US3915118A - Specimen coating device for an SEM - Google Patents
Specimen coating device for an SEM Download PDFInfo
- Publication number
- US3915118A US3915118A US503412A US50341274A US3915118A US 3915118 A US3915118 A US 3915118A US 503412 A US503412 A US 503412A US 50341274 A US50341274 A US 50341274A US 3915118 A US3915118 A US 3915118A
- Authority
- US
- United States
- Prior art keywords
- specimen
- chamber
- shuttle
- housing
- filament
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 56
- 239000011248 coating agent Substances 0.000 title claims abstract description 55
- 238000012546 transfer Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 17
- 238000007789 sealing Methods 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 10
- 239000004020 conductor Substances 0.000 abstract description 9
- 238000007710 freezing Methods 0.000 abstract description 4
- 230000008014 freezing Effects 0.000 abstract description 4
- 230000008021 deposition Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 abstract description 2
- 238000007689 inspection Methods 0.000 description 11
- 239000012809 cooling fluid Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000012799 electrically-conductive coating Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/18—Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
Definitions
- N0- 398lm, p 17 1973 PM assembly wlth the mam chamber and 15 provide w1th No 3 858 049 a sealable access aperture for enabhng transfer of both I i frozen and unfrozen specimens to and from the air- 52 us.
- c1 [18/49; 214/1 BB t Chamber- The Specimen manipulam emb'es [5
- the coating apparatus has a shuttle rotating plat- [56] References Cited :orm atlltlii a gemova ble ofscil:ating tt' lapiept ailsembly or ena mg eposl ion 0 a ayer o eec rica y con- UNITED STATES PATENTS ductive material on the specimen surface at the SEM 2339-642 4/1941 Burkhardt 3
- a heat conducting path provides shuttle cooling 3 4 i Fl 3, 2 in the main chamber to maintain a frozen specimen at g e e a v, 4 3,568632 3/197] Cawthon w I i I 1 I I I H 8,49 a low temperature.
- the entrjance cfllange is coupled t3 3,649,339 3/1972 Smith 118/49 x a acuum pump Opem m em evacuat'o Primary Examiner-Morris Kaplan Attorney, Agent. or Firm-Townsend and Townsend backfilling of the airlock chamber in order to eliminate main chamber pressurization during specimen transfer.
- This invention relates to improvements in the field of scanning electron microscopes. More particularly, in a first aspect this invention relates to apparatus for coating non-conductive specimens prior to examination in a scanning electron microscope, hereinafter designated an SEM. In another aspect, this invention relates to apparatus for facilitating the handling of both conductive and non conductive specimens in an SEM.
- SEM systems are known in which a specimen is placed on a mounting platform in an enclosed main chamber and investigated by scanning with an electron beam.
- the scanning process ordinarily requires a spec imen that is electrically conductive, it is frequently necessary to coat non-conductive specimens with some substance, such as gold, having good electrical conductivity.
- the specimen is typically coated in a vacuum deposition coating device located outside and remote from the main chamber, and subsequently transferred thereto.
- a vacuum deposition coating device located outside and remote from the main chamber, and subsequently transferred thereto.
- the invention comprises apparatus for facilitating the coating of specimens prior to the SEM investigation process, freezing and transfer of a coated specimen to and from the main SEM chamber prior to the initiation of the scanning process and after termination of the scanning process.
- a compact specimen coating apparatus which incorporates an airlock housing defining an airlock chamber and having a scalable access opening is installed on an entrance flange communicating with the main SEM chamber via a manually adjustable gate valve.
- the flange is provided with a bore outboard of the gate valve in communication with a vacuum line coupled to the main SEM vacuum pump via a valve assembly to enable the airlock chamber pressure to be controlled independently of the main SEM chamber pressure.
- the airlock housing has a control rod slideably mounted therein for manipulating a unique specimen shuttle between the airlock chamber and the main SEM chamber, the control rod having an inner threaded end for releasable attachment to the shuttle.
- the specimen shuttle has an upper plate for mounting a mating specimen cap thereon, means providing a low friction support during transfer of the shuttle between the airlock chamber and the main chamber, and a means activated by removal of the control rod inner end for locking the shuttle to a mounting platform in the main SEM chamber.
- a high 2 thermal conductivity heat conduction path leading from the specimen cap via the shuttle upper plate to a Dewar tank heat sink mounted exterior of the main SEM chamber maintains a mounted specimen at a de sired low temperature when the shuttle is secured to the platform.
- the specimen coating apparatus includes a coating device for depositing a coating of an electrically conductive substance on the surface of a specimen prior to in stallation of the specimen in the main chamber.
- the coating device includes a rotatable platform for rotating the specimen shuttle and cap and an oscillating easily removable filament assembly for providing uniform distribution of the conductive material over the specimen surface when the material is vaporized by electrical heating.
- the coating apparatus housing is also provided with an access bore sealed by a removable closure plug for enabling insertion of a specimen manipulator into the housing interior to attach or remove a specimen cap from the shuttle.
- the shuttle is first secured to the control rod of the coating apparatus housing and the housing is secured to the entrance flange with the shuttle positioned in the housing chamber.
- the housing closure plug is removed, a cap having a specimen mounted thereon is releasably secured to the working end of the manipulator, the manipulator is inserted into the housing chamber via the access bore and the cap is attached to the shuttle upper mounting plate.
- the manipulator is removed, the closure plug is replaced, the housing chamber is evacuated and the coating device is actuated to deposit a layer of electrically conductive material on the surface of the specimen.
- the gate valve is opened and the shuttle is transferred to the main SEM chamber mounting platform after which the control rod is withdrawn, thereby locking the shuttle to the mounting platform, and the gate valve is closed. If the main SEM chamber is initially in the evacuated state, the specimen and shuttle may be installed and re moved without disturbing the vacuum by evacuating the housing chamber via the flange bore before open ing the gate valve.
- the shuttle When the specimen must be frozen before coating and installation in the main SEM chamber, the shuttle is first transferred to the main SEM chamber mounting platform in the above-noted manner, locked therein and allowed to remain in this position for a requisite period of time required to cool the upper mounting plate to the desired low temperature via the heat conduction path. After the upper mounting plate has cooled, the shuttle is withdrawn into the airlock or coatingapparatus housing in the above-noted manner. The working end of the manipulator with the specimen and cap attached thereto is then inserted into the Dewar tank with the frost shield in an open position, and the specimen and cap are submerged in the tank cooling fluid and retained in this position for a short period of time required to freeze the specimen.
- the shield is next moved to the closed position in which a pool of cooling fluid is trapped over the specimen, and the manipulator is removed from the Dewar tank and transferred over to the airlock or coating apparatus housing.
- the specimen cap is then attached to the sh uttle and the shuttle is inserted into the main SEM cham bet in the manner described above.
- the coating apparatus is secured to the flange with the shuttle secured to the control rod and positioned in the housing chamber.
- a specimen and cap is then inserted into the housing chamber and secured to the shuttle in the above-noted manner.
- the housing chamber is evacuated and the coating device is actuated to deposit a layer of electrically conductive material on the surface of the specimen.
- the shuttle is transferred to the main SEM chamber in the normal way. If desired, the specimen may first be frozen before coating in the above-described manner.
- FIG. I is an exploded view in perspective of a main SEM chamber and portions of the invention.
- FIG. 2 is a perspective rear view of the FIG. I embodiment
- FIG. 3 is an enlarged detailed view illustrating the Dewar tank mount
- FIG. 4 is a sectional view illustrating the airlock housing feature
- FIG. 5 is a front elevational view taken along lines S-5 of FIG. 7;
- FIG. 6 is a rear elevational view taken along lines 6-6 of FIG. 7;
- FIG. 7 is a side elevational view taken along lines 7-7 of FIG. 5;
- FIG. 8 is a bottom view partially broken away taken along lines 88 of FIG. 7;
- FIG. 9 is a perspective view partially broken away of a specimen cap
- FIG. I0 is a side elevational view of a specimen manipulator
- FIG. II is a side elevational view partially broken away of a specimen manipulator showing the shield in the open position;
- FIG. 12 is an enlarged elevational view partially broken away of the specimen manipulator showing the shield in the closed position
- FIG. I3 is a sectional view taken along lines I313 of FIG. 1 illustrating the gate valve assembly
- FIG. I4 is a rear elevational view taken along lines 14-14 of FIG. I3;
- FIG. 15 is a sectional view taken along lines l5I5 of FIG. I3 showing an eccentric;
- FIG. I6 is a front elevational view showing the gate valve and valve carriage
- FIG. I7 is a side elevational view taken along lines 17-17 of FIG. 16;
- FIG. 18 is a side view partially in section taken along lines A-A showing the gate valve in the unsealed position
- FIG. I9 is a side elevational view partially in section taken along lines AA showing the gate valve in the sealed position
- FIG. 20 is a sectional view taken along lines B-B showing the gate valve in the unsealed position
- FIG. 21 is a sectional view taken along lines B-B showing the gate valve in the sealed position
- FIG. 22 is a perspective view illustrating the attachment of a specimen cap to a shuttle located in the airlock chamber
- FIG. 23 is a perspective view illustrating an airlock coating apparatus
- FIG. 24 is a rear elevational view of the coating apparatus of FIG. 23;
- FIG. 25 is a top plan view of the coating apparatus with the cover partially broken away;
- FIG. 26 is a sectional view of the coating apparatus with the cover in the open position
- FIG. 27 is a sectional view illustrating the rotatabit platform and gear train of the coating apparatus
- FIG. 28 is a detail view taken along lines 2828 of FIG. 25 illustrating the filament assembly drive mechanism
- FIG. 29 is a detail view partially in section of a first embodiment of a filament assembly
- FIG. 30 is a detail view partially in section of an alternate embodiment of the filament
- Hg. 31 is a partial detail view in perspective illustrating the filament shield.
- FIG. 1 shows a housing 10 generally defining the main chamber 11 of an SEM. Associated with main chamber 11 is an electron beam generating and scanning device (not shown) which is mounted above chamber 10 and provides a vertically disposed, downwardly directed scanning beam for investigating a specimen located in the chamber. Since this portion of the SEM is conventional, further details relating thereto which are unnecessary to an understanding of the invention have been omitted.
- stage door 12 Mounted to the front wall of chamber 10 in sealing relation therewith is a member 12 commonly known as a stage door.
- stage door 12 has an access aperture 13 providing communication with main SEM chamber II and a peripheral seal 14 located in a groove in the inner wall surface thereof for effecting a vacuum seal with the front wall surface of housing 10.
- the upper surface of stage door I2 is provided with a vertically oriented internally threaded bore I5 providing a mounting means for Dewar tank 16.
- Dewar tank I6 is a double walled cylindrical tank having an insulating medial air space I7 separating outer wall 18 and inner wall I9.
- Dewar tank 16 is fitted with a cover member 20 to form an enclosed inner chamber for containing liquid nitrogen, Freon 14 or any other suitable low temperature cooling fluid.
- Dewar tank 16 is coupled to stage door I2 by means of a generally cylindrical fixture 22 fabricated from an electrically insulative material and having upper and lower externally threaded ends 23, 24 respectively.
- Upper end 23 of fixture 22 is received in a threaded bore 25 in the lower wall 26 of Dewar tank 16.
- the upper portion of fixture 22 is also provided with a peripheral upstanding flange 27 forming a generally U-shaped channel sized to accomodate a sealing ring 28 which bears against the lower surface of bottom wall 26 in order to seal medial air space 17 from ambient.
- fixture 22 is provided with an internally threaded collar 29 forming a downwardly opening generally U- shaped channel for receiving a seal 30 which contacts the upper surface of stage door 12 and provides a sealed joint therewith.
- an supporting liner 32 is attached to an inner bore 31 of fixture 22 for providing addi' tional structural support for fixture 22.
- Post 36 Secured to a bore 33 in inner bottom wall 34 of Dewar tank I6 is an upper end 35 of reduced diameter of a generally cylindrical heat conducting post 36.
- Post 36 is preferably fabricated from copper or other suitable material possessing high thermal conductivity.
- Post 36 has an outwardly flared bottom portion 37 providing a bearing surface and a threaded end portion 38 of reduced diameter adapted to receive a nut 39 in threaded engagement therewith for securing a clamp 40 between nut 39 and the aforementioned bearing surface.
- Clamp 40 comprises the terminal end of a heat conducting strap 41 described below.
- a plurality of manually adjustable micrometers 42-45 are mounted on the front face of stage door 12 for enabling manual positioning along the X, Y, rotate and tilt axes of a shuttle platform 48 mounted within main SEM chamber 11.
- An additional micrometer 46 is mounted on the upper surface of stage 12 to provide a Z-axis adjustment for platform 48.
- platform 48 is the mounting platform for a specimen shuttle 49 which carries the specimen to be examined.
- a cover member 50 secured to the face of stage door 12 provides a housing for a manually operable gate valve assembly described in detail below with reference to FIGS. 13-21.
- the gate valve assembly provides a vacuum seal for access aperture 13 of stage door 12 and includes a control rod 51 having a knob 51 and a forwardly extending flange 52 forming an enclosed fluid-tight entrance channel leading to access aperture 13.
- Airlock housing 53 is dimensioned to accomodate the mouth of an airlock housing 53 preferably constructed from transparent material.
- Airlock housing 53 has an open end with an inner shoulder 55 for effecting a vacuum seal with a seal ring 56 received in a groove in the outer face of flange 52.
- Airlock housing 53 is also provided with a threaded bore 57 in the bottom wall thereof for receiving a set screw 58 which bears against the lower outer wall surface of flange 52 when housing 53 is received thereon to lock these two members together.
- Housing 53 is also provided with a threaded bore 60 in the upper wall thereoffor receiving a removable closure cap 61 having an externally threaded lower portion 62.
- Closure cap 61 is also provided with a downwardly opening peripheral U-shaped channel for accomodating a seal ring 63 which seals the airlock chamber 65 from ambient.
- a sealed control rod bearing assembly 70 for supporting a manually manipulable control rod 71 having a threaded inner end 72 and a control knob 73 secured to the outer end thereof.
- Rod bearing assembly 70 is a conventional unit which permits roll, pitch. yaw and axial movement of control rod 71 from the fully withdrawn position illustrated in FIG. 4 to a fully inserted position in which knob 73 is positioned adjacent the front face of airlock housing 53 and the threaded inner end 72 is located in main SEM chamber 11.
- a vacuum pump 75 is coupled via a conventional valve assembly 76 and conduits 77, 78 to main SEM chamber 11 and the interior of flange 52, respectively.
- a second pump 79 is also coupled to conduits 77, 78 via valve assembly 76.
- Pump 75 is used to evacuate main SEM chamber 11 and/or airlock chamber 65 in accordance with the setting of valve assembly 76.
- Pump 79 is used to backfill the respective chambers along conduits 77, 78 with air or an inert gas, such as dry NitrogemElements 75-79 are conventional and are thus not further detailed.
- shuttle platform 48 is mounted within main chamber 11 in operative relationship with micrometers 42-46.
- platform 48 has an irregularly shaped base member 80 with a pair of vertical support posts 81, 82 mounted on the sidewalls thereof for supporting an upper plate assembly 84 having a rearwardly extending central aperture 85 formed therein.
- plate assembly 84 comprises a top plate 86 and an underlying abutment member 87 secured thereto.
- a terminal clamp 88 secured to cold strap 41.
- Abutment member 87 and cold strap 41 are both fabricated from material such as copper having high thermal conductivity so that these elements can be maintained at an extremely low temperature by the contents of Dewar tank 16.
- a rotatable platform 90 operatively coupled to ROTATE' micrometer 44 via a shaft 91 and having a pair of substantially parallel mounting gibs 92, 93 with a pair of inner wall surfaces which are angled inwardly in the upward direction.
- a socket plate 95 (FIGS. 2 and 7) having four electrical female terminals 96-99 and a centrally positioned guide aperture 100 (FIG. 7).
- a plurality of electrical conductors 101-104 are connected between terminals 96-99 and the terminals of a vacuum tight plug adapter 105.
- the plug adapter terminals in turn are coupled to remote circuitry (not shown) via cable 106.
- specimen shuttle 49 includes a base member having a pair of sloping sidewalls 111, 112 which are angled inwardly in the upward direction conformably with the inner ways of gibs 92, 93.
- An upper mounting plate 113 having an externally threaded, upwardly extending central boss 115 for receiving a specimen cap 116 is supported above base member 110 by four vertically disposed posts 117-120.
- Upper plate 113 is preferably fabricated from a material such as copper which possesses high thermal conductivity.
- a housing 123 Suspended below upper plate 113 by means of a thermally insulated spacer 122 is a housing 123 for enclosing a heating coil (not shown).
- the electrical leads 124 from the coil are connected to a first pair of terminal pins mounted in an electrically insulated support plate 128 which is attached to base member 110 in any suitable fashion.
- a second pair of electrical terminals are provided in support plate 128 for furnishing electrical connections to a thermocouple (not shown) which is mounted in upper plate 113 adjacent specimen cap 116 and used to monitor specimen temperature.
- Extending from support plate 128 is a tapered locater pin 132 for providing a guide to facilitate insertion of the terminal pins in female terminals 96-99 in socket plate 95.
- a retractable wheel assembly which includes a rr-shaped yoke 135 having a pair of laterally extending arms 136,137 and a pair of spindles 138,139 each carrying a rotatable low friction bearing wheel 140, 141.
- a pair of springs 142, 143 mounted in spaced parallel bores 144,145 extending longitudinally of the sidewalls 111, 112 of base member 110 are biased against lateral arms 136,137 of yoke 135 to provide a force tending to urge yoke 135 toward front wall 146.
- a threaded bore 147 located centrally in front wall 146 of base member 110 is provided for receiving the threaded end 72 of control rod 71.
- Specimen cap 116 shown in perspective in FIG. 9 has an internally threaded bore 150 for enabling specimen cap 116 to be secured to boss 115 on upper plate 113 of shuttle 49, and an upper surface 151 for receiving a specimen.
- specimen mounting surface 151 is concave as shown
- Extending radially of the sidewall of specimen cap 116 is a pin 152 for enabling cap 116 to be attached and removed from threaded boss 115 by means of a specimen manipulator 153 shown in FIGSv 10-12 and described below.
- Specimen cap 116 is preferably fabricated from copper or other equivalent material exhibiting high thermal conductivity. As shown in FIG.
- F168. 10-12 show a specimen manipulator 153 which facilitates specimen handling and transfer of a specimen mounted on specimen cap 116 to and from specimen shuttle 49.
- Specimen manipulator 153 includes an inner cylindrical core member 154 having an upper end of narrowed diameter with a collar 155 se- Cured thereto and a slotted expandable collet 156 secured to the lower end thereof by means of a threaded connection 157.
- the lower inner diameter of collet 156 is dimensioned to provide a frictional fit with the outer diameter of specimen cap 116.
- An outer shield 160 is slideably received about inner core member 154 and includes an upper spacer 161, a surrounding collar 162 and a thin walled cylindrical tube 163 secured to spacer 161 by a set screw 165.
- a release rod 168 Slideably received in a central bore 166 of inner core member 154 is a release rod 168 having a release knob 169 mounted on the upper end, and a lower camming block 170 secured to the lower end of rod 168 by means of a nut 171.
- camming block 170 has a frustoconical shape providing a camming surface adapted to bear against an inner shoulder of collet 156 to temporarily expand the diameter thereof when urged in the downward direction by manual pressure on release knob 169.
- a specimen is mounted on mounting suruface 151 of specimen cap 116 and collet 156 is pressed over specimen cap 116 with pin 152 engaged in one of the collet slots 158.
- the specimen cap 116 may now be 8 lifted and mainpulated in any desired manner.
- release knob 169 is pressed downwardly to spread collet 156, thereby releasing specimen cap 116.
- FIGS. 13-20 illustrate the gate valve assembly used to control access to the main SEM chamber 11 via access aperture 13 in stage door 12.
- a base plate is provided with a peripheral mounting flange having mounting bolt apertures 182 for enabling base plate 180 to be secured to the outer surface of stage door 12 by conventional mounting bolts (not shown).
- a seal ring 183 is mounted in a peripheral groove formed in the inner face of base plate 180 to provide a vacuum seal with the outer stage wall within the region interior to the seal ring 183.
- a tunnel member 184 having flange 52 integrally formed therewith is mounted on the outer surface of base plate 180 by means of a plurality of conventional cap screws 185 (only one of which is shown), each received in a separate bore 186.
- a seal ring 187 similar to seal ring 183 is secured in a groove formed in the inner surface of tunnel member 184 to provide an air tight seal with the outer surface of base plate 180.
- Tunnel member 184 is provided with a fluid bore 188, the outer portion of which is threaded to receive a vacuum hose fitting 189. Vacuum line 78 is attached to fitting 189.
- the right hand wall portion of base plate 180 is provided with a bore 191 for accomodating an enlarged diametral portion 192 of gate valve control rod 51.
- Bore 191 in base plate 180 is provided with a threaded counter bore 193 for receiving an externally threaded bearing member 194 and a sealing ring 195.
- Bearing member 194 provides axial support for enlarged portion 192 of gate valve control rod 51.
- a bearing plate 197 Secured to a stepped portion of base plate 180 by means of a pair of bolts 196 is a bearing plate 197 for providing a bearing support to the free end of control rod 51 when this element is in the closed position.
- a cylindrical bearing mount 199 Secured to the free end of control rod 51 by means of a set screw 198 is a cylindrical bearing mount 199 having opposite end portions of reduced diameter. As best shown in FIG. 15, an eccentric bearing 200 is secured to each end portion of bearing mount 199. Bearing mount 199 and bearings 200 are flanked by the end walls 202, 203 of a valve carriage 204 (FIG. 16).
- valve carriage 204 comprises a frame-like member having a pair of sector plates 206,207 mounted on opposite sidewalls thereof.
- a pair of helical springs 209,210 are arranged along the circular contour of opposite sector plates 206,207, eaech spring being secured at opposite ends to the outer surface of a gate valve 211 by means of cap screws 212.
- a plurality of cap screws 213 received in mounting bores 214 in carriage 204 are threaded into corresponding threaded bores in gate valve 211. As best shown in FIG.
- Gate valve 211 comprises a generally flat valve member having a peripheral groove and seal 216 for providing a fluid tight joint with the outer surface of stage 12.
- the gate valve assembly is operated in the following manner. With valve 211 originally in the open position, control rod 51 is manipulated to the left as viewed in FIGS. 13 and 14 until the free end thereof is located on bearing support 197 as shown. in this position. gate valve 211 is drawn to carriage 204 by springs 209,210 as shown in FIGS. 18 and 20. Control rod 51 is then manually rotated. As eccentrics 200 rotate with rod 51 and increasingly bear against the outer surface of gate valve 211, gate valve 211 and carriage 204 are forced apart until valve 211 is in the full sealing position illustrated in FIGS. 19 and 21 in which seal 216 is tightly urged against the outer surface of stage door 12. It is noted that the amount of spatial separation between carriage 204 and gate valve 211 is controlled by the free play of cap screws 213 in mounting bores 214.
- control rod 51 is rotated in the opposite direction, thereby enabling springs 209,210 to draw carriage 204 and gate valve 211 together to unseat valve 211 from the outer surface of stage 12. Control rod 51 is then manually withdrawn to the right until access aperture 13 in stage door 12 is completely exposed.
- Specimen shuttle 49 is attached to thetthreaded end 72 of shuttle control rod 71.
- Airlock housing 53 with closure plug 61 installed is then fitted over the entrance flange 52 with shoulder 55 snugly against seal 56, and set screw 58 is tightened.
- Pump 79 is actuated and valve assembly 76 is adjusted to the backflll setting to provide an inert atmosphere within airlock chamber 65.
- Closure cap 61 is next removed from airlock housing 53 and the lower end of specimen manipulator 153 is inserted into access aperture 62 in the top of housing 53 as shown in FIG. 22, until specimen cap 116 is positioned above threaded boss 115 of specimen shuttle 49. Specimen cap 116 is now secured to threaded boss 115 by manually rotating specimen manipulator 153 in the clockwise direction. Specimen manipulator 153 is next withdrawn from airlock housing 53 and closure plug 61 is reinstalled to the sealing position shown in FIG. 4.
- compound valve 76 may be adjusted to provide parallel connection between pump 75 and vacuum lines 77, 78, and gate valve 211 may be retained in the closed position whil simultaneously pumping down both chambers via parallel conduits 77, 78.
- gate valve 211 is opened, (if previously closed) and specimen shuttle 49 is manipulated into main chamber 11 by means of shuttle control rod 71. and onto platform 90 between gibs 92,93. Specimen shuttle control rod 71 is next removed by manual rotation in the counter-clockwise direction. thereby permitting wheels 140, 141 to be extended by springs 142, 143 to the rigid position depicted in FIGS. 58. Thereafter. gate valve 211 is closed to isolate main SEM chamber 11 from airlock chamber 65. The speci' men is now ready for inspection by the SEM electron beam. During inspection of the specimen. if desired. airlock housing 53 may be removed by venting airlock chamber 65 to atmospheric pressure with compound valve 76, unfastening set screw 58 and withdrawing airlock housing 53.
- Dewar tank 16 is first filled with a cooling fluid, and specimen shuttle 49 is installed in mounting platform 90 in the abovedescribed manner. As upper plate 113 of shuttle 49 makes contact with abutment member 87, the specimen cap mounting plate 113 is cooled by the cooling fluid in Dewar tank 16 via conducting strap 41. If de sired. gate valve 211 may be manually translated to the closed position at this time, and main SEM chamber 11 may be pumped down by pump during the period of time required to cool mounting plate 113.
- gate valve 211 is opened and shuttle control rod 71 is reinserted into threaded bore 147 in specimen shuttle 49, thereby retracting wheels 140, 141 to the partially extended position, and specimen shuttle 49 is withdrawn into airlock chamber 65. Thereafter. gate valve 211 is closed to isolate main SEM chamber 11 from airlock chamber 65. Compound valve 76 is now adjusted to the backfill position in which airlock chamber 65 is pressurized to ambient pressure. preferably with an inert gas.
- specimen cap 116 is now grasped by specimen manipulator 153 with outer shield 163 in the retracted position shown in FIG. 11.
- the lower end of specimen manipulator 153 is inserted into Dewar tank 16 and submerged in the cooling fluid located therein for a period of time sufficient to bring the mounted specimen to the desired low temperature (typically a few seconds).
- Outer shield 163 is then drawn downwardly to the position shown in FIG. 12 to trap a pool of cooling fluid above specimen receiving surface 151 of specimen cap 116. With the shield arranged in this position.
- the manipulator is removed from Dewar tank 16 and manually transferred over to airlock housing 53. Closure plug 61 is removed, and specimen cap 116 is next attached to mounting plate 113 of specimen shuttle 49 in the manner described above.
- specimen shuttle 49 may be withdrawn from main SEM chamber 11 into airlock chamber 65 and removed from specimen shuttle 49 in the usual way.
- a fresh specimen may next be installed onto shuttle 49 and transferred to main SEM chamber 11 for inspec- 11 tion. It is noted that this may be accomplished without disturbing the vacuum in SEM chamber 11 by proper manipulation of gate valve 211. In this way, several specimens may be successively transferred to and from main SEM chamber 11 and inspection of each fresh specimen may proceed immediately.
- FIGS. 2331 illustrate a specimen coating apparatus which may be conveniently employed to provide an electrically conductive coating for a specimen prior to installation in main SEM chamber 11 and which also functions as an airlock chamber to facilitate specimen transfer to and from main SEM chamber 11.
- a housing 220 has a rear wall provided with an opening 221 sized to accomodate entrance flange 52.
- the inner wall surface defining opening 221 ispprovided with a stepped shoulder 222 for the same purpose as shoulder 55 of airlock housing 53.
- Housing 220 is further provided with a control panel 223 having a pair of on-off switches 225,226 labeled FILAMENT and MOTOR, respectively, for enabling the application of electrical power to a filament and a motor as described below.
- a control knob 227 is provided which is coupled to a variable resistance mounted within housing 220 which affords man ual adjustment of the amount of electrical current supplied to the filament.
- Filament power is provided by means of a cable 228; electrical power is provided to the motor by means of a male plug 229 adapted to receive a mating plug (not shown) which is coupled to a suitable source.
- a cover member 230 preferably constructed from a transparent material, is connected to housing 220 by means of a pair of hinges 231. As best shown in FIG. 26, cover member 230 is provided with a peripheral seal 232 along the angled lower edge thereof. When cover member 230 is closed, seal 232 forms a vacuum tight joint with the underlying angled upper surface of housing 220 to define an airlock chamber 233. Cover member 230 is also provided with a closure plug 234 having a seal 235 for a purpose similar to closure plug 61 and seal 63. Secured to the rear wall of cover member 230 are a pair of electrically conductive contact blades 237 which engage a pair of blade receptacles 238 when cover member 230 is closed.
- Receptacles 238 are mounted on an insulating block 239 secured to the upper rear surface of housing 220. Receptacles 238 are electrically coupled to cable 228 by means of conductive leads 240 secured to the individual receptacles 238 by means of fastening screws 241.
- a control rod bearing assembly 70 is mounted in a bore in the front wall of housing 220 and provides a sealed bearing mount for a shuttle control rod 71.
- shuttle platform 244 having a pair of laterally spaced substantially parallel gibs 245,246 similar to gibs 92, 93 is rotatably mounted within coating chamber 233 by means of a shaft 248 and a conventional sealed bearing assembly 250 mounted in a bore in the lower wall 251 of housing 220.
- a driven gear 253 Secured to the lower end of shaft 248 is a driven gear 253 which meshes with an intermediate gear 254.1ntermediate gear 254 is driven by a driving gear 255 mounted on the output shaft of a motor (not shown) located within housing 220.
- a driving gear 257 providing power take-off to a pair of filament driving gears 264 via a conventional drive train 258, 261 and 262.
- Filament driving gears 264 are interconnected by means of a rotatable shaft 265. As best shown in FIG.
- each filament assembly d ive gear 264 is rotatably secured to a mounting bracket 266 anchored to lower housing wall 251.
- a link arm 267 pinned to gear 264 at the lower end thereof and restricted to sliding motion by a fixed stationary guide pin 268 received in a guid' slot 269 provides a lifting force for filament 8.55631. 270 via camming surface 271.
- filament a sembly 270 comprises a pair of spaced parallel arms 272 fabricated from an electrically conductive material and having inwardly extending flanges 273 secured to an electrically insulative spacer bar 274 by means of fastening screws 275.
- Secured to each arm 274 is an outwardly extending lifting peg 276 and a pair of out wardly directed trunnion members 277 each having a head portion 278 located inwardly of arms 272. Head portions 278 are provided to guide a pair of flexible conductors 280 each having a terminal lug 281 secured to arm 272 by means of screws 282.
- the distal end of conductors 286 are each connected to the inner end of blades 237 by suitableffasteners.
- a pair of facing, spaced hollow cylindrical members 285 are secured to arms 272 at the filament end thereof by any suitable means, e.g. brazing.
- Received within each cylindrical member 285 is a conductive rod 286 having a threaded outer end and an inner end having a cross bore.
- Each end of a hairpin filament 288 is received in a different one of these cross bores.
- Filament 288 is held in place by means of a pair of nuts 289 which are threaded onto the outer end of shafts 286 and tightened to withdraw shafts 286 until he ends of filament 288 bear against the open ends of cylindrical members 285.
- FIG. 30 shows an alternate filament assembly employing a pair of carbon rods 290, 291.
- Rod 290 is se cured in an electrically conductive tubular member 291 which is received within a second electrically conductive tubular member 292.
- Member 292 is secured to arm 272 by any suitable technique, e.g., brazing.
- An adjustment screw 293 enables the adjustment of the lateral position of rod 290.
- Carbon rod 291 is received in a bore in a mounting member 295 secured to arm 272.
- Rod 291 is biased toward rod 290 by means of a small spring 296.
- the inner end portion of rod 291 is narrowed as shown to provide a suitable contact area with the face of rod 290. Electrical connection to rod 291 is afforded by means of a clamp 298 and securing screw 299.
- Both filament embodiments are provided with a cylindrical shield 300 shown in FIG. 31 having friction pins 301 removably received 111 sockets 302 carried by a socket plate 303.
- Socket p.ate 303 is mounted to spacer bar 274 by means of mounting screws 305.
- filament assembly 270 To install filament assembly 270, the free ends of arms 272 are bent inwardly, and trunnion members 277 are fitted into receiving bores in the inner sidewalls of cover member 230. When installed, filament assembly 270 is thus pivotally secured to cover member 230. Removal is accomplished in the reverse manner. 7
- a fixed shield plate 310 is secured to lower housing wall 251 by means of pedestal 311 and screws 312.
- a moveable shield plate 314 having an upturned flange 315 is coupled via an arm 316 to the inner end of a rotatable shaft 317.
- Shaft 317 is carried by a conventional sealed bearing assem bly 318 mounted to housing 22 and is provided with a control knob 320 on the outer end thereof.
- Moveable shield plate 314 may thus be rai -ed or lowered by rotattion from above, while plates 310,314 shield the shuttle m from the deposition material.
- the specimen coating apparatus described above may be employed to deposit several suitable electrically conductive coating materials on the surface of a non-conductive specimen.
- the hairpin filament illustrated in FIG. 29 is suitable for depositing gold, aluminum, palladium and like materials.
- a ribbon of the desired coating material is wrapped about the looped portion of filament 288, after which shield 300 is installed.
- the carbon filament illustrated in FIG. 30 is employed as shown without further preparation.
- filament assembly 270 is then mounted in cover member 230, and the cover is closed.
- a specimen shuttle is next attached to the inner end of control rod 71, manipulated onto platform 244 between gibs 245,246 and locked in place by with wing the inner end of control rod 71.
- Opening 22] is next fitted onto flange 52 with flange seal 56 snugly against shoulder 222.
- Closure cap 234 is then removed and a specimen cap 116 bearing a frozen or unfrozen specimen is secured to shuttle 49 in the usual way.
- Closure cap 234 is replaced and chamber 233 is evacuated by pump 75. After chamber 233 has been evacuated, power is applied to the filament and the motor and the filament current is adjusted to pro vide the desired rate of coating material evaporation and deposition.
- Actuation of the motor causes platform 244 to ro tate, thereby rotating shuttle 49 and the specimen mounted thereon.
- filament assembly 270 is rocked back and forth by link arms 267 about the pivot points provided by trunnions 277. It is noted that the center of rotation of the arcuate movement of filament assembly 270 is just above the surface of shields 310,314. This point is approximately located at the surface of the specimen when positioned in a cap 116 and mounted on a shuttle 49.
- the combined rotary movement of the specimen and the oscillatory motion of the filament along an arcuate path ensures substantially uniform coating of the specimen surface with the coating material.
- the gear train arrangement should be selected so that the motion of filament assembly 270 is aperiodic with respect to the rotation of the specimen.
- housing 220 may be removed during inspection of the specimen and airlock housing 53 may be attached to stage 12. Alternatively, housing 220 may be left in position throughout the inspection and removal process, particularly ifa series of non-conductive specimens are to be first coated and then inspected.
- an unfrozen specimen may be transferred into main SEM cham ber 11 via either airlock chamber and subjected to a first inspection. Thereafter, the specimen may be transferred to the airlock chamber in the coating apparatus. provided with a coating of conductive material and re transferred to main SEM chamber 11 for a subsequent inspection. lf deemed desirable, the specimen may be frozen at any stage of the process in the simple manner described above and re-transferred to the main SEM chamber 11. Moreover, a succession of different specimens may be also serially installed in main SEM chamber 11 in a quick and efficient manner. Most importantly, all transfer operations can be performed without disturbing the environment in main SEM chamber 11, thereby minimizing the transfer time interval.
- a coating device for depositing a coating material on a specimen mounted on a specimen shuttle prior to transfer to a main SEM chamber via an enclosed trans fer tunnel comprising:
- a housing having an apertured rear wall adapted to be coupled to said tunnel in sealing relation to the walls thereof;
- cover member mounted on said housing, said cover member and said housing defining an airlock chamber when said cover is in a closed position, said cover member having a scalable aperture for providing access to said chamber;
- a shuttle platform rotatably mounted in said chamber adapted to receive said shuttle
- said filament assembly comprises a pair of spaced substantially parallel arms, a spacer bar coupled between said arms adjacent a first end thereof, a pair of trunnion members each se cured to a different one of said arms for providing a pivot support, and a filament coupled between said arms.
- said filament comprises a pair of spaced facing tubular members, a pair of rods slideably received in said tubular membes, each said rod having a cross bore adjacent the inner end thereof and a threaded outer end, a hairpin like member having a pair of legs each received in a different one of said cross bores, and means for biasing said rods 16 in said bore, said second mounting member having a closed axial bore, a second rod slideably received in said closed axial bore, and means for biasing said secand rod against said first rod.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US503412A US3915118A (en) | 1973-09-17 | 1974-09-05 | Specimen coating device for an SEM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00398101A US3858049A (en) | 1973-09-17 | 1973-09-17 | Method and apparatus for sem specimen coating and transfer |
US503412A US3915118A (en) | 1973-09-17 | 1974-09-05 | Specimen coating device for an SEM |
Publications (1)
Publication Number | Publication Date |
---|---|
US3915118A true US3915118A (en) | 1975-10-28 |
Family
ID=27016124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US503412A Expired - Lifetime US3915118A (en) | 1973-09-17 | 1974-09-05 | Specimen coating device for an SEM |
Country Status (1)
Country | Link |
---|---|
US (1) | US3915118A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0325178A2 (en) * | 1988-01-20 | 1989-07-26 | Horiba, Ltd. | Apparatus for heating a sample within a vacuum chamber |
EP1102304A2 (en) | 1996-12-23 | 2001-05-23 | Koninklijke Philips Electronics N.V. | Particle-optical apparatus including a low-temperature specimen holder |
US7258746B1 (en) * | 2005-03-24 | 2007-08-21 | U.S. Government As Represented By The Secretary Of The Army | Coating apparatus for segments of cylindrical substrates |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2239642A (en) * | 1936-05-27 | 1941-04-22 | Bernhard Berghaus | Coating of articles by means of cathode disintegration |
US3491720A (en) * | 1965-07-29 | 1970-01-27 | Monsanto Co | Epitaxial deposition reactor |
US3524426A (en) * | 1968-02-29 | 1970-08-18 | Libbey Owens Ford Glass Co | Apparatus for coating by thermal evaporation |
US3568632A (en) * | 1969-03-24 | 1971-03-09 | Gary F Cawthon | Lens coating apparatus |
US3649339A (en) * | 1969-09-05 | 1972-03-14 | Eugene C Smith | Apparatus and method for securing a high vacuum for particle coating process |
-
1974
- 1974-09-05 US US503412A patent/US3915118A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2239642A (en) * | 1936-05-27 | 1941-04-22 | Bernhard Berghaus | Coating of articles by means of cathode disintegration |
US3491720A (en) * | 1965-07-29 | 1970-01-27 | Monsanto Co | Epitaxial deposition reactor |
US3524426A (en) * | 1968-02-29 | 1970-08-18 | Libbey Owens Ford Glass Co | Apparatus for coating by thermal evaporation |
US3568632A (en) * | 1969-03-24 | 1971-03-09 | Gary F Cawthon | Lens coating apparatus |
US3649339A (en) * | 1969-09-05 | 1972-03-14 | Eugene C Smith | Apparatus and method for securing a high vacuum for particle coating process |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0325178A2 (en) * | 1988-01-20 | 1989-07-26 | Horiba, Ltd. | Apparatus for heating a sample within a vacuum chamber |
EP0325178A3 (en) * | 1988-01-20 | 1990-07-25 | Horiba, Ltd. | Apparatus for heating a sample within a vacuum chamber |
EP1102304A2 (en) | 1996-12-23 | 2001-05-23 | Koninklijke Philips Electronics N.V. | Particle-optical apparatus including a low-temperature specimen holder |
EP1102304A3 (en) * | 1996-12-23 | 2006-05-31 | Fei Company | Particle-optical apparatus including a low-temperature specimen holder |
US7258746B1 (en) * | 2005-03-24 | 2007-08-21 | U.S. Government As Represented By The Secretary Of The Army | Coating apparatus for segments of cylindrical substrates |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3958124A (en) | Method and apparatus for sem specimen coating and transfer | |
US3858049A (en) | Method and apparatus for sem specimen coating and transfer | |
US4239955A (en) | Effusion cells for molecular beam epitaxy apparatus | |
JP3605119B2 (en) | Ultra-high tilt specimen cold transfer holder for electron microscope | |
US4181544A (en) | Molecular beam method for processing a plurality of substrates | |
US6410925B1 (en) | Single tilt rotation cryotransfer holder for electron microscopes | |
US4137865A (en) | Molecular beam apparatus for processing a plurality of substrates | |
US3915118A (en) | Specimen coating device for an SEM | |
EP0108206B1 (en) | Vacuum chamber | |
EP2147291B1 (en) | Apparatus and method for the preparation of fluid bearing materials for surface analysis in a vacuum | |
JP3926103B2 (en) | Cooling holder and scanning electron microscope | |
Cohen et al. | The use of a special work station for in situ measurements of highly reactive electrochemical systems by atomic force and scanning tunneling microscopes | |
US4508590A (en) | Method for the deposition of high-quality crystal epitaxial films of iron | |
Bernius et al. | Cryogenic sample stage for the Cameca IMS‐3f ion microscope | |
Spriggs et al. | Observations on the production of frozen‐dried thin sections for electron microscopy using unfixed fresh liver, fast‐frozen without cryoprotectants | |
Stencel et al. | Ultrahigh vacuum chamber for Raman studies of gases adsorbed on metals | |
Amiri‐Hezaveh et al. | Apparatus for producing ultraclean bicrystals by the molecular beam epitaxy growth and ultrahigh vacuum bonding of thin films | |
Annese et al. | Ultrahigh-vacuum organic molecular-beam deposition system for in situ growth and characterization | |
US3720829A (en) | Sample fracturing apparatus | |
Ross et al. | Preparation and assessment of frozen‐hydrated sections of mammalian tissue for electron microscopy and X‐ray microprobe analysis | |
Michelato et al. | Alkali photocathode development for superconducting rf guns | |
Stintz et al. | Imaging atom‐probe analysis of an aqueous interface | |
CN107991330B (en) | Device and method for preparing liquid nitrogen mud frozen sample | |
JPH06208841A (en) | Cryogenic device for scanning electron microscope | |
JPH02312147A (en) | Freezed sample transfer device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MNC CREDIT CORP., 502 WASHINGTON AVE., STE. 700, T Free format text: SECURITY INTEREST;ASSIGNOR:ETEC, A CORP. OF NV;REEL/FRAME:005262/0967 Effective date: 19900223 |
|
AS | Assignment |
Owner name: ETEC, A CORP. OF NV, NEVADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PERKIN-ELMER CORPORATION, THE;REEL/FRAME:005366/0501 Effective date: 19900315 |
|
AS | Assignment |
Owner name: ETEC SYSTEMS, INC., A CORP. OF NV Free format text: CHANGE OF NAME;ASSIGNOR:ETEC, A CORP. OF NV;REEL/FRAME:005475/0559 Effective date: 19900814 |
|
AS | Assignment |
Owner name: CONNECTICUT NATIONAL BANK, THE Free format text: SECURITY INTEREST;ASSIGNOR:ETEC SYSTEMS, INC.;REEL/FRAME:005949/0850 Effective date: 19911115 |
|
AS | Assignment |
Owner name: ETEC, A CORP. OF NEVADA, CALIFORNIA Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MNC CREDIT CORP., A MD CORP.;REEL/FRAME:006014/0078 Effective date: 19911220 |