US3913545A - Evaporative emission system - Google Patents
Evaporative emission system Download PDFInfo
- Publication number
- US3913545A US3913545A US347959A US34795973A US3913545A US 3913545 A US3913545 A US 3913545A US 347959 A US347959 A US 347959A US 34795973 A US34795973 A US 34795973A US 3913545 A US3913545 A US 3913545A
- Authority
- US
- United States
- Prior art keywords
- fuel
- vapors
- engine
- passage
- control means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/0836—Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
Definitions
- evaporative loss control devices typically comprise a canister filled with suitable adsorbent material, such as activated charcoal.
- suitable adsorbent material such as activated charcoal.
- the carbon adsorbs the hydrocarbon vapors when the engine is not in operation; when the engine is operative, means are provided to effect desorption or purging of the vapors from the adsorbent material so that these vapors can be fed to combustion chambers of the engine for consumption therein.
- the running vapor losses from both the fuel tank and carburetor bowl are being consumed as they are generated.
- Another approach is the use of a canister bypass for providing a variable purge rate.
- the canister bypass attempts to smooth out the air/fuel ratio since the amount of air going ultimately through the throat of the carburetor will be'constant, while the amount of air going through the adsorbent material increases or de- 'creasesin the response to the amount of air bypassing the adsorbent. In this manner, a controlled amount of purged fuel vapors may be obtained to some degree.
- Still another object of this invention is to provide a means of controlling the return of excess fuel vapors to the combustion cycle of the engine in such a manner that the carburetor air-fuel ratio is maintained at least above 14/1, thus avoiding a significant change in the combustion products of the engine, such as carbon monoxide.
- This becomes significant particularly with respect to total auto emission controls which may employ a catalytic converter to reduce unwanted gaseous constituents of the exhaust; in many cases the catalytic converter requires a controlled feed (within a limited range) of carbon monoxide as part of the exhaust being introduced to the catalytic converter.
- FIGURE is a schematicillustration of various components comprising an evaporative emission control systemQThere is shown in cross-section a storage canister for fuel vapors as well as firstand second purge control means and a typical carburetor usedwith a conventional internal combustion engine.
- a fuel vapor recovery system adapted for recovering fuel vapors which may collect in the carburetor fuel bowl or the vehicle fuel tank.
- the recovery system comprises a canister A containing a bed of adsorption material in the form of activated carbon, a passage B communicating the interior of said canister with the intake manifold C of an internal combustion engine D at a location downstream of throttle 11.
- the recovery system further comprises a first control means E employed to completely shut off or completely open the passage B in response to a vacuum signal received from a location 9 upstream from the throttle 11 of carburetor 12, but downstream from the venturi restriction 13 of the carburetor; this location is commonly referred to as the spark port.
- a second control means F is employed to operate in series with said first control means and is effective to modulate the flow of fuel vapors through said passage in response to the magnitude of the vacuum received from location 10, thereby controlling the aperture through a portion of passage B.
- the canister may typically comprise a container 14 having the bed of adsorption material 15 substantially filling said container, except for an air space 16 defined by a screen 20 at the bottom thereof; a fresh air intake 17 is arranged to admit air to said space 16 during a purging phase of the system.
- Fuel vapors are conveyed to the canister at the top thereof by way of a conduit 18 leading from a vehicle fuel storage tank and a conduit 19 leading from the carburetor fuel bowl.
- a conduit 18 leading from a vehicle fuel storage tank
- conduit 19 leading from the carburetor fuel bowl.
- passage B is placed in communication with a vacuum obtained at location 10 in the intake manifold immediately below the throttle of the carburetor (this location is commonly referred to as the PCV port).
- the passage B is maintained closed when purging is not desired by the first control means E.
- Means E comprises a valve housing 26 having a boring or channel 22, one end 22a of the channel serving as the inlet for vacuum; a cross bore 21 intersects with boring 22.
- Passage B is interrupted by means E so that one break in passage B becomes the inlet at 22a and the other break in passage B becomes the outlet for the vacuum through crossbore 21.
- a valve 24 (urged by spring 29) is adapted to normally close off the connection between bore 21 and boring 22 by seating against surface 27.
- Valve 24 is attached to a diaphragm 28 residing in chamber 23; the diaphragm is actuated by a vacuum signal in conduit 25.
- the vacuum signal is taken at location 9 (commonly referred was the spark port) and'the vacuum here is relatively non-existentat idle or wide-'open-.
- control means F is employed to vary the aperture of passage B.
- Means-F comprises a'valve housing 30 defining an interior valve seat 31 which is progressively closed, but never completely, by a spring biased valve element 32 acting in response to intake manifold vacuum in passage B thereby to vary the spacing between element 32 and the seat 31.
- Means F functions to allow more flow through, the lower the vacuum pressure; the latter vacuum force purges the vapors and acts proportionate to engine loading. There is a slight bleed through means F even in its most restricted position when vacuum pressure is the highest. Thus, theflow is not preprogrammed independent of engine operation.
- the apparatus as in claim 1 which further comprises, in combination with' said apparatus, an engine exhaust system having a catalytic converter and means calibrated to vary in response to predetermined air/fuel mixtures, said second control means being effective to regulate desorption of 'fuel vapors from said storing means in such amounts as to maintainsaid calibrated means in a condition to provide an air/fuel mixture at 'least above 14/1 whereby the amount'of carbon monoxide in said exhaust gas system is maintained in a predetermined range compatible for operation of said catalytic converter 1 i
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
Abstract
A fuel vapor recovery system for the adsorption, storage and eventual recycling of vapors to an engine. The system has a vapor-storage canister containing activated carbon for adsorbing fuel vapors from various parts of the engine fuel system. The system selectively purges the fuel vapors for introduction to the engine intake manifold. The purging is controlled in response to engine loading and engine speed for improved engine operation.
Description
United States Patent 1191 Haase et al.
[451 Oct. 21, 1975 EVAPORATIVE EMISSION SYSTEM [75] Inventors: Lawrence H. Haase, Belleville;
David R. Liimatta, Livonia, both of Mich.
[731 Assignee: Ford Motor Company, Dearborn,
, Mich.
[22] Filed: Apr. 4, 1973 '21 Appl. No.: 347,959
[52] US. Cl 123/136; 123/121 [51] Int. Cl. F02M 25/08 [58] Field of Search 123/136, 121; 60/285, 301
[56] References Cited UNITED STATES PATENTS 3,352,294 11/1967 Biller et al. 123/136 3,674,423 7/1972 Klimisch 60/301 3,680,318 8/1972 Makajima 60/290 Beveridge 123/136 Hollis, Jr 123/136 Primary Examiner-Charles J. Myhre Assistant ExaminerTony Argenbright Attorney, Agent, or Firm.loseph W. Malleck; Keith L. Zerschling [57] ABSTRACT A fuel vapor recovery system for the adsorption, storage and eventual recycling of vapors to an engine. The system has a vapor-storage canister containing activated carbon for adsorbing fuel vapors from various parts of the engine fuel system. The system selectively purges the fuel vapors for introduction to the engine intake manifold. The purging is controlled in response to engine loading and engine speed for improved engine operation.
4 Claims, 1 Drawing Figure US. Patent Oct. 21, 1975 3,913,545
EVAPORATIVE EMISSION SYSTEM BACKGROUND OF THE, INVENTION In an effort to reduce hydrocarbonemissions from the fuel system, various evaporative loss control devices have been proposed, which typically comprise a canister filled with suitable adsorbent material, such as activated charcoal. The carbon adsorbs the hydrocarbon vapors when the engine is not in operation; when the engine is operative, means are provided to effect desorption or purging of the vapors from the adsorbent material so that these vapors can be fed to combustion chambers of the engine for consumption therein. During engine operation, the running vapor losses from both the fuel tank and carburetor bowl are being consumed as they are generated. This approach has worked successfully to reduce hydrocarbon emissions to the atmosphere, but under certain engine operating conditions, the introduction of both the stored and currently generated hydrocarbon vapors for consumption in the engine affects engine operation or causes an increase in the exhaust emission of unburned hydrocarbons. On other occasions, only the stored vapors may cause an over rich air/fuel mixture during the initial portion of the purged cycle. The latter can result in such a rich mixture that engine performance becomes irregular and poor (i.e., hesitation and stumble affecting drivability) and most importantly thecarbon monoxide content of the exhaust is increased.
Although the prior vapor emission systems have been concerned with the need for a controlled purge of hydrocarbon vapors to avoid some of the above problems, the attempts have not been entirely successful. For example, there has been proposed a system which would have two adsorption beds connected in series to each other. Upon purging, the series connected adsorbent beds are unloaded sequentially thereby resulting in some degree of modulated release.
Another approach is the use of a canister bypass for providing a variable purge rate. The canister bypass attempts to smooth out the air/fuel ratio since the amount of air going ultimately through the throat of the carburetor will be'constant, while the amount of air going through the adsorbent material increases or de- 'creasesin the response to the amount of air bypassing the adsorbent. In this manner, a controlled amount of purged fuel vapors may be obtained to some degree.
SUMMARY OF THE INVENTION It is a primary object of this invention to provide an improved apparatus and method for a fuel vapor recovery system; purging of the system is controlled so that overrichness is avoided in the mixturereceiving the recovered vapors and thereby avoid momentary sag or poor engine performance.
Still another object of this invention is to provide a means of controlling the return of excess fuel vapors to the combustion cycle of the engine in such a manner that the carburetor air-fuel ratio is maintained at least above 14/1, thus avoiding a significant change in the combustion products of the engine, such as carbon monoxide. This becomes significant particularly with respect to total auto emission controls which may employ a catalytic converter to reduce unwanted gaseous constituents of the exhaust; in many cases the catalytic converter requires a controlled feed (within a limited range) of carbon monoxide as part of the exhaust being introduced to the catalytic converter.
SUMMARY OF THE DRAWING The FIGURE is a schematicillustration of various components comprising an evaporative emission control systemQThere is shown in cross-section a storage canister for fuel vapors as well as firstand second purge control means and a typical carburetor usedwith a conventional internal combustion engine.
DETAILED DESCRIPTION Referring now to the drawing, there is illustrated a fuel vapor recovery system adapted for recovering fuel vapors which may collect in the carburetor fuel bowl or the vehicle fuel tank. In generahthe recovery system comprises a canister A containing a bed of adsorption material in the form of activated carbon, a passage B communicating the interior of said canister with the intake manifold C of an internal combustion engine D at a location downstream of throttle 11. The recovery system further comprises a first control means E employed to completely shut off or completely open the passage B in response to a vacuum signal received from a location 9 upstream from the throttle 11 of carburetor 12, but downstream from the venturi restriction 13 of the carburetor; this location is commonly referred to as the spark port. A second control means F is employed to operate in series with said first control means and is effective to modulate the flow of fuel vapors through said passage in response to the magnitude of the vacuum received from location 10, thereby controlling the aperture through a portion of passage B.
The canister may typically comprise a container 14 having the bed of adsorption material 15 substantially filling said container, except for an air space 16 defined by a screen 20 at the bottom thereof; a fresh air intake 17 is arranged to admit air to said space 16 during a purging phase of the system. Fuel vapors are conveyed to the canister at the top thereof by way of a conduit 18 leading from a vehicle fuel storage tank and a conduit 19 leading from the carburetor fuel bowl. Thus, during inoperative conditions of the engine or hot soak cycles, fuel vapors are released and adsorbed by the adsorption bed 15, the passage B being closed thereby maintaining atmospheric pressure therein suitable to prevent an induced air flow through 17 but receptive to admit vapors from conduits 18 and 19.
To purge the canister of collected vapors, passage B is placed in communication with a vacuum obtained at location 10 in the intake manifold immediately below the throttle of the carburetor (this location is commonly referred to as the PCV port). The passage B is maintained closed when purging is not desired by the first control means E. Means E comprises a valve housing 26 having a boring or channel 22, one end 22a of the channel serving as the inlet for vacuum; a cross bore 21 intersects with boring 22. Passage B is interrupted by means E so that one break in passage B becomes the inlet at 22a and the other break in passage B becomes the outlet for the vacuum through crossbore 21. A valve 24 (urged by spring 29) is adapted to normally close off the connection between bore 21 and boring 22 by seating against surface 27. Valve 24 is attached to a diaphragm 28 residing in chamber 23; the diaphragm is actuated by a vacuum signal in conduit 25. The vacuum signal is taken at location 9 (commonly referred was the spark port) and'the vacuum here is relatively non-existentat idle or wide-'open-.
ing, control means F is employed to vary the aperture of passage B. Means-F comprises a'valve housing 30 defining an interior valve seat 31 which is progressively closed, but never completely, by a spring biased valve element 32 acting in response to intake manifold vacuum in passage B thereby to vary the spacing between element 32 and the seat 31. Means F functions to allow more flow through, the lower the vacuum pressure; the latter vacuum force purges the vapors and acts proportionate to engine loading. There is a slight bleed through means F even in its most restricted position when vacuum pressure is the highest. Thus, theflow is not preprogrammed independent of engine operation.
We claim: i 1. In an internal combustion engine having a fuel system, an intake manifold and a carburetor with a throttle to provide a gaseous mixture engine flow, an apparatus for controlling the recovery of fuel vapors in said system, comprising: i
'a. means for-adsorbing and storing said fuel vapors, b. a passage for purging said stored fuel vapors and for conveying said vapors to said intake manifold, c. a first control means responsive to vacuum upstream from said throttle for maintaining said pas- 4 sage in either a fullyopen'ed or a fully closed condition, said passage having internal walls defining an aperture between said first control means and said means, for absorbing vapors and through which flow must pass in said passage, and d. a second control means responsive to vacuum in l said intake manifold for regulating the aperture of said passage whereby 'said storing-means is desorbed at a rate inversely proportional to engine flow.
2. An apparatus as in claim 1, in which said second 4. The apparatus as in claim 1, which further comprises, in combination with' said apparatus, an engine exhaust system having a catalytic converter and means calibrated to vary in response to predetermined air/fuel mixtures, said second control means being effective to regulate desorption of 'fuel vapors from said storing means in such amounts as to maintainsaid calibrated means in a condition to provide an air/fuel mixture at 'least above 14/1 whereby the amount'of carbon monoxide in said exhaust gas system is maintained in a predetermined range compatible for operation of said catalytic converter 1 i
Claims (4)
1. In an internal combustion engine having a fuel system, an intake manifold and a carburetor with a throttle to provide a gaseous mixture engine flow, an apparatus for controlling the recovery of fuel vapors in said system, comprising: a. means for adsorbing and storing said fuel vapors, b. a passage for purging said stored fuel vapors and for conveying said vapors to said intake manifold, c. a first control means responsive to vacuum upstream from said throttle for maintaining said passage in either a fully opened or a fully closed condition, said passage having internal walls defining an aperture between said first control means and said means for absorbing vapors and through which flow must pass in said passage, and d. a second control means responsive to vacuum in said intake manifold for regulating the aperture of said passage whereby said storing means is desorbed at a rate inversely proportional to engine flow.
2. An apparatus as in claim 1, in which said second control means comprises a valve biased to a minimum aperture condition and progressively opened in opposition to said bias by an increase in intake manifold vacuum.
3. An apparatus as in claim 2, in which said second means is actuated in response to PCV port vacuum.
4. The apparatus as in claim 1, which further comprises, in combination with said apparatus, an engine exhaust system having a catalytic converter and means calibrated to vary in response to predetermined air/fuel mixtures, said second control means being effective to regulate desorption of fuel vapors from said storing means in such amounts as to maintain said calibrated means in a condition to provide an air/fuel mixture at least above 14/1 whereby the amount of carbon monoxide in said exhaust gas system is maintained in a predetermined range compatible for operation of said catalytic converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US347959A US3913545A (en) | 1973-04-04 | 1973-04-04 | Evaporative emission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US347959A US3913545A (en) | 1973-04-04 | 1973-04-04 | Evaporative emission system |
Publications (1)
Publication Number | Publication Date |
---|---|
US3913545A true US3913545A (en) | 1975-10-21 |
Family
ID=23366037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US347959A Expired - Lifetime US3913545A (en) | 1973-04-04 | 1973-04-04 | Evaporative emission system |
Country Status (1)
Country | Link |
---|---|
US (1) | US3913545A (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4059081A (en) * | 1975-10-07 | 1977-11-22 | Toyota Jidosha Kogyo Kabushiki Kaisha | EVAP system-provided throttle valve control unit |
US4070828A (en) * | 1975-01-15 | 1978-01-31 | Regie Nationale Des Usines Renault | Device and method for recycling hydrocarbon vapors of I.C.E. vehicles |
US4086897A (en) * | 1976-12-28 | 1978-05-02 | Toyota Jidosha Kogyo Kabushiki Kaisha | Evaporated fuel feed control device for an internal combustion engine |
US4090485A (en) * | 1977-03-28 | 1978-05-23 | Antonio LaCreta | Fuel systems for internal combustion engines |
US4112898A (en) * | 1977-01-13 | 1978-09-12 | Toyota Jidosha Kogyo Kabushiki Kaisha | Internal combustion engine with charcoal canister |
US4133328A (en) * | 1977-07-05 | 1979-01-09 | General Motors Corporation | Proportional fuel vapor purge flow control apparatus |
US4191154A (en) * | 1977-08-29 | 1980-03-04 | Toyota Jidosha Kogyo Kabushiki Kaisha | Evaporated fuel vapor control device for use in an internal combustion engine |
US4203401A (en) * | 1979-01-29 | 1980-05-20 | General Motors Corporation | Evaporative emissions canister |
US4308842A (en) * | 1978-10-02 | 1982-01-05 | Honda Giken Kogyo Kabushiki Kaisha | Evaporative emission control system for an internal combustion engine |
US4326489A (en) * | 1979-12-27 | 1982-04-27 | Ford Motor Company | Proportional flow fuel vapor purge control device |
US4494504A (en) * | 1978-11-09 | 1985-01-22 | Honda Giken Kogyo Kabushiki Kaisha | Stratified burn internal combustion engine |
US4530210A (en) * | 1981-12-25 | 1985-07-23 | Honda Giken Kogyo K.K. | Apparatus for controlling evaporated fuel in an internal combustion engine having a supercharger |
US4741317A (en) * | 1987-06-12 | 1988-05-03 | General Motors Corporation | Vapor recovery system with variable delay purge |
US4750465A (en) * | 1987-07-31 | 1988-06-14 | General Motors Corporation | Fuel vapor storage canister |
US4836172A (en) * | 1986-10-06 | 1989-06-06 | Aisan Kogyo Kabushiki Kaisha | Canister device for use in gasoline tank |
US5188141A (en) * | 1991-12-03 | 1993-02-23 | Siemens Automotive Limited | Vacuum boost valve |
US5199404A (en) * | 1990-03-08 | 1993-04-06 | Siemens Automotive Limited | Regulated flow canister purge system |
FR2699603A1 (en) * | 1992-12-21 | 1994-06-24 | Solex | Electrically controlled canister regeneration circuit valve. |
US5366151A (en) * | 1993-12-27 | 1994-11-22 | Ford Motor Company | Hybrid vehicle fuel vapor management apparatus |
US5368002A (en) * | 1992-07-01 | 1994-11-29 | Toyota Jidosha Kabushiki Kaisha | Apparatus for controlling a flow of evaporated fuel from a canister to an intake passage of an engine |
US5406927A (en) * | 1992-06-23 | 1995-04-18 | Toyoda Jidosha Kabushiki Kaisha | Air-fuel ratio control apparatus for internal combustion engine |
US5408977A (en) * | 1993-08-23 | 1995-04-25 | Walbro Corporation | Fuel tank with carbon canister and shut-off valve |
US5515834A (en) * | 1993-06-04 | 1996-05-14 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio control system for an internal combustion engine |
US6105708A (en) * | 1997-08-08 | 2000-08-22 | Suzuki Motor Corporation | Piping device in atmospheric side of canister for vehicle |
US20040040546A1 (en) * | 2002-04-12 | 2004-03-04 | Shears Peter D. | Internal combustion engine evaporative emission control system |
WO2004075262A2 (en) * | 2003-02-19 | 2004-09-02 | Advanced Technology Materials Inc.. | Low pressure drop canister for fixed bed scrubber applications and method of using same |
US20050274364A1 (en) * | 2004-06-14 | 2005-12-15 | Kirk J D | Evaporative emissions control system for small internal combustion engines |
US20060096583A1 (en) * | 2004-11-05 | 2006-05-11 | Shears Peter D | Integrated fuel tank and vapor containment system |
US20060096584A1 (en) * | 2004-11-05 | 2006-05-11 | Shears Peter D | Integrated fuel tank and vapor containment system |
US7210466B1 (en) * | 2004-11-23 | 2007-05-01 | Walbro Engine Management, L.L.C. | Purge valve and vapor control system |
US7267112B2 (en) | 2004-02-02 | 2007-09-11 | Tecumseh Products Company | Evaporative emissions control system including a charcoal canister for small internal combustion engines |
US7281525B2 (en) | 2006-02-27 | 2007-10-16 | Briggs & Stratton Corporation | Filter canister family |
US7435289B2 (en) | 2005-09-27 | 2008-10-14 | Briggs & Stratton Corporation | Integrated air cleaner and vapor containment system |
US20180272861A1 (en) * | 2017-03-22 | 2018-09-27 | Denso Corporation | Fuel tank system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3352294A (en) * | 1965-07-28 | 1967-11-14 | Exxon Research Engineering Co | Process and device for preventing evaporation loss |
US3674423A (en) * | 1970-02-09 | 1972-07-04 | Gen Motors Corp | Catalyst for nitrogen oxide reduction |
US3680318A (en) * | 1969-12-29 | 1972-08-01 | Yasuo Nakajima | Centralized air-pollution preventive system |
US3683597A (en) * | 1970-09-17 | 1972-08-15 | Gen Motors Corp | Evaporation loss control |
US3752134A (en) * | 1972-04-05 | 1973-08-14 | Gen Motors Corp | Vapor regulating valve |
-
1973
- 1973-04-04 US US347959A patent/US3913545A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3352294A (en) * | 1965-07-28 | 1967-11-14 | Exxon Research Engineering Co | Process and device for preventing evaporation loss |
US3680318A (en) * | 1969-12-29 | 1972-08-01 | Yasuo Nakajima | Centralized air-pollution preventive system |
US3674423A (en) * | 1970-02-09 | 1972-07-04 | Gen Motors Corp | Catalyst for nitrogen oxide reduction |
US3683597A (en) * | 1970-09-17 | 1972-08-15 | Gen Motors Corp | Evaporation loss control |
US3752134A (en) * | 1972-04-05 | 1973-08-14 | Gen Motors Corp | Vapor regulating valve |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4070828A (en) * | 1975-01-15 | 1978-01-31 | Regie Nationale Des Usines Renault | Device and method for recycling hydrocarbon vapors of I.C.E. vehicles |
US4059081A (en) * | 1975-10-07 | 1977-11-22 | Toyota Jidosha Kogyo Kabushiki Kaisha | EVAP system-provided throttle valve control unit |
US4086897A (en) * | 1976-12-28 | 1978-05-02 | Toyota Jidosha Kogyo Kabushiki Kaisha | Evaporated fuel feed control device for an internal combustion engine |
US4112898A (en) * | 1977-01-13 | 1978-09-12 | Toyota Jidosha Kogyo Kabushiki Kaisha | Internal combustion engine with charcoal canister |
US4090485A (en) * | 1977-03-28 | 1978-05-23 | Antonio LaCreta | Fuel systems for internal combustion engines |
US4133328A (en) * | 1977-07-05 | 1979-01-09 | General Motors Corporation | Proportional fuel vapor purge flow control apparatus |
US4191154A (en) * | 1977-08-29 | 1980-03-04 | Toyota Jidosha Kogyo Kabushiki Kaisha | Evaporated fuel vapor control device for use in an internal combustion engine |
US4308842A (en) * | 1978-10-02 | 1982-01-05 | Honda Giken Kogyo Kabushiki Kaisha | Evaporative emission control system for an internal combustion engine |
US4494504A (en) * | 1978-11-09 | 1985-01-22 | Honda Giken Kogyo Kabushiki Kaisha | Stratified burn internal combustion engine |
US4203401A (en) * | 1979-01-29 | 1980-05-20 | General Motors Corporation | Evaporative emissions canister |
US4326489A (en) * | 1979-12-27 | 1982-04-27 | Ford Motor Company | Proportional flow fuel vapor purge control device |
US4530210A (en) * | 1981-12-25 | 1985-07-23 | Honda Giken Kogyo K.K. | Apparatus for controlling evaporated fuel in an internal combustion engine having a supercharger |
US4836172A (en) * | 1986-10-06 | 1989-06-06 | Aisan Kogyo Kabushiki Kaisha | Canister device for use in gasoline tank |
US4741317A (en) * | 1987-06-12 | 1988-05-03 | General Motors Corporation | Vapor recovery system with variable delay purge |
US4750465A (en) * | 1987-07-31 | 1988-06-14 | General Motors Corporation | Fuel vapor storage canister |
US5199404A (en) * | 1990-03-08 | 1993-04-06 | Siemens Automotive Limited | Regulated flow canister purge system |
US5188141A (en) * | 1991-12-03 | 1993-02-23 | Siemens Automotive Limited | Vacuum boost valve |
US5406927A (en) * | 1992-06-23 | 1995-04-18 | Toyoda Jidosha Kabushiki Kaisha | Air-fuel ratio control apparatus for internal combustion engine |
US5368002A (en) * | 1992-07-01 | 1994-11-29 | Toyota Jidosha Kabushiki Kaisha | Apparatus for controlling a flow of evaporated fuel from a canister to an intake passage of an engine |
EP0604285A1 (en) * | 1992-12-21 | 1994-06-29 | Magneti Marelli France | Electrically actuated canistercircuit regeneration valve |
FR2699603A1 (en) * | 1992-12-21 | 1994-06-24 | Solex | Electrically controlled canister regeneration circuit valve. |
US5515834A (en) * | 1993-06-04 | 1996-05-14 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio control system for an internal combustion engine |
US5408977A (en) * | 1993-08-23 | 1995-04-25 | Walbro Corporation | Fuel tank with carbon canister and shut-off valve |
US5366151A (en) * | 1993-12-27 | 1994-11-22 | Ford Motor Company | Hybrid vehicle fuel vapor management apparatus |
US6105708A (en) * | 1997-08-08 | 2000-08-22 | Suzuki Motor Corporation | Piping device in atmospheric side of canister for vehicle |
US20040040546A1 (en) * | 2002-04-12 | 2004-03-04 | Shears Peter D. | Internal combustion engine evaporative emission control system |
US7159577B2 (en) | 2002-04-12 | 2007-01-09 | Briggs And Stratton Corporation | Stationary evaporative emission control system |
US6959696B2 (en) | 2002-04-12 | 2005-11-01 | Briggs & Stratton Corporation | Internal combustion engine evaporative emission control system |
WO2004075262A3 (en) * | 2003-02-19 | 2006-04-13 | Advanced Tech Materials | Low pressure drop canister for fixed bed scrubber applications and method of using same |
WO2004075262A2 (en) * | 2003-02-19 | 2004-09-02 | Advanced Technology Materials Inc.. | Low pressure drop canister for fixed bed scrubber applications and method of using same |
US7267112B2 (en) | 2004-02-02 | 2007-09-11 | Tecumseh Products Company | Evaporative emissions control system including a charcoal canister for small internal combustion engines |
US20050274364A1 (en) * | 2004-06-14 | 2005-12-15 | Kirk J D | Evaporative emissions control system for small internal combustion engines |
US7165536B2 (en) * | 2004-06-14 | 2007-01-23 | Tecumseh Products Company | Evaporative emissions control system for small internal combustion engines |
US20060096583A1 (en) * | 2004-11-05 | 2006-05-11 | Shears Peter D | Integrated fuel tank and vapor containment system |
US20060096584A1 (en) * | 2004-11-05 | 2006-05-11 | Shears Peter D | Integrated fuel tank and vapor containment system |
US7086390B2 (en) | 2004-11-05 | 2006-08-08 | Briggs & Stratton Corporation | Integrated fuel tank and vapor containment system |
US7185640B2 (en) | 2004-11-05 | 2007-03-06 | Briggs & Stratton Corporation | Integrated fuel tank and vapor containment system |
US7210466B1 (en) * | 2004-11-23 | 2007-05-01 | Walbro Engine Management, L.L.C. | Purge valve and vapor control system |
US7435289B2 (en) | 2005-09-27 | 2008-10-14 | Briggs & Stratton Corporation | Integrated air cleaner and vapor containment system |
US7281525B2 (en) | 2006-02-27 | 2007-10-16 | Briggs & Stratton Corporation | Filter canister family |
US20180272861A1 (en) * | 2017-03-22 | 2018-09-27 | Denso Corporation | Fuel tank system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3913545A (en) | Evaporative emission system | |
US3575152A (en) | Vapor recovery using a plurality of progressively absorbent beds connected in series | |
US3540423A (en) | Evaporative emission control system | |
US4527532A (en) | Fuel-vapor emission control system for an automotive engine | |
US4085721A (en) | Evaporation purge control device | |
US4116184A (en) | Apparatus for treating evaporated fuel gas | |
US5148793A (en) | Compartmental evaporative canister and pressure control valve assembly | |
US3515107A (en) | Two-bed evaporative loss control device | |
US3460522A (en) | Evaporation control device-pressure balance valve | |
US4454849A (en) | Canister for internal combustion engine | |
US4541396A (en) | Supercharged internal combustion engine | |
US2316327A (en) | Carburetor | |
US4112898A (en) | Internal combustion engine with charcoal canister | |
US4086897A (en) | Evaporated fuel feed control device for an internal combustion engine | |
CA1045484A (en) | Air bleed control for carburetor idle system | |
US3872848A (en) | Fuel vapor and air mixing device with fuel-air ratio limiting means | |
JP3444125B2 (en) | Evaporative fuel control system for internal combustion engine | |
JPH05180095A (en) | Vaporized fuel control device for vehicle | |
EP1956219B1 (en) | Vapour recovery system for a vehicle fuel tank | |
JPH04203467A (en) | Vapored fuel control device of engine | |
JPH05180103A (en) | Evaporated fuel control apparatus for vehicle | |
JPS614856A (en) | Evaporated-fuel treating apparatus in ganged carburetor | |
JPH0313566Y2 (en) | ||
JPH01106971A (en) | Evaporated fuel controller for engine | |
JPS61258963A (en) | Fuel vaporization suppressor for internal-combustion engine |