the thermally conductive sleeve [00 in contact with its closed end 102 and is potted therein an electrically insulative, waterproof material 108 such as epoxy plastic.
  • the lead wires 106 are connected to the appropriate monitor and control means 66 or 72.
  • the capped sleeve 100 is press fitted into the jacket 80 to resist movement within the jacket to insure that the capped sleeve remains in firm contact with the moving belt.
  • Heat is conducted from the belt, through the closed end 102 of the cap and into the thermistor 104. After the detector series have been mounted in position the monitors 66 and 72 are set up for the desired response.
  • This detector arrangement insulates the heat responsive element 104 from lateral cooling effects caused by the coolant flow. However, axial heat flux travelling from the molten metal, conducted through the belt and belt-engaging cap are readily detected.
  • This invention enables the operating condition of a continuous metal casting machine to be continuously monitored and determined by sensing temperature changes at the moving reverse liquid-cooled surface of one or both casting belts in a turn-belt machine.
  • This invention may also be employed to advantage with the casting belt of a wheel-and-belt casting machine for monitoring the operating condition of the machine such as the molten pool level at the input and the condition of the belt coating.
  • a wheel-and-belt type casting machine is shown in US. Pat. No. 3,429,363.
  • the method of controlling a continuous metal casting machine of the type having at least one endless. flexible, revolving casting belt with a casting surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant.
  • the casting surface being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said method comprising:
  • controlling the casting machine for automatically stopping the casting process in the event that the insulative coating has become deteriorated to an undesired amount.
  • controlling the casting machine for automatically stopping the casting process in the event that the insulative coating has become non-uniform to an undesired amount.
  • said method comprising:
  • said support means holding detectors in bearing contact with the moving reverse, cooled surface of said casting belt near said casting region;
  • said detectors being arranged to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse belt surface;
  • thermal insulation material associated with said heat sensing detectors for insulating them from the high velocity flow of liquid coolant rushing by;
  • monitor means connected to said heat sensing detectors to monitor the responses of said detectors to changes in the temperature of the moving reverse surface of the belt at the respective upstreamdownstream positions thereof to determine the molten metal pool position;
  • said series of heat sensing detectors being located in relative upstream and downstream positions in relation to travel of the casting belt near the input to said casting region to span the desired location of the molten metal pool position;
  • control means for controlling the rate of infeed of molten metal into the input region of the machine
  • circuit means interconnecting said monitor means and said control means for automatically controlling the rate of infeed of the molten metal to keep the position of the molten pool within the desired operating range.
  • Apparatus for controlling the operating conditions support means attached to the continuous metal casting machine near the casting region;
  • said support means holding detectors in bearing contact with the moving reverse, cooled surface of LII said casting belt near said casting region;
  • said detectors being arranged to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse belt surface;
  • thermal insulation material associated with said heat sensing detectors for insulating them from the high velocity flow of liquid coolant rushing by;
  • monitor means connected to said heat sensing detectors to monitor the responses of said detectors to changes in the temperature of the moving reverse surface of the belt at the respective upstreamdownstream positions thereof to determine the molten metal pool position;
  • said series of heat sensing detectors being located in relative upstream and downstream positions in relation to travel of the casting belt near the input to said casting region to span the desired location of the molten metal pool position;
  • control means for controlling the speed of belt travel to match the actual infeed of molten metal into the input region of the machine
  • circuit means interconnecting said monitor means and said control means for automatically controlling the speed of belt travel to keep the position of the molten pool within the desired operating range.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Continuous Casting (AREA)

Abstract

Method and apparatus for controlling the operating conditions in a continuous metal casting machine of the type having a revolving endless casting belt with a casting surface adapted to confine the molten metal and which is covered with a belt coating to insulate and protect the belt from the molten metal and a reverse surface adapted to be cooled by high velocity liquid coolant, such as water. The method and apparatus can be used to control molten metal pool level and also for control of the belt coating condition and include one or more series of at least two heat sensing detectors, mounted with their tips in bearing relation against the moving reverse, cooled surface of the casting belt in positions to be surrounded by the high velocity liquid coolant flow. One series of these detectors extends in the direction of belt travel and spans the desired molten metal pool level. The first series detects the molten metal pool level in the casting apparatus by determining increases or decreases in belt temperature at various longitudinal belt locations along the direction of belt travel. A series of detectors can be used to monitor the condition of the belt coating by measuring differentials in the belt temperature between various lateral locations across the belt width. In a twin belt machine detectors may engage the reverse surfaces of both upper and lower belts.

Description

United States Patent Petry 1 1 Nov. 25, 1975 REVOLVING ENDLESS CASTING BELT [75] Inventor: Charles J. Petry, Winooski, Vt.
[731 Assignee: Hazelett Strip-Casting Corporation,
Winooski. \"t.
[22] Filed: Aug. 5, 1974 [21] Appl. No: 494,702
Related U.S. Application Data [62] Division of Ser No, 343.884, March 22, 1973, Pat.
[52] US. Cl. 164/4; 164/156 [51] Int. Cl. B221) 11/16 [58] Field of Search 164/4,154,155, 156, 278,
164/283 R, 283 MT, 283 M, 283 S; 73/295 [56] References Cited UNITED STATES PATENTS 1,139,888 5/1915 Mellen 164/156 3,080,627 3/1963 Hotel-to .i 164/278 X 3,204,460 9/1965 Milnes i i i i i i 73/295 3.399.568 9/1968 Wilson i i i i i i 73/295 3.456714 7/1969 Weiss .1 73/295 X 3,482,620 12/1969 Dumont-Fillonm 164/278 3,528,479 9/1970 Cole et a1. i i i i 164/155 3700027 10/1972 Petersen 164/283 S X 3,797,310 3/1974 Babcock 73/295 Primary Examiner-Francis S. Husar Ari-[slant Exunziner-John E. Roethel Attorney. Agent. or Firm-Parmelee, Johnson & Bollinger 57 ABSTRACT Method and apparatus for controlling the operating conditions in a continuous metal casting machine of the type having a revolving endless casting belt with a casting surface adapted to confine the molten metal and which is covered with a belt coating to insulate and protect the belt from the molten metal and a reverse surface adapted to be cooled by high velocity liquid coolant, such as water, The method and apparatus can be used to control molten metal pool level and also for control of the belt coating condition and include one or more series of at least two heat sensing detectors, mounted with their tips in bearing relation against the moving reverse. cooled surface of the casting belt in positions to be surrounded by the high velocity liquid coolant flow. One series of these detectors extends in the direction of belt travel and spans the desired molten metal pool level. The first series detects the molten metal pool level in the casting ap paratus by determining increases or decreases in belt temperature at various longitudinal belt locations along the direction of belt travel, A series of detectors can be used to monitor the condition of the belt coating by measuring differentials in the belt temperature between various lateral locations across the belt width. In a twin belt machine detectors may engage the reverse surfaces of both upper and lower belts.
7 Claims, 6 Drawing Figures 1 mm earn/r POOL MUN/70R LEVEL U.S. Patent Nov. 25, 1975 Sheet 1 of4 3,921,697
I W/ w V g Sheet 2 0f 4 3,921,697
US. Patent Nov. 25, 1975 Sheet 3 of4 3,921,697
US. Patent Nov. 25, 1975 U.S. Patent Nov. 25, 1975 Sheet 4 of 4 3,921,697
METHOD AND APPARATUS FOR CONTROLLING THE OPERATING CONDITIONS IN CONTINUOUS METAL CASTING MACHINES HAVING A REVOLVING ENDLESS CASTING BELT This is a division of application Ser. No. 343,884. filed Mar. 22, 1973, now US. Pat. No. 3,864,973.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to method and apparatus for controlling the operating conditions in a continuous metal casting machine of the type having an endless casting belt for confining the molten metal. The method and apparatus embodying this invention can be used for controlling the molten metal pool level and can be used for control of the condition of the belt coating which protects and insulates the front surface of the belt from the molten metal in contact therewith.
Continuous casting machines are used to cast long lengths of metal strip or slab of preselected dimension directly from molten metal. The molten metal is confined adjacent to the front surface of a flexible endless moving metal belt which is moved along with the metal being cast as the molten metal is introduced into the machine from an external source. The molten metal is carried along by the casting belt as it solidifies, while a high velocity flow of coolant is applied along the reverse surface of the casting belt to cool it and to extract heat from the metal adjacent to the belt.
It is important that molten metal be introduced into the input region of the continuous casting machine at a rate which is effectively synchronized with the casting rate of the machine as determined by the belt travel so as to maintain the pool of molten metal in the input of the machine at a desired level. When the infeed rate exceeds the casting rate, the pool level will creep up until suddenly the molten metal spills out and overflows out of the input. Such an overflow necessitates a difficult and expensive clean up and is hazardous to personnel and to the casting installation. When the infeed rate is less than the casting rate, the pool level will creep down into the machine allowing the molten metal being introduced to cascade down too far before reaching the pool causing splashing and turbulence within the machine. Such splashing and turbulence causes non-uniformity and segregations in the cast product. Also, the low pool level leaves too large a space above the pool containing gases or dross which can become trapped within or adjacent to the molten metal being introduced, thus causing impurities, hollows or voids in the cast product.
When the infeed rate is precisely matched to the casting rate, these casting belt machines can be run continuously for long periods to successfully and efficiently cast large tonnages of strip or slab product.
In order to achieve optimal casting conditions, it is also important to control the condition of the insulative and protective coating on the front faces of the endless belt adjacent to the molten metal. In particular, the effectiveness of this coating in performing its function is dependent upon its thickness, its density, its uniformity of distribution, and its insulative quality or its resistance to heat transfer.
The method and apparatus of the present invention may be used with advantage to control the pool level of molten metal being cast by a continuous belt metal Casting machine. Additionally, the method and apparatus may be used with advantage for control of the condition of the belt coating used in such machines on the front surface of the endless belt where it is directly in contact with the molten metal being cast.
In actual practice it is extremely difficult to meter the infeed rate of molten metal and also extremely difficult to determine the level ofthe molten pool. In most cases the molten pool is hidden from sight by the equipment associated with the input region of the machine. Even if a small observation opening is attempted to be provided from one side, the surrounding insulation material and the slag and dross floating on the molten pool prevent accurate determinations to be made of the actual level of the molten pool.
The continuous movement of the casting belt and the high velocity liquid coolant rushing along the reverse surface of the belt plus the heat are further impediments to determination of pool level. Since the molten metal is at its highest temperature as it is being introduced into the pool, the amount of heat flux is greatest and so an intensive and continuous cooling of the reverse surface of the belt is absolutely essential in this input and pool region.
DESCRIPTION OF THE PRIOR ART A variety of methods have previously been used in attempts to determine the pool level of molten metal being cast in such continuous casting machines. Among these methods is the use of the operators eye and electronic and mechanical sensors. Thermocouples. mounted in the side metal retaining dam, have also been utilized. However. all these electronic and mechanical methods which have been tried are generally very expensive to implement. In addition. all of these prior art techniques including visual observation have experienced more or less interference and nonresponsiveness or lapses in functioning due to heat. fumes from the molten metal and casting process, impurities or slag and dross build up as well as effects of the high velocity coolant flow, and other factors.
More recently in attempts to overcome the interference, non-responsiveness and failures of the prior art methods, the sensing of the pool level has been carried out by the use of beams of gamma rays from a radioactive cobalt source which are sent through the input region of the machine where the pool of molten metal is intended to be located. This use of gamma ray pool level sensing techniques is expensive, complex and dangerous. In actual practice in many cases the gamma ray technique has not worked out much better than some of the earlier methods.
With respect to the indication of the condition of the belt coating, several prior art methods have been employed. The most common method has been based on the casting machine operators subjective judgment of the appearance of coating and belt together with the appearance of the cast product as it exits from the machine. The coating condition has been indirectly determined by taking temperature readings on the surface of the solid cast as it emerges from the casting machine. A third method utilized occasional tests of the coating thickness by a magnetic or other type gauge.
All of these methods yield only a qualitative indication of the belt coating heat transfer resistance condition. Additionally, these methods may be subject to error due to interference caused by other factors such as rate of travel and temperature of the belt.
In summary, the prior art methods and apparatus for controlling the pool level of molten metal and the belt coating condition in such types of continuous metal casting machines have had serious drawbacks.
SUMMARY OF THE INVENTION In the preferred embodiment to be described in detail hereinbelow, the method and apparatus of the present invention controls the molten metal pool level in a continuous casting machine of the type having an endless casting belt. This method and apparatus can be used for control of the condition of the insulative and protective coating covering the casting belts. The method and apparatus employ one or more series of at least two heat sensing detectors mounted with their tips bearing against the moving reverse, water cooled surface of the endless casting belt in positions to be surrounded by the coolant. The high velocity flow of liquid coolant is directed against the travels along this reverse belt surface.
The first detector series is mounted to bear against the reverse, cooled surface of one of the endless casting belts and extends longitudinally in the direction of belt travel. This detector series is positioned to span the desired molten metal pool level in the casting machine. The temperature of the casting belt increases when it is in contact with the molten metal being cast. I have found that by taking the steps described further below, this increased temperature becomes distinguishable at the belt-liquid cooland interface, in spite of the presence of the high velocity coolant flow. Therefore, this first series of detectors determines the molten metal pool level by detecting such temperature increases or subsequent decreases at the various longitudinal detector locations. It is not necessary that temperature be accurately measured at each such detector bearing point. Each detector indicates when the temperature increases or decreases significantly at its location to thereby indicate when the pool level changes above or below that location.
A series of detectors extending laterally across the belt can be employed to sense the relative belt temperatures at the locations of each individual detector. In a twin-belt machine a series of detectors can be employed with both the upper and lower belts.
The best direct indication of coating condition is the temperature of the casting belt when it is in Contact with the molten metal being cast. It is impractical, how ever, to measure belt temperature at the belt-coating interface. However, by taking the steps described further below, the temperature of the belt at the beltliquid coolant interface can be directly, quantitatively related to various coating properties, particularly coating heat transfer resistance, which reveal coating condition. Therefore, by utilizing a suitable means of data interpretation, for example a temperature-heat transfer resistance table, the temperature of the casting belt at points spaced across the belt-liquid coolant interface measured by the second detector series can be related to the coating property being monitored.
Both the first and second series of detectors are mounted in a spaced fashion laterally across the belt so that minimal interference with the high velocity continuous flow of liquid coolant results.
Each series of detectors may be utilized in conjunction with any suitable equipment for monitoring the temperatures and temperature variation which they sense.
Alternatively, the first and second detector series may be used in conjunction with automatic equipment which controls the rate of feed of molten metal into the casting machine to maintain the desired pool level or which automatically stops the casting process when the belt coating has deteriorated or become non-uniform to a degree making it ineffective in insulating and protecting the casting belt or adversely affecting the uniformity of the cast product.
The detectors in each series include a voltage generating element, such as a thermistor or contact thermocouple, embedded in a matrix of waterproof insulating material which in turn is mounted with a bearing tip of metal of good heat conductivity. This bearing tip contacts the voltage generating element on its interior side and contacts the re verse belt surface on its exterior side.
The detector is fitted into a streamlined jacket which presents little impedance to the high velocity flow of liquid coolant directed against it. The detector assembly is associated with a spring-loaded member which is appropriately mounted on the casting machine frame to correctly position the detector in the desired location to form a series. The spring urges the bearing tip of the detector assembly into contact with the moving casting belt.
The detector assembly is also constructed so that the jacket shields the generating element from lateral thermal effects due to the continuous rushing flow of coolant. The high conductivity bearing tip contacting the reverse belt surface transmits thermal energy from the belt surface.
Accordingly, it is an object of the present invention to provide a unique and novel method and apparatus for controlling the molten metal pool level in continuous metal casting machine. Another aspect of the present invention enables the condition of the insulative and protective coating covering the casting belt to be continuously controlled in such a casting machine.
Other objects, aspects, and advantages of the present invention will be pointed out in, or will be understood from the following detailed description, when considered in conjunction with the accompanying drawings which are briefly described below and which show the presently preferred mode of putting this invention into practice.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational sectional view of a continuous metal casting machine equipped with a series of heat sensing detectors which determine molten metal pool level, and/or belt coating condition.
FIG. 2 is an enlargement of a portion of FIG. 1.
FIG. 3 is an enlarged cross-sectional view of this apparatus taken through plane 3-3 in FIG. 2 looking up, which illustrates the locations of the individual heat sensing detectors of both detector series.
FIG. 4 is an enlarged elevational sectional view of two heat sensing detectors mounted in spring loaded tubes on mounting arms taken through the broken plane 44 in FIG. 3.
FIG. 5 is an enlarged cross-sectional view of one heat sensing detector taken through plane 5-5 of FIG. 4 looking upward showing the streamlined shape of the upper detector jacket body.
FIG. 6 is an enlarged cross-sectional view of the same heat sensing detector taken through plane 66 of FIG. 4 looking upward illustrating the circular shape of the lower detector jacket body mounted in a spring loaded tubular holder.
Corresponding reference numerals indicate corresponding structural elements and corresponding characteristic features in each of the respective drawings.
DETAILED DESCRIPTION An illustrative example of a continuous metal casting machine equipped with an embodiment of the present invention is shown in FIG. 1. [n this casting machine molten metal 12 is supplied from a pouring box or ladle l4 and flows down through a pouring spout 16 into a tundish 18. The rate of flow from the ladle 14 to the tundish 18 is controlled by a tapered stopper 20 mounted on the end of a control rod 22. From the tundish 18, the molten metal 12 is fed through a nozzle 24 into the input region 25 leading into a casting region C formed between spaced parallel surfaces of the upper and lower endless flexible casting belts 26 and 28, respectively. The casting belts are fabricated from steel. or other alloys, which provide toughness and resistance to abrasion and physical damage as well as resistance to the temperature shocks and heat differential stresses undergone during casting. As shown in detail in FIGS. 2 and 4, each belt is provided with a protective and insulative coating or dressing 29 on its casting surface which is sometimes called the front" surface.
The casting belts 26 and 28 are supported on and driven by an upper and lower carriage generally indicated at 30 and 32, respectively. Both carriages are mounted on a machine frame (not shown). Each carriage includes two main rolls which support, drive and steer the casting belts. These rolls include upper and lower input rolls, 34 and 36, and upper and lower output rolls, 38 and 40, respectively.
The casting belts 26 and 28 are guided by multiple finned back up rollers 41 (FIG. 4) so that the opposed belt casting surface are maintained in a preselected spaced relationship throughout the length of the casting region C. These finned back up rollers 41 may be of the type shown and described in U.S. Pat. No. 3,l67,830.
A flexible, endless side metal retaining dam 44 is disposed on each side of the casting region between the casting belts, to define the side edges of the casting region for confining the molten metal. The side dams 44 are guided at the input end of the casting apparatus 10 by guide members 46 which are mounted on the lower carriage 32, for example such as shown in said U.S. Pat. No. 3,167,830.
During the casting operation, the two casting belts 26 and 28 are driven at the same linear speed by a driving mechanism 47 which is schematically illustrated and may, for example, be such as described in said patent. As shown in FIG. 1, the upper and lower carriages are downwardly inclined in the downstream direction, so that the casting region between the casting belts IS inclined. This downward inclination facilitates flow of molten metal into the casting region C.
Tremendous heat flux is withdrawn through each casting belt by means of a high velocity moving layer 48 of liquid coolant, shown in FIGS. 2 and 4, traveling along the reverse, cooled surfaces, 50 and 52 of the upper and lower belts, respectively. The liquid coolant,
preferrably water containing a suitable corrosion inhibitant, is applied at high velocity, and the fast flowing layer 48 may be maintained in a manner as shown in said patent.
After the casting has solidified as indicated at 58 at least on all external surfaces, and has been fed out of the casting machine, it may be conveyed and guided by a number of feed rollers 60, two of which are shown in FIG. 1.
In order to determine the position of the pool P of molten metal in the input region of the machine. there is a series 62 (FIGS. 1 and 2) of five heat sensing detectors, 62a, 62b, 62c, 62d, and 62e which engage against the cooled reverse surface 52 of the lower belt 28 near the input region 25 of the machine. As many of these detectors as is desirable may be used for obtaining the required accuracy in locating the pool level. Still. the number of detectors in the series 62 should not be so great as to significantly obstruct the rushing flow of liquid coolant 48 travelling along the reverse surface 52 of the belt. As shown, each detector 62a-62e in this series is mounted with its tip bearing against the reverse, cooled surface 52 of the lower casting belt 28.
It is noted that these heat sensing detectors 62u62e are positioned between the finned back up rollers 41 discussed above so that these detectors avoid interference with the back up rollers. Each detector is mounted on an individual support arm 64a. 64b. 64c, 64d, and 64e, which is permanently mounted on and laterally extends from the lower carriage 32. The first detector 620, or the first and second detectors 62a and 62b, or more of them, may be mounted in the grooves 63 of the lower input roll 36 between the ridges 65 of this roll so as to be beneath the upstream limit of the pool P. A mounting finger 69 extends upstream from the arm 64c into the respective grooves 63 for supporting the respective detectors in the groove or grooves. However, any suitable means for mounting the detectors in a fixed location in bearing relation with the reverse cooled belt surface may be employed.
Instead of engaging the lower belt, it is also possible to determine the location of the pool P by mounting the detector series 62 to bear against the reverse, cooled surface 50 of the upper casting belt 26, near the input region 25.
In the case of a twin-belt casting machine as shown, in certain instances it may be advantageous to utilize a series of detectors 62 and another series 162 engaging the reverse surfaces of both casting belts 26 and 28 for determining the position of the pool P. It may be advantageous to utilize a series of detectors 70 and another series engaging the reverse surfaces of both belts 26 and 28 for monitoring the condition of the belt coating or coatings.
If desired. all four series of detectors 62, 162, 70 and 170 may be used in a twin-belt casting machine. Alternatively, any combination of one, two, three or four of the series of detectors 62, 162, 70 and 170 can be used. It is noted that the detector series 162 and 170 for the upper belt are located further downstream than those for the lower belt because the downward inclination of the casting region C causes the molten surface meniscus of the pool P to be positioned at an oblique relationship to both casting belts 26 and 28, as seen in FIGS. 1 and 2.
The pool level detector series, 62a62e, is positioned to span the desired molten metal pool position, that is,
the series 62 extends longitudinally, (i.e.. upstreamdownstream) in the direction of belt travel; the leading detector 62a is positioned at a point above the desired pool position; and the trailing detector 62 is positioned at a point below the desired pool position. The remaining detectors, 62b. 62c. and 62d, are positioned intermediate the leading and trailing detectors. 62a and 620. respectively.
Each heat sensing detector is responsive to localized changes in belt temperature on the lower reverse cooled belt surface 52 adjacent to its own tip. As noted. when a localized region of the casting belt is in contact with the molten metal being cast the temperature of the reverse surface of the casting belt increases in that region due to the increased amount of heat transfer occuringv In view of the intensive cooling action of the rushing coolant 48. the amount of temperature increase at the reverse surface 52 is not very great. but it can be effectively sensed by following the steps described herein. Thus. the detector series 62 senses an upstream or downstream shifting in position of the pool P by sensing a localized increase or decrease in belt temperature at the respective longitudinal locations of the detectors 62a. 62/) 62c. 62d and 62a or of the detectors 16211. I621). I620. l62d and 162s (or of all of them) in the direction of belt travel.
Each of these detectors in the series 62 or 162 (or bothl is connected to a pool level data output monitor 66 (FIG. 1 l. which may be any suitable monitor means for indicating the response to temperature change registered by individual detectors in this pool level series 62 or 162. For example monitor 66 may include a sequence of electrical relays controlling colored lights, each relay being responsive to a corresponding detector 6211-621 or l62u-I62e. An electrical circuit associated with each relay causes the light to become energized when its corresponding detector senses a significant temperature increase. The casting apparatus operator can then manually adjust control means 71 for regulating the flow of molten metal into the casting ma chine until he desired pool level is being maintained. Any other monitor means such as a sequence of recording pens or audible signals may similarly be employed. The control means 71 may include a manually adjustable or motor driven feed screw for raising or lowering the stopper .0 to regulate the molten metal feed.
Alternatively; the pool level data output monitor and control 66 may include automatic control equipment to regulate the rate that molten metal 12 is fed into the casting machine. As shown in FIG. 1, the pool level monitor 66 is connected by circuits 67 to the feed control means 7] which moves the tappered stopper through the control rod 22 and thereby controls molten metal flow. The motor driven feed screw control 71 may include a servomechanism operatively connected to the control equipment 66 so that the control of molten metal infeed is fully automatic.
As shown in FIG. 3, the pool position detector series. 6211-620, is staggered across the belt width to avoid any significant obstruction from occurring in the continuous high velocity coolant layer 48. The staggered detector arrangement shown interfers minimally with this coolant flow. As seen in FIG. 3, some of the detectors in the series 62 are positioned in the grooves 63 between the lands 65 of the roll 36.
In the above methods of controlling the position of the pool P the rate of molten metal infeed into the input region 25 is controlled either manually or automatically to match the metal infeed to the casting rate as determined by the rate of travel of the belts 26 and 28.
Another method which can be used in some cases to control the pool position is to stabilize the rate of infeed of the molten metal 12 at a desired value and then gradually to vary the speed of the machine by slight amounts to match the actual input of metal. As shown in FIG. 1. the pool level control equipment 66 is connected by electrical circuit means 73 to the drive mechanism 47 for the two belts 26 and 28. This drive mechanism turns the rolls 38 and 40 simultaneously and synchronously to revolve the belts as is indicated schematically in FIG 1. Also, the control equipment 66 is connected by circuit means 75 to the drive mechanism 76 for driving the outfeed conveyor rolls 60. Thus, the speed of the casting machine and outfeed rolls can be automatically matched to the rate of infeed of mo]- ten metal to control the position of the pool P if the machine and roll speed is gradually varied by small amounts.
In most cases it is preferable to regulate the infeed rate of the molten metal while keeping the casting machine running at constant speed. The reason for maintaining the casting machine at constant speed is to facilitate the operation of the rolling equipment and cast product handling equipment which is often located in line with the casting machine.
In order to monitor the condition of the belt coating 29, a second series or I70 (FIGS. 1, 2) of five heat sensing detectors 620, 70a, 70b, 70c, and 70d (FIG. 3) may be installed on one or both belts. These are preferably located as shown in FIG. 3 at uniformly spaced points across the width of the belt 28. As many of these detectors in series 70 or may be used as desired to provide a desired number of data sensing locations for closely monitoring the condition of the belt coating 29. Again. it is to be noted that the series 70 or 170 should not be of such a large number as would interfer with the flow F of the liquid coolant.
If desired. as shown in FIG. 3 the trailing detector 62:: in the pool level detector series 62 forms one of the detectors in the coating condition monitor series 70. This latter series is also mounted to bear against the reverse, cooled surface 52 of the lower casting belt 28. In the series 70 (and 170) all detectors may be mounted on a single support arm 64e or I64e upon which the detector 62s or 162e common to both series 62 and 70 (or 162 and 170) is mounted.
Any other suitable mounting means may be employed which fixes the coating condition detector series at a given location in bearing relation with the reverse, cooled surface of the casting belt.
The belt coating condition detector series 70 or 170 is positioned in line with the trailing pool level detector 622 or l62e because it is at this longitudinal belt location that molten metal should always be in positive contact with the full width of the casting belt. An indication of coating condition is the temperature of the reverse belt surface when the coating on the front belt surface is in contact with the molten metal being cast. Therefore, the coating condition detector series is positioned at laterally spaced positions across the belt near the pool P.
As shown in FIG. 3, the coating conditions detector series 62e, 70a, 70b, 70c. and 70d, is connected to a coating condition data output monitor 72. This monitor 72 includes a series of temperature indicators which register the respective temperatures sensed by these detectors. The casting machine operator may relate the temperatures to various belt coating properties using data interpretation tables based upon past operating experience for the type of coating 29 being used. It is to be understood that the detector series 170, if used. is connected to the monitor 72.
Alternatively, the coating condition data output monitor 72 may be connected to the drive mechanisms 47 and 76 to automatically stop the casting machine when the belt coating has deteriorated or become nonuniform to a degree making it ineffective of performing its insulative and protective functions for casting quality product.
The embodiment of the heat sensing detector used in both the pool level and coating condition detector series 62 and 70 is illustrated in detail in FIGS. 4, 5, and 6. FIG. 4 illustrates detectors 62c and 62d in elevational cross-section. Each detector includes a jacket 80 which is fabricated from a smooth surfaced material of low heat conductivity such as polytetrafluoroethylene, e.g. Teflon which is streamlined to present little resistance to the flow F ofliquid coolant 48 rushing by on either side. At and near its tip end, which contacts the reverse surface 52 of the moving casting belt 28, the jacket 80 is formed with a streamlined cross-section. This streamlined cross-section, indicated at 82 and shown in detail in FIG. 5, is defined by a parabolic leading face 84 and a V-shaped cusp trailing face 86. The direction of high velocity coolant flow F is indicated by arrows. Slippery plastic 80 reduces friction on belts. At its mounting end, the insulating jacket 80 is formed with a circular cross-section as indicated at 88 in FIG. 6. The lower circular portions of the jackets 80 are slip fitted into tubular brackets 90 which are mounted on the respective supporting arms 64c and 64d. A spring 92 is interposed between the telescoped end of the de tector and the mounting arm and urges the jacket 80 toward the reverse belt, cooled surface 52.
Each insulating jacket 80 is provided with an axial bore 94, into the end of which a thermally highly conductive metal sleeve 100, for example of copper, is press fitted. This thermally conductive sleeve 100, mounted in the very tip of the insulating jacket 80 is formed with a closed end 102 which directly contacts and slides against the moving belt surface 52. A heatresponsive voltage generating element 104, such as a thermistor or contact thermocouple, having lead wires 106, is inserted into the thermally conductive sleeve [00 in contact with its closed end 102 and is potted therein an electrically insulative, waterproof material 108 such as epoxy plastic. The lead wires 106 are connected to the appropriate monitor and control means 66 or 72.
The capped sleeve 100 is press fitted into the jacket 80 to resist movement within the jacket to insure that the capped sleeve remains in firm contact with the moving belt.
Heat is conducted from the belt, through the closed end 102 of the cap and into the thermistor 104. After the detector series have been mounted in position the monitors 66 and 72 are set up for the desired response.
This detector arrangement insulates the heat responsive element 104 from lateral cooling effects caused by the coolant flow. However, axial heat flux travelling from the molten metal, conducted through the belt and belt-engaging cap are readily detected.
This invention enables the operating condition of a continuous metal casting machine to be continuously monitored and determined by sensing temperature changes at the moving reverse liquid-cooled surface of one or both casting belts in a turn-belt machine.
This invention may also be employed to advantage with the casting belt of a wheel-and-belt casting machine for monitoring the operating condition of the machine such as the molten pool level at the input and the condition of the belt coating. Such a wheel-and-belt type casting machine is shown in US. Pat. No. 3,429,363.
Although a specific embodiment of the invention has been disclosed herein in detail. it is to be understood that this is for purposes of illustration. This disclosure is not to be construed as limiting the scope of the invention, since the described method and structure may be changed in details by those skilled in the art in order to adapt the molten metal pool position and belt coating condition monitoring apparatus and method to particular casting machines, without departing from the scope of the following claims.
I claim:
1. The method of controlling a continuous metal casting machine of the type having at least one endless. flexible, revolving casting belt with a casting surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant. the casting surface being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said method comprising:
predetermining the desired range in operation of the position of the molten metal pool in the input region of the casting machine;
positioning a series of at least two heat sensing detectors in bearing contact with the moving reverse. cooled surface of the casting belt and in upstreamdownstream spaced relation with respect to the direction of travel of the belt in respective positions to span the desired predetermined range in pool position;
arranging said detectors to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse, cooled belt surface; insulating said heat sensing detectors from the high velocity flow of coolant rushing by them;
monitoring the responses of said detectors to changes in the temperature of the moving reverse cooled surface of the belt at the respective upstreamdownstream positions of said detectors to determine the position of the molten metal pool; and
maintaining the rate of infeed of the molten metal matched to the speed of the machine to keep the pool position within said desired predetermined range in operation.
2. The method of controlling a continuous metal casting machine as claimed in claim 1, including the further steps of:
positioning a second series of heat sensing detectors in bearing contact with the moving reverse, cooled surface of the casting belt in laterally spaced relationship across the width of the belt downstream from the position where the molten metal engages the insulative coating on the casting surface of the belt,
monitoring the responses of said detectors to changes in the temperature of the moving reverse cooled surface of the belt at the respective lateral positions to determine the condition of the insulative coating, and
controlling the casting machine for automatically stopping the casting process in the event that the insulative coating has become deteriorated to an undesired amount.
3. The method of controlling a continuous metal casting machine as claimed in claim 2, including the steps of:
monitoring the relative temperatures of the moving reverse cooled surface of the belt at said respective lateral positions for determining non-uniformity of the insulative coating, and
controlling the casting machine for automatically stopping the casting process in the event that the insulative coating has become non-uniform to an undesired amount.
4. The method of controlling a continuous metal casting machine of the type having at least one endless, flexible, revolving casting belt with a casting surface which engages the molten metal to be cast and a reverse. cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant, the casting surface being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said method comprising:
predetermining the desired range in operation of the position of the molten metal pool in the input region of the casting machine;
positioning a series of at least two heat sensing detectors in bearing contact with the moving reverse. cooled surface of the casting belt and in upstreamdownstream spaced relation with respect to the direction of travel of the belt in respective positions to span the desired predetermined range in pool position.
arranging said detectors to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse, cooled belt surface; insulating said heat sensing detectors from the high velocity flow of coolant rushing by them;
monitoring the responses of said detectors to changes in the temperature of the moving reverse cooled surface of the belt at the respective upstreamdownstream positions of said detectors to determine the position of the molten metal pool.
holding the speed of belt travel constant; and
varying the rate of infeed of the molten metal to match the belt travel.
thereby to keep the pool position within said desired predetermined range in operation. 5. The method of controlling a continuous metal casting machine of the type having at least one endless, flexible, revolving casting belt with a casting surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant, the casting surface being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal. said method comprising:
predetermining the desired range in operation of the position of the molten metal pool in the input region of the casting machine:
positioning a series of at least two heat sensing detectors in bearing contact with the moving reverse. cooled surface of the casting belt and in upstreamdownstream spaced relation with respect to the direction of travel of the belt in respective positions to span the desired predetermined range in pool position;
arranging said detectors to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse, cooled belt surface;
insulating said heat sensing detectors from the high velocity flow of coolant rushing by them;
monitoring the responses of said detectors to changes in the temperature of the moving reverse cooled surface of the belt at the respective upstreamdownstream positions of said detectors to determine the position of the molten metal pool;
stabilizing the rate of infeed of the molten metal into said input region; and
varying the speed of belt travel to match the actual infeed of molten metal,
thereby to keep the pool position within said desired predetermined range in operation.
6. Apparatus for controlling the operating conditions in a continuous metal casting machine of the type having at least one endless flexible revolving casting belt with a casting surface which engages the molten metal to be cast in a casting region as confined by the belt, said belt having a reverse, liquid-cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant, and the casting surface of said belt being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said apparatus comprising;
support means attached to the continuous metal casting machine near the casting region;
a series of at least two heat sensing detectors mounted on said support means and located at spaced positions near said casting region;
said support means holding detectors in bearing contact with the moving reverse, cooled surface of said casting belt near said casting region;
said detectors being arranged to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse belt surface;
thermal insulation material associated with said heat sensing detectors for insulating them from the high velocity flow of liquid coolant rushing by;
monitor means connected to said heat sensing detectors to monitor the responses of said detectors to changes in the temperature of the moving reverse surface of the belt at the respective upstreamdownstream positions thereof to determine the molten metal pool position;
said series of heat sensing detectors being located in relative upstream and downstream positions in relation to travel of the casting belt near the input to said casting region to span the desired location of the molten metal pool position;
control means for controlling the rate of infeed of molten metal into the input region of the machine; and
circuit means interconnecting said monitor means and said control means for automatically controlling the rate of infeed of the molten metal to keep the position of the molten pool within the desired operating range.
7. Apparatus for controlling the operating conditions support means attached to the continuous metal casting machine near the casting region;
a series of at least two heat sensing detectors mounted on said support means and located at spaced positions near said casting region;
said support means holding detectors in bearing contact with the moving reverse, cooled surface of LII said casting belt near said casting region;
said detectors being arranged to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse belt surface;
thermal insulation material associated with said heat sensing detectors for insulating them from the high velocity flow of liquid coolant rushing by;
monitor means connected to said heat sensing detectors to monitor the responses of said detectors to changes in the temperature of the moving reverse surface of the belt at the respective upstreamdownstream positions thereof to determine the molten metal pool position;
said series of heat sensing detectors being located in relative upstream and downstream positions in relation to travel of the casting belt near the input to said casting region to span the desired location of the molten metal pool position;
control means for controlling the speed of belt travel to match the actual infeed of molten metal into the input region of the machine; and
circuit means interconnecting said monitor means and said control means for automatically controlling the speed of belt travel to keep the position of the molten pool within the desired operating range.
i k i i

Claims (7)

1. The method of controlling a continuous metal casting machine of the type having at least one endless, flexible, revolving casting belt with a casting surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant, the casting surface being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said method comprising: predetermining the desired range in operation of the position of the molten metal pool in the input region of the casting machine; positioning a series of at least two heat sensing detectors in bearing contact with the moving reverse, cooled surface of the casting belt and in upstream-downstream spaced relation with respect to the direction of travel of the belt in respective positions to span the desired predetermined range in pool position; arranging said detectors to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse, cooled belt surface; insulating said heat sensing detectors from the high velocity flow of coolant rushing by them; monitoring the responses of said detectors to changes in the temperature of the moving reverse cooled surface of the belt at the respective upstream-downstream positions of said detectors to determine the position of the molten metal pool; and maintaining the rate of infeed of the molten metal matched to the speed of the machine to keep the pool position within said desired predetermined range in operation.
2. The method of controlling a continuous metal casting machine as claimed in claim 1, including the further steps of: positioning a second series of heat sensing detectors in bearing contact with the moving reverse, cooled surface of the casting belt in laterally spaced relationship across the width of the belt downstream from the position where the molten metal engages the insulative coating on the casting surface of the belt, monitoring the responses of said detectors to changes in the temperature of the moving reverse cooled surface of the belt at the respective lateral positions to determine the condition of the insulative coating, and controlling the casting machine for automatically stopping the casting process in the event that the insulative coating has become deteriorated to an undesired amount.
3. The method of controlling a continuous metal casting machine as claimed in claim 2, including the steps of: monitoring the relative temperatures of the moving reverse cooled surface of the belt at said respective lateral positions for determining non-uniformity of the insulative coating, and controlling the casting machine for automatically stopping the casting process in the event that the insulative coating has become non-uniform to an undesired amount.
4. The method of controlling a continuous metal casting machine of the type having at least one endless, flexible, revolving casting belt with a casting surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant, the casting surface being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said method comprising: predetermining the desired range in operation of the position of the molten metal pool in the input region of the casting machine; positioning a series of at least two heat sensing detectors in bearing contact with the moving reverse, cooled surface of the casting belt and in upstream-downstream spaced relation with respect to the direction of travel of the belt in respective positions to span the desired predetermined range in pool position; arranging said detectors to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse, cooled belt surface; insulating said heat sensing detectors from the high velocity flow of coolant rushing by them; monitoring the responses of said detectors to changes in the temperature of the moving reverse cooled surface of the belt at the respective upstream-downstream positions of said detectors to determine the position of the molten metal pool; holding the speed of belt travel constant; and varying the rate of infeed of the molten metal to match the belt travel, thereby to keep the pool position within said desired predetermined range in operation.
5. The method of controlling a continuous metal casting machine of the type having at least one endless, flexible, revolving casting belt with a casting surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant, the casting surface being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said method comprising: predetermining the desired range in operation of the position of the molten metal pool in the input region of the casting machine; positioning a series of at least two heat sensinG detectors in bearing contact with the moving reverse, cooled surface of the casting belt and in upstream-downstream spaced relation with respect to the direction of travel of the belt in respective positions to span the desired predetermined range in pool position; arranging said detectors to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse, cooled belt surface; insulating said heat sensing detectors from the high velocity flow of coolant rushing by them; monitoring the responses of said detectors to changes in the temperature of the moving reverse cooled surface of the belt at the respective upstream-downstream positions of said detectors to determine the position of the molten metal pool; stabilizing the rate of infeed of the molten metal into said input region; and varying the speed of belt travel to match the actual infeed of molten metal, thereby to keep the pool position within said desired predetermined range in operation.
6. Apparatus for controlling the operating conditions in a continuous metal casting machine of the type having at least one endless flexible revolving casting belt with a casting surface which engages the molten metal to be cast in a casting region as confined by the belt, said belt having a reverse, liquid-cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant, and the casting surface of said belt being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said apparatus comprising; support means attached to the continuous metal casting machine near the casting region; a series of at least two heat sensing detectors mounted on said support means and located at spaced positions near said casting region; said support means holding detectors in bearing contact with the moving reverse, cooled surface of said casting belt near said casting region; said detectors being arranged to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse belt surface; thermal insulation material associated with said heat sensing detectors for insulating them from the high velocity flow of liquid coolant rushing by; monitor means connected to said heat sensing detectors to monitor the responses of said detectors to changes in the temperature of the moving reverse surface of the belt at the respective upstream-downstream positions thereof to determine the molten metal pool position; said series of heat sensing detectors being located in relative upstream and downstream positions in relation to travel of the casting belt near the input to said casting region to span the desired location of the molten metal pool position; control means for controlling the rate of infeed of molten metal into the input region of the machine; and circuit means interconnecting said monitor means and said control means for automatically controlling the rate of infeed of the molten metal to keep the position of the molten pool within the desired operating range.
7. Apparatus for controlling the operating conditions in a continuous metal casting machine of the type having at least one endless flexible revolving casting belt with a casting surface which engages the molten metal to be cast in a casting region as confined by the belt, said belt having a reverse, liquid-cooled surface along which is directed a substantially continuous high velocity flow of liquid coolant, and the casting surface of said belt being covered with a belt coating to insulate and protect the belt from the molten metal and to control the rate of cooling of the molten metal, said apparatus comprising: support means attached to the continuous metal casting machine near the casting region; a series of at least two heat sensing detectors mounted on said support means and located at spaced positiOns near said casting region; said support means holding detectors in bearing contact with the moving reverse, cooled surface of said casting belt near said casting region; said detectors being arranged to present minimal interference to the continuous high velocity flow of liquid coolant directed along the reverse belt surface; thermal insulation material associated with said heat sensing detectors for insulating them from the high velocity flow of liquid coolant rushing by; monitor means connected to said heat sensing detectors to monitor the responses of said detectors to changes in the temperature of the moving reverse surface of the belt at the respective upstream-downstream positions thereof to determine the molten metal pool position; said series of heat sensing detectors being located in relative upstream and downstream positions in relation to travel of the casting belt near the input to said casting region to span the desired location of the molten metal pool position; control means for controlling the speed of belt travel to match the actual infeed of molten metal into the input region of the machine; and circuit means interconnecting said monitor means and said control means for automatically controlling the speed of belt travel to keep the position of the molten pool within the desired operating range.
US494702A 1973-03-22 1974-08-05 Method and apparatus for controlling the operating conditions in continuous metal casting machines having a revolving endless casting belt Expired - Lifetime US3921697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US494702A US3921697A (en) 1973-03-22 1974-08-05 Method and apparatus for controlling the operating conditions in continuous metal casting machines having a revolving endless casting belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US343884A US3864973A (en) 1973-03-22 1973-03-22 Method and apparatus for determining the operating conditions in continuous metal casting machines of the type having a revolving endless casting belt
US494702A US3921697A (en) 1973-03-22 1974-08-05 Method and apparatus for controlling the operating conditions in continuous metal casting machines having a revolving endless casting belt

Publications (1)

Publication Number Publication Date
US3921697A true US3921697A (en) 1975-11-25

Family

ID=26993675

Family Applications (1)

Application Number Title Priority Date Filing Date
US494702A Expired - Lifetime US3921697A (en) 1973-03-22 1974-08-05 Method and apparatus for controlling the operating conditions in continuous metal casting machines having a revolving endless casting belt

Country Status (1)

Country Link
US (1) US3921697A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066114A (en) * 1974-08-20 1978-01-03 Mannesmann Aktiengesellschaft Supervision and control of continuous casting
EP0013539A1 (en) * 1978-12-29 1980-07-23 Lauener Engineering AG Speed control method for a continuous casting installation
US4239081A (en) * 1979-05-30 1980-12-16 Asarco Incorporated Side dam apparatus for use in twin-belt continuous casting machines
US4260008A (en) * 1979-05-30 1981-04-07 Asarco Incorporated Side dam apparatus for use in twin-belt continuous casting machines
US4276921A (en) * 1978-04-06 1981-07-07 Metallurgie Hoboken-Overpelt Process and apparatus for the continuous casting of metal
FR2492696A1 (en) * 1980-10-27 1982-04-30 Hazelett Strip Casting Corp METHOD AND DEVICE FOR CONTINUOUS CASTING OF METAL, OF THE TWO-STRIP TYPE
US4537243A (en) * 1980-10-22 1985-08-27 Hazelett Strip-Casting Corporation Method of and apparatus for steam preheating endless flexible casting belt
US4544018A (en) * 1983-03-26 1985-10-01 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Feeding device for introducing molten steel into twin-belt casters and mode of operation of such a feed device
US4570230A (en) * 1983-03-28 1986-02-11 United States Steel Corporation Method of measuring and controlling the level of liquid in a container
US4573128A (en) * 1983-03-31 1986-02-25 United States Steel Corporation Digital method for the measurement and control of liquid level in a continuous casting mold
US4592410A (en) * 1983-10-28 1986-06-03 Sumitomo Metal Industries, Ltd. Continuous casting of thin slabs
US4600047A (en) * 1984-03-29 1986-07-15 Sumitomo Metal Industries, Ltd. Process for controlling the molten metal level in continuous thin slab casting
EP0194327A1 (en) * 1985-03-09 1986-09-17 Fried. Krupp Gesellschaft mit beschränkter Haftung Apparatus for regulating the position of the liquid metal level within a double belt continuous casting mould
EP0204854A1 (en) * 1985-06-11 1986-12-17 Fried. Krupp Gesellschaft mit beschränkter Haftung Apparatus for recording the molten metal level in a twin-belt continuous casting mould
US4648438A (en) * 1982-04-28 1987-03-10 Hazelett Strip-Casting Corporation Method and apparatus for feeding and continuously casting molten metal with inert gas applied to the moving mold surfaces and to the entering metal
US4712602A (en) * 1986-09-11 1987-12-15 Hazelett Strip-Casting Corporation Pool-level sensing probe and automatic level control for twin-belt continuous metal casting machines
EP0340768A1 (en) * 1988-05-05 1989-11-08 Hazelett Strip-Casting Corporation Method for determining molten metal pool level in twin-belt continuous casting machines
US4909302A (en) * 1988-06-10 1990-03-20 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Apparatus for aligning pouring nozzle in continuous casting installation
US4977951A (en) * 1990-01-10 1990-12-18 Ribbon Technology Corporation Apparatus for flow control of molten material by force detection
US5090603A (en) * 1989-05-25 1992-02-25 T&N Technology Limited Metal pouring system
US5190717A (en) * 1989-05-25 1993-03-02 T&N Technology Limited Metal pouring system
US5643371A (en) * 1995-06-07 1997-07-01 Reynolds Metals Company Method and apparatus for continuously cladding and hot working cast material
EP1057557A1 (en) * 1999-06-03 2000-12-06 ALUMINIUM RHEINFELDEN GmbH Process and device for continuous casting of metal
US20040094245A1 (en) * 2002-11-15 2004-05-20 Zhong Li Aluminum automotive frame members
US20060042727A1 (en) * 2004-08-27 2006-03-02 Zhong Li Aluminum automotive structural members
US20080041501A1 (en) * 2006-08-16 2008-02-21 Commonwealth Industries, Inc. Aluminum automotive heat shields
US20080202646A1 (en) * 2004-08-27 2008-08-28 Zhong Li Aluminum automotive structural members

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1139888A (en) * 1915-02-02 1915-05-18 Continuous Casting Corp Automatic metal-feed for continuous casting-machines.
US3080627A (en) * 1958-06-11 1963-03-12 Aluminium Lab Ltd Continuous casting of metal
US3204460A (en) * 1962-08-13 1965-09-07 United States Steel Corp System for indicating the liquid level in a continuous-casting mold or the like
US3399568A (en) * 1966-12-14 1968-09-03 United States Steel Corp System for indicating liquid level
US3456714A (en) * 1966-03-05 1969-07-22 Olsson Ag Erik Casting level-control device for a continuous casting installation
US3482620A (en) * 1966-04-08 1969-12-09 Siderurgie Fse Inst Rech Apparatus for continuous metal casting
US3528479A (en) * 1967-07-07 1970-09-15 Western Electric Co Control system for regulating flow of molten metal into a continuously rotated casting wheel
US3700027A (en) * 1970-09-16 1972-10-24 Maanesmann Ag Continuous casting machine
US3797310A (en) * 1972-02-28 1974-03-19 Steel Corp Temperature sensing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1139888A (en) * 1915-02-02 1915-05-18 Continuous Casting Corp Automatic metal-feed for continuous casting-machines.
US3080627A (en) * 1958-06-11 1963-03-12 Aluminium Lab Ltd Continuous casting of metal
US3204460A (en) * 1962-08-13 1965-09-07 United States Steel Corp System for indicating the liquid level in a continuous-casting mold or the like
US3456714A (en) * 1966-03-05 1969-07-22 Olsson Ag Erik Casting level-control device for a continuous casting installation
US3482620A (en) * 1966-04-08 1969-12-09 Siderurgie Fse Inst Rech Apparatus for continuous metal casting
US3399568A (en) * 1966-12-14 1968-09-03 United States Steel Corp System for indicating liquid level
US3528479A (en) * 1967-07-07 1970-09-15 Western Electric Co Control system for regulating flow of molten metal into a continuously rotated casting wheel
US3700027A (en) * 1970-09-16 1972-10-24 Maanesmann Ag Continuous casting machine
US3797310A (en) * 1972-02-28 1974-03-19 Steel Corp Temperature sensing device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066114A (en) * 1974-08-20 1978-01-03 Mannesmann Aktiengesellschaft Supervision and control of continuous casting
US4276921A (en) * 1978-04-06 1981-07-07 Metallurgie Hoboken-Overpelt Process and apparatus for the continuous casting of metal
EP0013539A1 (en) * 1978-12-29 1980-07-23 Lauener Engineering AG Speed control method for a continuous casting installation
US4239081A (en) * 1979-05-30 1980-12-16 Asarco Incorporated Side dam apparatus for use in twin-belt continuous casting machines
US4260008A (en) * 1979-05-30 1981-04-07 Asarco Incorporated Side dam apparatus for use in twin-belt continuous casting machines
US4537243A (en) * 1980-10-22 1985-08-27 Hazelett Strip-Casting Corporation Method of and apparatus for steam preheating endless flexible casting belt
FR2492696A1 (en) * 1980-10-27 1982-04-30 Hazelett Strip Casting Corp METHOD AND DEVICE FOR CONTINUOUS CASTING OF METAL, OF THE TWO-STRIP TYPE
US4648438A (en) * 1982-04-28 1987-03-10 Hazelett Strip-Casting Corporation Method and apparatus for feeding and continuously casting molten metal with inert gas applied to the moving mold surfaces and to the entering metal
US4544018A (en) * 1983-03-26 1985-10-01 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Feeding device for introducing molten steel into twin-belt casters and mode of operation of such a feed device
US4570230A (en) * 1983-03-28 1986-02-11 United States Steel Corporation Method of measuring and controlling the level of liquid in a container
US4573128A (en) * 1983-03-31 1986-02-25 United States Steel Corporation Digital method for the measurement and control of liquid level in a continuous casting mold
US4592410A (en) * 1983-10-28 1986-06-03 Sumitomo Metal Industries, Ltd. Continuous casting of thin slabs
US4600047A (en) * 1984-03-29 1986-07-15 Sumitomo Metal Industries, Ltd. Process for controlling the molten metal level in continuous thin slab casting
EP0194327A1 (en) * 1985-03-09 1986-09-17 Fried. Krupp Gesellschaft mit beschränkter Haftung Apparatus for regulating the position of the liquid metal level within a double belt continuous casting mould
EP0204854A1 (en) * 1985-06-11 1986-12-17 Fried. Krupp Gesellschaft mit beschränkter Haftung Apparatus for recording the molten metal level in a twin-belt continuous casting mould
US4712602A (en) * 1986-09-11 1987-12-15 Hazelett Strip-Casting Corporation Pool-level sensing probe and automatic level control for twin-belt continuous metal casting machines
EP0259876A2 (en) * 1986-09-11 1988-03-16 Hazelett Strip-Casting Corporation Method of automatic level control for twin-belt continuous metal casting machines
EP0259876A3 (en) * 1986-09-11 1988-07-06 Hazelett Strip-Casting Corporation Pool-level sensing and automatic level control for twin-belt continuous metal casting machines
EP0340768A1 (en) * 1988-05-05 1989-11-08 Hazelett Strip-Casting Corporation Method for determining molten metal pool level in twin-belt continuous casting machines
US4909302A (en) * 1988-06-10 1990-03-20 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Apparatus for aligning pouring nozzle in continuous casting installation
US5090603A (en) * 1989-05-25 1992-02-25 T&N Technology Limited Metal pouring system
US5190717A (en) * 1989-05-25 1993-03-02 T&N Technology Limited Metal pouring system
US4977951A (en) * 1990-01-10 1990-12-18 Ribbon Technology Corporation Apparatus for flow control of molten material by force detection
US5643371A (en) * 1995-06-07 1997-07-01 Reynolds Metals Company Method and apparatus for continuously cladding and hot working cast material
EP1057557A1 (en) * 1999-06-03 2000-12-06 ALUMINIUM RHEINFELDEN GmbH Process and device for continuous casting of metal
US20040094245A1 (en) * 2002-11-15 2004-05-20 Zhong Li Aluminum automotive frame members
US6764559B2 (en) 2002-11-15 2004-07-20 Commonwealth Industries, Inc. Aluminum automotive frame members
US20060042727A1 (en) * 2004-08-27 2006-03-02 Zhong Li Aluminum automotive structural members
US20080202646A1 (en) * 2004-08-27 2008-08-28 Zhong Li Aluminum automotive structural members
US20080041501A1 (en) * 2006-08-16 2008-02-21 Commonwealth Industries, Inc. Aluminum automotive heat shields

Similar Documents

Publication Publication Date Title
US3921697A (en) Method and apparatus for controlling the operating conditions in continuous metal casting machines having a revolving endless casting belt
US3864973A (en) Method and apparatus for determining the operating conditions in continuous metal casting machines of the type having a revolving endless casting belt
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
US7549797B2 (en) Temperature measurement system
KR100305291B1 (en) How to cast steel strip
US4030531A (en) Method and apparatus for monitoring and obviating deformations of continuous castings
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
US3923091A (en) Method of supervising skin thickness in a solidifying body such as a continuously cast ingot
US4712602A (en) Pool-level sensing probe and automatic level control for twin-belt continuous metal casting machines
CA1039924A (en) Endless belt continuous casting machine method and apparatus
US4735399A (en) Method of operating a continuous casting apparatus and a casting flame cutting machine for carrying out the method
US4411534A (en) Method of continuously measuring the temperature of the surface of a continuously cast strand over its length
US5086827A (en) Method and apparatus for sensing the condition of casting belt and belt coating in a continuous metal casting machine
US4149580A (en) Method of ascertaining the effectiveness of cooling rollers in continuous casting machines
JPH11300455A (en) Detection of liquid level in casting mold in continuous casting and apparatus therefor
US4813471A (en) Method for determining molten metal pool level in twin-belt continuous casting machines
KR100211312B1 (en) Measuring apparatus for current molten steel
JP3252768B2 (en) Flow control method of molten steel in continuous casting mold
JPS5825538B2 (en) Device for determining the operating state in a continuous casting machine of the type with a rotating endless casting belt
KR960010073Y1 (en) Measurement apparatus of molten steel level
KR100516028B1 (en) Method and device for estimating/controlling molten steel flowing pattern in continuous casting
JPS5666364A (en) Continuous casting method
JP2002011558A (en) Method for continuously casting steel
JPS6330162A (en) Measurement for shell thickness in continuous casting
JPH0214808Y2 (en)