[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3825917A - Security window - Google Patents

Security window Download PDF

Info

Publication number
US3825917A
US3825917A US00307089A US30708972A US3825917A US 3825917 A US3825917 A US 3825917A US 00307089 A US00307089 A US 00307089A US 30708972 A US30708972 A US 30708972A US 3825917 A US3825917 A US 3825917A
Authority
US
United States
Prior art keywords
window
conductive layer
conductive
resistance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00307089A
Inventor
C Lucky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sierracin Corp
Original Assignee
Sierracin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sierracin Corp filed Critical Sierracin Corp
Priority to US00307089A priority Critical patent/US3825917A/en
Application granted granted Critical
Publication of US3825917A publication Critical patent/US3825917A/en
Assigned to SIERRACIN CORPORATION reassignment SIERRACIN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SIERRACIN CORPORATION, THE
Assigned to CALIFORNIA FEDERAL BANK reassignment CALIFORNIA FEDERAL BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIERRACIN CORPORATION, A DE CORP.
Anticipated expiration legal-status Critical
Assigned to SHAWMUT CAPITAL CORPORATION reassignment SHAWMUT CAPITAL CORPORATION ASSIGNMENT OF SECURITY INTEREST Assignors: BARCLAYS BUSINESS CREDIT, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/02Mechanical actuation
    • G08B13/04Mechanical actuation by breaking of glass

Definitions

  • ABSTRACT A security window system having a transparent structure having high resistance to penetration is described.
  • the layer is subdivided into a number of conductive regions for substantially' in 'creasing the sensitivity of the system to minor interruptions in the layer. Temperature and stress effects can be minimized by connecting different conductive areas of the layer as arms of a resistance bridge. An alarm may be sounded when a small steady state change in resistance is sensed or when a rapid changein resistance is sensed.
  • a transparent window that is relatively impenetratable.
  • Such windows may be used in prisons, hospitals, museums, zoos, computer-rooms, laboratories, or in store fronts where theft or vandalism may be a problem. They are useful any place where maximum natural lighting, visual access and physical security are requisite. Jewelry counters and laboratory hoods are other suitable locations. Bars can beadded adjacent ordinary glass; however, this is in many cases undesirable for a variety of reasons. Thus, in a prison or hospital or similar institutions, bars may have a significantly undesirable effect on persons within the institution. Bars detract from the pleasure of visitors to zoos or museums. In stores and the like where protection is desired against entry, the presence of bars is highly undesirable because of the adverse effect on potential customers. Collapsible window grates are little better.
  • Windows that are highly resistant to penetration can be formed with thick layers of glass or preferably with laminated glass sandwiches which may include layers of tough, impact resistant plastics, such as the polycarbonate plastics.
  • Tempered glass is desirable in some situations in case of breakage. Thus, for example, in some institutions persons may deliberately break windows to obtain slivers of glass to use as weapons or to ingest in a suicidal act. Tempered glass isdesirable for such situations since it does not shatter like ordinary glass but breaks into relatively small fragments substantially free of all sharp edges.
  • burglar alarm systems commonly include means for sensing breakage of the window.
  • a very common technique for sensing breakage of a window is to adhere a conductive tape such as thin aluminum or lead foil directly to the glass around the periphery of the window.
  • a conductive tape such as thin aluminum or lead foil
  • Such strips are unsightly and are preferably avoided, particularly in store windows and the like where an attractive appearance is highly desirable. Omission of the obvious alarm strips may also be desirable in some institutional windows.
  • the alarm strips have another disadvantage in that they are essentially a binary device that is either intact or broken.
  • a security window system having an alarm built into it which is sensitive to attempts to penetrate the window and which can be reset from a remote location. It is desirable to have a signal from the window that is related to the degree of penetration, which in this context can be considered to be an analog change as compared with the binary change that occurs upon complete interruption of an electrical path.
  • a security window is substantially free of apparent visual indications of the presence of the alarm.
  • the window is preferably resistant to penetration with the impact resistance of polycarbonate and the resistance to sawing that is characteristic of glass.
  • FIG. 1 is a face view of a security window including an alarm sensor
  • FIG. 2 is a fragmentary cross section of the window of FIG. 1;
  • FIG. 3 is a schematic .diagram of a sensing circuit for the window of FIG. 1;
  • FIG. 4 is a face view of another embodiment of security window
  • FIG. 5. is a block diagram of a sensing circuit for the window of FIG. 4;
  • FIG. 6 is a face view of another embodiment of security window
  • FIG. 7 is a face view of still another embodiment of security window
  • FIG. 8 is a partially cut-away section of the window of FIG. 7;
  • FIG. 10 is a fragmentary cross section of another embodiment of security window
  • FIG. 11 is a schematic diagram of another penetration sensing system
  • FIG. 12 is a schematic diagram of another resistance sensing technique.
  • FIG. 13 illustrates another embodiment of security window and a schematic circuit connected thereto.
  • FIG. 1 is a face view of a security window and FIG.
  • FIG. 2 is a fragmentary cross section showing the laminated layers thereof.
  • the security window appears much like an ordinary transparent window except that it may appearsomewhat tinted or have slightly less light transmission than an ordinary clear glass window.
  • very narrow isolation lines described in greater detail hereinafter, may be seen in the face of the window. Ordinarily these lines are very minute and not noticeable except on close examination.
  • Metallic bus bars 21 are imbedded along opposite side edges of the security window. A short tab 22 from each of the bus bars typically extends beyond the edge of the window for making electrical contact.
  • the bus bars are preferably imbedded corrugated copper strips as described in US. Pat. No. 3,612,745. Othersuitable bus bar arrangements will be apparent to one skilled in the art, such as the external bus bars of US. Pat. No.
  • the security window when used it is mounted in a frame so that the edge portions are all hidden and the bus bars 21 are thereby hidden by the opaque frame. This is desirable so that the appearance of the security window essentially matches the appearance of an ordinary glass window.
  • a sheet of tempered glass 23 forms one face of the window. As will be apparent hereinafter it is preferred that this face be the one from which penetration'is most likely to occur. Typically the tempered glass layer is about one quarter inch thick.
  • a transparent resilient plastic interlayer 24 is securely bonded to the glass sheet 23. This interlayer is the same as that typically employed in laminated automobile glass, for example.
  • a layer 0.030 inch thick of polyvinyl butyral makes a suitable interlayer that is conveniently bonded to the other layers of the laminated window by conventional'heat and pressure laminating techniques.
  • a carrier film 25 having a metal layer 26 on oneface thereof is bonded to the plastic interlayer 24. It is relatively unimportant which face of the carrier film has the metallic layer thereon.
  • the carrier film is, for example, a film of polyethylene terephthalate about 0.005 inch thick.
  • the metal layer 26 is an extremely thin layer of a metal such as nickel, gold, silver, aluminum, copper or the like which can be vacuum metallized onto the carrierfilm. Such vacuum deposition of thin metal films is a conventional process widely used for preparing electrically heatable windows.
  • the metal coating is deposited in a sufficiently thin layer that it is transparent and absorbs relatively minor amounts of incident light so that the overall transmission characteristics of the window are not substantially diminished.
  • the metal layer is sufficiently continuous to have a substantial electrical conductivity.
  • the metal layer may adjacent the edges of the sheet and extend over most of the area of the window where penetration may be likely to occur.
  • the bus bars are imbedded in the laminate between the interlayer 24 and the carrier film 25 so as to be in electricalcontact with the metal film.
  • Another interlayer 27 is bonded to the opposite side of the carrier film 25 from the first interlayer 24. These interlayers are substantially identical.
  • An impact resistant plastic ply 28 is bonded to the second interlayer 27.
  • a variety of transparent impact resistance plastics are suitable for use in such a security window.
  • Methyl methacrylate resin may be employed, for example. It is preferred, however, to employ a polycarbonate resin for the plastic ply. This material is commercially available under the trademark Lexan from General Electric and under the trademark Merlon from Mobay Chemical Co.
  • the polycarbonate sheet is extremely impact resistant and has a high transparency. Thus, even if the tempered glass layer 23 is broken the polycarbonate layer 28 normally resists impact penetration.
  • Such a' polycarbonate sheet for example, may be about one quarter inch thick.
  • Another polyvinyl butyral layer 29 is bonded to the other side of the impact resistant ply 28.
  • This interlayer is substantially identical to the first two.
  • a second sheet-30 of tempered glass is bonded to the third interlayer 29 and forms the other face of the laminated security window.
  • This second layer of tempered glass is also about one quarter inch.
  • the glass and plastic layers have differing coefficients of thermal expansion and when temperature cycling is expected it is desirable to provide stress relief around the periphery of the window.
  • a suitable edge separator'technique' is provided in copending US. Pat. Application Ser. No. 1 1 1,993 by JanB. Olson, entitled Interlayer Stress Reduction in Laminated Transparencies and assigned to Sierracin Corp., assignee of this application.
  • the polycarbonate layer may be subject to attack by plasticizers in the polyvinyl butyral layer and it is usually desirable to employ a polycarbonate sheet with a barrier layer on its faces.
  • a coated polycarbonate material is availbe vacuum deposited on the. carrier film by a continunear enough the edges of the security window to make good electrical contact with the bus bars 21 (FIG. 1)
  • the security window illustrated in FIG. 1 is highly resistant to penetration since the tempered glass has substantial impact resistance. Even if the glass layer is broken by scratching or sharp impact the polycarbonate layer has much higher strength and ordinarily has sufficient impact resistance to prevent penetration. Tempered glass breaks into a large number of relatively small particles and these particles remain bonded to the interlayer. The presence of such a mass of glass fragments on the surface of the window does a great deal to inhibit sawing or other cutting of the polycarbonate plastic.
  • the alarm sensor comprises a lead tape around the periphery of the window or an electrically conductive film applied directly to the glass.
  • acrack propagating to the edge of the window normally results in breaking of the lead tape or conductive film and triggering of an alarm.
  • the resistance sensor extending over most of the area of the window therefore serves to detect penetration of the window.
  • the alarm will be triggered. Mere cracking of the window or surface damage will not ordinarily trigger the alarm. Detection of penetration is what is sought 1 and this is provided by the composite laminated window with a conductive layer embedded therein.
  • the conductive layer is in electrical contact with the bus bars 21 along opposite edges of the window.
  • a resistive connection is thereby provided between the two bus bars.
  • the isolation-lines are actually extremely fine scribe lines made in the face of the carrier film on which the conductive layer is deposited. Since this con'ductivelayer is extremely thin a scribe line that is nearly invisible to the naked eye is sufficient for interrupting the electrical continuity of the film. A scribe line can be made with a shallow sharp groove that extends into the carrier film a tiny distance, but not even this is needed.
  • the metal layer is so thin that almost any abrasion is enough to interrupt it without marring the carrier film.
  • the electrically conductive layer must also be penetrated. Any interruption of the conductive layer having a component in a direction parallel to the bus bars will cause an increase in the resistance of the conductive layer.
  • the resistance between the two bus bars 21 can be monitored and any significant change in resistance employed for triggering an alarm. Any such sensing system has a predetermined sensitivity. If the sensitivity threshold for triggering an alarm is too small, a significant numbe'rof false alarms may be sounded. On the other hand if the threshold of sensitivity for triggering the alarm is too high, a rather large penetration of the window may occur before an alarm is sounded. It has been found that a sensitivity threshold in the area of about 1 to 2 percent change in resistance is suitable for triggering an alarm, although higher or lower changes are also suitable thresholds.
  • a security window is made with a continuous conductive layer over most of the area of the window without any electrical isolation lines subdividing itinto a plurality of conductive areas, the change in resistance as a function of the magnitude of the interruption of the conductive layer may be unduly low.
  • each point on each bus bar is in direct electrical contact with every point on the other bus bar. Current flow between the two bus bars can therefore occur over a substantial area and destruction of a minor portion of the conductive layer may have a relatively minor affect on the total resistance.
  • isolation lines are scribed through the conductive layer in a direction extending between the bus bars the conductive film is divided into a plurality of conductive areas that are electrically in parallel with each other. Then when a sufficient cut is made parallel to the bus bars to completely sever one of such parallel conductive areas a jump in resistance occurs.
  • a conductive layer was subdivided into six conductive areas by five scribed isolation lines. As a straight line cut proceeded across one of the parallel conductive areas a nominal gradual change in resistance occurred. When one of the six parallel conductive areas was completely severed between adjacent isolation lines, an increase in resistance of about 20 percent'was observed.
  • the sensitivity of the circuit for detecting a change in resistance can be readily correlated with the resistance change that may occur when one conductive area of a selected width is severed.
  • the security window may'have its conductive layer subdivided into any desired width of conductive area forpredetermined sensitivity.
  • the conductive layer is divided into four segments, each 7 it inches wide. Addition of only two more isolation lines cuts the width of each area to onlyS inches for very high sensitivity to penetration. If desired a large number of electrical isolation lines can be extended between the bus bars so that the conductive layer is divided into a number of narrow parallel conductors. A penetration of the window interrupts a number of such narrow conductors and the resistance change is the usual change due to deleting some of the resistors in a parallel array of resistors.
  • the array of resistors in electrical parallel is considered to extend over most of the area of the window since penetration at any point willinterrupt one or more resistors. This may be true even when the resistors become narrower than the electrical isolation lines between them.
  • FIG. 3 is a schematic illustration of a system for detecting penetration of the security window.
  • the penetration of the conductive layer causes an analog change in the resistance of the window which is a function of the extent of penetration, and the magnitude of this change may be used for triggering an alarm.
  • the resistance of the conductive layer 26 is represented by the resistor 26' in the schematic illustratecting circuit by electrical leads 33 including the window bus bars and whatever additional leads may be desired for'conveying signalsto a remote location.
  • the thin film resistor 26 is connected in a bridge with a resistor 34 as an adjacent arm of the bridge.
  • a power supply 36 applies an electrical signal to the resistances 26' and '34.
  • the electrical signal is also applied to a fixed resistor 37 and a variable resistor 38 connected in seties with a tapped resistor or potentiometer 39. These additional resistors 37, 38 and 39 form the other two arms of a bridge.
  • the variable resistor 38 may be employed for a coarse adjustment of the bridge balance.
  • Resistor 37 can be adjustable for bridge balance, too, or both resistors 37 and 38 may be coupled for coarse bridge balance.
  • An amplifier 41 isconnected between the adjacentbridge arms 26 and34 and is also connected to the tap on the potentiometer 39. Adjustment of the tap can serve as a fine adjustment of the bridge balance.
  • the bridge excitation provided by the power supply 36 can be either a voltage or current-arrangement.
  • the power supply can be either AC or DC as may be desired in a particular application.
  • the signal applied by the bridge to the amplifier 41- can be either a differential signal, that is, with neither bridge tap grounded orfconnected to a circuit common, or it may be'a single ended-signal with either of the bridge connections grounded or connected to a circuit common.
  • the output of the amplifier 41 is applied-to a conventional threshold detector 42 which senses when the null balance of the bridge is outside of a predetermined limit.
  • a conventional threshold detector 42 which senses when the null balance of the bridge is outside of a predetermined limit.
  • a wide variety of threshold detectors may be suitable, depending on the signal selected from the amplifier in a particular embodiment.
  • an alarm 43 is triggered. Any desired alarm may be used such as a bell, klaxon, light or the like.
  • the alarm can be adjacent the window or remotely located.
  • One can even dispense with the threshold detector and apply the amplifier output directly to an audio alarm, such as, for example, a loudspeaker. When the sound of the loudspeaker reaches some arbitrary level as noted by an individual inv the vicinity this can also serve as an alarm.
  • the bridge can be readjusted by means of the resistors 38 and 39 to bring it back into balance. This is quite feasible since the signal output from the bridge is analog. A change in the resistance of the conductive layer modifies the electrical signal in an analog manner. The alarm system can therefore be reset ,by rebalancing the bridge, all of which can be done from a remote location if desired.
  • the balance reset 44 may be operated by the amplifier null balance signal from the amplifier 41 so as to operate in a more analog fashion and accommodate slow drifts in the resistance balance cation may also be-incorporated in the balance detection system so that, for example, a single transient of resistance can be ignored and a more permanent change employed for triggering the alarm. Means may also be provided for triggering the alarm in case the bridge leads are shorted or cut, or if the power is cut off, or if any of a variety of techniques'are employed for circumventing the alarm system.
  • the resistance of the conductive layer in the window may vary with temperature and cause an unbalance of the bridge. Although this'can be readily accounted for with an automatic balance resetting system, it is also quite easy to simply compensate for the temperature change by making the fixed resistor 34 in the adjacent arm of the bridge to the resistor 26' also be a conductivelayer in window. If the temperature pattern in the two resistors is similar, any changes in resistance will be equivalent and the balance of the bridge will notbe upset.
  • The-second conductive layer in a window may be in a separate window located in a position subject to similar temperature conditions or it may simply be another portion of the same window in which the layer resistor 26 is located.
  • FIG. 13 illustrates in face view another embodiment of security window having a conductive layer extending over most of the area of the window.
  • a bus bar 102 extending along one side edge of the window for making electrical contact with one entire edge of the conductive layer in the window.
  • An electrical isolation line 103 extends across the window transverse to the bus bar 102 and divides the conductive area of the window into two conductive regions 104 and 106.
  • a bus bar 107 extends part way along the side edge of the window opposite from the full length bus bar 102 and makes electrical contact with the conductive layer of the first region 104.
  • a second similar bus bar 108 extends the balance of the way across the window and makes electrical contact with the conductive layer in the second conductive region 106.
  • Each of the bus bars extends beyond the edge of the window for making electrical contact with an externalcircuit.
  • FIG. 13 also illustrates schematically a typical external circuit connected to the bus bars of the window.
  • a power supply 109 is connected to the two similar bus bars 107 and 108.
  • Resistors 111 and 112 are also connected to the power supply.
  • a first tap 113 is connected between the resistors 111 and llland a second '49.
  • Suitable conductive tabs tap 114 is connected to the bus bar 102 that makes electrical contact with both conductive regions 104 and 106.
  • the taps 113 and 114 may be connected to any conventional null balance detection circuitry as desired for triggering an alarm in response to unbalance of resistance.
  • the window and external circuit illustrated in FIG. 13 are connected as a conventional bridge with the two conductive regions of the window as adjacent arms of the bridge. Either or both of the resistors 111 or 112 can be variable for balancing the bridge, or balancing can be achieved in the additional circuits (not shown) to which the window may be connected.
  • the two conductive regions of the window will both be subjected to similar temperature conditions and any changes in resistance in the two regions may be similar. Being in adjacent bridge arms, the resistance drift due to temperature change balances out and no bridge unbalance results. It will be apparent that if desired the conductive layer in each of the conductive regions 104 and 106 can be subdivided by isolation lines extending between the bus bars to any desired extent for enhancing sensitivity of the window to penetration.
  • FIG. 4 illustrates in face view another embodiment of security window having an electrically conductive layer over most of the area of the window.
  • the conductive layer is subdivided into four conductive areas 46, 47, 48 and 49 by isolation lines 50.
  • a first bus bar 51 is in electrical contact along an edge of the first conductive area 46.
  • a similar short bus bar 52 is in electrical contact with an edge of the other outside conductive area 49.
  • a third bus bar 53 is in electrical contact with the edges of both of the remaining two conductive areas 47 and 48 spanning one of the isolation lines 50.
  • a fourth bus bar 54 is in electrical contact with the edges of the two conductive areas 46 and 47.
  • Another bus bar 55 on this same edge of the window is in electrical contact with the edges of the remaining two conductive areas 48 and 56 extend from the bus bars to and beyond the edges of the window for making electrical contact to external circuits.
  • the conductive areas between the isolation lines 50 can also be subdivided into parallel resistive areas in the same manner as the window of FIG. 1 for enhanced sensitivity.
  • FIG. illustrates schematically the interconnection of the conductive areas.
  • the bus bars and conductive areas of FIG. 4 are represented schematically with the same reference numerals bearing a prime in FIG. 5.
  • the two bus bars 51 and 52 are externally interconnected at a point 51, 52'. This same point is connected to a suitable power supply 57 which is in turn connected to the center bus bar 53 at a point 53' in the schematic illustration of FIG. 5.
  • Electrical connection is made to the opposite bus bars 54 and 55 at the points 54' and 55' leading to a detector 58 of changes in the electrical resistance.
  • the detector 58. can be connected for triggering an alarm 59 when a predeterminedliminal change in electrical resistance occurs in the bridge formed by the resistors (conductive areas) 46', 47
  • any resistance changes occurring in all of the conductive areas will not unbalance the bridge and no net change in resistance will be noted.
  • the conductive layer within the security window changes resistance somewhat with changing temperature.
  • stresses on the conductive layer which may be generated by bending of the window, for example may change resistance.
  • the conductive areas are interconnected as arms of a bridge such thermal or stress changes in resistance do not cause false alarms.
  • more than one window may be interconnected as arms of a resistance bridge and the conductive areas may sufficiently balance to compensate for thermal changes and the like. This is generally less desirable since the thermal changes or changes in stress between two windows is ususally. of much greater magnitude than similar changes within two different areas of the same window.
  • the resistance change detector 58 should be adjustable for resetting the alarm system in case of a permanent change-in the resistance balance between the arms of the bridge.
  • FIG. 6 illustrates in face view another embodiment 0 security window.
  • the conductive areas were electrically connected in parallel;
  • the conductive area's are connected in series.
  • a plurality of isolation lines 61 extend between opposite edges of the security window and subdivide the area into a plurality of conductive areas 62.
  • Electrical contact is made along a side edge of one of the outside conductive areas by a bus bar 63.
  • a tab 64 permits electrical connection of this bus bar to an external circuit.
  • a second bus bar 65 At theopposite end of the first conductive area from the bus bar 63 is a second bus bar 65 which makes electrical contact along the side edge of the first conductive area and also along the side edge of the second conductive area adjacent the first.
  • the second bus bar 65 spans the isolation line6l between the two adjacent conductive areas.
  • Another bus bar 66 electrically connects the opposite side edge of the second conductive area with the side edge of the third conductive area.
  • These additional bus bars 65 and 66 do not have an external tab for electrical connection to circuits. outside the window A similarseries of additional bus bars connect adjacent conductive areas clear across the window.
  • a bus bar 68 makes electrical connection to both the edge of the conductive area and a tab 69 permitting electrical connection to an external circuit.
  • all of the conductive areas within the window are electrically connected together in series. Clearly a penetration that extends through the full extent of one of the conductive areas will interrupt the continuous circuit and provide a substantially infinite increase in resistance. Such an electrical connection is not resettable from a remote location.
  • the security window is highly sensitive to pentrations that have a component extending in a direction parallel to the bus bars. If the interruption in the conductive layer is primarily in a direction between the bus bars, that is, for example, parallel to the isolation lines, little if any change in resistance is observed. Thus, for example, if the object of penetration of the security window is the passage of contraband, a narrow slit extending between the bus bars may be sufficient for the unlawful purpose without causing a sufficient change in resistance to trigger the alarm. This possibility is effectively forestalled with a security window of the type illustrated in FIG. 7.
  • At least the central portion of the security window has two spaced apart conductive layers extending over most of the area of the window.
  • a first pair of bus bars 72 are provided along the opposite side edges of the security window in electrical contact with the edges of one of the conductive layers. Orthogonal to this first set of bus bars is a second pair of bus bars 73 in electrical contact with the edges of the second conductivelayer within the window.
  • the isolation lines in the conductive layers between the opposed bus bars have been deleted from FIG. 7 for enhancing clarity of the drawing. It will be readily apparent that no penetration of the window can be made that does not have a component parallel to one or the other of the two pairs of bus bars. It is therefore substantially impossible to penetrate such a window with any reasonable size hole without triggering an alarm.
  • the arrangement of bus bars in the window illustrated in FIG. 7 is as simple aspossible and, if desired, arrangements such as illustrated in FIGS. 4 and 6 may be employed.
  • the two conductive layers can be employed as a pair of arms in a bridge, or portions of the two conductive layers may be used as the four arms of a bridge. There is a possibility, although remote, that penetration of both layers could cause compensating resistance changes in the two layers when they are used as adjacent arms of a bridge.
  • the two layers canfbe used as opposite arms of the bridge so that penetration of both layers causes an increase in sensitivity.
  • FIG. 8 illustrates in fragmentary cross section a laminate security window having .two conductive layers therein. In this illustration successive layers are cut away to best show the location of the bus bars. In this particular example the arrangement of successive layers is symmetrical from the center of the laminate, however, it will be apparent that asymmetrical arrangements are also suitable.
  • Each face of the laminated security. window comprises a glass ply 75.
  • a plastic interlayer 76 about 0.03 inch thick is bonded to each of the glass plys 75.
  • a carrier film 77 of polyethylene terephthalate about 0.005
  • bus bars 72 is imbedded in one of the plastic interlayers 76 so as to be in electrical contact with one of the conductive layers 78.
  • the bus bar 72 is illustrated schematically rather than show the corrugations of the preferred bus bar hereinbefore mentioned.
  • the other bus bar 73 is imbedded in the opposite interlayer 76 so as to be in electrical contact with the other conductive layer 78.
  • FIG. 9 illustrates in fragmentary cross section another embodiment of security window suitable for use in locations where customary access is almost entirely on one side of the window.
  • This laminated structure has a glass ply 81 on one face, such as, for example, one
  • a polyvinyl butyral inter- Y such as chemically deposited silica, titania or the like,
  • Such an asymmetrical laminated security window may be used, for example, in an institution wherein the glass layer 81 is used on the inside where the inhabitants have access to the window.
  • the plastic layer would be used on the outside where there is no regular day-today contact.
  • the glass layer may be employed on the outside with the plastic layer 87 on the inside where only store personnel may have access to it. This is desirable since the plastic ply is softer than the glass and can be scratched.
  • FIG. 10 illustrates a security window such as might be used for temporary purposes.
  • a pair of carrier films 89 having thin conductive metal layers 90 thereon are bonded together with a plastic layer 91 which may be a polyvinyl butyral interlayer as hereinabove described or may be other suitable adhesive bonding.
  • the relatively thick interlayer is not generally needed in such a situation since its ability to conform to the rigid glass and'polycarbonate plys of the other embodiments is not a requirement. Care must be taken, of course, to insulate the two metal layers 90 from each other if both are used in active alarm circuits. Similarly the bus bars (not shown) making contact to the conductive layers 90 must be insulated.
  • a carrier film having a metal coating thereon can be adhesively bonded to a similar film which serves to protect the delicate metal layer from damage and a security window suitable for temporary use may be very inexpensively provided. Bus bars are needed to make contact with the metal layer.
  • a security window made with thin plastic films has considerable flexibility and is light in weight making it quite suitable for temporary use.
  • Such a lamination of plastic films with a conductive layer therein can be bonded on a window and connected to suitable detection and'alarm circuits for forming a security window.
  • the conductive layer in such a security window is scribed with electrical isolation lines and electrically connected in a bridge circuit in one of the manners hereinabove described.
  • the conductive layer 26 is separated from the tempered glass ply 23 by at least the interlayer 24 and, if desired, the carrier film 25.
  • the plastic isolates the conductive film from the glass layer so that if the glass is merely broken most, if not all, of the conductive layer remains intact. It is a characteristic of tempered glass, that break propagates over the entire extent of the glass braking it into a very large number of small fragments. If the conductive layer were on the glass or closely coupled thereto such breakage of the glass would completely rupture the delicate metal layer and it would appear that penetration -was being'attempted.
  • the resistance of the thinmetal film embedded in the laminated security window is also sensitive to strain. That is, as the film is strained, the resistance changes. Thus, for example, when the conductive layer is located off of a neutral axis of the cross section of the laminated window, a bending of the window will induce strain in the conductive layer and change its resistance.
  • This discovery gives one an opportunity to employ the deformation of the window prior to penetration for providing an alarm signal. More particularly a transient change in resistance can be detected with a pulse or rate of change greater than some predetermined magnitude.
  • FIG. 11 illustrates in block diagram a system for utilizing the strain sensitive properties of the conductive film in a laminated window for providing a security alarm.
  • a power supply 93 applies power to the conductive metal layer in a security window 94.
  • the excitation applied to the window by the power supply may be AC or DC, and may be either current or voltage as desired.
  • the window 94 is also connected to an AC amplifier 96 with gain control 97.
  • the AC amplifier may also have a band width control, if desired, for limiting the AC range amplified.
  • the output of the AC amplifier is applied to a threshold detector 98 which applies an outof-limits signal to an alarm 99.
  • the resultant time varying signal is amplified.
  • an alarm will sound.
  • Such a system is also responsive to the rate of change of penetration through a window as represented by the changing resistance.
  • the circuitry for detecting any such characteristic of changing resistance is conventional.
  • the sensitivity of the threshold detector 98 can be set so that the strain required to activate the alarm 99 is a I large fraction of thestrain that would occur in thewindow before breakage. Gain control 97 may effect this function. Thus, relatively minor blows on a window which are far short of causing breakage can be ignored and a pulse representing a sufficientblow to be quite near breakage of the window can be detected.
  • the input to the AC amplifier 96 may be either the output of the null balance bridge of FIG. 3 or the output of a DC amplifier 41 which mayreduce the gain requirements of the AC amplifier 96.
  • a continuous surveillance monitor 101 may be connected to the output of the AC amplifier 96.
  • This continuous surveillance monitor may have a visual or aural output so that an attendant can perceive signal changes, such as, for example, dueto someone pounding on a security window.
  • the continuous surveillance monitor can'also be some. means for recording the output signal for review at a later time.
  • FIG. 12 A simple and inexpensive technique is illustrated in FIG. 12. As illustrated in this arrangement a voltage e,- is applied to a resistor 102 connected to an input of an operational amplifier 103. A second resistor 104 is connected across the amplifier. The output voltage e, is proportional to the input voltage and the ratio of the resistance of resistor 104 to the resistance of resistor 102.
  • the voutput voltage is thus quite sensitive to any change in the relative values of the two resistors;
  • a conductive layer in a security window can be used for either of the two resistors inthis schematic diagram, or if desired two conductive areas in a window could be used as both resistors 102 and 104 for temperature compensation.
  • the operational amplifier can be either a single input amplifier, or can be a differential amplifier with two inputs.
  • a laminated security window comprising:
  • the second conductive layer includes a plurality of interruptions extending in a direction from one of the second set of bus bars towards the other bus bar of the second set for dividing the conductive layer into a plurality of conductive areas, the interruptions in the second layer being transverse to the interruptions in the first layer.
  • a laminated security window as defined in claim 2 further comprising means connected to the first and second sets of bus bars for detecting a change in relative resistance of the first and second conductive layers.
  • a laminated security window as defined in claim 1 further comprisingmeans connected to the first and second sets of bus bars for detecting a change in relative resistance of the first and second conductive'layers.
  • a laminated security window as defined in claim 5 further comprising:
  • a laminated security window system comprising:
  • a second transparent electrically conductive layer in the window and extending over most of the area of the window;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

A security window system having a transparent structure having high resistance to penetration is described. A transparent conductive layer is provided over most of the area of the window and the resistance of the layer is monitored for sensing penetration. Preferably the layer is subdivided into a number of conductive regions for substantially increasing the sensitivity of the system to minor interruptions in the layer. Temperature and stress effects can be minimized by connecting different conductive areas of the layer as arms of a resistance bridge. An alarm may be sounded when a small steady state change in resistance is sensed or when a rapid change in resistance is sensed.

Description

United States Patent 1 Lucky 451 July 23, 1974 SECURITY WINDOW Clyde L. Lucky, Santa Susana, Calif.
[73] Assignee: The Sierracin Corporation, Sylmar,
Calif.
[22] Filed: Nov. 16, 1972 [21] Appl. No.:- 307,089
[75] Inventor:
[52] US. Cl 340/274, 52/616, 109/21,
161/404, 340/285 [51] Int. Cl. G081) 13/04 [58] Field of Search........ 340/274, 285; 109/21, 10,
[56] References Cited UNITED STATES PATENTS 2,864,928 12/1958 Danford .52/171 2,921,257 1/1960 Boicey 340/274 3,180,781 4/1965 Ryan et a1 161/192 3,594,770
7/1971 Ham et al. 340/285 3,671,370 6/1972 Littell, Jr. 109/49.5
Primary Examiner-John W. Caldwell Assistant ExaminerGlen R. Swann, Ill
Attorney, Agent, or Firm-Christie, Parker & Hale [57] ABSTRACT A security window system having a transparent structure having high resistance to penetration is described. A transparent conductive layerfis provided over most of the area of the window and. the resistance of the layer is monitored for sensingpenetration. Preferably the layer is subdivided into a number of conductive regions for substantially' in 'creasing the sensitivity of the system to minor interruptions in the layer. Temperature and stress effects can be minimized by connecting different conductive areas of the layer as arms of a resistance bridge. An alarm may be sounded when a small steady state change in resistance is sensed or when a rapid changein resistance is sensed.
10 Claims, 13 Drawing Figures PATENTEB JUL? SHEET 3 OF 4 I I x SECURITY WINDOW BACKGROUND This application is related to copending US. Patent Applications Ser. No. 307,096, entitled Laminated Security Window System by Roger E. Nelson, et al.; Ser. No. 307,095, entitled Laminated Security Window by Berton P. Levin, et al; and Ser. No. 307,090, entitled Impact Sensitive Security Window System by H. Gordon Laidlaw, Jr. et al; each of which was filed 11-16-72 and claims subject matter disclosed herein and which is assigned to Sierracin Corp., assignee of this application.
In many situations it is desirable to have a transparent window that is relatively impenetratable. Such windows may be used in prisons, hospitals, museums, zoos, computer-rooms, laboratories, or in store fronts where theft or vandalism may be a problem. They are useful any place where maximum natural lighting, visual access and physical security are requisite. Jewelry counters and laboratory hoods are other suitable locations. Bars can beadded adjacent ordinary glass; however, this is in many cases undesirable for a variety of reasons. Thus, in a prison or hospital or similar institutions, bars may have a significantly undesirable effect on persons within the institution. Bars detract from the pleasure of visitors to zoos or museums. In stores and the like where protection is desired against entry, the presence of bars is highly undesirable because of the adverse effect on potential customers. Collapsible window grates are little better.
Windows that are highly resistant to penetration can be formed with thick layers of glass or preferably with laminated glass sandwiches which may include layers of tough, impact resistant plastics, such as the polycarbonate plastics. Tempered glass is desirable in some situations in case of breakage. Thus, for example, in some institutions persons may deliberately break windows to obtain slivers of glass to use as weapons or to ingest in a suicidal act. Tempered glass isdesirable for such situations since it does not shatter like ordinary glass but breaks into relatively small fragments substantially free of all sharp edges.
In addition to resistance to penetration it is often highly desirable to provide sensing of efforts to penetrate so that an alarm can be sounded locally or at some remote station. Thus, for example, penetration of a prison window indicates either an escape attempt or an effort to convey contraband. Sensors in the individual prison windows'can be monitored in a central location for detection of such unlawful activities. Similarly, in
stores or the like, breakage of a window commonly precedes a burglary attempt. For this reason, burglar alarm systems commonly include means for sensing breakage of the window. p p
A very common technique for sensing breakage of a window is to adhere a conductive tape such as thin aluminum or lead foil directly to the glass around the periphery of the window. Such strips are unsightly and are preferably avoided, particularly in store windows and the like where an attractive appearance is highly desirable. Omission of the obvious alarm strips may also be desirable in some institutional windows. The alarm strips have another disadvantage in that they are essentially a binary device that is either intact or broken.
'When sucha tape is broken the alarm system is inoperative until someone gets to the window and bridges a break in the tape. There is no way of resetting such an alarm from a remote location.
It is therefore desirable to provide a security window system having an alarm built into it which is sensitive to attempts to penetrate the window and which can be reset from a remote location. It is desirable to have a signal from the window that is related to the degree of penetration, which in this context can be considered to be an analog change as compared with the binary change that occurs upon complete interruption of an electrical path. Preferably such a security window is substantially free of apparent visual indications of the presence of the alarm. For most uses the window is preferably resistant to penetration with the impact resistance of polycarbonate and the resistance to sawing that is characteristic of glass.
BRIEF SUMMARY OF THE INVENTION DRAWINGS These and other features and advantages of the present invention will be appreciated as the same becomes better understood by reference to the following detailed descriptionof presently preferred embodiments when considered in connection with the accompanying drawings wherein:
FIG. 1 is a face view of a security window including an alarm sensor;
FIG. 2 is a fragmentary cross section of the window of FIG. 1; p
FIG. 3 is a schematic .diagram of a sensing circuit for the window of FIG. 1;
FIG. 4 is a face view of another embodiment of security window;
FIG. 5. is a block diagram of a sensing circuit for the window of FIG. 4;
FIG. 6 is a face view of another embodiment of security window;
FIG. 7 is a face view of still another embodiment of security window;
FIG. 8 is a partially cut-away section of the window of FIG. 7;
FIG. 9 is a fragmentary cross section of another em- I bodiment of. security window;
FIG. 10 is a fragmentary cross section of another embodiment of security window;
FIG. 11 is a schematic diagram of another penetration sensing system;
FIG. 12 is a schematic diagram of another resistance sensing technique; and
. FIG. 13 illustrates another embodiment of security window and a schematic circuit connected thereto.
DESCRIPTION FIG. 1 is a face view of a security window and FIG.
2 is a fragmentary cross section showing the laminated layers thereof. In face view the security window appears much like an ordinary transparent window except that it may appearsomewhat tinted or have slightly less light transmission than an ordinary clear glass window. In addition, very narrow isolation lines described in greater detail hereinafter, may be seen in the face of the window. Ordinarily these lines are very minute and not noticeable except on close examination. Metallic bus bars 21 are imbedded along opposite side edges of the security window. A short tab 22 from each of the bus bars typically extends beyond the edge of the window for making electrical contact. The bus bars are preferably imbedded corrugated copper strips as described in US. Pat. No. 3,612,745. Othersuitable bus bar arrangements will be apparent to one skilled in the art, such as the external bus bars of US. Pat. No. 3,529,074. Typically, when the security window is used it is mounted in a frame so that the edge portions are all hidden and the bus bars 21 are thereby hidden by the opaque frame. This is desirable so that the appearance of the security window essentially matches the appearance of an ordinary glass window.
The various laminations forming the cross section of the security window are illustrated in the fragmentary view of FIG. 2. A sheet of tempered glass 23 forms one face of the window. As will be apparent hereinafter it is preferred that this face be the one from which penetration'is most likely to occur. Typically the tempered glass layer is about one quarter inch thick. A transparent resilient plastic interlayer 24 is securely bonded to the glass sheet 23. This interlayer is the same as that typically employed in laminated automobile glass, for example. A layer 0.030 inch thick of polyvinyl butyral makes a suitable interlayer that is conveniently bonded to the other layers of the laminated window by conventional'heat and pressure laminating techniques.
A carrier film 25 having a metal layer 26 on oneface thereof is bonded to the plastic interlayer 24. It is relatively unimportant which face of the carrier film has the metallic layer thereon. The carrier film is, for example, a film of polyethylene terephthalate about 0.005 inch thick. The metal layer 26 is an extremely thin layer of a metal such as nickel, gold, silver, aluminum, copper or the like which can be vacuum metallized onto the carrierfilm. Such vacuum deposition of thin metal films is a conventional process widely used for preparing electrically heatable windows. The metal coating is deposited in a sufficiently thin layer that it is transparent and absorbs relatively minor amounts of incident light so that the overall transmission characteristics of the window are not substantially diminished. The metal layer is sufficiently continuous to have a substantial electrical conductivity.
By employing a thin carrier film the metal layer may adjacent the edges of the sheet and extend over most of the area of the window where penetration may be likely to occur. The bus bars are imbedded in the laminate between the interlayer 24 and the carrier film 25 so as to be in electricalcontact with the metal film.
Another interlayer 27 is bonded to the opposite side of the carrier film 25 from the first interlayer 24. These interlayers are substantially identical. An impact resistant plastic ply 28 is bonded to the second interlayer 27. A variety of transparent impact resistance plastics are suitable for use in such a security window. Methyl methacrylate resin may be employed, for example. It is preferred, however, to employ a polycarbonate resin for the plastic ply. This material is commercially available under the trademark Lexan from General Electric and under the trademark Merlon from Mobay Chemical Co. The polycarbonate sheet is extremely impact resistant and has a high transparency. Thus, even if the tempered glass layer 23 is broken the polycarbonate layer 28 normally resists impact penetration. Such a' polycarbonate sheet, for example, may be about one quarter inch thick.
Another polyvinyl butyral layer 29 is bonded to the other side of the impact resistant ply 28. This interlayer is substantially identical to the first two. Finally a second sheet-30 of tempered glass is bonded to the third interlayer 29 and forms the other face of the laminated security window. This second layer of tempered glass is also about one quarter inch. The glass and plastic layers have differing coefficients of thermal expansion and when temperature cycling is expected it is desirable to provide stress relief around the periphery of the window. A suitable edge separator'technique' is provided in copending US. Pat. Application Ser. No. 1 1 1,993 by JanB. Olson, entitled Interlayer Stress Reduction in Laminated Transparencies and assigned to Sierracin Corp., assignee of this application. The polycarbonate layer may be subject to attack by plasticizers in the polyvinyl butyral layer and it is usually desirable to employ a polycarbonate sheet with a barrier layer on its faces. Sucha coated polycarbonate material is availbe vacuum deposited on the. carrier film by a continunear enough the edges of the security window to make good electrical contact with the bus bars 21 (FIG. 1)
able from General Electric under their trade designation MR-4,000. Any of a variety of conventional transparent melamine, phenoxy or urethane resins form suitable barrier layers.
The security window illustrated in FIG. 1 is highly resistant to penetration since the tempered glass has substantial impact resistance. Even if the glass layer is broken by scratching or sharp impact the polycarbonate layer has much higher strength and ordinarily has sufficient impact resistance to prevent penetration. Tempered glass breaks into a large number of relatively small particles and these particles remain bonded to the interlayer. The presence of such a mass of glass fragments on the surface of the window does a great deal to inhibit sawing or other cutting of the polycarbonate plastic.
There are substantial advantages to having a security window formed with a glass face layer and a polycarbonate plastic layer laminated together in combination with an alarm as herein described. It will be noted that the carrier film where the conductive layer forming the analog sensor of the alarmcircuit is located is separated from the glass and polycarbonate layers by a relatively soft and flexible polyvinyl butyral interlayer. If the frangible glass layer is broken, as by a sharp localized blow or a deep scratch which may trigger fracture of tempered glass, the glass fragments are largely held in place by adhesion to the interlayer. The cracks from the glass seldom penetrate the resilient interlayer and hence do not interrupt the thin metal film. Thus the mere face that the glass is broken does not necessarily trigger an alarm. The same is not true of a system wherein the alarm sensor comprises a lead tape around the periphery of the window or an electrically conductive film applied directly to the glass. In such a system acrack propagating to the edge of the window normally results in breaking of the lead tape or conductive film and triggering of an alarm.
The resistance sensor extending over most of the area of the window therefore serves to detect penetration of the window. When a hole ismade in the window of a sufficient size to interrupt a portion of the conductive layer, the alarm will be triggered. Mere cracking of the window or surface damage will not ordinarily trigger the alarm. Detection of penetration is what is sought 1 and this is provided by the composite laminated window with a conductive layer embedded therein.
Referring, again to FIG. 1, the conductive layer is in electrical contact with the bus bars 21 along opposite edges of the window. A resistive connection is thereby provided between the two bus bars. The isolation-lines are actually extremely fine scribe lines made in the face of the carrier film on which the conductive layer is deposited. Since this con'ductivelayer is extremely thin a scribe line that is nearly invisible to the naked eye is sufficient for interrupting the electrical continuity of the film. A scribe line can be made with a shallow sharp groove that extends into the carrier film a tiny distance, but not even this is needed. The metal layer is so thin that almost any abrasion is enough to interrupt it without marring the carrier film.
If aneffort is made to penetrate the security window the electrically conductive layer must also be penetrated. Any interruption of the conductive layer having a component in a direction parallel to the bus bars will cause an increase in the resistance of the conductive layer. As pointed out'hereinafter the resistance between the two bus bars 21 can be monitored and any significant change in resistance employed for triggering an alarm. Any such sensing system has a predetermined sensitivity. If the sensitivity threshold for triggering an alarm is too small, a significant numbe'rof false alarms may be sounded. On the other hand if the threshold of sensitivity for triggering the alarm is too high, a rather large penetration of the window may occur before an alarm is sounded. It has been found that a sensitivity threshold in the area of about 1 to 2 percent change in resistance is suitable for triggering an alarm, although higher or lower changes are also suitable thresholds.
If a security window is made with a continuous conductive layer over most of the area of the window without any electrical isolation lines subdividing itinto a plurality of conductive areas, the change in resistance as a function of the magnitude of the interruption of the conductive layer may be unduly low. When the entire window between the two bus bars constitutes a continuous conductive layer, each point on each bus bar is in direct electrical contact with every point on the other bus bar. Current flow between the two bus bars can therefore occur over a substantial area and destruction of a minor portion of the conductive layer may have a relatively minor affect on the total resistance. Thus, for example, in one test wherein the distance between the bus bars are 1.67 times the width of the conductive layer in a direction parallel to the bus bars, a straight line out was made through the conductive layer in a direction parallel to the bus bars. A cut extending more than 20 percent of the way between the side edges of the conductive layer increased the resistance less than 1.1 percent. A circular interruption in the conductive layer having a diameter of about 17 percent of the width of the conductive layer caused an increase in resistance of only about 2.6 percent.
When isolation lines are scribed through the conductive layer in a direction extending between the bus bars the conductive film is divided into a plurality of conductive areas that are electrically in parallel with each other. Then when a sufficient cut is made parallel to the bus bars to completely sever one of such parallel conductive areas a jump in resistance occurs. Thus, for example, a conductive layer was subdivided into six conductive areas by five scribed isolation lines. As a straight line cut proceeded across one of the parallel conductive areas a nominal gradual change in resistance occurred. When one of the six parallel conductive areas was completely severed between adjacent isolation lines, an increase in resistance of about 20 percent'was observed. Since a similar length cut in a film without isolation lines would produce a resistance change of less than about 1 percent the value of the parallel conductive areas can be readily seen. In addition to increasing the sensitivity of the security window to relatively small penetration, the sensitivity of the circuit for detecting a change in resistance can be readily correlated with the resistance change that may occur when one conductive area of a selected width is severed.
Since the isolation lines are aubstantially invisible the security window may'have its conductive layer subdivided into any desired width of conductive area forpredetermined sensitivity. In a typical window 30 inches wide the conductive layer is divided into four segments, each 7 it inches wide. Addition of only two more isolation lines cuts the width of each area to onlyS inches for very high sensitivity to penetration. If desired a large number of electrical isolation lines can be extended between the bus bars so that the conductive layer is divided into a number of narrow parallel conductors. A penetration of the window interrupts a number of such narrow conductors and the resistance change is the usual change due to deleting some of the resistors in a parallel array of resistors.
The array of resistors in electrical parallel is considered to extend over most of the area of the window since penetration at any point willinterrupt one or more resistors. This may be true even when the resistors become narrower than the electrical isolation lines between them. Thus, if desired, one could form narrow strips of conductive material on the carrier film with clear areas between the strips and have a structure differing only in scale from the arrangement illustrated in FIG. 1, for example.
FIG. 3 is a schematic illustration of a system for detecting penetration of the security window. Very broadly the penetration of the conductive layercauses an analog change in the resistance of the window which is a function of the extent of penetration, and the magnitude of this change may be used for triggering an alarm. The resistance of the conductive layer 26 is represented by the resistor 26' in the schematic illustratecting circuit by electrical leads 33 including the window bus bars and whatever additional leads may be desired for'conveying signalsto a remote location. The thin film resistor 26 is connected in a bridge with a resistor 34 as an adjacent arm of the bridge. A power supply 36 applies an electrical signal to the resistances 26' and '34. The electrical signal is also applied to a fixed resistor 37 and a variable resistor 38 connected in seties with a tapped resistor or potentiometer 39. These additional resistors 37, 38 and 39 form the other two arms of a bridge. The variable resistor 38 may be employed for a coarse adjustment of the bridge balance. Resistor 37 can be adjustable for bridge balance, too, or both resistors 37 and 38 may be coupled for coarse bridge balance.
An amplifier 41 .isconnected between the adjacentbridge arms 26 and34 and is also connected to the tap on the potentiometer 39. Adjustment of the tap can serve as a fine adjustment of the bridge balance.
The bridge excitation provided by the power supply 36 can be either a voltage or current-arrangement. Similarly the power supply can be either AC or DC as may be desired in a particular application. Similarly the signal applied by the bridge to the amplifier 41- can be either a differential signal, that is, with neither bridge tap grounded orfconnected to a circuit common, or it may be'a single ended-signal with either of the bridge connections grounded or connected to a circuit common. Many variations in the bridge excitation and unbalance detection will be apparent to one skilled in the art.
The output of the amplifier 41 is applied-to a conventional threshold detector 42 which senses when the null balance of the bridge is outside of a predetermined limit. A wide variety of threshold detectors may be suitable, depending on the signal selected from the amplifier in a particular embodiment. When the threshold detector notes that the bridge is out of balance beyond the preset limit an alarm 43 is triggered. Any desired alarm may be used such as a bell, klaxon, light or the like. The alarm can be adjacent the window or remotely located. One can even dispense with the threshold detector and apply the amplifier output directly to an audio alarm, such as, for example, a loudspeaker. When the sound of the loudspeaker reaches some arbitrary level as noted by an individual inv the vicinity this can also serve as an alarm.
Once an alarm has sounded, and it has been determined that the signal is erroneous or one decides to presently ignore the unbalance, the bridge can be readjusted by means of the resistors 38 and 39 to bring it back into balance. This is quite feasible since the signal output from the bridge is analog. A change in the resistance of the conductive layer modifies the electrical signal in an analog manner. The alarm system can therefore be reset ,by rebalancing the bridge, all of which can be done from a remote location if desired.
Such is infeasible in' a window fitted with conventional tude to unbalance the bridge. One can therefore provide an automatic balance reset 44 which senses an unbalance and brings the bridge back to null by adjusting the potentiometer 39. The fact of resetting of the bridge or the magnitude of the resetting may be recorded with a conventional recorder 45. The cumulative change in resistance recorded by therecorder 45 could be used to trigger an alarm if desired. It will be apparent, of course, that the balance reset 44 may be operated by the amplifier null balance signal from the amplifier 41 so as to operate in a more analog fashion and accommodate slow drifts in the resistance balance cation may also be-incorporated in the balance detection system so that, for example, a single transient of resistance can be ignored and a more permanent change employed for triggering the alarm. Means may also be provided for triggering the alarm in case the bridge leads are shorted or cut, or if the power is cut off, or if any of a variety of techniques'are employed for circumventing the alarm system.
As mentioned above, the resistance of the conductive layer in the window may vary with temperature and cause an unbalance of the bridge. Although this'can be readily accounted for with an automatic balance resetting system, it is also quite easy to simply compensate for the temperature change by making the fixed resistor 34 in the adjacent arm of the bridge to the resistor 26' also be a conductivelayer in window. If the temperature pattern in the two resistors is similar, any changes in resistance will be equivalent and the balance of the bridge will notbe upset. The-second conductive layer in a window may be in a separate window located in a position subject to similar temperature conditions or it may simply be another portion of the same window in which the layer resistor 26 is located.
FIG. 13 illustrates in face view another embodiment of security window having a conductive layer extending over most of the area of the window. In this embodiment, there is a bus bar 102 extending along one side edge of the window for making electrical contact with one entire edge of the conductive layer in the window. An electrical isolation line 103 extends across the window transverse to the bus bar 102 and divides the conductive area of the window into two conductive regions 104 and 106. A bus bar 107 extends part way along the side edge of the window opposite from the full length bus bar 102 and makes electrical contact with the conductive layer of the first region 104. A second similar bus bar 108 extends the balance of the way across the window and makes electrical contact with the conductive layer in the second conductive region 106. Each of the bus bars extends beyond the edge of the window for making electrical contact with an externalcircuit.
FIG. 13 also illustrates schematically a typical external circuit connected to the bus bars of the window. A power supply 109 is connected to the two similar bus bars 107 and 108. Resistors 111 and 112 are also connected to the power supply. A first tap 113 is connected between the resistors 111 and llland a second '49. Suitable conductive tabs tap 114 is connected to the bus bar 102 that makes electrical contact with both conductive regions 104 and 106. The taps 113 and 114 may be connected to any conventional null balance detection circuitry as desired for triggering an alarm in response to unbalance of resistance. It will be noted that the window and external circuit illustrated in FIG. 13 are connected as a conventional bridge with the two conductive regions of the window as adjacent arms of the bridge. Either or both of the resistors 111 or 112 can be variable for balancing the bridge, or balancing can be achieved in the additional circuits (not shown) to which the window may be connected.
The two conductive regions of the window will both be subjected to similar temperature conditions and any changes in resistance in the two regions may be similar. Being in adjacent bridge arms, the resistance drift due to temperature change balances out and no bridge unbalance results. It will be apparent that if desired the conductive layer in each of the conductive regions 104 and 106 can be subdivided by isolation lines extending between the bus bars to any desired extent for enhancing sensitivity of the window to penetration.
FIG. 4 illustrates in face view another embodiment of security window having an electrically conductive layer over most of the area of the window. In this embodiment, the conductive layer is subdivided into four conductive areas 46, 47, 48 and 49 by isolation lines 50. A first bus bar 51 is in electrical contact along an edge of the first conductive area 46. A similar short bus bar 52 is in electrical contact with an edge of the other outside conductive area 49. A third bus bar 53 is in electrical contact with the edges of both of the remaining two conductive areas 47 and 48 spanning one of the isolation lines 50. Along the opposite edge of the security window from the first three bus bars is' a fourth bus bar 54 in electrical contact with the edges of the two conductive areas 46 and 47. Another bus bar 55 on this same edge of the window is in electrical contact with the edges of the remaining two conductive areas 48 and 56 extend from the bus bars to and beyond the edges of the window for making electrical contact to external circuits. If desired, the conductive areas between the isolation lines 50 can also be subdivided into parallel resistive areas in the same manner as the window of FIG. 1 for enhanced sensitivity.
FIG. illustrates schematically the interconnection of the conductive areas. The bus bars and conductive areas of FIG. 4 are represented schematically with the same reference numerals bearing a prime in FIG. 5. The two bus bars 51 and 52 are externally interconnected at a point 51, 52'. This same point is connected to a suitable power supply 57 which is in turn connected to the center bus bar 53 at a point 53' in the schematic illustration of FIG. 5. Electrical connection is made to the opposite bus bars 54 and 55 at the points 54' and 55' leading to a detector 58 of changes in the electrical resistance. The detector 58.can be connected for triggering an alarm 59 when a predeterminedliminal change in electrical resistance occurs in the bridge formed by the resistors (conductive areas) 46', 47
48, and 49.
Since the four resistors or conductive areas are connected as the four arms of a resistance bridge, any resistance changes occurring in all of the conductive areas will not unbalance the bridge and no net change in resistance will be noted. As mentioned above, the conductive layer within the security window changes resistance somewhat with changing temperature. Similarly, stresses on the conductive layer which may be generated by bending of the window, for example, may change resistance. When the conductive areas are interconnected as arms of a bridge such thermal or stress changes in resistance do not cause false alarms. It will be apparent to one skilled in the art that if desired more than one window may be interconnected as arms of a resistance bridge and the conductive areas may sufficiently balance to compensate for thermal changes and the like. This is generally less desirable since the thermal changes or changes in stress between two windows is ususally. of much greater magnitude than similar changes within two different areas of the same window. It will also be apparent that the resistance change detector 58 should be adjustable for resetting the alarm system in case of a permanent change-in the resistance balance between the arms of the bridge.
FIG. 6 illustrates in face view another embodiment 0 security window. In the embodiment of FIG. 1, the conductive areas were electrically connected in parallel; In the embodiment of FIG. 6, the conductive area's are connected in series. Thus, as illustrated in this embodiment, a plurality of isolation lines 61 extend between opposite edges of the security window and subdivide the area into a plurality of conductive areas 62. Electrical contact is made along a side edge of one of the outside conductive areas by a bus bar 63. A tab 64 permits electrical connection of this bus bar to an external circuit. At theopposite end of the first conductive area from the bus bar 63 is a second bus bar 65 which makes electrical contact along the side edge of the first conductive area and also along the side edge of the second conductive area adjacent the first. That is, the second bus bar 65 spans the isolation line6l between the two adjacent conductive areas. Another bus bar 66 electrically connects the opposite side edge of the second conductive area with the side edge of the third conductive area. These additional bus bars 65 and 66 do not have an external tab for electrical connection to circuits. outside the window A similarseries of additional bus bars connect adjacent conductive areas clear across the window. In the final conductive area a bus bar 68 makes electrical connection to both the edge of the conductive area and a tab 69 permitting electrical connection to an external circuit. Thus, all of the conductive areas within the window are electrically connected together in series. Clearly a penetration that extends through the full extent of one of the conductive areas will interrupt the continuous circuit and provide a substantially infinite increase in resistance. Such an electrical connection is not resettable from a remote location.
If desired a tab 70 may be provided on a central bus bar for making contact to an external circuit thereby permitting half of the conductive areas to be in one arm of a bridge and the other half in another arm of a bridge for temperature and stress compensation. Such a series connected security window is very sensitive to small penetrations. The same effect can be obtained without the large number of bus bars by simply ending alternate isolation lines a substantial distance from each of the opposite edges of the window respectively. A pattern of isolation lines for a series-parallel connection of conductive areas can also be used.
As mentioned hereinabove the security window is highly sensitive to pentrations that have a component extending in a direction parallel to the bus bars. If the interruption in the conductive layer is primarily in a direction between the bus bars, that is, for example, parallel to the isolation lines, little if any change in resistance is observed. Thus, for example, if the object of penetration of the security window is the passage of contraband, a narrow slit extending between the bus bars may be sufficient for the unlawful purpose without causing a sufficient change in resistance to trigger the alarm. This possibility is effectively forestalled with a security window of the type illustrated in FIG. 7.
As illustrated in this embodiment at least the central portion of the security window has two spaced apart conductive layers extending over most of the area of the window.;A first pair of bus bars 72 are provided along the opposite side edges of the security window in electrical contact with the edges of one of the conductive layers. Orthogonal to this first set of bus bars is a second pair of bus bars 73 in electrical contact with the edges of the second conductivelayer within the window. The isolation lines in the conductive layers between the opposed bus bars have been deleted from FIG. 7 for enhancing clarity of the drawing. It will be readily apparent that no penetration of the window can be made that does not have a component parallel to one or the other of the two pairs of bus bars. It is therefore substantially impossible to penetrate such a window with any reasonable size hole without triggering an alarm.
The arrangement of bus bars in the window illustrated in FIG. 7 is as simple aspossible and, if desired, arrangements such as illustrated in FIGS. 4 and 6 may be employed. The two conductive layers can be employed as a pair of arms in a bridge, or portions of the two conductive layers may be used as the four arms of a bridge. There is a possibility, although remote, that penetration of both layers could cause compensating resistance changes in the two layers when they are used as adjacent arms of a bridge. The two layers canfbe used as opposite arms of the bridge so that penetration of both layers causes an increase in sensitivity.
FIG. 8 illustrates in fragmentary cross section a laminate security window having .two conductive layers therein. In this illustration successive layers are cut away to best show the location of the bus bars. In this particular example the arrangement of successive layers is symmetrical from the center of the laminate, however, it will be apparent that asymmetrical arrangements are also suitable.
Each face of the laminated security. window comprises a glass ply 75. A plastic interlayer 76 about 0.03 inch thick is bonded to each of the glass plys 75. A carrier film 77 of polyethylene terephthalate about 0.005
inch thick and having a thin conductive metal coating 78 thereon is bonded to each of the interlayers 76. Centrally located in the laminate is a third interlayer 79 which bonds the two carrier films together. One of the bus bars 72 is imbedded in one of the plastic interlayers 76 so as to be in electrical contact with one of the conductive layers 78. The bus bar 72 is illustrated schematically rather than show the corrugations of the preferred bus bar hereinbefore mentioned. The other bus bar 73 is imbedded in the opposite interlayer 76 so as to be in electrical contact with the other conductive layer 78. During fabrication of such a laminated window initially flat sheets of polyvinyl butyral for the interlayers are assembled in a sandwich and during the heat and pressure cycle of lamination this relatively soft materialdeforms so that the respective bus bar imbeds therein. The effect of plural layers for detecting penetration can also be obtained by depositing thin metal films on both faces of the carrier film and laminating that carrier in a window with bus bars in contact with both metal layers. I
FIG. 9 illustrates in fragmentary cross section another embodiment of security window suitable for use in locations where customary access is almost entirely on one side of the window. This laminated structure has a glass ply 81 on one face, such as, for example, one
quarter inch tempered glass. A polyvinyl butyral inter- Y such as chemically deposited silica, titania or the like,
which affords a substantial degree of abrasion resistance and protection against chemical attack on plastic.
Such an asymmetrical laminated security window may be used, for example, in an institution wherein the glass layer 81 is used on the inside where the inhabitants have access to the window. The plastic layer would be used on the outside where there is no regular day-today contact. Similarly in a store window or the like the glass layer may be employed on the outside with the plastic layer 87 on the inside where only store personnel may have access to it. This is desirable since the plastic ply is softer than the glass and can be scratched.
FIG. 10 illustrates a security window such as might be used for temporary purposes. In this embodiment a pair of carrier films 89 having thin conductive metal layers 90 thereon are bonded together with a plastic layer 91 which may be a polyvinyl butyral interlayer as hereinabove described or may be other suitable adhesive bonding. The relatively thick interlayer is not generally needed in such a situation since its ability to conform to the rigid glass and'polycarbonate plys of the other embodiments is not a requirement. Care must be taken, of course, to insulate the two metal layers 90 from each other if both are used in active alarm circuits. Similarly the bus bars (not shown) making contact to the conductive layers 90 must be insulated. It will also be apparent that if desired a carrier film having a metal coating thereon can be adhesively bonded to a similar film which serves to protect the delicate metal layer from damage and a security window suitable for temporary use may be very inexpensively provided. Bus bars are needed to make contact with the metal layer. Such a security window made with thin plastic films has considerable flexibility and is light in weight making it quite suitable for temporary use. Such a lamination of plastic films with a conductive layer therein can be bonded on a window and connected to suitable detection and'alarm circuits for forming a security window. Preferably the conductive layer in such a security window is scribed with electrical isolation lines and electrically connected in a bridge circuit in one of the manners hereinabove described.
There is a distinct advantage in the arrangement illustrated in FIG. 2 wherein the conductive layer 26 is separated from the tempered glass ply 23 by at least the interlayer 24 and, if desired, the carrier film 25. The plastic isolates the conductive film from the glass layer so that if the glass is merely broken most, if not all, of the conductive layer remains intact. It is a characteristic of tempered glass, that break propagates over the entire extent of the glass braking it into a very large number of small fragments. If the conductive layer were on the glass or closely coupled thereto such breakage of the glass would completely rupture the delicate metal layer and it would appear that penetration -was being'attempted. With the metal layer decoupled from the glass by a relatively soft resilient intervening plastic layer mere breakage of the glass does not disrupt the conductive film to more than a minor extent. Even if an alarm might be sounded when the tempered glass is broken the alarm system can be reset to indicate when an attempt is made to penetrate the window.
The resistance of the thinmetal film embedded in the laminated security window is also sensitive to strain. That is, as the film is strained, the resistance changes. Thus, for example, when the conductive layer is located off of a neutral axis of the cross section of the laminated window, a bending of the window will induce strain in the conductive layer and change its resistance. This discovery gives one an opportunity to employ the deformation of the window prior to penetration for providing an alarm signal. More particularly a transient change in resistance can be detected with a pulse or rate of change greater than some predetermined magnitude.
FIG. 11 illustrates in block diagram a system for utilizing the strain sensitive properties of the conductive film in a laminated window for providing a security alarm. A power supply 93 applies power to the conductive metal layer in a security window 94. The excitation applied to the window by the power supply may be AC or DC, and may be either current or voltage as desired. The window 94 is also connected to an AC amplifier 96 with gain control 97. The AC amplifier may also have a band width control, if desired, for limiting the AC range amplified. The output of the AC amplifier is applied to a threshold detector 98 which applies an outof-limits signal to an alarm 99.
If someone should commence striking or otherwise deforming the window in order to effect penetration, the resultant time varying signal is amplified. When the signal is within the frequency band of the AC amplifier and beyond the preset threshold, an alarm will sound. Such a system is also responsive to the rate of change of penetration through a window as represented by the changing resistance. In an impact sensitive system one can use the magnitude of the pulse of changing resistance to detect a penetration or attempt at penetration. If desired the rate of change or rise time of the pulse or pulse width can be selected for triggering an alarm. The circuitry for detecting any such characteristic of changing resistance is conventional.
The sensitivity of the threshold detector 98 can be set so that the strain required to activate the alarm 99 is a I large fraction of thestrain that would occur in thewindow before breakage. Gain control 97 may effect this function. Thus, relatively minor blows on a window which are far short of causing breakage can be ignored and a pulse representing a sufficientblow to be quite near breakage of the window can be detected. One can monitor strain amplitude and detect pressures that are a large fraction of the force required to break the window. With AC amplification in the system a blow that is sufficient to raise the strain level to breakage will activate the alarm and indicate penetration. It has been noted in penetration tests of a window having a thin metal conductive film that during the-penetration event very high excursions in resistance occur and thereafter the resistance settles to an equilibrium value'characteristic of the response to severance of the film. Thus, for example, penetration of the security window by a high speed projectile will cause a large change in resistance as penetration occurs which can be detected by the AC amplification system. Thus the penetration can be detected by the rapid pulse of resistance change, even though the steadystate resistance may not be significantly different from the original resistance.
It may be desirable to employ a strain sensitive detection system as set forth in FIG. 11 with a penetration sensing system as illustrated in FIG. 3. In such an arrangement the input to the AC amplifier 96 may be either the output of the null balance bridge of FIG. 3 or the output of a DC amplifier 41 which mayreduce the gain requirements of the AC amplifier 96. i
If desired, a continuous surveillance monitor 101 may be connected to the output of the AC amplifier 96. This continuous surveillance monitor may have a visual or aural output so that an attendant can perceive signal changes, such as, for example, dueto someone pounding on a security window. The continuous surveillance monitor can'also be some. means for recording the output signal for review at a later time. p
'A resistance bridge is of course not the only way of detecting a change in the resistance of the conductive layer. A simple and inexpensive technique is illustrated in FIG. 12. As illustrated in this arrangement a voltage e,- is applied to a resistor 102 connected to an input of an operational amplifier 103. A second resistor 104 is connected across the amplifier. The output voltage e, is proportional to the input voltage and the ratio of the resistance of resistor 104 to the resistance of resistor 102. The voutput voltage is thus quite sensitive to any change in the relative values of the two resistors; A conductive layer in a security window can be used for either of the two resistors inthis schematic diagram, or if desired two conductive areas in a window could be used as both resistors 102 and 104 for temperature compensation. The operational amplifier can be either a single input amplifier, or can be a differential amplifier with two inputs.
One can also use ohmmeter circuits or a variety of current or voltage comparison circuits for noting a change in resistance due to window penetration. It will also be noted that the resistance values can be digitized at any point in the electrical circuit and digital techniques used for balancing, comparing and the like. If the resistance of a conductive layer is digitized it can be compared to a digital reference number and the balance can be maintained by changing the reference number. As much or as little sophistication as desired can be achieved with digital techniques for comparison, correction and avoidance of false alarms or tampering with the system. Many other arrangements will be apparent to one skilled in the art for detecting a variation in resistance of the security window.
Although limited embodiments of security window and alarm systems associated therewith have been described and illustrated herein, many modifications and variations will be apparent to one skilled in the art. It is, therefore, to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
1. A laminated security window comprising:
first transparent electrically conductive layer in the window and extending over most of the area of the window;
a first set-of bus bars in electrical contact with opposite edge portions of the first conductive layer;
a second transparent electrically conductive layer in the window insulated from the first conductive layer and extending over most of the area of the window; and
a second set of bus bars in electrical contact with opposite edge portions of the second conductive layer, said second set of bus bars being transverse to the first set of bus bars.
2. A laminated security window as defined in claim 1 wherein the first conductive layer includes a plurality of interruptions extending in a direction from one of the first set of bus bars towards the-other bus bar of the first set for dividing the conductive layer into a plurality of conductive areas; and
the second conductive layer includes a plurality of interruptions extending in a direction from one of the second set of bus bars towards the other bus bar of the second set for dividing the conductive layer into a plurality of conductive areas, the interruptions in the second layer being transverse to the interruptions in the first layer.
3. A laminated security window as defined in claim 2 further comprising means connected to the first and second sets of bus bars for detecting a change in relative resistance of the first and second conductive layers.
4. A laminated security window as defined in claim 1 further comprisingmeans connected to the first and second sets of bus bars for detecting a change in relative resistance of the first and second conductive'layers.
5. A laminated security window as defined in claim 1 wherein the first conductive layer is deposited on a first transparent plastic carrier film; the second conductive layer is deposited on a second transparent plastic carrier film; and further comprisinga transparent plastic interlayer between the first and second carrier films.
6. A laminated security window as defined in claim 5 further comprising:
a first rigid face ply;
a second transparent plastic interlayer bonding the first face ply to the first carrier film;
a'second rigidface ply; and y a third transparent plastic interlayer bonding the second face ply to the second carrier film. 7. A laminated security window system comprising:
a first transparent electrically conductive layer in the window and extending over most of the area of the window;
a second transparent electrically conductive layer in the window and extending over most of the area of the window; a
means for detecting a change in relative resistanceof the first and second conductive layers measured in one direction in the first layer and measured in a transverse direction in the second layer. 8. A laminated security window system as defined in claim 7 wherein the first conductive layerincludes a plurality of interruptions extending in the one direction and the second conductive layer includes a plurality of interruptions extending in the transverse direction.
9. A laminated security window system as defined in claim 8 wherein the means for detecting a change in carrier films.

Claims (10)

1. A laminated security window comprising: first transparent electrically conductive layer in the window and extending over most of the area of the window; a first set of bus bars in electrical contact with opposite edge portions of the first conductive layer; a second transparent electrically conductive layer in the window insulated from the first conductive layer and extending over most of the area of the window; and a second set of bus bars in electrical contact with opposite edge portions of the second conductive layer, said second set of bus bars being transverse to the first set of bus bars.
2. A laminated security window as defined in claim 1 wherein the first conductive layer includes a plurality of interruptions extending in a direction from one of the first set of bus bars towards the other bus bar of the first set for dividing the conductive layer into a plurality of conductive areas; and the second conducTive layer includes a plurality of interruptions extending in a direction from one of the second set of bus bars towards the other bus bar of the second set for dividing the conductive layer into a plurality of conductive areas, the interruptions in the second layer being transverse to the interruptions in the first layer.
3. A laminated security window as defined in claim 2 further comprising means connected to the first and second sets of bus bars for detecting a change in relative resistance of the first and second conductive layers.
4. A laminated security window as defined in claim 1 further comprising means connected to the first and second sets of bus bars for detecting a change in relative resistance of the first and second conductive layers.
5. A laminated security window as defined in claim 1 wherein the first conductive layer is deposited on a first transparent plastic carrier film; the second conductive layer is deposited on a second transparent plastic carrier film; and further comprising a transparent plastic interlayer between the first and second carrier films.
6. A laminated security window as defined in claim 5 further comprising: a first rigid face ply; a second transparent plastic interlayer bonding the first face ply to the first carrier film; a second rigid face ply; and a third transparent plastic interlayer bonding the second face ply to the second carrier film.
7. A laminated security window system comprising: a first transparent electrically conductive layer in the window and extending over most of the area of the window; a second transparent electrically conductive layer in the window and extending over most of the area of the window; means for detecting a change in relative resistance of the first and second conductive layers measured in one direction in the first layer and measured in a transverse direction in the second layer.
8. A laminated security window system as defined in claim 7 wherein the first conductive layer includes a plurality of interruptions extending in the one direction and the second conductive layer includes a plurality of interruptions extending in the transverse direction.
9. A laminated security window system as defined in claim 8 wherein the means for detecting a change in relative resistance comprises a bridge and wherein the first and second conductive layers are in adjacent arms of the bridge.
10. A laminated security window system as defined in claim 7 wherein the first conductive layer is deposited on a first transparent plastic carrier film; the second conductive layer is deposited on a second transparent plastic carrier film; and further comprising a transparent plastic interlayer between the first and second carrier films.
US00307089A 1972-11-16 1972-11-16 Security window Expired - Lifetime US3825917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00307089A US3825917A (en) 1972-11-16 1972-11-16 Security window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00307089A US3825917A (en) 1972-11-16 1972-11-16 Security window

Publications (1)

Publication Number Publication Date
US3825917A true US3825917A (en) 1974-07-23

Family

ID=23188192

Family Applications (1)

Application Number Title Priority Date Filing Date
US00307089A Expired - Lifetime US3825917A (en) 1972-11-16 1972-11-16 Security window

Country Status (1)

Country Link
US (1) US3825917A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2201277A (en) * 1987-02-19 1988-08-24 Hickman James A A Glazing unit alarm system
US4774143A (en) * 1985-12-31 1988-09-27 General Electric Company Impact resistant glass
US4972176A (en) * 1989-09-15 1990-11-20 General Electric Company Polymeric security window with an integrated intrusion detector
US5219386A (en) * 1988-05-06 1993-06-15 Keba Gesellschaft M.B.H. & Co. Locker unit comprising a plurality of lockers
US5778629A (en) * 1995-09-28 1998-07-14 Howes; Stephen E. Impact resistant window
US5937611A (en) * 1995-09-28 1999-08-17 Howes; Stephen E. Method of making an impact resistant window
US6101783A (en) * 1995-09-28 2000-08-15 Howes; Stephen E. Impact resistant window
WO2004011311A1 (en) * 2002-07-30 2004-02-05 Ppg Industries Ohio, Inc. Rupture detector for windshield assembly
US20080008893A1 (en) * 1998-11-02 2008-01-10 3M Innovative Properties Company Transparent conductive articles and methods of making same
US20080257475A1 (en) * 2002-08-17 2008-10-23 3M Innovative Properties Company Flexible electrically conductive film
US20090303602A1 (en) * 2008-06-05 2009-12-10 Bright Clark I Ultrathin transparent emi shielding filter
US20120081226A1 (en) * 2010-10-05 2012-04-05 Yun Xiang Technology Inc. Burglarproof security system and installing method thereof
US20120222543A1 (en) * 2011-03-03 2012-09-06 The United States Of America As Represented By The Secretary Of The Army Self Diagnostic Armor Structure
US9157703B2 (en) 2011-04-01 2015-10-13 Am General Llc Transparent Armor Structure
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US11080973B2 (en) * 2019-10-23 2021-08-03 Shawn Patterson Burglary alarm assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864928A (en) * 1957-01-18 1958-12-16 Sierracin Corp Electrically conductive optical article
US2921257A (en) * 1956-12-28 1960-01-12 Libbey Owens Ford Glass Co Method of testing electrically conducting films
US3180781A (en) * 1960-09-21 1965-04-27 Libbey Owens Ford Glass Co Electrically conductive laminated structures
US3594770A (en) * 1968-10-28 1971-07-20 Lewis Eng Co Printed-circuit type security apparatus for protecting areas
US3671370A (en) * 1970-06-15 1972-06-20 Ppg Industries Inc Integral transparent safety glass armor unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921257A (en) * 1956-12-28 1960-01-12 Libbey Owens Ford Glass Co Method of testing electrically conducting films
US2864928A (en) * 1957-01-18 1958-12-16 Sierracin Corp Electrically conductive optical article
US3180781A (en) * 1960-09-21 1965-04-27 Libbey Owens Ford Glass Co Electrically conductive laminated structures
US3594770A (en) * 1968-10-28 1971-07-20 Lewis Eng Co Printed-circuit type security apparatus for protecting areas
US3671370A (en) * 1970-06-15 1972-06-20 Ppg Industries Inc Integral transparent safety glass armor unit

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774143A (en) * 1985-12-31 1988-09-27 General Electric Company Impact resistant glass
GB2201277A (en) * 1987-02-19 1988-08-24 Hickman James A A Glazing unit alarm system
GB2201277B (en) * 1987-02-19 1991-07-24 Hickman James A A Glazing unit alarm system
US5219386A (en) * 1988-05-06 1993-06-15 Keba Gesellschaft M.B.H. & Co. Locker unit comprising a plurality of lockers
US4972176A (en) * 1989-09-15 1990-11-20 General Electric Company Polymeric security window with an integrated intrusion detector
EP0417515A2 (en) * 1989-09-15 1991-03-20 General Electric Company A polymeric security window with an integrated intrusion detector
EP0417515A3 (en) * 1989-09-15 1991-12-04 General Electric Company A polymeric security window with an integrated intrusion detector
US5778629A (en) * 1995-09-28 1998-07-14 Howes; Stephen E. Impact resistant window
US5937611A (en) * 1995-09-28 1999-08-17 Howes; Stephen E. Method of making an impact resistant window
US6101783A (en) * 1995-09-28 2000-08-15 Howes; Stephen E. Impact resistant window
US8241752B2 (en) 1998-11-02 2012-08-14 3M Innovative Properties Company Transparent conductive articles and methods of making same
US20080008893A1 (en) * 1998-11-02 2008-01-10 3M Innovative Properties Company Transparent conductive articles and methods of making same
US20110074282A1 (en) * 1998-11-02 2011-03-31 3M Innovative Properties Company Transparent conductive articles and methods of making same
US8541942B2 (en) 1998-11-02 2013-09-24 3M Innovative Properties Company Transparent conductive articles and methods of making same
US6794882B2 (en) 2002-07-30 2004-09-21 Ppg Industries Ohio, Inc. Rupture detector for windshield assembly
US20040021453A1 (en) * 2002-07-30 2004-02-05 Jessup Shaun E. Rupture detector for windshield assembly
WO2004011311A1 (en) * 2002-07-30 2004-02-05 Ppg Industries Ohio, Inc. Rupture detector for windshield assembly
US20080257475A1 (en) * 2002-08-17 2008-10-23 3M Innovative Properties Company Flexible electrically conductive film
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US8350451B2 (en) 2008-06-05 2013-01-08 3M Innovative Properties Company Ultrathin transparent EMI shielding film comprising a polymer basecoat and crosslinked polymer transparent dielectric layer
US20090303602A1 (en) * 2008-06-05 2009-12-10 Bright Clark I Ultrathin transparent emi shielding filter
US20120081226A1 (en) * 2010-10-05 2012-04-05 Yun Xiang Technology Inc. Burglarproof security system and installing method thereof
US8333140B2 (en) * 2011-03-03 2012-12-18 The United States Of America As Represented By The Secretary Of The Army Self diagnostic armor structure
US20120222543A1 (en) * 2011-03-03 2012-09-06 The United States Of America As Represented By The Secretary Of The Army Self Diagnostic Armor Structure
US9157703B2 (en) 2011-04-01 2015-10-13 Am General Llc Transparent Armor Structure
US11080973B2 (en) * 2019-10-23 2021-08-03 Shawn Patterson Burglary alarm assembly

Similar Documents

Publication Publication Date Title
US3825917A (en) Security window
US3825920A (en) Laminated security window system
US3947837A (en) Security glazing and alarm system
US3825918A (en) Impact sensitive security window system
US4972176A (en) Polymeric security window with an integrated intrusion detector
US5773102A (en) Soundproofing laminated glass pane
EP0140493B1 (en) Security protection panel
US5027552A (en) Redundant sensing edge for a door for detecting an object in proximity to the door edge
US3825919A (en) Laminated security window
US20090142579A1 (en) High security window film with sensing capability
GB1596321A (en) Magnetic detection system
NO177730B (en) Display panel for electromagnetic shielding
JP2018535465A (en) Alarm pane device
US10557877B2 (en) Alarm pane assembly
EP0594375A2 (en) Translucent article having induction loop antenna
US10490036B2 (en) Alarm pane assembly
JP6568308B2 (en) Alarm pane device
US20030184438A1 (en) Sensor systems
US3409886A (en) Burglar alarm system including protective tape
CA2091051A1 (en) Alarm device
US3868667A (en) Intruder detection system embodying a bimorph transducer
JP2006124189A (en) Laminated translucent plate incorporated with piezoelectric or pyroelectric element, and building, structure and vehicle using the same
GB2046897A (en) Window or like member
JP5044979B2 (en) Film sensor and glass structure
JP2605464Y2 (en) Security laminated glass and multi-layer glass

Legal Events

Date Code Title Description
AS Assignment

Owner name: CALIFORNIA FEDERAL BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:SIERRACIN CORPORATION, A DE CORP.;REEL/FRAME:005315/0871

Effective date: 19900309

AS Assignment

Owner name: SHAWMUT CAPITAL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF SECURITY INTEREST;ASSIGNOR:BARCLAYS BUSINESS CREDIT, INC.;REEL/FRAME:007338/0050

Effective date: 19950131