[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3828840A - Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts - Google Patents

Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts Download PDF

Info

Publication number
US3828840A
US3828840A US00233438A US23343872A US3828840A US 3828840 A US3828840 A US 3828840A US 00233438 A US00233438 A US 00233438A US 23343872 A US23343872 A US 23343872A US 3828840 A US3828840 A US 3828840A
Authority
US
United States
Prior art keywords
flask
station
mold
turntable
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00233438A
Inventor
R Lund
V Koss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pettibone Corp
Original Assignee
Pettibone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pettibone Corp filed Critical Pettibone Corp
Priority to US00233438A priority Critical patent/US3828840A/en
Priority to CA157,314A priority patent/CA964429A/en
Priority to JP48004131A priority patent/JPS5126291B2/ja
Priority to IT55180/72A priority patent/IT974437B/en
Priority to FR7301536A priority patent/FR2187460B1/fr
Priority to AU51245/73A priority patent/AU465673B2/en
Priority to DE2303561A priority patent/DE2303561C3/en
Priority to GB387773A priority patent/GB1419313A/en
Priority to ES411990A priority patent/ES411990A1/en
Priority to SE7303285A priority patent/SE413292B/en
Priority to SU731894756A priority patent/SU818468A3/en
Priority to US408483A priority patent/US3878881A/en
Application granted granted Critical
Publication of US3828840A publication Critical patent/US3828840A/en
Priority to US05/575,659 priority patent/USRE28735E/en
Assigned to FIRST NATIONAL BANK OF CHICAGO THE reassignment FIRST NATIONAL BANK OF CHICAGO THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PETTIBONE CORPORATION A DE CORP
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C11/00Moulding machines characterised by the relative arrangement of the parts of same
    • B22C11/02Machines in which the moulds are moved during a cycle of successive operations
    • B22C11/04Machines in which the moulds are moved during a cycle of successive operations by a horizontal rotary table or carrier

Definitions

  • a cyclicly-operable molding machine for producing and assembling cope and drag mold parts A rotary turntable which supports four pairs of flask sections is repeatedly indexed to move the pairs repeatedly and successively in a circular path through four stations, namely, (1) a working station where the flask sections are variously and automatically handled and in cooperation with a pattem-carrying match plate are filled and compacted with foundry sand so as to produce the two mold parts, (2) a core-setting station where, if required or desired, a core may be applied to one of the formed mold parts, (3) a stripping station wherein the flask sections are again variously handled to strip the sections from the mold parts and the latter are assembled and then deposited on a bottom board which is ejected from the machine, and (4) an idle or dwell station where an empty pair of flask sections awaits handling of a preceding pair of flask sections at the working station before being
  • the present invention relates generally to machines for producing sand molds for foundry use and has particular reference to a foundry machine which is capable of simultaneously producing the cope and drag parts of a composite sand mold, the two parts being complete and assembled upon each other and ready for a molten metalpouring operation at the time they leave the machine.
  • the present invention is designed as an improvement over such single-station match plate molding machines in that it contemplates the provision of a multi-station molding or mold-forming machine in which the aforementioned stripping and mold-ejecting operation is completely divorced from the working station and performed at a separate stripping and ejecting station, while an additional station, namely, a coresetting station, is provided to the end that, if required or desired, a core may be placed between the two mold parts preparatory to performance of the stripping and ejecting operation.
  • a coresetting station is provided to the end that, if required or desired, a core may be placed between the two mold parts preparatory to performance of the stripping and ejecting operation.
  • the provision of these two additional stations obviously necessitates transfer of the flask sections from the working station where the complemental cope and drag mold parts are initially created within the flask sections, to the core-setting station and from thence to the stripping station.
  • the present machine makes provision for the use of plural pairs of cope and drag sand mold flask sections, together with transfer means whereby as soon as a given pair of flask sections has been operated upon at the working station, such sections with the mold parts therein are conducted to the core-setting station and a second pair of empty flask sections is moved into the working station to be handled thereat while core-setting operations are being performed on the first pair of filled flask sections at the core-setting station.
  • both pairs of flask sections are conducted by the transfer means from such stations, the first pair of flask sections moving to the stripping and ejecting station with the core in place and the second pair being conducted or moved to the core-setting station while a third pair of flask sections is brought by the transfer means into the working station.
  • all three pairs of flask sections are conducted by the transfer means from such stations, the first pair (now empty of contents) being conducted to a fourth idle or dwell station to await subsequent transfer to the working station, the second pair being conducted to the stripping and mold-ejecting station from the core-setting station, and the third pair being conducted from the working station to the coresetting station while a fourth pair of flask sections is moved into the working area from the idle or dwell station where it was previously deposited from a preceding machine cycle.
  • the four pairs of flasks constitute component parts of the present molding or moldforming machine and, although they are variously handled in an automatic manner at the working station and the stripping and mold-ejecting station, they never leave the confines of the machine.
  • a convenient transfer means for conducting the pairs of flask sections from one station to the next is afforded by the use of a rotary turntable on which the pairs of flask sections are peripherally or marginally supported so that, upon rotation of the turntable about its vertical axis, they are caused to travel in a circular path which intersects each of the four aforementioned stations.
  • the turntable is capable of being indexed intermittently so that, during each dwell period, each pair of flasks is disposed at one of the stations for flask-handling or other operations at such one station.
  • the core setting operation presents a difficulty in that the operator mush reach into the working area with his hands extending between the drag flask and cope flask mold sections in order to position the cores correctly.
  • a pinch point which must be guarded against because as soon as the cores have been set and the operator removes his hands, the drag and cope flask sections close upon each other. This requires that the operator must at all times be alert and, lacking such alertness, serious accidents may, and do, take place.
  • An additional advantage of the invention resides in the use of a Geneva gear drive mechanism for indexing the turntable intermittently, together with a locating or leader pin which is mounted on the machine framework and is hydraulically and selectively driven into one of a series of pilot holes in the turntable and remains therein during each dwell operation of the Geneva gear drive mechanism in order to align the flask sections on the turntable with the associated flaskhandling instrumentalities at the working station and the stripping and mold-ejecting station.
  • a further and important advantage of the invention resides in the fact that, at the stripping and moldejecting station, a bottom board is fed into this station immediately prior to arrival thereat of the sand-filled flask sections from the core-setting station and is handled in such a manner that it functions in the manner of a platen during the actual stripping operation and receives the assembled and stripped composite mold thereon, after which said mold is pushed laterally from the machine with the mold resting thereon, this advantage distinguishing the present machine from the aforementioned earlier patented machines where the pushing device or ejector arm engages the mold itself and pushes it laterally from the machine and onto an awaiting bottom board.
  • FIG. 1 is a top plan view of a match plate molding or mold-forming machine embodying the principles of the present invention, the machine being devoid of flasks but with flask positioning being illustrated in dotted lines;
  • FIG. 2 is a side elevational view of the machine of FIG. 1 with a similar dotted line flask disclosure
  • FIG. 3 is an end elevational view of the machine of FIG. 1 with a similar dotted line flask disclosure
  • FIG. 4 is a fragmentary side elevational view, somewhat schematic in its representation, of the Geneva drive mechanism which is employed in connection with the molding machine constituting the present invention
  • FIG. 5 is an end view of one of a series of cope flask sections which are employed in connection with the invention.
  • FIG. 6 is an end view of the match plate which is employed in connection with the invention at the working station;
  • FIG. 7 is an end view of one of a series of drag flask sections which are employed in connection with the invention.
  • FIG. 8 is a side elevational view of an assembled cope flask section and drag flask section, such sections being previously illustrated in FIGS. 5 and 7, respectively;
  • FIG. 9 is a top plan view of the structure which is shown in FIG. 8;
  • FIG. 9a is an enlarged horizontal sectional view taken on the line 9a-9a of FIG. 2 and representing, largely, a plan view of the upper turntable spider, the lower turntable spider and the underlying portions of the machine being omitted in the interests of clarity;
  • FIG. 9b is a side elevational view of the structure of FIG. 9a;
  • FIG. 9c is a sectional view taken on the line 9c-9c of FIG. 2 and representing, largely, a plan view of the lower turntable'spider with the underlying portions of the machine omitted;
  • FIG. 9d is a side elevational view of the structure of FIG. 90;
  • FIG. 10 is an enlarged detail sectional view taken substantially centrally and longitudinally through one of the numerous vents or filter screen units which are employed in connection with cope and drag flask sec tions of the machine;
  • FIG. 11 is a perspective view of the vent or filter screen unit of FIG. 10;
  • FIG. 12 is a sectional view, largely schematic in its representation, taken vertically and centrally through the working area or station of the machine and illustrating the associated ram assembly, the flask sections and the match plate in their normal positions at the commencement of a machine cycle;
  • FIG. 13 is a schematic sectional view similar to FIG. 12 but illustrating a preliminary movement of a certain part of the ram assembly which takes place at the commencement of the machine cycle and involves upward shifting of the lift sleeve of the assembly together with the associated cope upset while the lift plunger of the ram assembly remains stationary;
  • FIG. 14 is a schematic sectional view similar to FIG. 13 but illustratingan upward lift plunger movement which takes place in order to lift the drag flask section against the match plate;
  • FIG. 15 is a schematic sectional view similar to FIG. 14 but illustrating the drag and cope flask sections in position against the match plate due to a further upward movement of the lift plunger of the ram assembly;
  • FIG. 16 is a schematic sectional view similar to FIG. 15 but illustrating the drag flask section and the cope flask section, both in their fully clamped positions and immediately prior to the blow operation whereby moldforming sand is introduced and compacted into both flask sections;
  • FIG. 17 is a schematic sectional view similar to FIG. 16 but illustrating the blow operation whereby the cope and drag flask sections are filled with sand and simultaneously compacted by blowing;
  • FIG. 18 is a schematic sectional view similar to FIG. 17 but illustrating the positions of the drag and cope flask sections and the parts of the ram assembly during the sandsqueezing operation which takes place between upper and lower squeeze plates;
  • FIG. 19 is a schematic sectional view similar to FIG. 18 but illustrating the downward movement of the lift plunger of the ram assembly which takes place immediately after the sand-squeezing operation;
  • FIG. 20 is a schematic sectional view similar to FIG. 19 but illustrating a further downward movement of the lift plunger of the ram assembly which takes place in order to restore the cope flask section to its normal supported position on the turntable;
  • FIG. 21 is a schematic sectional view similar to FIG. 20 but illustrating a still further downward movement of the lift plunger of the ram assembly which takes place in order to restore both the sand-filled and compacted flask sections, and also the match plate, to their respective normal supported positions;
  • FIG. 22 is a schematic sectional view similar to FIG. 21 but illustrating the sand-filled and compacted cope and drag flask sections indexed away from and out of the working area or station of the machine, and also showing or illustrating new empty cope and drag flask sections being indexed into the working station in order to replace the withdrawn flask sections;
  • FIG. 23 is a schematic sectional view taken vertically through the core-applying station of the machine, that is, the station to which the sand-filled and compacted cope and drag flask sections that are removed from the working area of the machine are indexed, and showing a core in position on the lower or drag mold part;
  • FIG. 24 is a side elevational view, largely schematic in its representation, illustrating the mold-stripping mechanism at the stripping station in the normal position which it assumes at the time the sand-filled and compacted cope and drag flask sections are indexed into respective normal supported positions at the stripping station;
  • FIG. 25 is a schematic side elevational view similar FIG. 24 but illustrating the preliminary upward movement of a certain mold-closing lift bracket into effective lifting engagement with the filled drag flask section prior to upward shifting of the latter;
  • FIG. 26 is a schematic side elevational view similar to FIG. 25 but illustrating a further upward shifting movement of the lift bracket so as to bring the filled drag flask section into initial effective lifting engagement with the filled cope flask section;
  • FIG. 27 is a schematic side elevational view similar to FIG. 26 but illustrating a still further upward movement of the lift bracket so as to bring the filled drag and cope flask sections into operative relationship with respect to a stripping platen which is employed in connection with the machine;
  • FIG. 28 is a schematic side elevational view similar to FIG. 27 but illustrating the actual stripping operation wherein the cope and drag flask sections are stripped bodily and in unison from the assembled complemental mold parts;
  • FIG. 29 is a schematic side elevational view similar to FIG. 28 but illustrating a downward movement of the lift bracket preparatory to restoring the cope and drag flask sections to their normal turntable-supported positions within the stripping station;
  • FIG. 30 is a schematic side elevational view similar to FIG. 29 but illustrating a further downward movement of the lift bracket which restores the cope flask section to its normal turntable-supported position at or within the mold-stripping station of the machine;
  • FIG. 31 is a schematic side elevational view similar to FIG. 29 but illustrating a still further downward movement of the lift bracket which restores the drag flask section to its normal supported position within the strippingstation of the machine and deposits the assembled composite mold on a bottom board;
  • FIG. 32 is a side elevational view of the structure of FIG. 31;
  • FIG. 33 is a side elevational view of a mold-ejecting mechanism which is employed in connection with the present invention and is disposed in the vicinity of the mold-stripping station;
  • FIG. 34 is a top plan view of the structure of FIG. 33.
  • FIGS. 1 and 2 one exemplary form of an automatic molding or mold-forming machine embodying the principles of the present invention is designated in its entirety by the reference numeral 10. This machine is shown in the drawings as being positioned upon the floor 12 or other supporting surface of a foundry or similar establishment.
  • the mold-forming machine of the present invention involves in its general organization a fixed machine framework 14 which establishes a series of four quadrilaterally disposed areas or stations in the form of a main working area or station WS, a core-setting station CS, 21 mold-stripping station SS, and an idle or dwell station DS.
  • the four stations are disposed 90 apart circumferentially about the central vertical axis of an intermittently indexable or movable turntable 16 having facilities associated therewith for loosely supporting four pairs of flask sections, each pair including an upper or cope flask section 18 and a lower or drag flask section 20.
  • Such flask sections are illustrated in dotted lines in FIGS. 1 to 3, inclusive, in the interests of clarity.
  • the turntable 16 is indexable in 90 increments of rotary motion and, upon each indexing operation thereof, the pairs of flasks at each station are transferred bodily to the next adjacent station in the direction of rotation of the turntable, such direction being clockwise as viewed in FIG. 1.
  • a pair of empty cope and drag flask sections 18 and 20 is transferred from the idle or dwell station DS to the main working station WS where the sections are operated upon by automatic flaskhandling mechanism in a cyclic manner to the end that they are first brought into operative engagement with a pattern-carrying match plate 22 by a clamping operation, the two flask sections are then simultaneously filled with prepared molding sand by a blow operation which compacts the sand in a preliminary manner in the mold cavities in the cope and drag flask sections, the sand in the two flask sections 18 and 20 is then further compacted about the pattern on the match plate 22 by a squeeze operation, and the flask sections are thereafter separated from the match plate 22 by a pattern draw operation in order to release them for transfer to the core-setting station CS with the compacted sand therein, while leaving the match plate 22 with its associated pattern in its normal position at the working station WS.
  • the coresetting station CS At the core-setting station CS, no automatic operations are performed on the two sandfilled and compacted flask sections 18 and 26), these two sections simply remaining in situ on the turntable while a core is manually positioned on the compacted sand in the lower drag section 20 as shown in FIG. 23, providing, of course, that such a core is required or desired. If no core is to be used, the coresetting station CS functions in the manner of an idle or dwell station, the filled and compacted cope and drag flask sections 18 and 20 merely awaiting a succeeding or second turntableindexing operation before transfer thereof bodily to the mold-stripping station SS.
  • the separated cope and drag flask sections 18 and 20, with the compacted sand therein are again operated upon by automatic handling apparatus in a cyclic manner whereby a bottom board 24 (see FIGS. 2 and 24 to 33, inclusive) which underlies the two mold sections is caused to move upwardly and, in effect, functions as a lifting platen in order to effect closing of the two flask sections upon each other with consequent mating of the compacted sand mold parts therein to produce the completed composite sand mold which then engages a reaction platen 26 in a gentle manner so that further upward movement of the closed flask sections strips the flasks simultaneously from the assembled and boardsupported composite sand mold.
  • a bottom board 24 see FIGS. 2 and 24 to 33, inclusive
  • the bottom board upon lowering thereof, carries the assembled mold downwardly to an ejecting position within the mold-stripping station SS, while at the same time the empty cope and drag flask sections 18 and 20 are restored to their normal positions within such station, awaiting transfer to the idle or dwell station DS during the next indexing operation of the turntable 16.
  • FIGS. 24 to 32 The automatic flask-handling functions which take place at the stripping station SS are schematically illustrated in FIGS. 24 to 32, inclusive, and they are correlated with cooperating functions which are performed by a botom board feeding and mold-ejecting mechanism 30, a portion of such mechanism appearing in FIG. 1 and the whole mechanism being disclosed in detail in FIGS. 34 and 35.
  • This mechanism 30 functions in a cyclic manner to feed a single bottom board 24 (see FIG. 2) from a stack S (see FIG.
  • the flask-handling operations which take place at the main working station WS are effected under the control of an hydraulically-operable ram assembly 34 which cooperates with an upper platen assembly 35 (see FIGS. 2 and 12 to 22, inclusive).
  • the flaskhandling operations which take place at the stripping station SS are effected under the control of an hydraulically-operable primary cylinder 36 (see FIGS. 1, 2 and 24 to 33, inclusive), as well as a set of four secondary cylinders 38 which likewise are hydraulically operated.
  • the board-impelling operations which take place at the mold-stripping station SS are performed under the control of an hydraulically-operable ejecting cylinder 40 (see FIGS. 33 and 34).
  • the machine framework 14 appears only in FIGS. 1 to 3, inclusive, and has been omitted from the remaining views in the interests of clarity except for small fragments of the framework such as various vertical supporting standards or posts, stationary flask rests or supports and platensupporting brackets, etc. which are disposed in the working station WS and the moldstripping station SS for storage of the cope and drag flask sections 18 and while they are not actually being handled by the aforementioned flask-handling mechanisms.
  • This machine framework 14 involves in its general organization a pair of relatively massive, laterally spaced, side supports 50 and 52 which are in the form of flat but thick castings of generally C-shape configuration, thus providing upper relatively narrow horizontal legs 54, lower relatively wide horizontal legs 56, and vertical connecting bight portions 58.
  • Side bars 59 extend along the lower edge regions of the lower legs 56 of the side supports 50 and 52.
  • a horizontal bottom frame including forwardly converging side bars 60 and a lower front end bar 62 between the front ends of the side bars.
  • a horizontal top frame including forwardly converging side bars 64 and a top front end bar 66 between the front ends of the lastmentioned side bars.
  • the horizontal top frame directly overlies the horizontal bottom frame.
  • the opposite ends of the lower front end bar 62 overhang the front ends of the forwardly converging side bars 60, and these overhanging portions have fixedly secured thereto vertical corner posts 68, the upper ends of which are fixedly secured to similarly overhanging end portions of the top front end bar 66 of the aforementioned top frame.
  • Upper and lower intermediate transverse bars 70 and 72 extend horizontally between and are suitably secured to the two corner posts 68.
  • a sand magazine 75 which is supplied with processed foundry sand from a hopper 76 through the medium of a conventional shut-off gate mechanism 78.
  • the function of the magazine, the hopper, and the gate mechanism will be set forth subsequently when the operation of the machine 10 is described in detail.
  • the functioning of the present match plate molding or mold-forming machine 10 is predicated upon the provision of four sets or pairs of flask sections, each pair including the aforementioned upper or cope flask section 18 and the lower or drag flask section 20. These paired sections travel in a circular path of movement under the control of the indexing movements of the turntable 16. Normally, at the commencement of any given machine cycle of operation, the flask sections of each pair are disposed at a position of rest at one of the four stations WS, CS, SS and DS and in vertically separated or spaced relationship with the cope flask section 18 overlying the drag flask section 20.
  • the upper turntable spider 80 serves normally to support the four cope flask sections 18 in quadrilaterally and circumferentially spaced relationship, while the lower turntable spider 82 similarly serves normally to support the four drag flask sections 20 beneath and in vertical register with the associated cope flask sections.
  • each of the four upper or cope flask sections 18 is in the form of a cast metal, box-like and generally rectangular structure having opposed end walls and opposed side walls 92. These walls 90 and 92 slope upwardly and inwardly at a small angle so that each wall is of trapezoidal configuration. The upper and lower ends of the upper cope flask sections are open.
  • each end wall 90 is provided with a horizontally elongated, laterally extending, suspension flange 94.
  • the latter is of appreciable width and in the medial region thereof is a bushing-equipped pilot hole 96.
  • the two pilot holes96 of each cope flask section are designed for cooperation with mating leader pins on the upper turntable spider 80, and these, as will be made clear presently, are for the purpose of insuring proper alignment of the cope flask section with the various actuating instrumentalities at the working station WS of the machine.
  • each cope flask section 18 At positions near the opposite ends of the laterally extending suspension flanges 94 of each cope flask section 18 are pairs of vertical bolts 98 which extend downwardly below the level of the bottom rim of the flask section and are encompassed by helical compression springs 100. The upper ends of such springs abut against the end regions of the suspension flanges 94 and the lower ends of the springs are captured by washers 102 which bear against boltheads at the lower ends of the bolts.
  • These compression springs function in a manner that will be set forth more in detail subsequently to separate the match plate 22 from the cope flask section 18 during the aforementioned pattern draw operation at the working station WS.
  • Each cope flask section 18 is further provided with a pair of additional bushing-equipped locating or pilot holes 104 and these are provided in lateral ears 105, one such ear being provided on one end wall 90 near the lower edge thereof and the other ear being similarly provided on the other end wall 90 but in offset relationship so that one of these ears appears in full lines in FIG. while the other ear appears in dotted lines.
  • the two bushing-equipped pilot holes 104 cooperate with upstanding leader pins on the associated drag flask section 20 as will become apparent when the nature of such flask section is set forth presently.
  • each cope flask section 18 are lined with inner facings 106 (see FIGS. 5 and of elastomeric or other wear-resistant material, such walls being, therefore, of dual thickness. These walls are provided with a multiplicity of perforations 107 and each perforation has mounted therein a small cup-shaped sand screen unit 108 (see FIGS. llOand 11), the bottom wall of which is formed with a series of narrow parallel slits 109. The latter are of such small width that, during the blow operation of the machine, air may escape through the walls of the cope flask sections while the blown and compacted sand remains confined within the interior of such sections. This blow operation is performed through the open upper rim of each cope flask section 18.
  • each lower drag flask section is in the form of a cast metal, rectangular, box-like structure having upper and lower open rims and including a pair of opposed end walls 110 and a pair of opposed side walls 112. Such end and side walls slope upwardly and inwardly to the end that each drag flask section 20 assumes the same general tapered appearance as its previously described and associated cope flask section 18.
  • the size of the rectangular open upper rim of each drag flask section is identical to the size of the rectangular open lower rim of the associated superjacent cope flask section 18 so that these two rims will mate with eachother during the flask-clamping operation which will be described hereafter.
  • each drag flask section 20 is provided with perforations 114 which are similar to the perforations 107 in the walls and 92 of the cope flask sections 18.
  • Each perforation 114 has associated therewith one of the screen units M8.
  • each drag flask section 20 are provided with two lateral ears 116, there being one such ear on each end wall. These ears are laterally offset from each other and have fixedlymounted thereon upstanding leader pins 118 which are adapted to registervertically within the aforementioned pilot holes 104 in the lateral ears 105 on the lower edge portions of the end walls 90 of the cope flask section 18. Additional ears 120 on one of the side walls 112 of each drag flask section 20 are provided with bushing-equipped holes 122 (see FIG. 9) which are designed for cooperation with upstanding pilot pins on the ram 34 in a manner that will be made clear when the operation of the machine 10 is set forth.
  • each drag flask section 20 is provided with bushing-equipped holes 126, the latter being designed for cooperation with depending leader pins on the match plate 22 in order properly to align the match plate and the subjacent drag flask section during the blow operation as will likewise be set forth subsequently.
  • the holes 126 are dual-purpose holes and, in addition to being capable of mating engagement with depending leader pins on the match plate 22*, they are also capable of cooperation with upstanding leader pins which are provided on the turntable and determine the normal position of the drag flask section while it is supported on the turntable.
  • one of the end walls 110 of each drag flask section 20 is formed with an outwardly offset or displaced area 128 in which there is formed a horizontally elongated rectangular blow opening 130 through which aerated sand is blown during the blow operation when both flask sections 18 and 20 are simultaneously charged with sand.
  • the shaded circles which appear within the confines of this blow opening 126 represent an inside view of the various sand screen units 108 which are disposed in the far side wall 1112 of the illustrated drag flask section.
  • An elongated thin bridge strip 132 defines the lower boundary of the blow opening 130. It is held in position by screws and thus obviates the disadvantage incident to a corresponding thin wall strip in the original casting from which the drag flask section is made.
  • the match plate 22 is shown in detail in FIG. 6 of the drawings and its functional relationship in the machine is illustrated in FIGS. 12 to 22, inclusive.
  • This match plate is sometimes referred to in he foundry industry as a pattern plate and is in the form of a flat rectangular plate to the upper and lower sides of which there are suitably secured an upper or cope pattern part and a lower or drag pattern part 142.
  • the upper surface of the match plate 22 is designed for contact with the lower open rim of the superjacent box-like cope flask section 18 during the blow and squeeze operations of the machine at the working station WS, while the lower surface of said match plate is similarly designed for contact with the upper open rim of the subjacent boxlike drag flask section 20 during such blow and squeeze operations.
  • pilot holes 148 are provided in the four corners of the match plate 22 and are designed for cooperation with four upstanding pilot pins 150 (see FIG. 2).
  • the latter are provided on a fixed match plate supporting bracket 152 (see also FIG. 21) which is mounted on the two side supports 50 and 52 of the machine framework and projects into the working station WS.
  • This bracket 152 includes a pair of rearwardly and horizontally extending parallel arms 154 which are adjacent to the path of travel of the flask sections 18 and 20 as the latter move into the working station WS, and which are maintained spaced from the side supports 50 and 52 by means of inwardly extend- .ing supporting bars 156.
  • the match plate 22 rests by gravity loosely upon the two parallel arms 154 of the supporting bracket 152. It is, however, adapted to be lifted vertically from said arms by the subjacent drag flask section 20 during flask-handling operations at the working station WS under the control of the ram 34 as will be described in detail presently.
  • the vertically extending pins 158 are fixedly connected to and depend from the match plate 22 near the side edges thereof and midway between the end edges of the match plate, and they are designed for cooperation with the aforementioned bushing-equipped holes 126 in the ears 124 on the sides of the subjacent cope flask section 20 for match plate and flask alignment purposes as previously set forth.
  • the match plate 22 is provided with a series of four holes 160 near the corners thereof, these holes being designed to accommodate and cooperate with the lower head-equipped ends of the aforementioned bolts 98 which are carried by the superjacent cope flask section 18 at such time as the lower open rim of such flask section is brought into engagement with the upper side or surface of the match plate during the flask-clamping operation at the working station WS of the machine.
  • the diameter of these holes 160 is such that the heads of the bolts 98 may pass therethrough while the washers 102 which are loosely and slidably mounted on the bolts may not pass through such holes.
  • the springs 100 which surround the bolts 98 are placed under compression and, thereafter, after the sand-compacting or squeeze operation has been completed and clamping pressure is relieved during the push-out operation, these springs assist in separating the match plate from the bottom side of the cope mold part by overcoming any adhesive bond which may exist between the match plate and the cope mold part or the cope pattern part 140 and said cope mold part.
  • the turntable 16 is supported for rotation about a vertical axis in the central region of the machine framework from a central supporting pedestal from which there projects upwards a rotatable cylindrical column 172.
  • a tubular turntable hub 174 having a cylindrical inside surface and a square outside surface, the surface presenting four vertical planar side surfaces.
  • Secured to these four planar side surfaces of the hub 174 by way of Allen head-type bolts 175 or the like are an upper series of rectangular hub plates 176 and a lower series of rectangular hub plates 177.
  • Such hub plates in effect, constitute supporting brackets for a plurality of radially extending spider arms which constitute components of the aforementioned upper and lower turntable spiders 80 and 82.
  • These turntable spiders include a series of four radially extending upper arms 180 and a similar series of four radially extending lower arms 182.
  • the latter spider arms are in vertical register with the former arms, or stated otherwise, the lower spider arms 182 directly underlie and extend parallel to the upper spider arms 185 and are spaced downwardly therefrom as clearly shown in FIG. 2.
  • the upper bearing assembly 184 is in the form of a ball bearing flange block and is mounted on a plate 188 on the central upper portion of the framework 14 of the machine 10.
  • each spider arm 180 of the upper turntable spider 80 includes one of the aforementioned rectangular hub plates 176 and from such hub plate there project radially outwards two parallel side bars 190, the inner ends of such side bars being welded to their respective or associated hub plate 176.
  • the outer or distal ends of the two side bars 190 serve to support a generally T-shaped bracket 192 which consists of an intermediate leg 194, a long outer T-head 196, and a short inner T-base 198.
  • each supporting plate 200 serves normally to support one end of an associated cope flask section 18, such section thus having its opposite ends effectively resting in chordal fashion on the outer ends of a pair of adjacent radially extending upper arms 180 with the main body portion of the flask section being disposed in the general plane of the upper turntable spider 80 between adjacent upper arms 180 as shown in dotted lines at four places in FIG. 1.
  • the lower turntable spider 82 is similar to the previously described upper turntable spider 80 which overlies it, the lower rectangular hub plates 177 serving to support the radially extending lower arms 182 of said lower turntable spider 82.
  • Said lower arms 182 are similar to the upper spider arms 180 and, therefore, in order to avoid needless repetition of description, similar reference numerals with a prime suffix are applied herein to the component parts of the spider arms 182 which have corresponding counterparts as compared to the upper spider arms 180. Otherwise, it is deemed sufficient for an understanding of the nature of the lower spider arms 182 to point out the differences which exist between these lower spider arms and the upper spider arms 180.
  • the side bars 190 of the lower spider arms 182 are slightly wider in a vertical direction than the upper spider arms 180 and the supporting plates 200 which are associated therewith and serve to support the drag flask sections are welded along the lower edges of the longer outer T-heads 196 and the short inner T-bases 198' instead of along the upper edges thereof. This does not change the elevation of the drag flask sections 20 when they are supported by the plates 200' in view of the fact that the lateral flanges 124 on the end walls 110 of the cope flask sections 20 are positioned lower on said end walls than the lateral flanges 94 on the end walls 90 of the cope flask sections 18.
  • leader pins 202' on the supporting plates 200' of the lower turntable spider 82 are not in vertical alignment with the upstanding leader pins 202 on the supporting plates 200 of the upper turntable spider 80.
  • the distance between the leader pins 202' on adjacent lower spider arms 182 is less than the distance between the leader pins 202 on adjacent upper spider arms 180.
  • the leader pins 202 are designed for cooperation with the bushingequipped holes 126 which are provided in the lateral flanges 124 on the end walls 110 of the drag flask sections 20 and which also cooperate with the downwardly projecting or depending pins 158 on the match plate 22. Insofar as the leader pins 202' are concerned, their spacing must, therefore, be equal to the spacing of the pins 158 on the match plate.
  • Additional components on the lower turntable spider 82 which are not present on the upper spider 80 are a series of four turntable-stabilizing and locating sockets 212.
  • the latter are formed in four brackets 214 which are fixedly mounted on the outer surfaces of the long outer T-heads of the T-shaped brackets 192 at the distal ends of the lower spider arms 182.
  • These sockets are thus disposed 90 apart on the turntable and are designed for successive cooperation with a vertically slidable, hydraulically-operated shot pin 216 (see FIGS. 1 and 2) to stabilize the turntable in between indexing operations in a manner that likewise will be made clear during a subsequent discussion of the Geneva mecha- 16 nism 32 and the manner in which such mechanism causes turntable-indexing operations.
  • the shot pin 216 is spring-biased in such manner that it is urged up wardly.
  • the Turntable Drive Mechanism As previously stated, the turntable 16 is adapted to be periodically indexed throughout an angle of under the control of the Geneva mechanism 32 and its drive motor or actuator 33.
  • This Geneva actuator 33 (see FIGS. 1 to 4, inclusive) may be of any conventional construction, there being several forms of commercially available actuator units which are capable of use in connection with the molding machine 10. One such unit is manufactured and sold by HydraPower, Inc. of Wadsworth, Ohio, and is designated as Model No. M. Briefly, the Geneva actuator 33 embodies four hydraulic cylinders 221 which are arranged in opposed pairs, each pair controlling the longitudinal sliding movement of an internal rack (not shown).
  • A' central pinion (likewise not shown) meshes with both racks and carries a vertical oscillatory output shaft 222 which, in the present case, is capable of rotation in opposite directions about an angle of 90.
  • the Geneva actuator 33 is mounted on a supporting bracket 224 which is secured by bolts 225 (see FIG. 4) to the side support 52 in such positional relationship that the actuator 33 underlies the peripheral or circumferential sweep of the arms 182 of the lower turntable spider 82 as clearly shown in FIG. 3 of the drawings.
  • each 90 turntable indexing operation is effected by causing the Geneva drive arm 226 to swing from thefull-line position in which it is illustrated in FIG. 1, in a counterclockwise direction as seen in this view through an angle of 90 to the end that the shot pin 2311 and its roller 232 (which normally remain in their upwardly projected, spring-biased position) will ride radially inwardly in the associated guide slot which is provided by the adjacent pair of anti-friction wear liners 210, thus causing the turntable 16 to rotate in a clockwise direction by a simple harmonic motion.
  • the turntable 16 will have been indexed throughout an angle of exactly 90 thus causing it to shift each pair of flask sections 18 and 20 on the turntable 16 from its present station to the next adjacent or following station for flask-handling or other operations at such latter station.
  • the hydraulic cylinder unit 228 is energized to withdraw the shot pin 230 with its roller 232 from the adjacent radial guide slot between the wear liners 211D and, during such time as the hydraulic cylinder unit 228 remains energized, the hydraulic Geneva actuator 33 is actuated in a reverse direction to restore the drive arm 226 to its full-line normal position as shown in FIG. 1, after which the hydraulic cylinder unit 228 is deenergized in order to allow the shot pin 230 with its associated roller 232 to be projected into the guide slot which exists between the anti-friction wear liners 210 of the next adjacent lower spider arm 182.
  • the aforementioned shot pin 216 is projected at the completion of each indexing operation into the socket 212 at the distal end of the adjacent lower spider arm 182 where it remains until the commencement of the next succeeding indexing operation.
  • the aforementioned shot pin 216 is extensible and retractible under the control of a cylinder 240 which is secured to the outer side of the side support 52 of the machine framework 14.
  • the cylinder 240 is energized to retract the roller-equipped shot pin 216.
  • This retraction of said shot pin remains effective duringthe entire indexing movement of the turntable 16, after which the cylinder 240 is deenergized so as to allow the spring-biased shot pin 216 to enter the socket2l2 at the distal end of the succeeding lower spider arm 182 which has been brought into vertical alignment with such shot pin.
  • the hydraulically-operable ram assembly 34 appears in outline in FIG. 2 and in detail in FIGS. 12 to 22, inclusive.
  • This ram assembly is supported on a platform 242 (see FIG. 2) which extends between the horizontally, spaced apart, side bars 59 of the machine framework 14.
  • Such platform supports the ram assembly so that it is centered within the working station WS with the result that it is properly aligned with the various flask-handling and other instrumentalities at this statron.
  • the ram assembly 34 embodies a vertically extending, central lift plunger 250 on the upper end of which there is fixed, mounted or secured a lower drag section squeeze plate 252.
  • the lift plunger 250 is surrounded by a fixed, vertically extending, cylinder body 254 within which the plunger operates with a vertical sliding action.
  • the upper end of the cylinder body 254 is open and the lower end is provided with a closure wall 256.
  • an oil inlet port 258 is formed in the cylinder body 254 in the vicinity of said closure wall 256.
  • the lower drag squeeze plate 252 is formed with a downwardly extending tubular floating plunger 260 which is surrounded by an outer lift sleeve 262.
  • the latter is slidable vertically to a small extent relatively to the floating plunger 260 and is provided with an upper, vertical, continuous rectangular wall 264 and also an inner, horizontal, upwardly facing, ledge-like surfade 266 on which the lower drag section squeeze plate 252 normally seats or rests as shown in FIGS. 13 to 17, inclusive.
  • the upper rectangular wall 264 constitutes a socalled drag upset and is designed for engagement with the lower open rectangular rim of the superjacent drag flask section during flask-closing, sandsqueezing, and other mold-forming operations and,
  • this wall 264 and the lift sleeve 262 may be regarded as constituting a lower drag flask section extension, and it will sometimes be referred to hereinafter as such.
  • the central lift plunger 250 functions to control the absolute movements of the lower drag section squeeze plate 252 and the intermediate tubular floating plunger 260.
  • the lift sleeve in response to upward movement of the lift plunger 250 effectively engages and moves the superjacent drag flask section 20 during handling of the various pairs of flask sections at the working station WS.
  • An upper oil port 267 is formed in the upper region of the lift sleeve 262 and leads to the upper end of an annular chamber 268 which exists between said lift sleeve and the tubular floating plunger 260, and a lower oil port 269 is formed in the lower region of the lift sleeve 262 and leads to the lower end of said annular chamber 268.-
  • the region of the tubular floating plunger 260 between the two oil ports 267 and 269 is enlarged in order to form a piston 270 which operates in an internal recess 272 in the wall of the lift sleeve 262 as well as in the aforementioned chamber 268.
  • the ports 267 and 269 are adapted to be connected by flexible oil lines (not shown) to a source of oil under pressure with the flow of oil through such lines being regulated by suitable control valves (also not shown).
  • suitable control valves also not shown.
  • lift sleeve 262 together with its upper vertical continuous rectangular wall 264, moves upwards with respect to said tubular floating plunger 260 and the lift plunger 250.
  • the lift sleeve 262 of the ram assembly 34 carries a horizontal bar 274 from which there project upwardly a pair of pilot or leader pins 276.
  • the latter are designed for cooperation with the aforementioned holes 122 which are associated with the superjacent drag flask section as shown in dotted lines in FIG. 1.
  • the leader pins 276 are shifted upwards into the holes 122, the superjacent drag flask section 20 is held against lateral displacement with respect to the ram assembly 34.
  • the ram assembly 34 cooperates with the upper platen assembly 35 (see FIG. 2) during flask-handling operations at the working station WS and particularly during the squeeze operation wherein the lower squeeze plate 252 compresses the previously compacted sand in the associated cope and drag flask sections as shown in FIGS. 17 and 18 of the drawings.
  • This upper platen assembly 35 includes a fixed or stationary platen proper or upper squeeze plate 280 which is supported in the upper region of the machine framework 14 and normally is encompassed by a rectangular cope upset frame 284.
  • the lower rim of said cope upset frame is designed for edge-to-edge engagement with the upper rim of the subjacent cope flask section 18 during the squeeze operation as shown in FIG. 18.
  • the cope upset frame 284 is vertically slidable on a pair of vertically extending guide rods 286 (see FIG. 2), and immediately after the squeeze operation, two doubleacting hydraulic cylinders 288 having verticallyslidable plungers, 290 associated therewith are adapted 'to be actuated to restore the cope upset frame 284 to its upper retracted position as shown'in FIGS. 12, 19, 20, 21 and 22.
  • the plungers 290 slide downwards with the result that the cope upset frame 284 is shifted downwards into the position in which it is shown in FIGS. 13 to 17, inclusive.
  • the stripping mechanism which is disposed at the mold-stripping station SS is illustrated in FIGS. 1, 2, and 24 to 32, inclusive. It is adapted effectively to receive in a separated condition a pair of sand-filled and compacted cope and drag flask sections 18 and 20 after such pair has been moved throughout a 90 are from the core-setting station CS, to bring the two separated flask sections together in order to assemble or unite the cope and drag sand mold parts (designated cm and dm in the drawings) which are contained in the flask sections 18 and 20, respectively, to provide a bottom board support for the assembled mold, and finally to push the assembled flask sections bodily as a unit from the assembled composite sand mold cm and dm, leaving the latter resting on the bottom board.
  • the flask-stripping mechanism involves in its general organization a pair of vertical guide rods 300, the latter being disposed in spaced apart relationship transversely of the stripping station SS and also being supported at their upper and lower ends by angle brackets 302 and 304 which are fastened, respectively, to the intermediate transverse bars 72 and of the machine framework 14.
  • a stripping carriage 306 which comprises a horizontal platform 308.
  • the latter is provided at its inner corners with two tubular guide sleeves 310 which encompass the guide rods 300 and slide vertically thereon.
  • the carriage 306 is vertically shiftable under the control of a vertically slidable plunger 311 which is associated with the aforementioned hydraulicallyoperable primary stripping cylinder 36.
  • the carriage 306 further includes or comprises on the upper surface of the platform 308 a pair of spaced apart, horizontally extending skids 312, the latter being adapted successively to receive thereon the aforementioned bottom boards 24 (see FIG. 33) as they are fed thereto from the stack S under the control of the ejector mechanism 30.
  • the skids 312 serve to maintain the boards 24 in an elevated position above the effective level of the platform 308. Additionally, the carriage 306 serves to support the aforementioned four secondary flask-stripping cylinders 38.
  • the carriage 306 is shiftable vertically upwardly on the guide rods 300 from the lowered position in which it is shown in FIGS. 2 and 24 wherein the bottom board 24 is disposed an appreciable distance below the level of the superjacent drag flask section 20 which has been brought into position at the stripping station SS by the lower turntable spider 82 of the turntable 16 in order that such bottom board will pick up the drag flask section 20 and force it upwardly against the superjacent cope flask section 18 and then carry both flask sections further upwardly so that the thus assembled mold parts cm and dm within the two flask sections will be projected against the aforementioned stationary reaction platen 26 and held there while the plungers 316 of the cylinders 38 perform their flask-stripping operation.
  • the platen 26 is fixedly mounted on a bracket 318 (see FIG. 2) which is suitably mounted on the side bars 64 of the machine framework 14.
  • a bracket 318 see FIG. 2
  • Such vertical movement of the carriage is effected under the control of the aforementioned hydraulically-operable primary cylinder 36, the latter being fixedly secured to the upper portions of the corner posts 68 of the framework 14 by means of a clamping bracket 319.
  • the previously mentioned bottom board feeding and moldejecting mechanism 30 is in the vinicity of the stripping station SS and includes a bottom board supporting feed table 320 which is positioned on one side of the machine 10, and a mold-receiving discharge table 322 on the opposite side of the machine, both tables straddling said stripping station of the machine as shown in FIGS. 1, 3, 33 and 34.
  • the table 320 is provided with legs 324 and serves to support a pair of spaced apart, horizontally extending skid rails 326 at substantially the same horizontal level as that of the skids 312 on the platform 308 of the vertically movable carriage 306 when the latter is in its lowermost position.
  • the table 320 of the mechanism 30 serves to support a stacking frame 328 for the previously mentioned stack S of bottom boards 24, and also to support the hydraulically-operable ejecting cylinder 40.
  • the cylin der 40 is secured to the outer or far end of the table 320 by a bracket 332 and is positioned so that a horizontally extending and slidable pick-off plunger 334, which is associated therewith and normally assumes the retracted position in which it is shown in FIG.
  • the outer end of the plunger 334 of the cylinder 40 carries two spaced apart rollers 335 which ride on two horizontal guide rails 336 which are carried by and suspended from the feed table 320.
  • the rollers 335 while traveling on the guide rails 336, establish the proper level for the plunger 334 so that only the lowermost bottom board 24 in the stack S will be engaged at the time the plunger is projected in response to actuation of the cylinder 40.
  • a bottom board 24 is pushed from beneath the stack S to a dwell position where it remains momentarily on the skid rails 336. Thereafter, during the next succeeding projection of the plunger, a second bottom board is pushed from beneath the stack so that it engages the first board and causes the latter to be pushed forwardly or inwardly onto the aforementioned skids 312. After the first board has performed its function of raising the associated cope and drag flask sections 18 and 20 and the other flask-handling operations at the stripping station SS have been completed, thus resulting in the positioning of the assembled composite sand mold on the first bottom board 24 as shown in FIG.
  • a third bottom board is pushed from beneath the stack S and the second board then engages the first board and slides the same from'the skids 312 onto the discharge table 322 which, as previously pointed out, is positioned alongside the machine 10.
  • the second board is positioned on the carriage 306 in readiness for the similar operations at the station SS. From the discharge table322, the bottom boards 24 with the assembled composite sand molds thereon may be manually or otherwise successively removed.
  • the first quarter cycle involves handling of a pair of flask sections at the working station SS to the point where the sand blow operation is effected, and then further handling of such sections to the point where the completed cope and drag sand mold parts are contained in the spider-supported cope and drag flask sections 18 and 20, followed by the shifting of the pair of sand -filled and compacted cope and drag flask sections 18 and 20 from the working station WS to the coresetting station CS, the shifting of a second pair of initially empty flask sections from the core-setting station CS to the stripping station SS, the shifting of a third pair of initially empty flask sections from the stripping station SS to the idle or dwell station DS, and the shifting of a fourth pair of initially empty flask sections from the dwell station DS to the working station WS
  • the second quarter cycle of machine operation involves the production of a second pair of mold parts at the working station WS followed by transfer thereof to the core-setting station CS; the manual setting of a core at the core-setting station by placing the core on the formed drag mold part then at such station, and the transfer of the mold parts with the set core to the stripping station SS; the transfer of an initially empty pair of mold sections from the moldstripping station SS to the dwell station DS; and the transfer of an initially empty pair of mold sections from the dwell station DS to the working station WS.
  • the third quarter cycle of machine operation involves the production of a third pair of cope and drag mold parts at the working station WS and their transfer to the coresetting station CS: the transfer of the second pair of juxtapositioned core-equipped mold parts and their respective separated flask sections from the coresetting station to the stripping station; the assembly of a pair of mold parts, the placement of the assembled mold on a bottom board at the stripping station, the ejection of the bottom board and mold from the machine at the stripping station; and the transfer of a pair of empty flask sections to the dwell station; and the transfer of a pair of emtpy flask sections from the dwell station DS to the working station WS.
  • the fourth quarter of the machine cycle involves the production of a fourth pair of mold parts at the working station WS and transfer thereof to the core-setting station CS; the setting of a core in the juxtapositioned third pair of mold parts at the core-setting station and the transfer thereof to the stripping station SS; the assembly of the second pair of mold parts; the ejection of the second mold on a bottom board at the stripping station, and the transfer of the empty flask sections to the dwell station; and the transfer of empty flask sections from the dwell station to the working station WS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Abstract

A cyclicly-operable molding machine for producing and assembling cope and drag mold parts. A rotary turntable which supports four pairs of flask sections is repeatedly indexed to move the pairs repeatedly and successively in a circular path through four stations, namely, (1) a working station where the flask sections are variously and automatically handled and in cooperation with a pattern-carrying match plate are filled and compacted with foundry sand so as to produce the two mold parts, (2) a coresetting station where, if required or desired, a core may be applied to one of the formed mold parts, (3) a stripping station wherein the flask sections are again variously handled to strip the sections from the mold parts and the latter are assembled and then deposited on a bottom board which is ejected from the machine, and (4) an idle or dwell station where an empty pair of flask sections awaits handling of a preceding pair of flask sections at the working station before being returned to such station for refilling thereof at the commencement of the next machine cycle.

Description

United States Patent [19].
Lund et al.
[ 51 Aug. 13, 1974 CYCLICLY-OPERABLE MACHINE ADAPTED TO PRODUCE AND ASSEMBLE COPE AND DRAG MOLD PARTS [75] Inventors: Robert S. Lund, Elmhurst; Vernon J. Koss, Niles, both of 111.
[73] Assignee: Pettibone Corporation, Chicago, 111. [22] Filed: Mar. 10, 1972 [21] Appl. No.: 233,438
[52] US. Cl 164/l95, 164/200, 164/207, 164/226 [51] Int. Cl. B22c 15/28 [58] Field of Search 164/37, 38,137, 195, 200, 164/226, 339, 340, 207
Primary Examiner-R. Spencer Annear Attorney, Agent, or Firm-Norman H. Gerlach 5 7 ABSTRACT A cyclicly-operable molding machine for producing and assembling cope and drag mold parts. A rotary turntable which supports four pairs of flask sections is repeatedly indexed to move the pairs repeatedly and successively in a circular path through four stations, namely, (1) a working station where the flask sections are variously and automatically handled and in cooperation with a pattem-carrying match plate are filled and compacted with foundry sand so as to produce the two mold parts, (2) a core-setting station where, if required or desired, a core may be applied to one of the formed mold parts, (3) a stripping station wherein the flask sections are again variously handled to strip the sections from the mold parts and the latter are assembled and then deposited on a bottom board which is ejected from the machine, and (4) an idle or dwell station where an empty pair of flask sections awaits handling of a preceding pair of flask sections at the working station before being returned to such station for refilling thereof at the commencement of the next machine cycle.
18 Claims, 38 Drawing Figures PAIENTED M] 31914 SHEET 7 OF 8 FIG. 29
FIG. 28
FIG. 27
CYCLICLY-OPERABLE MACHINE ADAPIED TO PRODUCE AND ASSEMBLE COPE AND DRAG MOLD PARTS The present invention relates generally to machines for producing sand molds for foundry use and has particular reference to a foundry machine which is capable of simultaneously producing the cope and drag parts of a composite sand mold, the two parts being complete and assembled upon each other and ready for a molten metalpouring operation at the time they leave the machine. V
Heretofore, in connection with a foundry machine which resorts to the simultaneous blowing of the cope and drag parts of a composite sand mold by the utilization of a dual-sided, horizontally positioned, patterncarrying, match plate, it has invariably been the practice to perform all machine functions at a single working station where various flask and match plate movements take place with vertical in-line motions under the control of a ram, such movements including, first, bringing a pair of cope and drag flask sections into clamping engagement with the match plate in order to define above and below the match plate cope and drag sand-receiving cavities which are then filled with sand by a simultaneous combined blow and compacting operation, second, performing a squeeze operation by means of which thesand in both cavities is simultaneously and additionally compressed or compacted about the match plate so as to produce the cope and drag parts of the composite mold, third, separating the flask sections with the mold parts therein in order to permit withdrawal of the match plate to an out-of-theway position, fourth, closing the two flask sections on each other in order to assemble the mold parts and produce the completed composite mold, fifth, performing a push-out or stripping operation by means of which the assembled composite mold is pushed bodily from the confining flask sections, and last, widely separating the flask sections and then pushing or ejecting the completed and assembled mold bodily from the working station and onto a bottom board. One molding machine of this general type is illustrated and described in US. Pat. No. 3,229,336, granted on Jan. 18, 1966 and entitled MATCH PLATE MOLDING MACHINE FOR THE SIMULTANEOUS PRODUCTION OF COPE AND DRAG MOLD SECTIONS, the disclosure of such patent being devoid of the usual associated moldejecting mechanism. Another example of such a molding machine is to be found in US. Pat. No. 3,648,759, granted on Mar. 14, 1972 and entitled MACHINE FOR MAKING SAND MOLDS."
The present invention is designed as an improvement over such single-station match plate molding machines in that it contemplates the provision of a multi-station molding or mold-forming machine in which the aforementioned stripping and mold-ejecting operation is completely divorced from the working station and performed at a separate stripping and ejecting station, while an additional station, namely, a coresetting station, is provided to the end that, if required or desired, a core may be placed between the two mold parts preparatory to performance of the stripping and ejecting operation. The provision of these two additional stations obviously necessitates transfer of the flask sections from the working station where the complemental cope and drag mold parts are initially created within the flask sections, to the core-setting station and from thence to the stripping station. Thus, in order that the fiaskhandling instrumentalities at the working station shall not remain idle while awaiting performance of the core-setting and stripping operations successively at the two other stations, the present machine makes provision for the use of plural pairs of cope and drag sand mold flask sections, together with transfer means whereby as soon as a given pair of flask sections has been operated upon at the working station, such sections with the mold parts therein are conducted to the core-setting station and a second pair of empty flask sections is moved into the working station to be handled thereat while core-setting operations are being performed on the first pair of filled flask sections at the core-setting station. Similarly, when the second pair of flask sections has been operated upon at the working station and core-setting operations have been completed at the core-setting station on the first pair of flask sections, both pairs of flask sections are conducted by the transfer means from such stations, the first pair of flask sections moving to the stripping and ejecting station with the core in place and the second pair being conducted or moved to the core-setting station while a third pair of flask sections is brought by the transfer means into the working station. After the three pairs of flask sections have been operated upon at the working station, the coresetting station and the strip ping and mold-ejecting station, all three pairs of flask sections are conducted by the transfer means from such stations, the first pair (now empty of contents) being conducted to a fourth idle or dwell station to await subsequent transfer to the working station, the second pair being conducted to the stripping and mold-ejecting station from the core-setting station, and the third pair being conducted from the working station to the coresetting station while a fourth pair of flask sections is moved into the working area from the idle or dwell station where it was previously deposited from a preceding machine cycle. The four pairs of flasks constitute component parts of the present molding or moldforming machine and, although they are variously handled in an automatic manner at the working station and the stripping and mold-ejecting station, they never leave the confines of the machine.
According to the present invention, a convenient transfer means for conducting the pairs of flask sections from one station to the next is afforded by the use of a rotary turntable on which the pairs of flask sections are peripherally or marginally supported so that, upon rotation of the turntable about its vertical axis, they are caused to travel in a circular path which intersects each of the four aforementioned stations. The turntable is capable of being indexed intermittently so that, during each dwell period, each pair of flasks is disposed at one of the stations for flask-handling or other operations at such one station.
For convenience of machine design and to improve machine performance, although there are only three effective operating stations associated with the machine so that the use of only three pairs of flasks on the turntable at a peripheral spacing would be adequate for the production of successive assembled composite molds by the machine, thus omitting the fourth station, it has been found that by providing four pairs of flask sections and incorporating the idle or dwell station in the machine, better machine performance is attained since the pairs of flask sections are not obliged to enter the various stations at a sharp angle. Additionally, the existence of the idle or dwell station affords an opportunity for the operator to inspect the idle pair of flask sections at such station and clean the same if necessary.
Insofar as the aforementioned additional core setting station is concerned, where a single station match plate molding machine is concerned in which all operations are performed in a common working area, the core setting operation presents a difficulty in that the operator mush reach into the working area with his hands extending between the drag flask and cope flask mold sections in order to position the cores correctly. There is thus a definite pinch point which must be guarded against because as soon as the cores have been set and the operator removes his hands, the drag and cope flask sections close upon each other. This requires that the operator must at all times be alert and, lacking such alertness, serious accidents may, and do, take place. Where automatic precautionary measures are provided for effecting delayed mold closing operations until the operator is at a safe distance from the working area, the equipment is not only expensive but also it is not always infallible. According to the present match plate molding machine, since core setting is performed at a separate station remote from the working area, and at a core setting station where the flasks are maintained on a carrier at spaced apart locations where they are incapable of coming together, there is no pinch point to create a hazard.
The provision of a match plate molding machine such as has briefly been outlined above, and possessing the stated advantages, constitutes the principal object of the invention.
An additional advantage of the invention resides in the use of a Geneva gear drive mechanism for indexing the turntable intermittently, together with a locating or leader pin which is mounted on the machine framework and is hydraulically and selectively driven into one of a series of pilot holes in the turntable and remains therein during each dwell operation of the Geneva gear drive mechanism in order to align the flask sections on the turntable with the associated flaskhandling instrumentalities at the working station and the stripping and mold-ejecting station.
A further and important advantage of the invention resides in the fact that, at the stripping and moldejecting station, a bottom board is fed into this station immediately prior to arrival thereat of the sand-filled flask sections from the core-setting station and is handled in such a manner that it functions in the manner of a platen during the actual stripping operation and receives the assembled and stripped composite mold thereon, after which said mold is pushed laterally from the machine with the mold resting thereon, this advantage distinguishing the present machine from the aforementioned earlier patented machines where the pushing device or ejector arm engages the mold itself and pushes it laterally from the machine and onto an awaiting bottom board. By depositing the assembled and stripped mold on the bottom board and pushing the latter from the machine according to the present invention, there is no danger of mold part slippage, one upon the other, due either to acceleration or deceleration of the pushing device.
A wide variety of advantages accrues from the fact that transfer of the pairs of flask sections from station to station takes place in a closed circular path, an obvious advantage residing in the fact that by such anarrangement the various operating stations are closely grouped together, thereby resulting in compact machine design. l-leretofore, except for the molding machines which are disclosed in aforementioned US. Pat. Nos. 3,229,336 and 3,648,759, match plate molding operation have involved separate sand filling or blowing and compacting operations for the cope and drag flask sections. Furthermore, the flask-filling operations invariably have been accomplished by a sand-pouring operation. With some molding machines, it has been found various to perform certain of the flask-handling operations at separate operating stations, but in most instances, flask transfer from one station to another has been affected in a straight line so that the flask various operating stations cannot be regarded as constituting component parts of a single molding machine. Further more, there has been no simultaneous handling of both the cope and drag flask sections at all of the involved stations. Accordingly, the simultaneous treatment of the pairs of complemental cope and drag flask sections at all of the operating stations involved in the present molding machine affords a distinct advantage from the point of view of timesaving. Such timesaving is further enhanced by the recycling of empty pairs of flask sections from the mold-stripping station back to the main working station in an automatic manner.
Numerous other objects and advantages of the invention, not at this time enumerated, will either be pointed out or readily suggest themselves as the nature of the invention is better understood from a consideration of the following detailed description.
The invention consists in the several novel features which are hereinafter set forth and are more particularly defined by the claims at the conclusion hereof.
In the accompanying eight sheets of drawings forming a part of this specification, one illustrative embodiment of the invention is shown.
In these drawings:
FIG. 1 is a top plan view of a match plate molding or mold-forming machine embodying the principles of the present invention, the machine being devoid of flasks but with flask positioning being illustrated in dotted lines;
FIG. 2 is a side elevational view of the machine of FIG. 1 with a similar dotted line flask disclosure;
FIG. 3 is an end elevational view of the machine of FIG. 1 with a similar dotted line flask disclosure;
FIG. 4 is a fragmentary side elevational view, somewhat schematic in its representation, of the Geneva drive mechanism which is employed in connection with the molding machine constituting the present invention;
FIG. 5 is an end view of one of a series of cope flask sections which are employed in connection with the invention;
FIG. 6 is an end view of the match plate which is employed in connection with the invention at the working station;
FIG. 7 is an end view of one of a series of drag flask sections which are employed in connection with the invention;
FIG. 8 is a side elevational view of an assembled cope flask section and drag flask section, such sections being previously illustrated in FIGS. 5 and 7, respectively;
FIG. 9 is a top plan view of the structure which is shown in FIG. 8;
FIG. 9a is an enlarged horizontal sectional view taken on the line 9a-9a of FIG. 2 and representing, largely, a plan view of the upper turntable spider, the lower turntable spider and the underlying portions of the machine being omitted in the interests of clarity;
FIG. 9b is a side elevational view of the structure of FIG. 9a;
FIG. 9c is a sectional view taken on the line 9c-9c of FIG. 2 and representing, largely, a plan view of the lower turntable'spider with the underlying portions of the machine omitted;
FIG. 9d is a side elevational view of the structure of FIG. 90;
FIG. 10 is an enlarged detail sectional view taken substantially centrally and longitudinally through one of the numerous vents or filter screen units which are employed in connection with cope and drag flask sec tions of the machine;
FIG. 11 is a perspective view of the vent or filter screen unit of FIG. 10;
FIG. 12 is a sectional view, largely schematic in its representation, taken vertically and centrally through the working area or station of the machine and illustrating the associated ram assembly, the flask sections and the match plate in their normal positions at the commencement of a machine cycle;
FIG. 13 is a schematic sectional view similar to FIG. 12 but illustrating a preliminary movement of a certain part of the ram assembly which takes place at the commencement of the machine cycle and involves upward shifting of the lift sleeve of the assembly together with the associated cope upset while the lift plunger of the ram assembly remains stationary;
FIG. 14 is a schematic sectional view similar to FIG. 13 but illustratingan upward lift plunger movement which takes place in order to lift the drag flask section against the match plate;
FIG. 15 is a schematic sectional view similar to FIG. 14 but illustrating the drag and cope flask sections in position against the match plate due to a further upward movement of the lift plunger of the ram assembly;
FIG. 16 is a schematic sectional view similar to FIG. 15 but illustrating the drag flask section and the cope flask section, both in their fully clamped positions and immediately prior to the blow operation whereby moldforming sand is introduced and compacted into both flask sections;
FIG. 17 is a schematic sectional view similar to FIG. 16 but illustrating the blow operation whereby the cope and drag flask sections are filled with sand and simultaneously compacted by blowing;
FIG. 18 is a schematic sectional view similar to FIG. 17 but illustrating the positions of the drag and cope flask sections and the parts of the ram assembly during the sandsqueezing operation which takes place between upper and lower squeeze plates;
FIG. 19 is a schematic sectional view similar to FIG. 18 but illustrating the downward movement of the lift plunger of the ram assembly which takes place immediately after the sand-squeezing operation;
FIG. 20 is a schematic sectional view similar to FIG. 19 but illustrating a further downward movement of the lift plunger of the ram assembly which takes place in order to restore the cope flask section to its normal supported position on the turntable;
FIG. 21 is a schematic sectional view similar to FIG. 20 but illustrating a still further downward movement of the lift plunger of the ram assembly which takes place in order to restore both the sand-filled and compacted flask sections, and also the match plate, to their respective normal supported positions;
FIG. 22 is a schematic sectional view similar to FIG. 21 but illustrating the sand-filled and compacted cope and drag flask sections indexed away from and out of the working area or station of the machine, and also showing or illustrating new empty cope and drag flask sections being indexed into the working station in order to replace the withdrawn flask sections;
FIG. 23 is a schematic sectional view taken vertically through the core-applying station of the machine, that is, the station to which the sand-filled and compacted cope and drag flask sections that are removed from the working area of the machine are indexed, and showing a core in position on the lower or drag mold part;
FIG. 24 is a side elevational view, largely schematic in its representation, illustrating the mold-stripping mechanism at the stripping station in the normal position which it assumes at the time the sand-filled and compacted cope and drag flask sections are indexed into respective normal supported positions at the stripping station;
FIG. 25 is a schematic side elevational view similar FIG. 24 but illustrating the preliminary upward movement of a certain mold-closing lift bracket into effective lifting engagement with the filled drag flask section prior to upward shifting of the latter;
FIG. 26 is a schematic side elevational view similar to FIG. 25 but illustrating a further upward shifting movement of the lift bracket so as to bring the filled drag flask section into initial effective lifting engagement with the filled cope flask section;
FIG. 27 is a schematic side elevational view similar to FIG. 26 but illustrating a still further upward movement of the lift bracket so as to bring the filled drag and cope flask sections into operative relationship with respect to a stripping platen which is employed in connection with the machine;
FIG. 28 is a schematic side elevational view similar to FIG. 27 but illustrating the actual stripping operation wherein the cope and drag flask sections are stripped bodily and in unison from the assembled complemental mold parts;
FIG. 29 is a schematic side elevational view similar to FIG. 28 but illustrating a downward movement of the lift bracket preparatory to restoring the cope and drag flask sections to their normal turntable-supported positions within the stripping station;
FIG. 30 is a schematic side elevational view similar to FIG. 29 but illustrating a further downward movement of the lift bracket which restores the cope flask section to its normal turntable-supported position at or within the mold-stripping station of the machine;
FIG. 31 is a schematic side elevational view similar to FIG. 29 but illustrating a still further downward movement of the lift bracket which restores the drag flask section to its normal supported position within the strippingstation of the machine and deposits the assembled composite mold on a bottom board;
FIG. 32 is a side elevational view of the structure of FIG. 31;
FIG. 33 is a side elevational view of a mold-ejecting mechanism which is employed in connection with the present invention and is disposed in the vicinity of the mold-stripping station; and
FIG. 34 is a top plan view of the structure of FIG. 33.
BRIEF DESCRIPTION OF THE MACHINE Referring now to the drawings in detail and in particular to FIGS. 1 and 2, one exemplary form of an automatic molding or mold-forming machine embodying the principles of the present invention is designated in its entirety by the reference numeral 10. This machine is shown in the drawings as being positioned upon the floor 12 or other supporting surface of a foundry or similar establishment.
Briefly, the mold-forming machine of the present invention involves in its general organization a fixed machine framework 14 which establishes a series of four quadrilaterally disposed areas or stations in the form of a main working area or station WS, a core-setting station CS, 21 mold-stripping station SS, and an idle or dwell station DS. The four stations are disposed 90 apart circumferentially about the central vertical axis of an intermittently indexable or movable turntable 16 having facilities associated therewith for loosely supporting four pairs of flask sections, each pair including an upper or cope flask section 18 and a lower or drag flask section 20. Such flask sections are illustrated in dotted lines in FIGS. 1 to 3, inclusive, in the interests of clarity. The turntable 16 is indexable in 90 increments of rotary motion and, upon each indexing operation thereof, the pairs of flasks at each station are transferred bodily to the next adjacent station in the direction of rotation of the turntable, such direction being clockwise as viewed in FIG. 1.
During each turntable indexing operation, a pair of empty cope and drag flask sections 18 and 20 is transferred from the idle or dwell station DS to the main working station WS where the sections are operated upon by automatic flaskhandling mechanism in a cyclic manner to the end that they are first brought into operative engagement with a pattern-carrying match plate 22 by a clamping operation, the two flask sections are then simultaneously filled with prepared molding sand by a blow operation which compacts the sand in a preliminary manner in the mold cavities in the cope and drag flask sections, the sand in the two flask sections 18 and 20 is then further compacted about the pattern on the match plate 22 by a squeeze operation, and the flask sections are thereafter separated from the match plate 22 by a pattern draw operation in order to release them for transfer to the core-setting station CS with the compacted sand therein, while leaving the match plate 22 with its associated pattern in its normal position at the working station WS. These various automatic flaskhandling operations which are performed upon the cope and drag flask sections 18 and 20 at the working station WS are schematically illustrated in FIGS. 12 to 21, inclusive, and will be described in detail subsequently when the operation of the machine is set forth.
At the core-setting station CS, no automatic operations are performed on the two sandfilled and compacted flask sections 18 and 26), these two sections simply remaining in situ on the turntable while a core is manually positioned on the compacted sand in the lower drag section 20 as shown in FIG. 23, providing, of course, that such a core is required or desired. If no core is to be used, the coresetting station CS functions in the manner of an idle or dwell station, the filled and compacted cope and drag flask sections 18 and 20 merely awaiting a succeeding or second turntableindexing operation before transfer thereof bodily to the mold-stripping station SS.
At the mold-stripping station SS, the separated cope and drag flask sections 18 and 20, with the compacted sand therein, are again operated upon by automatic handling apparatus in a cyclic manner whereby a bottom board 24 (see FIGS. 2 and 24 to 33, inclusive) which underlies the two mold sections is caused to move upwardly and, in effect, functions as a lifting platen in order to effect closing of the two flask sections upon each other with consequent mating of the compacted sand mold parts therein to produce the completed composite sand mold which then engages a reaction platen 26 in a gentle manner so that further upward movement of the closed flask sections strips the flasks simultaneously from the assembled and boardsupported composite sand mold. After this stripping operation, the bottom board, upon lowering thereof, carries the assembled mold downwardly to an ejecting position within the mold-stripping station SS, while at the same time the empty cope and drag flask sections 18 and 20 are restored to their normal positions within such station, awaiting transfer to the idle or dwell station DS during the next indexing operation of the turntable 16. I
The automatic flask-handling functions which take place at the stripping station SS are schematically illustrated in FIGS. 24 to 32, inclusive, and they are correlated with cooperating functions which are performed by a botom board feeding and mold-ejecting mechanism 30, a portion of such mechanism appearing in FIG. 1 and the whole mechanism being disclosed in detail in FIGS. 34 and 35. This mechanism 30 functions in a cyclic manner to feed a single bottom board 24 (see FIG. 2) from a stack S (see FIG. 33) of such bottom boards into operative position at the moldstripping station SS during the time that the turntable 16 is being indexed for the purpose of bringing a pair of sand-filled and compacted cope and drag flask sections 18 and 20 into the stripping station SS, and also to eject a board-supported completed mold from the stripping station during the next succeeding turntableindexing operation and conduct the same to a region of discharge.
The successive indexing operations of the turntable which take place four times during each machine cycle are effected under the control of an hydraulicallypowered Geneva mechanism which is designated in its entirety by the reference numeral 32 in FIGS. 1, 3 and 4 and is driven by a conventional hydraulic Geneva actuator 33.
The flask-handling operations which take place at the main working station WS are effected under the control of an hydraulically-operable ram assembly 34 which cooperates with an upper platen assembly 35 (see FIGS. 2 and 12 to 22, inclusive). The flaskhandling operations which take place at the stripping station SS are effected under the control of an hydraulically-operable primary cylinder 36 (see FIGS. 1, 2 and 24 to 33, inclusive), as well as a set of four secondary cylinders 38 which likewise are hydraulically operated. The board-impelling operations which take place at the mold-stripping station SS are performed under the control of an hydraulically-operable ejecting cylinder 40 (see FIGS. 33 and 34).
The hydraulic circuitry and the associated electrical control circuitry by means of which there is effected automatic actuation of the various operating or actuating cylinders which perform flask-handling operations at the working station WS and the stripping station SS, the Geneva actuator 33 which drives the Geneva mechanism for turntableindexing purposes, and the ejecting cylinder 40 which pushes the mold-carrying bottom boards 24 from the stripping station SS, have not been disclosed or illustrated herein since a wide variety of them is capable of performing the necessary control functions. It is deemed sufficient for purposes of discussion or disclosure herein to point out the sequence of operations which is involved during the operation of the machine, as well as particular moments in the machine cycle at which such cylinders and other hydraulic mechanisms are supplied with motive fluid.
THE MACHINE FRAMEWORK The machine framework 14 appears only in FIGS. 1 to 3, inclusive, and has been omitted from the remaining views in the interests of clarity except for small fragments of the framework such as various vertical supporting standards or posts, stationary flask rests or supports and platensupporting brackets, etc. which are disposed in the working station WS and the moldstripping station SS for storage of the cope and drag flask sections 18 and while they are not actually being handled by the aforementioned flask-handling mechanisms. This machine framework 14 involves in its general organization a pair of relatively massive, laterally spaced, side supports 50 and 52 which are in the form of flat but thick castings of generally C-shape configuration, thus providing upper relatively narrow horizontal legs 54, lower relatively wide horizontal legs 56, and vertical connecting bight portions 58. Side bars 59 extend along the lower edge regions of the lower legs 56 of the side supports 50 and 52.
Extending forwardly from the lower legs 56 of the two side supports is a horizontal bottom frame including forwardly converging side bars 60 and a lower front end bar 62 between the front ends of the side bars. Similarly, extending forwardly from the upper legs 54 of the side supports 50 and 52 is a horizontal top frame including forwardly converging side bars 64 and a top front end bar 66 between the front ends of the lastmentioned side bars. The horizontal top frame directly overlies the horizontal bottom frame. The opposite ends of the lower front end bar 62 overhang the front ends of the forwardly converging side bars 60, and these overhanging portions have fixedly secured thereto vertical corner posts 68, the upper ends of which are fixedly secured to similarly overhanging end portions of the top front end bar 66 of the aforementioned top frame. Upper and lower intermediate transverse bars 70 and 72 extend horizontally between and are suitably secured to the two corner posts 68. The
posts 68, as well as the two relatively massive side sup ports 50 and 52, are mounted on steel floor pads 74.
Mounted on the two side supports 50 and 52 in the upper regions thereof is a sand magazine 75 which is supplied with processed foundry sand from a hopper 76 through the medium of a conventional shut-off gate mechanism 78. The function of the magazine, the hopper, and the gate mechanism will be set forth subsequently when the operation of the machine 10 is described in detail.
THE FLASK SECTIONS As previously stated, the functioning of the present match plate molding or mold-forming machine 10 is predicated upon the provision of four sets or pairs of flask sections, each pair including the aforementioned upper or cope flask section 18 and the lower or drag flask section 20. These paired sections travel in a circular path of movement under the control of the indexing movements of the turntable 16. Normally, at the commencement of any given machine cycle of operation, the flask sections of each pair are disposed at a position of rest at one of the four stations WS, CS, SS and DS and in vertically separated or spaced relationship with the cope flask section 18 overlying the drag flask section 20. At such time as the turntable 16 is actuated for indexing purposes, the thus paired flask sections at each station are transferred in an arcuate path of 90 extent to the next adjacent or following station with the four pairs of flask sections moving in a clockwise direction as viewed in FIG. 1 and as previously indicated. As will be set forth in greater detail presently, these transfer operations are made possible by the provision of an upper turntable spider 80 for supporting the four cope flask sections 18 and a lower turntable spider 82 for supporting the four drag flask sections 20. These spiders 80 and 82 constitute fixed components of the rotary turntable 16. The upper turntable spider 80 serves normally to support the four cope flask sections 18 in quadrilaterally and circumferentially spaced relationship, while the lower turntable spider 82 similarly serves normally to support the four drag flask sections 20 beneath and in vertical register with the associated cope flask sections. The specific nature of these two spiders 80 and 82 will be described subsequently when the character of the turntable 16 as a whole is described and it is deemed sufficient at present for a proper understanding of the nature of the two flask sections to state that the upper spider 80 embodies four radially extending spider arms having provision at their outer ends for supporting the associated cope flask sections 18, and the lower spider 82 embodies four similar radially extending spider arms having provision at their outer or distal ends for supporting the associated drag flask sections 20.
, The Upper Cope Flask Sections Referring now to FIGS. 5 and 8 of the drawings, each of the four upper or cope flask sections 18 is in the form of a cast metal, box-like and generally rectangular structure having opposed end walls and opposed side walls 92. These walls 90 and 92 slope upwardly and inwardly at a small angle so that each wall is of trapezoidal configuration. The upper and lower ends of the upper cope flask sections are open.
In the upper region of each upper cope flask section 18, each end wall 90 is provided with a horizontally elongated, laterally extending, suspension flange 94. The latter is of appreciable width and in the medial region thereof is a bushing-equipped pilot hole 96. The two pilot holes96 of each cope flask section are designed for cooperation with mating leader pins on the upper turntable spider 80, and these, as will be made clear presently, are for the purpose of insuring proper alignment of the cope flask section with the various actuating instrumentalities at the working station WS of the machine.
At positions near the opposite ends of the laterally extending suspension flanges 94 of each cope flask section 18 are pairs of vertical bolts 98 which extend downwardly below the level of the bottom rim of the flask section and are encompassed by helical compression springs 100. The upper ends of such springs abut against the end regions of the suspension flanges 94 and the lower ends of the springs are captured by washers 102 which bear against boltheads at the lower ends of the bolts. These compression springs function in a manner that will be set forth more in detail subsequently to separate the match plate 22 from the cope flask section 18 during the aforementioned pattern draw operation at the working station WS.
Each cope flask section 18 is further provided with a pair of additional bushing-equipped locating or pilot holes 104 and these are provided in lateral ears 105, one such ear being provided on one end wall 90 near the lower edge thereof and the other ear being similarly provided on the other end wall 90 but in offset relationship so that one of these ears appears in full lines in FIG. while the other ear appears in dotted lines. The two bushing-equipped pilot holes 104 cooperate with upstanding leader pins on the associated drag flask section 20 as will become apparent when the nature of such flask section is set forth presently.
The four walls 90 and 92 of each cope flask section 18 are lined with inner facings 106 (see FIGS. 5 and of elastomeric or other wear-resistant material, such walls being, therefore, of dual thickness. These walls are provided with a multiplicity of perforations 107 and each perforation has mounted therein a small cup-shaped sand screen unit 108 (see FIGS. llOand 11), the bottom wall of which is formed with a series of narrow parallel slits 109. The latter are of such small width that, during the blow operation of the machine, air may escape through the walls of the cope flask sections while the blown and compacted sand remains confined within the interior of such sections. This blow operation is performed through the open upper rim of each cope flask section 18.
The Lower Drag Flask Sections Referring now to FIGS. 7 and 8 of the drawings, each lower drag flask section is in the form of a cast metal, rectangular, box-like structure having upper and lower open rims and including a pair of opposed end walls 110 and a pair of opposed side walls 112. Such end and side walls slope upwardly and inwardly to the end that each drag flask section 20 assumes the same general tapered appearance as its previously described and associated cope flask section 18. The size of the rectangular open upper rim of each drag flask section is identical to the size of the rectangular open lower rim of the associated superjacent cope flask section 18 so that these two rims will mate with eachother during the flask-clamping operation which will be described hereafter. The four walls 110 and 112 of each drag flask section 20 are provided with perforations 114 which are similar to the perforations 107 in the walls and 92 of the cope flask sections 18. Each perforation 114 has associated therewith one of the screen units M8.
The end walls of each drag flask section 20 are provided with two lateral ears 116, there being one such ear on each end wall. These ears are laterally offset from each other and have fixedlymounted thereon upstanding leader pins 118 which are adapted to registervertically within the aforementioned pilot holes 104 in the lateral ears 105 on the lower edge portions of the end walls 90 of the cope flask section 18. Additional ears 120 on one of the side walls 112 of each drag flask section 20 are provided with bushing-equipped holes 122 (see FIG. 9) which are designed for cooperation with upstanding pilot pins on the ram 34 in a manner that will be made clear when the operation of the machine 10 is set forth.
Lateral flanges 124 on the end walls 110 of each drag flask section 20 are provided with bushing-equipped holes 126, the latter being designed for cooperation with depending leader pins on the match plate 22 in order properly to align the match plate and the subjacent drag flask section during the blow operation as will likewise be set forth subsequently. The holes 126 are dual-purpose holes and, in addition to being capable of mating engagement with depending leader pins on the match plate 22*, they are also capable of cooperation with upstanding leader pins which are provided on the turntable and determine the normal position of the drag flask section while it is supported on the turntable.
As best shown in FIG. 8, one of the end walls 110 of each drag flask section 20 is formed with an outwardly offset or displaced area 128 in which there is formed a horizontally elongated rectangular blow opening 130 through which aerated sand is blown during the blow operation when both flask sections 18 and 20 are simultaneously charged with sand. The shaded circles which appear within the confines of this blow opening 126 represent an inside view of the various sand screen units 108 which are disposed in the far side wall 1112 of the illustrated drag flask section. An elongated thin bridge strip 132 defines the lower boundary of the blow opening 130. It is held in position by screws and thus obviates the disadvantage incident to a corresponding thin wall strip in the original casting from which the drag flask section is made.
THE MATCH PLATE AND PATTERN The match plate 22 is shown in detail in FIG. 6 of the drawings and its functional relationship in the machine is illustrated in FIGS. 12 to 22, inclusive. This match plate is sometimes referred to in he foundry industry as a pattern plate and is in the form of a flat rectangular plate to the upper and lower sides of which there are suitably secured an upper or cope pattern part and a lower or drag pattern part 142. The upper surface of the match plate 22 is designed for contact with the lower open rim of the superjacent box-like cope flask section 18 during the blow and squeeze operations of the machine at the working station WS, while the lower surface of said match plate is similarly designed for contact with the upper open rim of the subjacent boxlike drag flask section 20 during such blow and squeeze operations. When this sealing relationship is attained,
the side walls 92 and end walls 90 of the superjacent cope flask section 18, in combination with the upper surface of the match plate 22, establish a cope flask cavity 144 (see FIG. 16) which, during the blow operation, becomes filled and compacted with sand as shown in FIG. 17. Additionally, the side walls 112 and end walls 110 of the subjacent drag flask section 20, in combination with the lower surface of the match plate 22, establish a drag flask cavity 146 which likewise is adapted to become filled and compacted with sand during the blow operation.
Four bushing-equipped pilot holes 148 are provided in the four corners of the match plate 22 and are designed for cooperation with four upstanding pilot pins 150 (see FIG. 2). The latter are provided on a fixed match plate supporting bracket 152 (see also FIG. 21) which is mounted on the two side supports 50 and 52 of the machine framework and projects into the working station WS. This bracket 152 includes a pair of rearwardly and horizontally extending parallel arms 154 which are adjacent to the path of travel of the flask sections 18 and 20 as the latter move into the working station WS, and which are maintained spaced from the side supports 50 and 52 by means of inwardly extend- .ing supporting bars 156.
Normally, the match plate 22 rests by gravity loosely upon the two parallel arms 154 of the supporting bracket 152. It is, however, adapted to be lifted vertically from said arms by the subjacent drag flask section 20 during flask-handling operations at the working station WS under the control of the ram 34 as will be described in detail presently.
The vertically extending pins 158 are fixedly connected to and depend from the match plate 22 near the side edges thereof and midway between the end edges of the match plate, and they are designed for cooperation with the aforementioned bushing-equipped holes 126 in the ears 124 on the sides of the subjacent cope flask section 20 for match plate and flask alignment purposes as previously set forth.
Still referring to FIG. 6, and additionally to FIG. 8, the match plate 22 is provided with a series of four holes 160 near the corners thereof, these holes being designed to accommodate and cooperate with the lower head-equipped ends of the aforementioned bolts 98 which are carried by the superjacent cope flask section 18 at such time as the lower open rim of such flask section is brought into engagement with the upper side or surface of the match plate during the flask-clamping operation at the working station WS of the machine. The diameter of these holes 160 is such that the heads of the bolts 98 may pass therethrough while the washers 102 which are loosely and slidably mounted on the bolts may not pass through such holes. Therefore, when flask-clamping operations are in progress, the springs 100 which surround the bolts 98 are placed under compression and, thereafter, after the sand-compacting or squeeze operation has been completed and clamping pressure is relieved during the push-out operation, these springs assist in separating the match plate from the bottom side of the cope mold part by overcoming any adhesive bond which may exist between the match plate and the cope mold part or the cope pattern part 140 and said cope mold part.
THE FLASK-SUPPORTING TURNTABLE AND ITS DRIVE MECHANISM As best shown in FIGS. 1 to 3, inclusive, the turntable 16 is supported for rotation about a vertical axis in the central region of the machine framework from a central supporting pedestal from which there projects upwards a rotatable cylindrical column 172. On such column, there is fixedly secured a tubular turntable hub 174 having a cylindrical inside surface and a square outside surface, the surface presenting four vertical planar side surfaces. Secured to these four planar side surfaces of the hub 174 by way of Allen head-type bolts 175 or the like are an upper series of rectangular hub plates 176 and a lower series of rectangular hub plates 177. Such hub plates, in effect, constitute supporting brackets for a plurality of radially extending spider arms which constitute components of the aforementioned upper and lower turntable spiders 80 and 82. These turntable spiders include a series of four radially extending upper arms 180 and a similar series of four radially extending lower arms 182. The latter spider arms are in vertical register with the former arms, or stated otherwise, the lower spider arms 182 directly underlie and extend parallel to the upper spider arms 185 and are spaced downwardly therefrom as clearly shown in FIG. 2. Upper and lower bearing assemblies 184 and 186 on the machine framework 14 and the pedestal 170, respectively, receive the opposite ends of the column 172 and thus maintain the turntable as a whole in its erect vertical position. The upper bearing assembly 184 is in the form of a ball bearing flange block and is mounted on a plate 188 on the central upper portion of the framework 14 of the machine 10.
The Upper Cope Flask-Supporting Spider Referring now to FIG. 9a of the drawings, the four radial spider arms 180 of the upper turntable spider 80 are identical and, therefore, a description of one of them will suffice for them all. Each spider arm 180 includes one of the aforementioned rectangular hub plates 176 and from such hub plate there project radially outwards two parallel side bars 190, the inner ends of such side bars being welded to their respective or associated hub plate 176. The outer or distal ends of the two side bars 190 serve to support a generally T-shaped bracket 192 which consists of an intermediate leg 194, a long outer T-head 196, and a short inner T-base 198. Welded or otherwise secured to the opposite ends of the long outer T-head 196 and short inner T'base 198 are two supporting plates 200, each plate having associated therewith an upstanding leader pin 202. Each supporting plate 200 serves normally to support one end of an associated cope flask section 18, such section thus having its opposite ends effectively resting in chordal fashion on the outer ends of a pair of adjacent radially extending upper arms 180 with the main body portion of the flask section being disposed in the general plane of the upper turntable spider 80 between adjacent upper arms 180 as shown in dotted lines at four places in FIG. 1.
The Lower Drag-Supporting Spider Referring now to FIGS. 1, 2, and 9b of the drawings, the lower turntable spider 82 is similar to the previously described upper turntable spider 80 which overlies it, the lower rectangular hub plates 177 serving to support the radially extending lower arms 182 of said lower turntable spider 82. Said lower arms 182 are similar to the upper spider arms 180 and, therefore, in order to avoid needless repetition of description, similar reference numerals with a prime suffix are applied herein to the component parts of the spider arms 182 which have corresponding counterparts as compared to the upper spider arms 180. Otherwise, it is deemed sufficient for an understanding of the nature of the lower spider arms 182 to point out the differences which exist between these lower spider arms and the upper spider arms 180.
The side bars 190 of the lower spider arms 182 are slightly wider in a vertical direction than the upper spider arms 180 and the supporting plates 200 which are associated therewith and serve to support the drag flask sections are welded along the lower edges of the longer outer T-heads 196 and the short inner T-bases 198' instead of along the upper edges thereof. This does not change the elevation of the drag flask sections 20 when they are supported by the plates 200' in view of the fact that the lateral flanges 124 on the end walls 110 of the cope flask sections 20 are positioned lower on said end walls than the lateral flanges 94 on the end walls 90 of the cope flask sections 18.
Another difference between the lower spider arms 182 and the upper spider arms 180 resides in the fact that the upstanding leader pins 202' on the supporting plates 200' of the lower turntable spider 82 are not in vertical alignment with the upstanding leader pins 202 on the supporting plates 200 of the upper turntable spider 80. The distance between the leader pins 202' on adjacent lower spider arms 182 is less than the distance between the leader pins 202 on adjacent upper spider arms 180. The reason for this is that the leader pins 202 are designed for cooperation with the bushingequipped holes 126 which are provided in the lateral flanges 124 on the end walls 110 of the drag flask sections 20 and which also cooperate with the downwardly projecting or depending pins 158 on the match plate 22. Insofar as the leader pins 202' are concerned, their spacing must, therefore, be equal to the spacing of the pins 158 on the match plate.
An important difference between the lower turntable spider 82 for supporting the drag flask sections 20 and the upper turntable spider 80 for supporting the cope flask sections 18 resides in the provision of pairs of anti-friction wear liners 210 which are disposed in opposed relationship on the inner sides of the parallel side bars 190' of the lower spider arms 182. These antifriction wear liners define therebetween radially extending guide slots and cooperate in a manner that will be set forth subsequently with the aforementioned Geneva mechanism 32 for turntableindexing purposes.
Additional components on the lower turntable spider 82 which are not present on the upper spider 80 are a series of four turntable-stabilizing and locating sockets 212. The latter are formed in four brackets 214 which are fixedly mounted on the outer surfaces of the long outer T-heads of the T-shaped brackets 192 at the distal ends of the lower spider arms 182. These sockets are thus disposed 90 apart on the turntable and are designed for successive cooperation with a vertically slidable, hydraulically-operated shot pin 216 (see FIGS. 1 and 2) to stabilize the turntable in between indexing operations in a manner that likewise will be made clear during a subsequent discussion of the Geneva mecha- 16 nism 32 and the manner in which such mechanism causes turntable-indexing operations. The shot pin 216 is spring-biased in such manner that it is urged up wardly.
The Turntable Drive Mechanism As previously stated, the turntable 16 is adapted to be periodically indexed throughout an angle of under the control of the Geneva mechanism 32 and its drive motor or actuator 33. This Geneva actuator 33 (see FIGS. 1 to 4, inclusive) may be of any conventional construction, there being several forms of commercially available actuator units which are capable of use in connection with the molding machine 10. One such unit is manufactured and sold by HydraPower, Inc. of Wadsworth, Ohio, and is designated as Model No. M. Briefly, the Geneva actuator 33 embodies four hydraulic cylinders 221 which are arranged in opposed pairs, each pair controlling the longitudinal sliding movement of an internal rack (not shown). A' central pinion (likewise not shown) meshes with both racks and carries a vertical oscillatory output shaft 222 which, in the present case, is capable of rotation in opposite directions about an angle of 90. The Geneva actuator 33 is mounted on a supporting bracket 224 which is secured by bolts 225 (see FIG. 4) to the side support 52 in such positional relationship that the actuator 33 underlies the peripheral or circumferential sweep of the arms 182 of the lower turntable spider 82 as clearly shown in FIG. 3 of the drawings. Mounted on the oscillatory output shaft 222 is a Geneva drive arm 226, the distal end of which serves to support an hydraulic cylinder unit 228 by means of which a springbiased, vertically extending, shot pin 230 with a roller 232 is selectively projected into and withdrawan from the radially wxtending confining spaces or guide slots which exist between the spaced apart anti-friction wear liners 210 of the lower spider amrs 182.
It will be understood, of course, that each 90 turntable indexing operation is effected by causing the Geneva drive arm 226 to swing from thefull-line position in which it is illustrated in FIG. 1, in a counterclockwise direction as seen in this view through an angle of 90 to the end that the shot pin 2311 and its roller 232 (which normally remain in their upwardly projected, spring-biased position) will ride radially inwardly in the associated guide slot which is provided by the adjacent pair of anti-friction wear liners 210, thus causing the turntable 16 to rotate in a clockwise direction by a simple harmonic motion. At the completion of the drive stroke of the drive arm 226 as shown in dotted lines in FIG. 1, the turntable 16 will have been indexed throughout an angle of exactly 90 thus causing it to shift each pair of flask sections 18 and 20 on the turntable 16 from its present station to the next adjacent or following station for flask-handling or other operations at such latter station. At the completion of each turntable-indexing operation, the hydraulic cylinder unit 228 is energized to withdraw the shot pin 230 with its roller 232 from the adjacent radial guide slot between the wear liners 211D and, during such time as the hydraulic cylinder unit 228 remains energized, the hydraulic Geneva actuator 33 is actuated in a reverse direction to restore the drive arm 226 to its full-line normal position as shown in FIG. 1, after which the hydraulic cylinder unit 228 is deenergized in order to allow the shot pin 230 with its associated roller 232 to be projected into the guide slot which exists between the anti-friction wear liners 210 of the next adjacent lower spider arm 182.
In order to stabilize the turntable 16 in between indexing operations of the Geneva mechanism 32, and thus, insure proper flask section alignment with the flask-handling components at the working station WS, the aforementioned shot pin 216 is projected at the completion of each indexing operation into the socket 212 at the distal end of the adjacent lower spider arm 182 where it remains until the commencement of the next succeeding indexing operation. As best shown in FIG. 2, the aforementioned shot pin 216 is extensible and retractible under the control of a cylinder 240 which is secured to the outer side of the side support 52 of the machine framework 14. Thus, immediately before a given indexing operation takes place, the cylinder 240 is energized to retract the roller-equipped shot pin 216. This retraction of said shot pin remains effective duringthe entire indexing movement of the turntable 16, after which the cylinder 240 is deenergized so as to allow the spring-biased shot pin 216 to enter the socket2l2 at the distal end of the succeeding lower spider arm 182 which has been brought into vertical alignment with such shot pin.
THE HYDRAULlCALLY-OPERABLE RAM ASSEMBLY The hydraulically-operable ram assembly 34 appears in outline in FIG. 2 and in detail in FIGS. 12 to 22, inclusive. This ram assembly is supported on a platform 242 (see FIG. 2) which extends between the horizontally, spaced apart, side bars 59 of the machine framework 14. Such platform supports the ram assembly so that it is centered within the working station WS with the result that it is properly aligned with the various flask-handling and other instrumentalities at this statron.
As shown in FIG. 12 and also subsequent views, the ram assembly 34 embodies a vertically extending, central lift plunger 250 on the upper end of which there is fixed, mounted or secured a lower drag section squeeze plate 252. The lift plunger 250 is surrounded by a fixed, vertically extending, cylinder body 254 within which the plunger operates with a vertical sliding action. The upper end of the cylinder body 254 is open and the lower end is provided with a closure wall 256. As shown in FIG. 12, an oil inlet port 258 is formed in the cylinder body 254 in the vicinity of said closure wall 256. The lower drag squeeze plate 252 is formed with a downwardly extending tubular floating plunger 260 which is surrounded by an outer lift sleeve 262. The latter is slidable vertically to a small extent relatively to the floating plunger 260 and is provided with an upper, vertical, continuous rectangular wall 264 and also an inner, horizontal, upwardly facing, ledge-like surfade 266 on which the lower drag section squeeze plate 252 normally seats or rests as shown in FIGS. 13 to 17, inclusive. When oil under pressure is supplied to the cylinder body 254 through the port 258, the lift plunger 250 together with the floating plunger 260 and the lift sleeve raises.
The upper rectangular wall 264 constitutes a socalled drag upset and is designed for engagement with the lower open rectangular rim of the superjacent drag flask section during flask-closing, sandsqueezing, and other mold-forming operations and,
therefore, this wall 264 and the lift sleeve 262 may be regarded as constituting a lower drag flask section extension, and it will sometimes be referred to hereinafter as such. The central lift plunger 250 functions to control the absolute movements of the lower drag section squeeze plate 252 and the intermediate tubular floating plunger 260. The lift sleeve in response to upward movement of the lift plunger 250 effectively engages and moves the superjacent drag flask section 20 during handling of the various pairs of flask sections at the working station WS.
An upper oil port 267 is formed in the upper region of the lift sleeve 262 and leads to the upper end of an annular chamber 268 which exists between said lift sleeve and the tubular floating plunger 260, and a lower oil port 269 is formed in the lower region of the lift sleeve 262 and leads to the lower end of said annular chamber 268.- The region of the tubular floating plunger 260 between the two oil ports 267 and 269 is enlarged in order to form a piston 270 which operates in an internal recess 272 in the wall of the lift sleeve 262 as well as in the aforementioned chamber 268. The ports 267 and 269 are adapted to be connected by flexible oil lines (not shown) to a source of oil under pressure with the flow of oil through such lines being regulated by suitable control valves (also not shown). When oil under pressure is admitted into the lower end of the chamber 268 via the lower oil port 269 while the upper oil port 267 is in a vented condition, the lift sleeve 262, together with the rectangular wall 264 (drag upset), moves downwards with respect to the tubular floating plunger 260 and the lift plunger 250, and when oil under pressure is introduced into the upper end of the annular chamber 268 by way of the upper oil port 267 and the lower oil port 269 is in a vented condition, the
lift sleeve 262, together with its upper vertical continuous rectangular wall 264, moves upwards with respect to said tubular floating plunger 260 and the lift plunger 250.
The operation of the ram assembly 34, i.e., the specific and relative movements of the central lift plunger 250, the drag flask section control plunger 260 and the lift sleeve 262, which take place during the machine cycle will be described in detail when the operation of the sand mold-forming machine 10 is set forth in detail subsequently. However, for the present, it is deemed sufficient to state that the admission of oil under pressure to the port 258 in the lower end of the stationary cylinder body 254 will serve forcibly to slide the lift plunger 250 upwardly, thus positively forcing upwards the lower drag squeeze plate 252 and the floating plunger 260. Such upward movement of the lift plunger 250 will impart upward movement to the aforesaid drag section extension (lift sleeve 262 and drag upset or rectangular wall 264) by reason of the column of oil which is trapped within the upper end of the chamber 268 between the floating plunger 260 and the lift sleeve 262. The admission of oil under pressure through the port 269 will force the lift sleeve 262 downwardly with respect to the tubular floating plunger 260 as previously pointed out. It should be borne in mind when the operation of the machine is set forth in detail subsequently, that when either oil port 267 or 269 is employed as an inlet port to admit oil to the chamber 268, the other port will function in the manner of an outlet port to allow oil to escape from said chamber.
As shown in FIG. 2 of the drawings, the lift sleeve 262 of the ram assembly 34 carries a horizontal bar 274 from which there project upwardly a pair of pilot or leader pins 276. The latter are designed for cooperation with the aforementioned holes 122 which are associated with the superjacent drag flask section as shown in dotted lines in FIG. 1. When the leader pins 276 are shifted upwards into the holes 122, the superjacent drag flask section 20 is held against lateral displacement with respect to the ram assembly 34.
THE UPPER PLATEN ASSEMBLY As previously stated, the ram assembly 34 cooperates with the upper platen assembly 35 (see FIG. 2) during flask-handling operations at the working station WS and particularly during the squeeze operation wherein the lower squeeze plate 252 compresses the previously compacted sand in the associated cope and drag flask sections as shown in FIGS. 17 and 18 of the drawings. This upper platen assembly 35 includes a fixed or stationary platen proper or upper squeeze plate 280 which is supported in the upper region of the machine framework 14 and normally is encompassed by a rectangular cope upset frame 284. The lower rim of said cope upset frame is designed for edge-to-edge engagement with the upper rim of the subjacent cope flask section 18 during the squeeze operation as shown in FIG. 18. The cope upset frame 284 is vertically slidable on a pair of vertically extending guide rods 286 (see FIG. 2), and immediately after the squeeze operation, two doubleacting hydraulic cylinders 288 having verticallyslidable plungers, 290 associated therewith are adapted 'to be actuated to restore the cope upset frame 284 to its upper retracted position as shown'in FIGS. 12, 19, 20, 21 and 22. When the cylinders 288 are reversely or oppositely actuated, the plungers 290 slide downwards with the result that the cope upset frame 284 is shifted downwards into the position in which it is shown in FIGS. 13 to 17, inclusive.
THE FLASK-STRIPPING MECHANISM The stripping mechanism which is disposed at the mold-stripping station SS is illustrated in FIGS. 1, 2, and 24 to 32, inclusive. It is adapted effectively to receive in a separated condition a pair of sand-filled and compacted cope and drag flask sections 18 and 20 after such pair has been moved throughout a 90 are from the core-setting station CS, to bring the two separated flask sections together in order to assemble or unite the cope and drag sand mold parts (designated cm and dm in the drawings) which are contained in the flask sections 18 and 20, respectively, to provide a bottom board support for the assembled mold, and finally to push the assembled flask sections bodily as a unit from the assembled composite sand mold cm and dm, leaving the latter resting on the bottom board.
During the following discussion of the flask-stripping mechanism at the stripping station SS, it should be borne in mind that this mechanism as disclosed in FIGS. 24 to 32 is purely schematic in its representation and the disclosure of these views does not necessarily correspond to the structural details of FIGS. 1 and 2.
Referring now particularly to FIGS. 1 and 2 of the drawings, the flask-stripping mechanism involves in its general organization a pair of vertical guide rods 300, the latter being disposed in spaced apart relationship transversely of the stripping station SS and also being supported at their upper and lower ends by angle brackets 302 and 304 which are fastened, respectively, to the intermediate transverse bars 72 and of the machine framework 14. Slidable vertically on the guide rods 300 is a stripping carriage 306 which comprises a horizontal platform 308. The latter is provided at its inner corners with two tubular guide sleeves 310 which encompass the guide rods 300 and slide vertically thereon. The carriage 306 is vertically shiftable under the control of a vertically slidable plunger 311 which is associated with the aforementioned hydraulicallyoperable primary stripping cylinder 36. The carriage 306 further includes or comprises on the upper surface of the platform 308 a pair of spaced apart, horizontally extending skids 312, the latter being adapted successively to receive thereon the aforementioned bottom boards 24 (see FIG. 33) as they are fed thereto from the stack S under the control of the ejector mechanism 30. The skids 312 serve to maintain the boards 24 in an elevated position above the effective level of the platform 308. Additionally, the carriage 306 serves to support the aforementioned four secondary flask-stripping cylinders 38. The latter depend below the platform 308 of the carriage 306 and have vertically-slidable stripping plungers 316 which project vertically upwardly above the effective level of said platform and which, normally, in their retracted position, underlie the effective level of the skids 312. Upon energization of the secondary cylinders 38, the plungers 316 are adapted to be projected upwardly to the position wherein they are illustrated in FIGS. 28, 29 and 30 so that the upper or distal ends thereof are disposed above the level of the skids 312 for the purpose of engaging and raising .the superjacent cope flask section 18 for flask-stripping operations as will be made clear presently when the operation of the machine is described hereafter.
The carriage 306 is shiftable vertically upwardly on the guide rods 300 from the lowered position in which it is shown in FIGS. 2 and 24 wherein the bottom board 24 is disposed an appreciable distance below the level of the superjacent drag flask section 20 which has been brought into position at the stripping station SS by the lower turntable spider 82 of the turntable 16 in order that such bottom board will pick up the drag flask section 20 and force it upwardly against the superjacent cope flask section 18 and then carry both flask sections further upwardly so that the thus assembled mold parts cm and dm within the two flask sections will be projected against the aforementioned stationary reaction platen 26 and held there while the plungers 316 of the cylinders 38 perform their flask-stripping operation. The platen 26 is fixedly mounted on a bracket 318 (see FIG. 2) which is suitably mounted on the side bars 64 of the machine framework 14. Such vertical movement of the carriage is effected under the control of the aforementioned hydraulically-operable primary cylinder 36, the latter being fixedly secured to the upper portions of the corner posts 68 of the framework 14 by means of a clamping bracket 319.
THE BOTTOM BOARD FEEDING AND MOLD-EJECTING MECHANISM Referring now to FIGS. 1, 33 and 34 of the drawings, the previously mentioned bottom board feeding and moldejecting mechanism 30 is in the vinicity of the stripping station SS and includes a bottom board supporting feed table 320 which is positioned on one side of the machine 10, and a mold-receiving discharge table 322 on the opposite side of the machine, both tables straddling said stripping station of the machine as shown in FIGS. 1, 3, 33 and 34. The table 320 is provided with legs 324 and serves to support a pair of spaced apart, horizontally extending skid rails 326 at substantially the same horizontal level as that of the skids 312 on the platform 308 of the vertically movable carriage 306 when the latter is in its lowermost position.
The table 320 of the mechanism 30 serves to support a stacking frame 328 for the previously mentioned stack S of bottom boards 24, and also to support the hydraulically-operable ejecting cylinder 40. The cylin der 40 is secured to the outer or far end of the table 320 by a bracket 332 and is positioned so that a horizontally extending and slidable pick-off plunger 334, which is associated therewith and normally assumes the retracted position in which it is shown in FIG. 33, is adapted, when extended in successive actuations, to engage the lowermost bottom board 24 in the stack S and impel the same inwardly along the skid rails 326 and ultimately onto the skids 312 on the platform 308 of the carriage 306 at the stripping station SSv The outer end of the plunger 334 of the cylinder 40 carries two spaced apart rollers 335 which ride on two horizontal guide rails 336 which are carried by and suspended from the feed table 320. The rollers 335, while traveling on the guide rails 336, establish the proper level for the plunger 334 so that only the lowermost bottom board 24 in the stack S will be engaged at the time the plunger is projected in response to actuation of the cylinder 40. i
It is to be noted that during any given projection of the plunger 334, a bottom board 24 is pushed from beneath the stack S to a dwell position where it remains momentarily on the skid rails 336. Thereafter, during the next succeeding projection of the plunger, a second bottom board is pushed from beneath the stack so that it engages the first board and causes the latter to be pushed forwardly or inwardly onto the aforementioned skids 312. After the first board has performed its function of raising the associated cope and drag flask sections 18 and 20 and the other flask-handling operations at the stripping station SS have been completed, thus resulting in the positioning of the assembled composite sand mold on the first bottom board 24 as shown in FIG. 33, a third bottom board is pushed from beneath the stack S and the second board then engages the first board and slides the same from'the skids 312 onto the discharge table 322 which, as previously pointed out, is positioned alongside the machine 10. At this point, the second board is positioned on the carriage 306 in readiness for the similar operations at the station SS. From the discharge table322, the bottom boards 24 with the assembled composite sand molds thereon may be manually or otherwise successively removed.
OPERATION OF THE MACHINE General Considerations In reciting the operation of the present sand moldforming machine, since the four paired cope and drag mold flask sections 18 and 20 shift simultaneously in a circular path throughout an arc of 90 during each indexing operation of the turntable 16, with each pair of flask sections returning to its original position at the end of a complete machine cycle, it will be considered that one complete machine cycle involves four such indexing operations with a complete revolution of each pair of flask sections taking place about the central vertical axis of the turntable. Considering the machine at the time any given run of composite sand molds is to be effected and with four pairs of empty flask sections in the machine at the four stations WS, CS, SS and DS, the first quarter cycle involves handling of a pair of flask sections at the working station SS to the point where the sand blow operation is effected, and then further handling of such sections to the point where the completed cope and drag sand mold parts are contained in the spider-supported cope and drag flask sections 18 and 20, followed by the shifting of the pair of sand -filled and compacted cope and drag flask sections 18 and 20 from the working station WS to the coresetting station CS, the shifting of a second pair of initially empty flask sections from the core-setting station CS to the stripping station SS, the shifting of a third pair of initially empty flask sections from the stripping station SS to the idle or dwell station DS, and the shifting of a fourth pair of initially empty flask sections from the dwell station DS to the working station WS to replace the first pair of flask sections which were transferred in a sand-filled and compacted condition from such station to the core-setting station CS.
The second quarter cycle of machine operation involves the production of a second pair of mold parts at the working station WS followed by transfer thereof to the core-setting station CS; the manual setting of a core at the core-setting station by placing the core on the formed drag mold part then at such station, and the transfer of the mold parts with the set core to the stripping station SS; the transfer of an initially empty pair of mold sections from the moldstripping station SS to the dwell station DS; and the transfer of an initially empty pair of mold sections from the dwell station DS to the working station WS.
The third quarter cycle of machine operation involves the production of a third pair of cope and drag mold parts at the working station WS and their transfer to the coresetting station CS: the transfer of the second pair of juxtapositioned core-equipped mold parts and their respective separated flask sections from the coresetting station to the stripping station; the assembly of a pair of mold parts, the placement of the assembled mold on a bottom board at the stripping station, the ejection of the bottom board and mold from the machine at the stripping station; and the transfer of a pair of empty flask sections to the dwell station; and the transfer of a pair of emtpy flask sections from the dwell station DS to the working station WS.
The fourth quarter of the machine cycle involves the production of a fourth pair of mold parts at the working station WS and transfer thereof to the core-setting station CS; the setting of a core in the juxtapositioned third pair of mold parts at the core-setting station and the transfer thereof to the stripping station SS; the assembly of the second pair of mold parts; the ejection of the second mold on a bottom board at the stripping station, and the transfer of the empty flask sections to the dwell station; and the transfer of empty flask sections from the dwell station to the working station WS.
Because the machine commenced its operation with four pairs of empty cope and drag flask sections 18 and 20, only two completed composite molds were dis-

Claims (18)

1. In a cyclicly-operable mold-forming machine for simultaneously producing cope and drag mold parts and thereafter assembling them to produce a composite mold, in combination, a framework establishing a working station where the mold parts are produced and a stripping station where said mold parts are assembled, a fixed match plate support located at said working station, a pattern-carrying match plate associated with said support, upper and lower squeeze plates positioned above and below said support, an upper reaction platen and a lower lifting platen located at said stripping station, a flask carrier having a pair of upper and lower vertically spaced and relatively fixed flask supports, cope and drag flask sections normally and removably resting by gravity on said flask supports respectively and positioned in spaced apart relation, said carrier being movable between a first position at said working station wherein said flask supports straddle the match plate support and a second position at said stripping station wherein said flask supports are interposed between said platens, means located at said working station and operative when the carrier is in its first position to lift the match plate and the flask sections vertically from their respective supports, to assemble said match plate and flask sections to define upper and lower flask cavities on opposite sides of the match plate, to introduce sand into such cavities and compress the same to produce cope and drag mold parts within the flask sections, and to restore the match plate and also the flask sections with the mold parts therein to their normal positions on their respective supports, means located at said stripping station and operative when the carrier is in its second position to move said flask sections and platens relatively to one another so as to lift the flask sections vertically from their respective supports, to assemble said flask sections upon each other in order to establish the composite mold, to force the mold from the flask sections, and to restore the empty flask sections to their normal positions on their respective supports, and means for successively moving said carrier between said first and second positions.
2. In a cyclicly-operable mold-forming machine, the combination set forth in claim 1 and wherein said carrier is in the form of a rotary turntable mounted on said framework midway between said stations, said flask supports are eccentrically disposed on and movable bodily with said turntable, and said means for successively moving said carrier between its first and second positions comprises an intermittent unidirectional driving mechanism for the turntable.
3. In a cyclicly-operable mold-forming machine, the combination set forth in claim 1, and wherein said carrier is in the form of a rotary turntable mounted on said framework midway between said stations, said flask supports are eccentrically disposEd on and movable bodily with said turntable, said framework further establishes a core-setting station and a dwell station, the working, core-setting, stripping and dwell stations are quadrilaterally disposed about said turntable, and said means for successively moving the carrier is in the form of an indexing mechanism which is effective during each actuation thereof to rotate the turntable unidirectionally throughout an angle of 90* whereby said flask supports, in moving from the working station to the stripping station, are caused to dwell at the core-setting station in order to permit a core to be inserted between the separated cope and drag mold parts, and in moving from the stipping station to the working station are caused to dwell at the dwell station.
4. In a cyclicly-operable mold-forming machine, the combination set forth in claim 1 and wherein said carrier is in the form of a rotary turntable mounted on said framework, said flask supports are eccentrically disposed on and movable bodily with said turntable, said framework further establishes a core-setting station, said working station, core-setting station and stripping station are circumferentially spaced about said turntable, and said means for successively moving the carrier is in the form of an indexing mechanism which is effective upon successive actuations thereof to move said carrier from the working station to the core-setting station, from the core-setting station to the stripping station, and from the stripping station back to the working station.
5. In a cyclicly-operable mold-forming mechanism for simultaneously and successively producing cope and drag mold parts and thereafter assembling such parts to produce a composite mold, in combination, a framework establishing a working station where the mold parts are produced and a stripping station where said mold parts are assembled, a match plate support located at said working station, a pattern-carrying match plate resting normally on said support, and upper and lower squeeze plates above and below said support, an upper reaction platen and a lower lifting platen located at said stripping station, a rotatable turntable mounted on said framework midway between said stations, a plurality of pairs of upper and lower vertically spaced and relatively fixed flask supports eccentrically mounted on said turntable in circumferentially spaced relationship, cope and drag flask sections normally resting by gravity respectively on each pair of upper and lower supports, means for successively indexing said turntable throughout a predetermined degree in order to bring one pair of flask supports into vertical register with said match plate at said working station with the flask sections thereon straddling said match plate and simultaneously to interpose another pair of flask supports between said platens at the stripping station, means at said working station and operative in between turntable-indexing operations to move said match plate, the flask sections which straddle the same, and the squeeze plates relatively to one another and in such manner as to lift said match plate and flask sections vertically from their respective supports, to assemble said match plates and flask sections to define upper and lower flask cavities on opposite sides of the match plate, to introduce sand into such cavities and compress the same in the cavities to produce cope and drag mold parts within the flask sections, and to restore the match plate and flask sections with the mold parts therein to their normal positions on their respective supports, and means at said stripping station and effective in between turntable-indexing operations to move said flask sections and platens relatively to one another so as to lift the flask sections vertically from their respective supports, to assemble the flask sections with the mold parts thereon upon each other and thus establish a composite mold, to force the latter from the assembled flask sections, and to restore the empty flask sectiOn to their normal positions on their respective supports.
6. In a cyclicly-operable mold-forming machine, the combination set forth in claim 5 and wherein the pairs of upper and lower flask supports on the turntable are four in number and are disposed on the turntable in quadrilateral relationship, the indexing means for the turntable is effective during each indexing operation to rotate the turntable unidirectionally throughout an angle of 90*, and the working station and stripping station are disposed on opposite sides of the turntable in diametrically opposed relationship.
7. In a cyclicly-operable mold-forming machine, the combination set forth in claim 6 and wherein said turntable comprises a vertically disposed column, and vertically spaced upper and lower turntable spiders mounted on the column, the spiders include each a series of four radially diverging spider arms on which said flask supports are mounted, and each flask section extends in chordal fashion on, and bridges the distance between, two adjacent spider arms.
8. In a cyclicly-operable mold-forming machine, the combination set forth in claim 7 and wherein each flask support is provided with upstanding leader pins which project into pilot holes in associated relation with the corresponding flask sections for establishing precise circumferential and radial positioning of the flask sections on their respective turntable spiders.
9. In a cyclicly-operable mold-forming machine, the combination set forth in claim 7 and wherein the means for successively indexing said turntable comprises a Geneva drive mechanism which embodies a Geneva actuator mounted on said framework adjacent to the periphery of the turntable and having a vertically disposed oscillatory output shaft, and a Geneva arm having its proximate end fixedly secured to said output shaft and provided at its distal end with a retractable and extensible shot pin which is adapted, when extended, to be successively engageable with a series of elongated radially extending guide slots which are formed in said radially diverging spider arms of one of said turntable spiders, and the Geneva drive mechanism also embodies means for actuating said short pin.
10. In a cyclicly-operable mold-forming machine, the combination set forth in claim 9 and wherein the Geneva actuator of the drive mechanism underlies the plane of the lower turntable spider, and the guide slots are formed in the radially extending arms of said lower turntable spider.
11. In a cyclicly-operable mold-forming machine, the combination set forth in claim 10 and wherein each spider arm of the lower turntable spider includes a pair of parallel side bars having anti-friction liners on their opposed sides, the liners establish the guide slots in such spider arms.
12. In a cyclicly-operable mold-forming machine, the combination set forth in claim 10 and including, additionally, means at the distal end of each spider arm of the lower turntable spider establishing a turntable stabilizing socket, and an hydraulically-operable extensible and retractable shot pin movable mounted on the framework and adapted, when extended, selectively to enter one of said stabilizing sockets.
13. In a cyclicly-operable mold-forming machine for simultaneously producing cope and drag mold parts and thereafter assembling them to produce a composite mold, in combination, a framework establishing a working station where the mold parts are produced and a stripping station where said mold parts are assembled, a match plate support located at said working station, a pattern-carrying match plate associated with said support, upper and lower squeeze plates positioned above and below said support, an upper reaction platen and a lower lifting platen located at said stripping station, a flask carrier having a pair of upper and lower vertically spaced and relatively fixed flask supports, cope and drag flask sections normally resting or said flask supports respectively and positioned in spaced apart relaTion, said carrier being movable between a first position wherein said flask supports straddle the match plate support and a second position wherein said flask supports are interposed between said platens, means located at said working station and operative when the carrier is in its first position to establish successive stages of relative movement between the match plate, the flask sections, and the squeeze plates including a first stage wherein the drag flask section and the lower squeeze plate move upwardly so that said drag flask section, match plate and cope flask section are lifted successively from their respective supports and are assembled upon one another to define cope and drag flask cavities into which molding sand is blown, a second stage wherein the lower squeeze plate alone moves upwardly and effectively compresses the sand in said cavities against the upper squeeze plate in order to produce cope and drag mold parts, and a third stage wherein the lower squeeze plate and said flask sections with the mold parts therein move downwardly to restore the cope flask section, the match plate and the drag flask section successively to their respective supports, and means located at said stripping station and operative when the carrier is in its second position to establish successive stages of relative movement between the flask sections and the platens including a first stage wherein the lifting platen moves upwardly so that the drag flask section with its contained drag mold part and the cope flask section with its contained cope mold part are lifted successively from their respective supports and assembled upon each other in order thereby to assemble the composite mold and clamp the latter between the lift and reaction platens, a second stage wherein the flask section are moved upwardly to strip the same from the clamped mold, and a third stage wherein said lifting platen, flask sections and mold move downwardly so as to restore the cope and drag flask sections in an empty condition to their respective supports and carry the mold downwardly while resting on said lifting platen to a level below the drag flask section for lateral ejection from the stripping station.
14. In a cyclicly-operable mold-forming machine, the combination set forth in claim 13 and wherein said lower lifting platen at the stripping station is in the form of a bottom board, and there is provided in the vicinity of said stripping station means for pushing said bottom board, together with the mold thereon laterally out of the stripping station.
15. In a cyclicly-operable mold-forming machine, the combination set forth in claim 14 and wherein the means at the stripping station for effecting relative movement of the flask sections and platens embodies a vertically shiftable platform on which the bottom board rests, and the means for pushing the bottom board laterally out of the stripping station comprises an hydraulically-operable cylinder and plunger assembly positioned adjacent to the stripping station and including a plunger engageable with said bottom board when the latter is in its terminal lowermost position.
16. In a cyclicly-operable mold-forming machine for simultaneously and successively producing cope and drag mold parts and thereafter assembling such parts to produce a composite mold, in combination, a framework including a pair of laterally spaced sides which are generally C-shaped in configuration and presents horizontal upper and lower legs and vertical connecting bight portions, the region existing forwardly of the bight portions and between said upper and lower legs of said side supports establishing a working station, a pair of laterally spaced vertical corner posts positioned forwardly of said side supports, an upper frame extending between said upper legs and the corner posts, and a lower frame extending between said lower legs and the corner posts, the region of said framework adjacent to and rearwardly of said corner posts establishing a stripping station, the regions on opposite sides of said framework and laterally outside the confines thereof establishing a pair of dwell stations, said stations being quadrilaterally arranged about a vertical axis substantially midway between said working and stripping stations, a turntable mounted for rotation about said vertical axis and including a central column, an upper spider and a lower spider, each spider including a series of four radially extending spider arms, adjacent arms extending at a right angle to each other and the arms of the upper spider extending parallel to and overlying the arms of the lower spider, a series of four cope flask sections normally supported in chordal fashion on said supper spider with their ends loosely resting on adjacent spider arms, a series of four drag flask sections similarly normally supported in chordal fashion on said lower spider and directly underlying the cope flask sections whereby the cope and drag flask sections are paired vertically, means for indexing said turntable successively through an angle of 90* whereby successive indexing operations of the turntable will cause the paired flask sections to travel in a circular path leading into and extending out of said stations, means operative immediately after each indexing operation for locking the turntable in a fixed position wherein each of said paired flask sections is effectively disposed at one of said stations, a match plate support fixedly disposed in said working station, a match plate normally resting on said support and adapted to be straddled by each pair of flask sections when the latter are disposed at the working station, means located at said working station and operative in between turntable-indexing operations, first, to lift the match plate and the two associated flask sections from their respective supports, them, to assemble said flask sections in order to define upper and lower flask cavities on opposite sides of the match plate, then, simultaneously to introduce molding sand into such cavities and compress the same in said cavities in order to produce cope and drag mold parts, and finally, to restore the match plate and said associated flask sections with the mold parts therein to their normal positions on their respective supports, and means at said stripping station and operative in between turntable-indexing operations, first, to lift the associated flask sections from the mold parts therein from their respective supports, then, to assemble said flask sections upon each other in order to establish a composite mold, then, to force the composite mold from the assembled associated flask sections, and finally to restore the empty flask sections to their normal positions on their respective supports.
17. In a cyclicly-operable mold-forming machine, the combination set forth in claim 19 and wherein each flask support is provided with upstanding leader pins which project into pilot holes which are associated with the corresponding flask sections for establishing precise circumferential and radial positioning of the flask sections on their respective turntable spider arms.
18. In a cyclicly-operable mold-forming machine, the combination set forth in claim 1 and wherein the cope and drag sections have associated respectively therewith cope and drag upsets which are in turn respectively associated with and movable relatively to the upper and lower squeeze plates.
US00233438A 1972-03-10 1972-03-10 Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts Expired - Lifetime US3828840A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US00233438A US3828840A (en) 1972-03-10 1972-03-10 Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts
CA157,314A CA964429A (en) 1972-03-10 1972-11-23 Cyclicly-operable, multi-station match plate molding machine with rotary flask transfer
JP48004131A JPS5126291B2 (en) 1972-03-10 1972-12-28
IT55180/72A IT974437B (en) 1972-03-10 1972-12-29 DEVICE FOR THE SIMULTANEOUS PRODUCTION OF UPPER AND LOWER BRACKETS FOR FOUNDRY
FR7301536A FR2187460B1 (en) 1972-03-10 1973-01-17
AU51245/73A AU465673B2 (en) 1972-03-10 1973-01-19 Match plate molding machine with rotary flask transfer for producing and assembling cope and drag mold parts
DE2303561A DE2303561C3 (en) 1972-03-10 1973-01-25 Boxless foundry molding machine
GB387773A GB1419313A (en) 1972-03-10 1973-01-25 Match plate moulding machine for producing and assembling cope and drag mould parts
ES411990A ES411990A1 (en) 1972-03-10 1973-02-23 Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts
SE7303285A SE413292B (en) 1972-03-10 1973-03-08 CYCLIC WORKING FORM MACHINE FOR SIMPLE PREPARATION OF SUBSTANCES AND SUBSTANCES AND THEN ASSEMBLY OF THE SAME FOR A COMPOSITE CASTING FORM
SU731894756A SU818468A3 (en) 1972-03-10 1973-03-09 Moulding machine for making box-free casting moulds
US408483A US3878881A (en) 1972-03-10 1973-10-23 Method for producing and assembling cope and drag mold parts
US05/575,659 USRE28735E (en) 1972-03-10 1975-05-08 Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00233438A US3828840A (en) 1972-03-10 1972-03-10 Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/575,659 Reissue USRE28735E (en) 1972-03-10 1975-05-08 Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts

Publications (1)

Publication Number Publication Date
US3828840A true US3828840A (en) 1974-08-13

Family

ID=22877256

Family Applications (1)

Application Number Title Priority Date Filing Date
US00233438A Expired - Lifetime US3828840A (en) 1972-03-10 1972-03-10 Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts

Country Status (11)

Country Link
US (1) US3828840A (en)
JP (1) JPS5126291B2 (en)
AU (1) AU465673B2 (en)
CA (1) CA964429A (en)
DE (1) DE2303561C3 (en)
ES (1) ES411990A1 (en)
FR (1) FR2187460B1 (en)
GB (1) GB1419313A (en)
IT (1) IT974437B (en)
SE (1) SE413292B (en)
SU (1) SU818468A3 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226316A (en) * 1975-08-25 1977-02-26 Naniwa Seisakusho Kk Turntable reciprocative rotation type twoostation greensand mold
DE2721874A1 (en) * 1977-05-14 1978-11-23 Michael Achinger Foundry moulding machine with two sand shooters - simultaneously filling cope and drag frames mounted on two turntables
US5941296A (en) * 1994-03-24 1999-08-24 Metal Engineering Kabushiki Kaisha Method for controlling the formation of a sand mold
US6763859B1 (en) * 2003-02-10 2004-07-20 Exotic Rubber & Plastics Corp. Blow tube construction
EP1837099A3 (en) * 2006-12-06 2008-01-02 Sintokogio, Ltd. Moulding machine for making an upper and a lower mould and method for operating said machine
EP1930101A1 (en) * 2006-12-06 2008-06-11 Sintokogio, Ltd. Molding machine
US20100071867A1 (en) * 2006-12-18 2010-03-25 Minoru Hirata Molding machine
EA014580B1 (en) * 2006-12-06 2010-12-30 Синтокогио, Лтд. Moulding machine for making an upper and a lower mould and a method for operating said machine
CN102794413A (en) * 2011-05-25 2012-11-28 广西玉柴机器股份有限公司 Sand box positioning device
US8636049B2 (en) 2010-07-23 2014-01-28 Sintokogio, Ltd. Flaskless molding method and a flaskless molding machine
CN106363142B (en) * 2016-12-05 2018-10-12 攀枝花市蓝天锻造有限公司 Core shooter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2653788C2 (en) * 1976-11-26 1981-08-27 Bühler, Eugen, Dipl.-Ing., 8871 Burtenbach Method and device for producing casting molds from molding sand containing binding agents
CH636288A5 (en) * 1978-09-05 1983-05-31 Inventio Ag FOUNDRY MOLDING MACHINE FOR THE PRODUCTION OF CASELESS FOUNDRY MOLDS.
JP5510823B2 (en) * 2010-07-23 2014-06-04 新東工業株式会社 Unframed mold making method and unframed mold making apparatus
JP5594593B2 (en) * 2010-10-06 2014-09-24 新東工業株式会社 Punched frame mold making apparatus and punched frame mold making method
CN104624985B (en) * 2015-01-16 2016-06-22 东风商用车有限公司 On-line detection method for wrong mold of sand mold without box molding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589432A (en) * 1967-10-02 1971-06-29 Sherwin Williams Co Match plate foundry molding machine
US3589431A (en) * 1969-01-09 1971-06-29 Harrison E Fellows Mold making equipment utilizing vertical mold blowing and plural rammers

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226316A (en) * 1975-08-25 1977-02-26 Naniwa Seisakusho Kk Turntable reciprocative rotation type twoostation greensand mold
JPS56135B2 (en) * 1975-08-25 1981-01-06
DE2721874A1 (en) * 1977-05-14 1978-11-23 Michael Achinger Foundry moulding machine with two sand shooters - simultaneously filling cope and drag frames mounted on two turntables
US5941296A (en) * 1994-03-24 1999-08-24 Metal Engineering Kabushiki Kaisha Method for controlling the formation of a sand mold
US6763859B1 (en) * 2003-02-10 2004-07-20 Exotic Rubber & Plastics Corp. Blow tube construction
WO2008068926A1 (en) * 2006-12-06 2008-06-12 Sintokogio, Ltd. Moulding machine for making an upper and a lower mould and method for operating said machine
EP1930101A1 (en) * 2006-12-06 2008-06-11 Sintokogio, Ltd. Molding machine
WO2008068924A1 (en) * 2006-12-06 2008-06-12 Sintokogio, Ltd. Molding machine
EP1837099A3 (en) * 2006-12-06 2008-01-02 Sintokogio, Ltd. Moulding machine for making an upper and a lower mould and method for operating said machine
EA014580B1 (en) * 2006-12-06 2010-12-30 Синтокогио, Лтд. Moulding machine for making an upper and a lower mould and a method for operating said machine
US20100071867A1 (en) * 2006-12-18 2010-03-25 Minoru Hirata Molding machine
US8251124B2 (en) * 2006-12-18 2012-08-28 Sintokogio, Ltd. Molding machine
US8636049B2 (en) 2010-07-23 2014-01-28 Sintokogio, Ltd. Flaskless molding method and a flaskless molding machine
CN102794413A (en) * 2011-05-25 2012-11-28 广西玉柴机器股份有限公司 Sand box positioning device
CN102794413B (en) * 2011-05-25 2014-06-04 广西玉柴机器股份有限公司 Sand box positioning device
CN106363142B (en) * 2016-12-05 2018-10-12 攀枝花市蓝天锻造有限公司 Core shooter

Also Published As

Publication number Publication date
CA964429A (en) 1975-03-18
AU465673B2 (en) 1975-10-02
SE413292B (en) 1980-05-19
AU5124573A (en) 1974-07-25
JPS5126291B2 (en) 1976-08-05
JPS5011929A (en) 1975-02-06
GB1419313A (en) 1975-12-31
DE2303561B2 (en) 1977-09-15
FR2187460A1 (en) 1974-01-18
DE2303561A1 (en) 1973-09-20
DE2303561C3 (en) 1978-05-11
FR2187460B1 (en) 1979-01-12
IT974437B (en) 1974-06-20
ES411990A1 (en) 1976-05-01
SU818468A3 (en) 1981-03-30

Similar Documents

Publication Publication Date Title
US3828840A (en) Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts
EP0468355B1 (en) Flaskless molding machine
US3229336A (en) Match plate molding machine for the simultaneous production of cope and drag mold sections
US3878881A (en) Method for producing and assembling cope and drag mold parts
US3589431A (en) Mold making equipment utilizing vertical mold blowing and plural rammers
US2112910A (en) Method and apparatus for making molds
US4463794A (en) Apparatus for producing containerless sand molds
JPS5924552A (en) Simultaneous forming machine of flaskless type top and bottom molds
US2783509A (en) Core blower, molding and draw machine
CN104759595B (en) Microseism squeeze molding machine and formative method thereof
US3512576A (en) Diecasting machines
USRE28735E (en) Cyclicly-operable machine adapted to produce and assemble cope and drag mold parts
US2047209A (en) Molding machine
US3730250A (en) Method of making a sand mold
US3068537A (en) Foundry system and apparatus
CN109093078B (en) Sand-coated molding machine for double-sided cavity iron mold and molding production method
US3648759A (en) Machine for making sand molds
US1707411A (en) Automatically-operating mold-making machine
US3695339A (en) Mold forming apparatus
US4044818A (en) Apparatus for forming sand molds
US3654986A (en) Automatic molding apparatus and mold-making machine therein
US2908950A (en) Blow and squeeze molding machine
JP2004237285A (en) Method and apparatus for making mold and device for removing molding flask
CN202861338U (en) Large-size iron type coated sand molding device
US2877522A (en) Mold blowing apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRST NATIONAL BANK OF CHICAGO THE

Free format text: SECURITY INTEREST;ASSIGNOR:PETTIBONE CORPORATION A DE CORP;REEL/FRAME:004403/0708

Effective date: 19850411