US3837560A - Expanded polystyrene partition structure and method of making thereof - Google Patents
Expanded polystyrene partition structure and method of making thereof Download PDFInfo
- Publication number
- US3837560A US3837560A US00254749A US25474972A US3837560A US 3837560 A US3837560 A US 3837560A US 00254749 A US00254749 A US 00254749A US 25474972 A US25474972 A US 25474972A US 3837560 A US3837560 A US 3837560A
- Authority
- US
- United States
- Prior art keywords
- partition
- strip
- expanded polystyrene
- strips
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D3/00—Cutting work characterised by the nature of the cut made; Apparatus therefor
- B26D3/006—Cutting work characterised by the nature of the cut made; Apparatus therefor specially adapted for cutting blocs of plastic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D5/00—Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
- B65D5/42—Details of containers or of foldable or erectable container blanks
- B65D5/44—Integral, inserted or attached portions forming internal or external fittings
- B65D5/48—Partitions
- B65D5/48024—Partitions inserted
- B65D5/48026—Squaring or like elements, e.g. honeycomb element, i.e. at least four not aligned compartments
- B65D5/48038—Strips crossing each other
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24149—Honeycomb-like
Definitions
- the planar faces of a partition strip have a relatively low density because of said surfaces being formed by saw cut from a block of expanded polystyrene, while the entire peripheral edge of the partition strip, including the interlocking slots, are formed by hot wire cutting to have a higher density on the surface thereof to provide greater physical strength for the partition strip.
- Partition structures for shipping and storage containers are formed from corrugated paper material. Such structures are relatively expensive considering the cost of raw materials and labor in manufacture. Apart from the cost thereof, a less than satisfactory partition structure results because the paper material has many properties which are undesirable in the shipping and storing of material. The paper is subject to mold, staining, combustion, water damage and, once subject to crushing forces, does not have any memory to return to its original shape.
- the partition strip formed of expanded polystyrene it is possible to provide a one-piece laminate, in effect, with the planar faces of the partition strip being formed by saw-cutting of the strip from a block of expanded polystyrene to have the faces with the same low density as that of the basic block from which they are formed, while the entire peripheral edge, including the interlocking slots formed in a partition strip, are subject to hot wire formation to provide melting of the surface of the partition strip along the entire edge.
- This melting provides a relatively high density layer along the surface of the partition strip edge to provide added structural strength and also forms a tension surface to provide a prestressed beam effect for the partition strip.
- the hot wire forming of the interlocking slots due to the melting of the surface polystyrene, also provides strength to the interlocking slots.
- a block of expanded polystyrene has its top, bottom and sides and a plurality of interlocking slots shaped by hot wire cutting to form the higher density surface layer followed by saw cuts of successive partition strips along a line transverse to the length of the block to have the exposed planar faces of the partition strip of unmodified low density expanded polystyrene for cushioning contact with a product.
- a general object of this invention is to provide a new and improved partition structure wherein interlocking partition strips are formed of expanded polystyrene.
- Another object of the invention is to provide a partition strip for interlocking relation with other such strips to form a partition structure usable in shipping or storage containers comprising a generally planar integral body of expanded polystyrene with the planar faces of said body having relatively low density for cushioning contact with the product and the edge of the strip having a higher density for adding structural strength to the strip.
- Still another object of the invention is to provide a partition structure for shipping and storage containers having a plurality of interfitting partition strips with interlocking slots wherein the partition strips are formed of a molded plastic material and with the partition strip having generally planar faces with relatively low density for cushioning contact with the product and the peripheral edge of the strip having a higher density for added structural strength.
- a further object of the invention is to provide a method of forming a partition strip and a partition strip resulting from said method wherein successive partition strips are sawed from a block of expanded polystyrene to have the planar faces thereof of the same density as the basic block of material and with the slots formed in the partition strip and the entire edge of the strip being preformed prior to sawing by hot wire cutting applied to the block with resulting melting of expanded polystyrene at the surfaces contacted by the hot wire to form a higher density surface layer in the partition strip.
- FIG. 1 is a perspective view of a tool usable in forming the interlocking slots in a block of expanded polystyrene prior to formation of an individual partition strip;
- FIG. 2 is a perspective view showing the saw-cutting of a partition strip from a block of expanded polystyrene
- FIG. 3 is a perspective view of a formed partition strip
- FIG. 4 is a perspective view of a partition structure showing a plurality of interlocked partition strips
- FIG. 5 is a fragmentary, enlarged view of a part of a partition strip showing the different density between the major part of the body of the partition strip and the edge thereof, with the latter being formed by hot wire cutting.
- FIGS. 1 and 2 wherein a block 10 of expanded polystyrene is shown.
- This block has a length extending from left to right as viewed in FIGS. 1 and 2, with a top 11 and a bottom (not shown) and with a front side 12 and rear side (not shown). One end is indicated at 15.
- This block 10 has a height and width equal to the height and length, respectively, of a partition strip indicated generally at 20 in FIG. 3.
- top 11, bottom and front side 12 and rear side of the block 10 are formed by hot wire cutting prior to the step of the method illustrated in FIG. 1.
- a tool which is illustrative only, is provided for hot wire forming of a plurality of slots 21, 22, and 23 in the partition strip 20.
- a plurality of hot wires 24, 25 and 26 are, as known in the art, electrically heated and suitably mounted in a vertically-movable frame, indicated generally at 30, whereby they may be lowered into the block to a desired depth to form the interlocking slots 21-23 by melting of the expanded polystyrene.
- the block 10 is then moved relative to a saw-cut device, such as a band saw, indicated generally at 40, having a travelling blade 41, to cut successive partition strips 20 of the desired thickness from the block 10. This is accomplished by relative movement between the block and the blade along a line transverse to the length of the block with successive repositioning of the block and blade relative to each other for a succeeding cut.
- the partition strip 20 is then complete and is as shown in FIG. 3.
- a series of partition strips 20a are then positioned in spaced, parallel relation with their interlocking slots faced upwardly and are interfitted with an inverted series of parallel spaced partition strips 20b to form the partition structure illustrated in FIG. 4.
- the entire peripheral edge of the partition strip 20 including a bottom edge 50, the front and rear edges 51 and 52, respectively, and the top edge 53 including the entire surface of the interlocking slots 21-23 are initially formed by hot wire cutting which results in melting of the expanded polystyrene.
- This melting results in a relatively high density surface layer, as illustrated at 60 in FIG. 5, while the major part of the partition strip is of a low density and the same as that of the basic block 10 of expanded polystyrene and as indicated at 61 in FIG. 5.
- the generally planar partition strip 20 has a pair of opposed planar faces, with one face 70 shown in FIG. 3 and with each of these faces being formed by the sawcut step of the method illustrated in FIG. 2.
- the saw cut results in the formation of the partition strip from the block 10 without creating any dust and without any modification of the density of the planar surface whereby the density is the same as that of the basic block and is of a relatively low value. This results in soft" surfaces for the partition strips which can be in cushioning contact with a product in a shipping or storage container and when the partition strips are assembled into the partition grid structure illustrated in FIG. 4
- the partition strips of expanded polystyrene are capable of meeting many different packaging requirements.
- the basic block 10 can be selected to have a density in the range of 1 pound per cubic foot, or less, up to a density of 4 to 5 pounds per cubic foot. This results in planar faces for the partition strip which are relatively soft but which still have a memory to return to the initial shape after compression.
- the surface layer density along the peripheral edge of the partition strip and in the slots 21-23 of the strip can then be controlled by the hot wire cutting process, with density variation being controlled by the temperature of the wire, the diameter of the wire, and the speed of travel of the wire relative to the block 10 in the formation of the slots as well as the initial shaping of the block 10.
- the size of the slots 21-23 of the partition strip 20 can also be varied by control of the temperature, diameter, and speed of travel of the wires 24-26, shown in FIG. 1.
- partition strips are provided of relatively low-cost basic material and minimal production cost wherein the partition strip, in effect, is an integral laminate with a high density peripheral edge surface to provide for handling strength and resistance to crushing of the partition strip, while the planar faces thereof are of low density to provide maximum cushioning effect in contact with products.
- partition strips of expanded polystyrene have been found to perform satisfactorily wherein the density of the basic block 10 is approximately /2 pound per cubic foot and with the peripheral edge of the strip being formed by hot wire cutting to have a surface layer with a density of approximately 40 pounds per cubic foot.
- a partition strip for interlocking relation with other such strips to form a partition structure usable in a shipping or storage container comprising a generally planar integral body of expanded polystyrene material with a series of slots extending for part of the height thereof for interlock with other partition strips, the generally planar faces of said body having a relative low density for cushioning contact with a product and the edges of said strip including the surfaces of said slots being partially melted in shaping thereof to have a substantially uniform higher density and being in tension for adding structural strength to the strip.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Buffer Packaging (AREA)
- Molding Of Porous Articles (AREA)
- Cartons (AREA)
Abstract
A partition structure for shipping or storage containers having a plurality of interfitting partition strips with interlocking slots and with the partition strips being formed of expanded polystyrene. In one form thereof, the planar faces of a partition strip have a relatively low density because of said surfaces being formed by saw cut from a block of expanded polystyrene, while the entire peripheral edge of the partition strip, including the interlocking slots, are formed by hot wire cutting to have a higher density on the surface thereof to provide greater physical strength for the partition strip.
Description
Unite States atent r191 Kuchuris et al.
EXPANDED POLYSTYRENE PARTITION STRUCTURE AND METHOD OF MAKING THEREOF Inventors: Louis G. Kuchuris, Chicago; Stanley Gembicki, Des Plaines, both of I11.
Assignee: Cutting Equipment Leasing, Inc.,
Chicago, 111.
Filed: May 18, 1972 Appl. No.: 254,749
US. Cl 229/15, 217/31, 217/34,
220/22 Int. Cl B6511 5/48 Field of Search 229/15, 146; 217/31, 34, 217/35; 206/46 F, 46 C; 220/DIG. l4, 9 F, 22
References Cited UNITED STATES PATENTS 3,565,243 2/1971 Freeman 206/46 FC 3,667,159 6/1972 Todd 206/46 FC FOREIGN PATENTS OR APPLICATIQNS 1,066,615 4/1967 Great Britain i. 229/15 Primary ExaminerWilliam T. Dixson, Jr. Assistant ExaminerStephen Marcus Attorney, Agent, or Firm-Hofgren, Wegner, Allen, Stellman & McCord [5 7 ABSTRACT A partition structure for shipping or storage contain ers having a plurality of interfitting partition strips with interlocking slots and with the partition strips being formed of expanded polystyrene. In one form thereof, the planar faces of a partition strip have a relatively low density because of said surfaces being formed by saw cut from a block of expanded polystyrene, while the entire peripheral edge of the partition strip, including the interlocking slots, are formed by hot wire cutting to have a higher density on the surface thereof to provide greater physical strength for the partition strip.
1 Claim, 5 Drawing Figures EXPANDED POLYSTYRENE PARTITION STRUCTURE AND METHOD OF MAKING THEREOF BACKGROUND OF THE INVENTION This invention pertains to partition structure and, more particularly, to partition strips formed of expanded polystyrene.
Partition structures for shipping and storage containers, as generally known prior to this invention, are formed from corrugated paper material. Such structures are relatively expensive considering the cost of raw materials and labor in manufacture. Apart from the cost thereof, a less than satisfactory partition structure results because the paper material has many properties which are undesirable in the shipping and storing of material. The paper is subject to mold, staining, combustion, water damage and, once subject to crushing forces, does not have any memory to return to its original shape.
SUMMARY without substantial addition to the shipping weight of the container.
In addition to the novelty of the partition strip formed of expanded polystyrene, it is possible to provide a one-piece laminate, in effect, with the planar faces of the partition strip being formed by saw-cutting of the strip from a block of expanded polystyrene to have the faces with the same low density as that of the basic block from which they are formed, while the entire peripheral edge, including the interlocking slots formed in a partition strip, are subject to hot wire formation to provide melting of the surface of the partition strip along the entire edge. This melting provides a relatively high density layer along the surface of the partition strip edge to provide added structural strength and also forms a tension surface to provide a prestressed beam effect for the partition strip. The hot wire forming of the interlocking slots, due to the melting of the surface polystyrene, also provides strength to the interlocking slots.
Additionally disclosed herein is a novel method of forming the partition strips wherein a block of expanded polystyrene has its top, bottom and sides and a plurality of interlocking slots shaped by hot wire cutting to form the higher density surface layer followed by saw cuts of successive partition strips along a line transverse to the length of the block to have the exposed planar faces of the partition strip of unmodified low density expanded polystyrene for cushioning contact with a product.
In view of the foregoing, a general object of this invention is to provide a new and improved partition structure wherein interlocking partition strips are formed of expanded polystyrene.
Another object of the invention is to provide a partition strip for interlocking relation with other such strips to form a partition structure usable in shipping or storage containers comprising a generally planar integral body of expanded polystyrene with the planar faces of said body having relatively low density for cushioning contact with the product and the edge of the strip having a higher density for adding structural strength to the strip.
Still another object of the invention is to provide a partition structure for shipping and storage containers having a plurality of interfitting partition strips with interlocking slots wherein the partition strips are formed of a molded plastic material and with the partition strip having generally planar faces with relatively low density for cushioning contact with the product and the peripheral edge of the strip having a higher density for added structural strength.
A further object of the invention is to provide a method of forming a partition strip and a partition strip resulting from said method wherein successive partition strips are sawed from a block of expanded polystyrene to have the planar faces thereof of the same density as the basic block of material and with the slots formed in the partition strip and the entire edge of the strip being preformed prior to sawing by hot wire cutting applied to the block with resulting melting of expanded polystyrene at the surfaces contacted by the hot wire to form a higher density surface layer in the partition strip.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a perspective view of a tool usable in forming the interlocking slots in a block of expanded polystyrene prior to formation of an individual partition strip;
FIG. 2 is a perspective view showing the saw-cutting of a partition strip from a block of expanded polystyrene;
FIG. 3 is a perspective view of a formed partition strip;
FIG. 4 is a perspective view of a partition structure showing a plurality of interlocked partition strips; and
FIG. 5 is a fragmentary, enlarged view of a part of a partition strip showing the different density between the major part of the body of the partition strip and the edge thereof, with the latter being formed by hot wire cutting.
DESCRIPTION OF THE PREFERRED METHOD AND EMBODIMENT In describing the method, reference may be made to FIGS. 1 and 2 wherein a block 10 of expanded polystyrene is shown. This block has a length extending from left to right as viewed in FIGS. 1 and 2, with a top 11 and a bottom (not shown) and with a front side 12 and rear side (not shown). One end is indicated at 15. This block 10 has a height and width equal to the height and length, respectively, of a partition strip indicated generally at 20 in FIG. 3.
The top 11, bottom and front side 12 and rear side of the block 10 are formed by hot wire cutting prior to the step of the method illustrated in FIG. 1. As shown in FIG. I, a tool, which is illustrative only, is provided for hot wire forming of a plurality of slots 21, 22, and 23 in the partition strip 20. A plurality of hot wires 24, 25 and 26 are, as known in the art, electrically heated and suitably mounted in a vertically-movable frame, indicated generally at 30, whereby they may be lowered into the block to a desired depth to form the interlocking slots 21-23 by melting of the expanded polystyrene. Following formation of the interlocking slots along the entire length of the block 10, the block 10 is then moved relative to a saw-cut device, such as a band saw, indicated generally at 40, having a travelling blade 41, to cut successive partition strips 20 of the desired thickness from the block 10. This is accomplished by relative movement between the block and the blade along a line transverse to the length of the block with successive repositioning of the block and blade relative to each other for a succeeding cut. After the step performed as shown in FIG. 2, the partition strip 20 is then complete and is as shown in FIG. 3. A series of partition strips 20a are then positioned in spaced, parallel relation with their interlocking slots faced upwardly and are interfitted with an inverted series of parallel spaced partition strips 20b to form the partition structure illustrated in FIG. 4.
With the method as described herein, the entire peripheral edge of the partition strip 20 including a bottom edge 50, the front and rear edges 51 and 52, respectively, and the top edge 53 including the entire surface of the interlocking slots 21-23 are initially formed by hot wire cutting which results in melting of the expanded polystyrene. This melting results in a relatively high density surface layer, as illustrated at 60 in FIG. 5, while the major part of the partition strip is of a low density and the same as that of the basic block 10 of expanded polystyrene and as indicated at 61 in FIG. 5. This results in the formation of a tension surface for the partition strip about the entire edge thereof having a higher density for structural strength and, in effect, providing a prestressed beam effect for the partition strip, and with resultant strengthening of the bottom of the interlocking slots.
The generally planar partition strip 20 has a pair of opposed planar faces, with one face 70 shown in FIG. 3 and with each of these faces being formed by the sawcut step of the method illustrated in FIG. 2. The saw cut results in the formation of the partition strip from the block 10 without creating any dust and without any modification of the density of the planar surface whereby the density is the same as that of the basic block and is of a relatively low value. This results in soft" surfaces for the partition strips which can be in cushioning contact with a product in a shipping or storage container and when the partition strips are assembled into the partition grid structure illustrated in FIG. 4
The partition strips of expanded polystyrene are capable of meeting many different packaging requirements. The basic block 10 can be selected to have a density in the range of 1 pound per cubic foot, or less, up to a density of 4 to 5 pounds per cubic foot. This results in planar faces for the partition strip which are relatively soft but which still have a memory to return to the initial shape after compression. The surface layer density along the peripheral edge of the partition strip and in the slots 21-23 of the strip can then be controlled by the hot wire cutting process, with density variation being controlled by the temperature of the wire, the diameter of the wire, and the speed of travel of the wire relative to the block 10 in the formation of the slots as well as the initial shaping of the block 10. Additionally, the size of the slots 21-23 of the partition strip 20 can also be varied by control of the temperature, diameter, and speed of travel of the wires 24-26, shown in FIG. 1.
With the structure and process disclosed herein, it will be seen that partition strips are provided of relatively low-cost basic material and minimal production cost wherein the partition strip, in effect, is an integral laminate with a high density peripheral edge surface to provide for handling strength and resistance to crushing of the partition strip, while the planar faces thereof are of low density to provide maximum cushioning effect in contact with products.
Examination of a partition strip made by the process disclosed herein shows that the planar faces thereof have a relatively smooth, soft surface, while the peripheral edge around the entire partition strip, including the interlocking slots, has a rougher and harder surface.
As an example, partition strips of expanded polystyrene have been found to perform satisfactorily wherein the density of the basic block 10 is approximately /2 pound per cubic foot and with the peripheral edge of the strip being formed by hot wire cutting to have a surface layer with a density of approximately 40 pounds per cubic foot. These values are not limiting, but are only given as an example of one particular strip made by the process disclosed herein.
We claim:
1. A partition strip for interlocking relation with other such strips to form a partition structure usable in a shipping or storage container comprising a generally planar integral body of expanded polystyrene material with a series of slots extending for part of the height thereof for interlock with other partition strips, the generally planar faces of said body having a relative low density for cushioning contact with a product and the edges of said strip including the surfaces of said slots being partially melted in shaping thereof to have a substantially uniform higher density and being in tension for adding structural strength to the strip.
Claims (1)
1. A partition strip for interlocking relation with other such strips to form a partition structure usable in a shipping or storage container comprising a generally planar integral body of expanded polystyrene material with a series of slots extending for part of the height thereof for interlock with other partition strips, the generally planar faces of said body having a relative low density for cushioning contact with a product and the edges of said strip including the surfaces of said slots being partially melted in shaping thereof to have a substantially uniform higher density and being in tension for adding structural strength to the strip.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE792053D BE792053A (en) | 1972-05-18 | STRUCTURE OF PARTITIONS IN EXPANDED POLYSTYRENE AND ITS MANUFACTURING PROCESS | |
US00254749A US3837560A (en) | 1972-05-18 | 1972-05-18 | Expanded polystyrene partition structure and method of making thereof |
NL7215425A NL7215425A (en) | 1972-05-18 | 1972-11-15 | |
GB5405772A GB1407063A (en) | 1972-05-18 | 1972-11-22 | Partition strips for containers |
IT54394/72A IT973821B (en) | 1972-05-18 | 1972-11-30 | DIVIDING STRUCTURE IN EXPANDED PLASTIC MATERIAL AND RELATED PROCESS DIMENTO DIMENTO |
DE2262704A DE2262704A1 (en) | 1972-05-18 | 1972-12-21 | METHOD OF MANUFACTURING A DEVICE FOR DIVISIONING SHIPPING CONTAINERS, OR THE LIKE |
CA162,363A CA990241A (en) | 1972-05-18 | 1973-01-30 | Expanded polystyrene partition structure and method of making thereof |
AU52111/73A AU476845B2 (en) | 1972-05-18 | 1973-02-13 | Expanded polystyrene partition structure and method of making thereof |
JP48024234A JPS4927565A (en) | 1972-05-18 | 1973-02-28 | |
FR7317659A FR2184904A1 (en) | 1972-05-18 | 1973-05-16 | |
ES414892A ES414892A1 (en) | 1972-05-18 | 1973-05-18 | Expanded polystyrene partition structure and method of making thereof |
US440256A US3901962A (en) | 1972-05-18 | 1974-02-06 | Method of making expanded polystyrene partition structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00254749A US3837560A (en) | 1972-05-18 | 1972-05-18 | Expanded polystyrene partition structure and method of making thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US3837560A true US3837560A (en) | 1974-09-24 |
Family
ID=22965448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00254749A Expired - Lifetime US3837560A (en) | 1972-05-18 | 1972-05-18 | Expanded polystyrene partition structure and method of making thereof |
Country Status (11)
Country | Link |
---|---|
US (1) | US3837560A (en) |
JP (1) | JPS4927565A (en) |
AU (1) | AU476845B2 (en) |
BE (1) | BE792053A (en) |
CA (1) | CA990241A (en) |
DE (1) | DE2262704A1 (en) |
ES (1) | ES414892A1 (en) |
FR (1) | FR2184904A1 (en) |
GB (1) | GB1407063A (en) |
IT (1) | IT973821B (en) |
NL (1) | NL7215425A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187975A (en) * | 1978-06-21 | 1980-02-12 | W. J. Bradford Paper Company | Combination slotted partition spacer |
US4195732A (en) * | 1978-02-28 | 1980-04-01 | Great Northern Corporation | Supporting and spacing member for web material rolls |
US4824788A (en) * | 1987-11-09 | 1989-04-25 | Ferre Penelope J | Humidity chamber for immunoperoxidase staining |
US4823956A (en) * | 1986-08-13 | 1989-04-25 | Donaldson Company, Inc. | Composite container and its method of manufacture |
US4955470A (en) * | 1989-08-10 | 1990-09-11 | Hamel Douglas M | Personal utility container |
US5069514A (en) * | 1991-03-04 | 1991-12-03 | Laura Sherman | Panty hose storage device |
GB2247878A (en) * | 1990-09-15 | 1992-03-18 | Willdaw Foam & Packaging Ltd | Article protector |
US5289941A (en) * | 1992-11-10 | 1994-03-01 | The American Team | Reconfigurable article storage container |
US5823726A (en) * | 1997-04-03 | 1998-10-20 | Damage Prevention Company | Reinforced slotted void filler |
US6088305A (en) * | 1994-04-18 | 2000-07-11 | Disc, Incorporated | Frame assembly for data storage and retrieval system |
US6209839B1 (en) | 1999-06-11 | 2001-04-03 | O'malley Joseph | Plastic stacking support for roll stock |
US6474613B2 (en) | 1999-06-11 | 2002-11-05 | O'malley Joseph | High storage density roll stock stacking support |
US20100147935A1 (en) * | 2008-12-15 | 2010-06-17 | Alliance Packaging, Llc | Partitioned container and method of making same |
USD883388S1 (en) * | 2019-11-12 | 2020-05-05 | James G. Jackson, III | Transparent three-dimensional gaming grid |
USD902719S1 (en) * | 2017-10-18 | 2020-11-24 | Michael D. Dwork | Food container divider |
USD903494S1 (en) * | 2017-10-18 | 2020-12-01 | Michael D. Dwork | Food container divider |
USD958647S1 (en) * | 2017-10-13 | 2022-07-26 | Michael D. Dwork | Food container |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3310009C1 (en) * | 1983-03-19 | 1984-06-28 | Max 7713 Hüfingen Gut | Device for producing grooves in the surface of structural elements |
GB2243572A (en) * | 1990-04-26 | 1991-11-06 | Louis Delwiche | Cutting apparatus |
US9213540B1 (en) * | 2015-05-05 | 2015-12-15 | Archive Solutions Providers | Automated workflow management system for application and data retirement |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3190943A (en) * | 1963-01-16 | 1965-06-22 | Owens Illinois Glass Co | Method of producing carton liners and partitions |
GB1066615A (en) * | 1965-04-28 | 1967-04-26 | Evans Bellhouse Ltd | A structural member |
US3342365A (en) * | 1966-09-23 | 1967-09-19 | Haveg Industries Inc | Welded containers |
US3383027A (en) * | 1966-01-03 | 1968-05-14 | Owens Illinois Inc | Unitary collapsible partition |
US3404827A (en) * | 1967-05-18 | 1968-10-08 | Republic Packaging Corp | Corner cushions |
US3431164A (en) * | 1964-06-02 | 1969-03-04 | Monsanto Chemicals | Foamed polyvinylaromatic resin products having elongated cells at right angles to a surface skin and their manufacture |
US3564811A (en) * | 1969-05-27 | 1971-02-23 | Tainer Tech Corp | Cushioning member for packing an article in a container |
US3565243A (en) * | 1969-01-14 | 1971-02-23 | Tainer Tech Corp | Cushioning member for packing an article in a container |
US3667159A (en) * | 1970-09-10 | 1972-06-06 | George K Todd | Seedling flat |
-
0
- BE BE792053D patent/BE792053A/en unknown
-
1972
- 1972-05-18 US US00254749A patent/US3837560A/en not_active Expired - Lifetime
- 1972-11-15 NL NL7215425A patent/NL7215425A/xx not_active Application Discontinuation
- 1972-11-22 GB GB5405772A patent/GB1407063A/en not_active Expired
- 1972-11-30 IT IT54394/72A patent/IT973821B/en active
- 1972-12-21 DE DE2262704A patent/DE2262704A1/en active Pending
-
1973
- 1973-01-30 CA CA162,363A patent/CA990241A/en not_active Expired
- 1973-02-13 AU AU52111/73A patent/AU476845B2/en not_active Expired
- 1973-02-28 JP JP48024234A patent/JPS4927565A/ja active Pending
- 1973-05-16 FR FR7317659A patent/FR2184904A1/fr not_active Withdrawn
- 1973-05-18 ES ES414892A patent/ES414892A1/en not_active Expired
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3190943A (en) * | 1963-01-16 | 1965-06-22 | Owens Illinois Glass Co | Method of producing carton liners and partitions |
US3431164A (en) * | 1964-06-02 | 1969-03-04 | Monsanto Chemicals | Foamed polyvinylaromatic resin products having elongated cells at right angles to a surface skin and their manufacture |
GB1066615A (en) * | 1965-04-28 | 1967-04-26 | Evans Bellhouse Ltd | A structural member |
US3383027A (en) * | 1966-01-03 | 1968-05-14 | Owens Illinois Inc | Unitary collapsible partition |
US3342365A (en) * | 1966-09-23 | 1967-09-19 | Haveg Industries Inc | Welded containers |
US3404827A (en) * | 1967-05-18 | 1968-10-08 | Republic Packaging Corp | Corner cushions |
US3565243A (en) * | 1969-01-14 | 1971-02-23 | Tainer Tech Corp | Cushioning member for packing an article in a container |
US3564811A (en) * | 1969-05-27 | 1971-02-23 | Tainer Tech Corp | Cushioning member for packing an article in a container |
US3667159A (en) * | 1970-09-10 | 1972-06-06 | George K Todd | Seedling flat |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4195732A (en) * | 1978-02-28 | 1980-04-01 | Great Northern Corporation | Supporting and spacing member for web material rolls |
US4187975A (en) * | 1978-06-21 | 1980-02-12 | W. J. Bradford Paper Company | Combination slotted partition spacer |
US4823956A (en) * | 1986-08-13 | 1989-04-25 | Donaldson Company, Inc. | Composite container and its method of manufacture |
US4824788A (en) * | 1987-11-09 | 1989-04-25 | Ferre Penelope J | Humidity chamber for immunoperoxidase staining |
US4955470A (en) * | 1989-08-10 | 1990-09-11 | Hamel Douglas M | Personal utility container |
GB2247878A (en) * | 1990-09-15 | 1992-03-18 | Willdaw Foam & Packaging Ltd | Article protector |
US5215195A (en) * | 1990-09-15 | 1993-06-01 | Willdaw Foam & Packaging Limited | Protectors |
GB2247878B (en) * | 1990-09-15 | 1994-12-14 | Willdaw Foam & Packaging Ltd | Protectors |
US5069514A (en) * | 1991-03-04 | 1991-12-03 | Laura Sherman | Panty hose storage device |
US5289941A (en) * | 1992-11-10 | 1994-03-01 | The American Team | Reconfigurable article storage container |
US6088305A (en) * | 1994-04-18 | 2000-07-11 | Disc, Incorporated | Frame assembly for data storage and retrieval system |
US5823726A (en) * | 1997-04-03 | 1998-10-20 | Damage Prevention Company | Reinforced slotted void filler |
US6209839B1 (en) | 1999-06-11 | 2001-04-03 | O'malley Joseph | Plastic stacking support for roll stock |
US6322034B1 (en) | 1999-06-11 | 2001-11-27 | O'malley Joseph | High storage density roll stock stacking support |
US6474613B2 (en) | 1999-06-11 | 2002-11-05 | O'malley Joseph | High storage density roll stock stacking support |
US20100147935A1 (en) * | 2008-12-15 | 2010-06-17 | Alliance Packaging, Llc | Partitioned container and method of making same |
US8152051B2 (en) | 2008-12-15 | 2012-04-10 | Alliance Packaging, Llc | Partitioned container and method of making same |
US8905294B2 (en) | 2008-12-15 | 2014-12-09 | Alliance Packaging, Llc | Partitioned container and method of making same |
USD958647S1 (en) * | 2017-10-13 | 2022-07-26 | Michael D. Dwork | Food container |
USD902719S1 (en) * | 2017-10-18 | 2020-11-24 | Michael D. Dwork | Food container divider |
USD903494S1 (en) * | 2017-10-18 | 2020-12-01 | Michael D. Dwork | Food container divider |
USD883388S1 (en) * | 2019-11-12 | 2020-05-05 | James G. Jackson, III | Transparent three-dimensional gaming grid |
Also Published As
Publication number | Publication date |
---|---|
JPS4927565A (en) | 1974-03-12 |
DE2262704A1 (en) | 1973-11-29 |
FR2184904A1 (en) | 1973-12-28 |
CA990241A (en) | 1976-06-01 |
AU5211173A (en) | 1974-08-15 |
BE792053A (en) | 1973-03-16 |
IT973821B (en) | 1974-06-10 |
ES414892A1 (en) | 1976-02-01 |
GB1407063A (en) | 1975-09-24 |
NL7215425A (en) | 1973-11-20 |
AU476845B2 (en) | 1976-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3837560A (en) | Expanded polystyrene partition structure and method of making thereof | |
US4673452A (en) | Method of making foam mattress | |
US3781183A (en) | Net-like thermoplastic material and products | |
US3530213A (en) | Method of forming a hinge in a block of foam polyethylene | |
US3894679A (en) | High strength open bottom packaging tray | |
US4612153A (en) | Process and apparatus for thermoforming a thermoplastic carton having an aperture therein for latching the cover | |
EP0204839A1 (en) | Heatseal die. | |
ES2147667T3 (en) | THERMAL-FORMABLE FOAM BASED SHEET FOR THE MANUFACTURE OF OPEN CONTAINER CONTAINERS. | |
EP0054229B1 (en) | Method of cutting out shell valves formed in a wafer sheet | |
US3901962A (en) | Method of making expanded polystyrene partition structure | |
US3404827A (en) | Corner cushions | |
US4083670A (en) | Apparatus for making high strength open bottom packaging tray | |
US3997101A (en) | Meat tray or the like | |
US4185126A (en) | Process of reconstituting cheese trimmings into horns | |
WO1993022903A1 (en) | Green cheese handling system | |
US2031252A (en) | Process of slicing bread | |
US4068548A (en) | Method and a tool for cutting materials | |
WO1989001399A1 (en) | Foam braced packaging and method and apparatus for constructing same | |
US2615484A (en) | Production of sticks | |
US3237320A (en) | Prefinished heel with fibrous core | |
US3731567A (en) | Method and a machine for cutting open ended or blind cavities | |
US3651192A (en) | Process for making plastic contact lens blanks | |
US4192421A (en) | Cushioning pads for cartons | |
JP3585281B2 (en) | Shrimp packaging tray | |
KR910003314B1 (en) | Forming method of foam synthetic resin receptacle |