US3897470A - Process for producing oil-soluble metal sulfonates - Google Patents
Process for producing oil-soluble metal sulfonates Download PDFInfo
- Publication number
- US3897470A US3897470A US359302A US35930273A US3897470A US 3897470 A US3897470 A US 3897470A US 359302 A US359302 A US 359302A US 35930273 A US35930273 A US 35930273A US 3897470 A US3897470 A US 3897470A
- Authority
- US
- United States
- Prior art keywords
- mixture
- oil
- sulfonic acid
- metal
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 44
- 239000002184 metal Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000008569 process Effects 0.000 title claims abstract description 39
- 150000003871 sulfonates Chemical class 0.000 title claims abstract description 21
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims abstract description 62
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 26
- 150000005309 metal halides Chemical class 0.000 claims abstract description 26
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims abstract description 18
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052742 iron Inorganic materials 0.000 claims abstract description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 13
- 239000011733 molybdenum Substances 0.000 claims abstract description 13
- 239000000470 constituent Substances 0.000 claims abstract description 12
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 239000010955 niobium Substances 0.000 claims abstract description 11
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 239000011651 chromium Substances 0.000 claims abstract description 9
- 229910052738 indium Inorganic materials 0.000 claims abstract description 9
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052762 osmium Inorganic materials 0.000 claims abstract description 9
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 239000010936 titanium Substances 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052701 rubidium Inorganic materials 0.000 claims abstract description 8
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 8
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract 3
- 239000000203 mixture Substances 0.000 claims description 53
- 238000010992 reflux Methods 0.000 claims description 39
- 239000011541 reaction mixture Substances 0.000 claims description 28
- 239000000047 product Substances 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 18
- 229930195733 hydrocarbon Natural products 0.000 claims description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 150000002430 hydrocarbons Chemical class 0.000 claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- 150000004820 halides Chemical class 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 6
- 239000000539 dimer Substances 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 239000003208 petroleum Substances 0.000 claims description 6
- 238000006277 sulfonation reaction Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 238000001556 precipitation Methods 0.000 claims description 5
- 238000013019 agitation Methods 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 3
- 239000008262 pumice Substances 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 claims description 3
- 239000008096 xylene Substances 0.000 claims description 3
- 239000005909 Kieselgur Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 230000002745 absorbent Effects 0.000 claims description 2
- 239000002250 absorbent Substances 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000000746 purification Methods 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 239000003570 air Substances 0.000 claims 1
- 239000003921 oil Substances 0.000 description 15
- 235000019198 oils Nutrition 0.000 description 15
- 150000003460 sulfonic acids Chemical class 0.000 description 15
- -1 tantalumpmbidium Chemical compound 0.000 description 14
- 241000158728 Meliaceae Species 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000006471 dimerization reaction Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Chemical compound [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- RMSOEGBYNWXXBG-UHFFFAOYSA-N 1-chloronaphthalen-2-ol Chemical compound C1=CC=CC2=C(Cl)C(O)=CC=C21 RMSOEGBYNWXXBG-UHFFFAOYSA-N 0.000 description 1
- YCXSPKZLGCFDKS-UHFFFAOYSA-N 1-dodecylcyclohexane-1-sulfonic acid Chemical compound CCCCCCCCCCCCC1(S(O)(=O)=O)CCCCC1 YCXSPKZLGCFDKS-UHFFFAOYSA-N 0.000 description 1
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- BYMMVYUYWOHLMH-UHFFFAOYSA-N 2,3-dihexadecylthianthrene-1-sulfonic acid Chemical compound S1C2=CC=CC=C2SC2=C1C=C(CCCCCCCCCCCCCCCC)C(CCCCCCCCCCCCCCCC)=C2S(O)(=O)=O BYMMVYUYWOHLMH-UHFFFAOYSA-N 0.000 description 1
- SGBQUMZTGSQNAO-UHFFFAOYSA-N 2-hydroxynaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(O)=CC=C21 SGBQUMZTGSQNAO-UHFFFAOYSA-N 0.000 description 1
- WPFCHJIUEHHION-UHFFFAOYSA-N 2-nitronaphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=C([N+]([O-])=O)C=CC2=C1 WPFCHJIUEHHION-UHFFFAOYSA-N 0.000 description 1
- FTGKPHQQHPCLAI-UHFFFAOYSA-N 3,6-dithiatetracyclo[6.4.0.02,4.05,7]dodeca-1(12),8,10-triene Chemical compound C12=CC=CC=C2C2SC2C2C1S2 FTGKPHQQHPCLAI-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 241000199908 Diatoma Species 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 229910021550 Vanadium Chloride Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001536 azelaic acids Chemical class 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 229910021563 chromium fluoride Inorganic materials 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- XZQOHYZUWTWZBL-UHFFFAOYSA-L chromium(ii) bromide Chemical compound [Cr+2].[Br-].[Br-] XZQOHYZUWTWZBL-UHFFFAOYSA-L 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- ZHGASCUQXLPSDT-UHFFFAOYSA-N cyclohexanesulfonic acid Chemical class OS(=O)(=O)C1CCCCC1 ZHGASCUQXLPSDT-UHFFFAOYSA-N 0.000 description 1
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 1
- ZNRKKSGNBIJSRT-UHFFFAOYSA-L dibromotantalum Chemical compound Br[Ta]Br ZNRKKSGNBIJSRT-UHFFFAOYSA-L 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- CJMZLCRLBNZJQR-UHFFFAOYSA-N ethyl 2-amino-4-(4-fluorophenyl)thiophene-3-carboxylate Chemical compound CCOC(=O)C1=C(N)SC=C1C1=CC=C(F)C=C1 CJMZLCRLBNZJQR-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000010688 mineral lubricating oil Substances 0.000 description 1
- LNDHQUDDOUZKQV-UHFFFAOYSA-J molybdenum tetrafluoride Chemical compound F[Mo](F)(F)F LNDHQUDDOUZKQV-UHFFFAOYSA-J 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- DSYRJFDOOSKABR-UHFFFAOYSA-I niobium(v) bromide Chemical compound [Br-].[Br-].[Br-].[Br-].[Br-].[Nb+5] DSYRJFDOOSKABR-UHFFFAOYSA-I 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- MLKFZZUUYQWFMO-UHFFFAOYSA-H osmium hexafluoride Chemical compound F[Os](F)(F)(F)(F)F MLKFZZUUYQWFMO-UHFFFAOYSA-H 0.000 description 1
- IHUHXSNGMLUYES-UHFFFAOYSA-J osmium(iv) chloride Chemical compound Cl[Os](Cl)(Cl)Cl IHUHXSNGMLUYES-UHFFFAOYSA-J 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 1
- AOLPZAHRYHXPLR-UHFFFAOYSA-I pentafluoroniobium Chemical compound F[Nb](F)(F)(F)F AOLPZAHRYHXPLR-UHFFFAOYSA-I 0.000 description 1
- NFVUDQKTAWONMJ-UHFFFAOYSA-I pentafluorovanadium Chemical compound [F-].[F-].[F-].[F-].[F-].[V+5] NFVUDQKTAWONMJ-UHFFFAOYSA-I 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- YRGLXIVYESZPLQ-UHFFFAOYSA-I tantalum pentafluoride Chemical compound F[Ta](F)(F)(F)F YRGLXIVYESZPLQ-UHFFFAOYSA-I 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
- MPVSPHKBQDMOHE-UHFFFAOYSA-J tetrabromoosmium Chemical compound Br[Os](Br)(Br)Br MPVSPHKBQDMOHE-UHFFFAOYSA-J 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 1
- JKNHZOAONLKYQL-UHFFFAOYSA-K tribromoindigane Chemical compound Br[In](Br)Br JKNHZOAONLKYQL-UHFFFAOYSA-K 0.000 description 1
- FEONEKOZSGPOFN-UHFFFAOYSA-K tribromoiron Chemical compound Br[Fe](Br)Br FEONEKOZSGPOFN-UHFFFAOYSA-K 0.000 description 1
- FTBATIJJKIIOTP-UHFFFAOYSA-K trifluorochromium Chemical compound F[Cr](F)F FTBATIJJKIIOTP-UHFFFAOYSA-K 0.000 description 1
- ZOYIPGHJSALYPY-UHFFFAOYSA-K vanadium(iii) bromide Chemical compound [V+3].[Br-].[Br-].[Br-] ZOYIPGHJSALYPY-UHFFFAOYSA-K 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/005—Compounds of elements of Group 5 of the Periodic Table without metal-carbon linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F11/00—Compounds containing elements of Groups 6 or 16 of the Periodic Table
- C07F11/005—Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/002—Osmium compounds
- C07F15/0026—Osmium compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2431—Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
- C10L1/2437—Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
- C10M159/20—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
- C10M159/24—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/024—Propene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/402—Castor oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/086—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/102—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/106—Thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/065—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/06—Groups 3 or 13
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/08—Groups 4 or 14
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/10—Groups 5 or 15
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/16—Groups 8, 9, or 10
Definitions
- ABSTRACT A process for producing oil-soluble metal sulfonates is disclosed wherein ametal halide is reacted with an oilsoluble sulfonic acid to produce the desired metal sulfonate.
- the metal constituent of the metal halide is selected from the group/consisting of aluminum, indium, chromium, iron, molybdenum, vanadium, titanium, niobium, tantalumpmbidium, and osmium.
- dispersions containing certain oil-soluble metal sulfonates have acquired considerable importance additives in fuels and lubricating oil. Such dispersions have been highly useful as additives to other materials where the problem of suspending insoluble waste materials formed in the utilization of the material and also the problem of corrosion inhibition is met.
- oil-soluble metal sulfonates are employed as additives for use in internal combustion engine lubrieating compositions. such agents function to effectively disperse or peptize the insolubles formed by the fuel combustion. oil oxidation. or similar conditions obtained during the operation of the engine.
- the metal constituent is selected from aluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum. rubidium. and osmium which comprises admixing a halide compound of such metals with an oil-soluble sulfonic acid. heating the resulting mixture to its reflux temperature for a period of time effective to allow formation of the oilsoluble metal sulfonate.
- said metal halide is present in a stoichiometric excess of from 5 to about 200% with said oil-soluble sulfonic acid.
- a volatile inert solvent can be incorporated with the oil-soluble sulfonic acid to reduce the viscosity of same and to facilitate the admixing of the oil-soluble sulfonate with said metal halide.
- Oil-soluble metal sulfonates have been recognized as desirable analytical standards as well as oil-soluble additives for fuels and lubricants. However. problems have been encountered in producing oil-soluble metal sulfonates such as molybdenum sulfonate. iron sulfonate and aluminum sulfonate.
- oil-soluble metal sulfonates of aluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum. rubidium. and osmium can readily be prepared by reacting a halide compound. or a mixture of a halide compound and oxide compound. of such metal with an oil-soluble sulfonic acid at elevated temperatures for a period of time effective to allow said halide compound or a mixture of a metal halide and a metal oxide compound to react with said oil-soluble sulfonic acid to produce the desired oil-soluble metal sulfonate.
- the present invention can be carried out as either a batch process or a continuous process. However. for the sake of simplicity the process of the present invention will be described as a batch process.
- the metal halide and the oil-soluble sulfonic acid are charged to a reaction vessel equipped with heating means. a stirring means and a reflux means.
- the amount ofinert volatile solvent employed can vary widely depending upon the viscosity of the particular oil-soluble sulfonic acid employed well as the viscosity desired in the reaction mixture but will generally be in an amount ranging from about 25 to I50 weight percent. based on the weight of the reaction mixture.
- the amount of the reactants can vary widely.
- the metal halide should be present in a stoichiometric excess. Generally. the excess will range from about 5 to 200 percent with the most desirable amount ranging from 5 to about 15 percent.
- the reactants are thoroughly agitated and the reaction mixture is heated to its reflux temperature which will generally be within the range of about 60 to l05 (I.
- an additional amount of the oil-soluble sulfonic acid can be introduced into the reaction mixture during the heating period before the mixture reaches its reflux temperature.
- care must be exercised to insure that the introduction of the additional oil-soluble sulfonic acid does not dilute the reaction mixture to such an extent that the metal halide is no longer present in a stoichiometric excess.
- additional oil-soluble sulfonic acid the amount will range from about 50 to 100 weight percent based on sulfonic acid present and at a temperature in the range of about 60 to 105 C.
- reaction mixture When the reaction mixture reaches its reflux temperature it is maintained at such temperature under reflux conditions for an effective period of time to allow the metalhalide and oil-soluble sulfonic acid to react and form the desired oil-soluble meal sulfonate.
- the reflux time of the reaction mixture can vary widely but will generally range from about I to about 6 hours. It is often desirable to introduce to the mixture after same has refluxed for about 1 to 6 hours from about I to weight percent water based on sulfonic acid. The reaction mixture containing the water is then maintained at reflux conditions for an additional period of time ranging from 0.l to 2 hours.
- the mixture is stripped of the volatile components.
- Any suitable method for removing the volatile components can be employed such as heating the mixture to a temperature from about 125 to 175C.
- a nonvolatile organic carrier component based on sulfonic acid
- Residual volatile material is removed by any suitable means such as vacuum stripping or stripping said mixture with a gas such as nitrogen. carbon dioxide. air and the like for a period of time ranging from 0.2 to 6 hours.
- the stripped product normally is clarified by filtration of the stripped product through a desirable inert absorbent such as alumina. diatomaceous earth, pumice and the like.
- the metal halide which can be employed in the production of the oil-soluble metal sulfonates can be any suitable halide ofaluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum, rubidium. and osmium.
- halides are aluminum chloride. aluminum bromide. aluminum fluoride. chromium chloride. chromium bromide, chromium fluoride. ferric chloride. ferric bromide, ferric fluoride. molybdenum fluoride. vanadium chloride, vanadium bromide. vanadium fluoride. titanium chloride. titanium bromide. titanium fluoride. indium chloride.
- the metal halide is the metal chloride.
- mixtures of the metal halide and a metal oxide can be employed. When such a mixture is employed the metal halide will be present in such mixture in an amount ranging from about 0.25 to 8 moles per mole metal oxide.
- Suitable mixtures of the halide and oxide components are: AlCl;,'Al- ,O;. (and hydrates); FeCl -Fe O CrClybH OCr o TiCl.-'li()- and the like.
- Suitable oil-soluble hydrocarbon sulfonic acids include alkane sulfonic acid. aromatic sulfonic acid. alkaryl sulfonic acid. aralkyl sulfonic acid. and the natural petroleum mahogany sulfonic acids.
- the mahogany sulfonic acids include any of those materials which may be obtained by concentrated or fuming sulfuric acid treatment of petroleum fractions. particularly the higher boiling lubricating oil distillates and white oil distillates.
- the higher molecular weight petroleum oilsoluble mahogany sulfonic acids are condensedring compounds. which condensed-rings may be aromatic or hydroaromatic in nature. Alkyl and/or cycloalkyl substituents may be present in the mahogany sulfonic acids.
- oil-soluble sulfonic acids refers to those materials wherein the hydrocarbon portion of the molecule has a molecular weight in the range of about 300 to about 1.000. Preferably. this molecular weight is in the range of about 370 to about 700.
- These oilsoluble sulfonic acids can be either synthetic sulfonic acids or the so-called mahogany or natural sulfonic acids. The term mahogany sulfonic acid is believed to be well understood. since it is amply described in the literature.
- synthetic sulfonic acids refers to those materials which are prepared by sulfonation of hydrocarbon feedstocks which are pre pared synthetically.
- the synthetic sulfonic acids can be derived from either alkyl or alkaryl hydrocarbons. in addition. they can be derived from hydrocarbons having cycloalkyl (i.e.. naphthenic) groups in the side chains attached to the benzene ring.
- the alkyl groups in the alkaryl hydrocarbons can be straight or branched chain.
- the alkaryl radical can be derived from benzene. toluene. ethyl benzene. xylene isomers. or naphthalene.
- Postdodecylbenzene is a bottoms product of the manufac ture of dodecylbenzene.
- the alkyl groups of postdodecylbenzene are branched chain.
- Postdodecylbenzene consists of monoalkylbenzenes and dialkylbenzenes in the approximate mole ratio of 2:3 and has typical properties as follows:
- dimer alkylate An example of another hydrocarbon feedstock which is particuarly useful in preparing synthetic sulfonic acids is a material referred to as dimer alkylate. "Dimer alkyl-ate" has a long branched-chain alkyl group. Briefly described. dimer alkylate is prepared by the following steps:
- the dimerization step uses a FriedeLC'rafts alkylation sludge as the catalyst. This process and the resulting product are described in US. Pat. 3.410.925.
- NAB Bottoms are predominantly di-n-alkyl aromatic hydrocarbon wherein the alkyl groups contain from eight to l8 carbon atoms. They are distinguished primarily from the preceding sulfonation feedstocks in that they are straight chain and contain a large amount of disubstituted material.
- a process of preparing these materials and the resulting product are described in application Ser. No. 62.211. filed Aug. 7. l970. and being a continuation-in-part of application Ser. No. 529.284. filed Feb. 23. 1966. and now abandoned.
- sulfonic acids derived from the foregoing described hydrocarbon feedstock.
- suitable sulfonic acids include the following: mono and poly-substituted naphthalene sulfonic acid. dinonyl naphthalene sulfonic acid. diphertyl ether sulfonic acid. naphthalene disulfide sulfonic acid, dicetyl thianthrene sulfonic acid. dialauryl betanaphthol sulfonic acid. dicapryl nitronaphthalene sulfonic acid. unsaturated paraffin wax sulfonic acid. hydroxy substituted paraffin wax sulfonic acid.
- tetraamylene sulfonic acid monoand poly-chlorosubstituted paraffin wax sulfonic acid. nitrosoparaffin wax sulfonic acid, cycloaliphatic sulfonic acid such as lauryl-cyclohexyl sulfonic acid. monoand polywax-substituted cyclohexyl sulfonic acid. and the like.
- the corresponding hydrocarbon sulfonic acid is usu' ally prepared by treating the hydrocarbon with concentrated sulfuric acid. fuming sulfur acid or sulfur trioxide.
- the sulfonation of hydrocarbons is well known and details need not be given.
- the sulfonic acid may also be purified by any suitable means: i.e.. treatment with inorganic base. ion exchange, water washing and the like.
- the oil-soluble sulfonic acid is often diluted with a volatile solvent.
- the volatile solvent can be any suitable hydrocarbon. preferably a low boiling hydrocarbon such as hexane or naphtha which may readily be removed from the metal sulfonatc prod uct when desired.
- nonvolatile carriers which may be utilized in the process. a wide variety of materials have been found suitable for such usage. The principal requisites desired in the nonvolatile carrier are that it will dissolve the dispersing agents utilized in the process. and that such solutions will be relatively stable when the basic metallic compounds are peptized in the dispersion by the dispersing agent.
- nonvolatile carriers which may be employed include mineral lubricating oil obtained by any of the conventional refining procedures; vegetable oils. such as corn oil. cottonseed oil. castor oil. etc: animal oil. such as lard oil. sperm oil. etc; and synthetic oils. such as polymers of propylene. polyoxyalkylenes.
- polyoxypropylene dicarbosylic acid esters. such as esters of adipic and azelaic acids with alcohols such as butyl. 2- ethyl hexyl and dodecyl alcohols. and esters of acids of phosphorus. such as diethyl ester of decanephosphonic acid and tricresyl phosphate.
- the preferred nonvolatile carriers are liquid lubricating oils. either mineral or synthetic.
- sulfonic acid stock such as previously described hereinahove can be employed as the nonvolatile carrier.
- the nonvolatile carriers may be diluted with a solvent to reduce the viscosity. Suitable solvents include petroleum naphtha or hydrocarbons. such as hexane. heptanc. octane. benzene. toluene. or xylene.
- EXAMPLE 1 To a creased one-liter flask was charged l 13.3 grams of sulfonic acid and 21.8 grams of FeCl oH O during mechanical agitation. The sulfonic acid was diluted r with 50 milliliters of n'heptane. Heat was applied and the reaction mixture was taken to C whereupon an additional i 13.0 grams of sulfonic acid was charged to the mixture. Theresulting reaction mixture was then heated to a pot temperature of about C at which point about 13o milliliters of volatile materials were removed overhead. The mixture was then refluxed for 2 hours. At the end of the reflux period the volatile components remaining were taken overhead to a pot temperature of l50 C. The product remaining was then stripped with N gas at C for 45 minutes. The pale oil was then charged to the stripped product. The resulting product was filtered and found to contain 2.5 weight percent iron and less than 0.0l weight percent chlorine.
- Example l 209 grams Sulfonic Acid 12 grams Anhydrous NbCl l8 grams 8U Pale Oil The general procedure of Example l was followed. The sulfonic acid was charged in equal increments and the reflux period was 2 hours. The 80 pale oil was charged to the mixture at l25 C and the product was stripped with N gas for 15 minutes at l50 C. The product was filtered and found to contain 3.3 weight percent niobium and less than 0.01 weight percent chlorine.
- a process for producing oil-soluble sulfonates containing metal constituents, which sulfonates have a long shelf life without precipitation of the metal constituents comprising:
- step (d) recovering from the reaction product of step (d) the metal sulfonate.
- said inert volatile solvent is a low boiling hydrocarbon selected from the group consisting of hexane and naphtha.
- reaction mixture is maintained at its reflux temperature for a period of time ranging from about 1 to 6 hours.
- nonvolatile carrier is diluted with a solvent selected from the group consisting of petroleum naphtha. hexane, heptane. octane. benzene. toluene. and xylene.
- a mixing at least a stoichiometric amount of a metal halide selected from the group consisting otaluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum. rubidium. osmium. and mixtures thereof. with water and an oilsoluble sulfonic acid having a molecular weight in the range of about 300 to about L000 to form a reaction mixture.
- a metal halide selected from the group consisting otaluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum. rubidium. osmium. and mixtures thereof. with water and an oilsoluble sulfonic acid having a molecular weight in the range of about 300 to about L000 to form a reaction mixture.
- step (c) recovering from the reaction product of step (c) the metal sulfonate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A process for producing oil-soluble metal sulfonates is disclosed wherein a metal halide is reacted with an oil-soluble sulfonic acid to produce the desired metal sulfonate. The metal constituent of the metal halide is selected from the group consisting of aluminum, indium, chromium, iron, molybdenum, vanadium, titanium, niobium, tantalum, rubidium, and osmium.
Description
United States Patent 1191 Sias ,1 1 July 29, 1975 [5 1 PROCESS FOR PRODUCING ,OlL-SOLUBLE 2,430,815 11/1947 Hersberger 260/448 R 2,779,784 l/l957 Sharrah......... 260/505 N 2.865.957 12/1958 Logan 260/439 R Inventor: y 0 S a o a ty. 1: 2,868,823 1/1959 Kloge =1 al.... 260/448 a [73] Assign: Communal on Company Poh-ca 3,021,280 2/1962 Carlyle....- 252/33 City, Okla. FOREIGN PATENTS OR APPLICATIONS 22 Filed: M u 973 l,5l L033 l2/l967 France 260/505 N 1,126.38! 3/1962 Germany 260/505 N 211 Appl. 140.; 359,302
Related U.S. Application Data [63] Continuation of Ser. No. 148,264, May 5, 1971,
abandoned.
[52] U.S. Cl 260/429 K; 252/33; 260/429 R; 260/4295; 260/4385 R; 260/439 R; 260/448 R; 260/505 N; 260/513 R 151] Int. Cl. C07l 11/00; C071" l/OO; C07f 7/28 [58] Field of Search 260/513 R, 429 R, 429 K, 260/439 R, 448 R, 505 N, 438.5, 429.5;
OTHER PUBLICATIONS Noller, Chemistry of Organic Compounds, 3rd ed., 1965, p. 505.
Primary Examiner-Arthur P. Demers Attorney, Agent, or Firm-Robert B. Coleman, Jr.
[57] ABSTRACT A process for producing oil-soluble metal sulfonates is disclosed wherein ametal halide is reacted with an oilsoluble sulfonic acid to produce the desired metal sulfonate. The metal constituent of the metal halide is selected from the group/consisting of aluminum, indium, chromium, iron, molybdenum, vanadium, titanium, niobium, tantalumpmbidium, and osmium.
l2 Ga'ims, No Drawings PROCESS FOR PRODUCING OIL-SOLUBLE METAL SULFONATES This is a continuation of application Ser. No. 148.264. filed May 5. 1971 and now abandoned.
BACKGROUND OF THE INVENTION from oil-soluble metal sulfonates and metal dispersions in such sulfonates by dissolving such materials in predetermined quantities in a suitable solvent. Such stan- El'tirtls have exhibited indefinite shelf life and any combinatia'fi of metals can be combined without precipitation of the metal constituents.
Further. dispersions containing certain oil-soluble metal sulfonates have acquired considerable importance additives in fuels and lubricating oil. Such dispersions have been highly useful as additives to other materials where the problem of suspending insoluble waste materials formed in the utilization of the material and also the problem of corrosion inhibition is met. When the oil-soluble metal sulfonates are employed as additives for use in internal combustion engine lubrieating compositions. such agents function to effectively disperse or peptize the insolubles formed by the fuel combustion. oil oxidation. or similar conditions obtained during the operation of the engine.
Thus. while the use of oil-soluble metal sulfonates have been established and recognized. problems have beet! encountered in the production of oil-soluble metal sulfonates of certain metals. such as molybdenum. aluminum and iron. Therefore, a need has long been recognized for an improved process for the production of oilsoluble metal sulfonates from readily available chemical compounds. and it is to such a pro eess that the present invention is directed.
OBJECTS OF THE INVENTION These and other objects. advantages. and features of the present invention would be apparent to those skilled in the art from a reading of the following detailed description.
SUMMARY OF THE INVENTION According to the present invention I have found a process for producing oil-soluble metal sulfonates wherein the metal constituent is selected from aluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum. rubidium. and osmium which comprises admixing a halide compound of such metals with an oil-soluble sulfonic acid. heating the resulting mixture to its reflux temperature for a period of time effective to allow formation of the oilsoluble metal sulfonate.
Further according to the invention l have found that it is desirable for said metal halide to be present in a stoichiometric excess of from 5 to about 200% with said oil-soluble sulfonic acid. A volatile inert solvent can be incorporated with the oil-soluble sulfonic acid to reduce the viscosity of same and to facilitate the admixing of the oil-soluble sulfonate with said metal halide.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Oil-soluble metal sulfonates have been recognized as desirable analytical standards as well as oil-soluble additives for fuels and lubricants. However. problems have been encountered in producing oil-soluble metal sulfonates such as molybdenum sulfonate. iron sulfonate and aluminum sulfonate.
l have now found that oil-soluble metal sulfonates of aluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum. rubidium. and osmium can readily be prepared by reacting a halide compound. or a mixture of a halide compound and oxide compound. of such metal with an oil-soluble sulfonic acid at elevated temperatures for a period of time effective to allow said halide compound or a mixture of a metal halide and a metal oxide compound to react with said oil-soluble sulfonic acid to produce the desired oil-soluble metal sulfonate.
The present invention can be carried out as either a batch process or a continuous process. However. for the sake of simplicity the process of the present invention will be described as a batch process.
The metal halide and the oil-soluble sulfonic acid are charged to a reaction vessel equipped with heating means. a stirring means and a reflux means. Generally. it is desirable to introduce an effective amount of an inert volatile solvent to the reaction mixture to reduce the viscosity of the oil-soluble sulfonic acid thereby facilitating the mixing and contact between the reactants. The amount ofinert volatile solvent employed can vary widely depending upon the viscosity of the particular oil-soluble sulfonic acid employed well as the viscosity desired in the reaction mixture but will generally be in an amount ranging from about 25 to I50 weight percent. based on the weight of the reaction mixture. The amount of the reactants can vary widely. However. the metal halide should be present in a stoichiometric excess. Generally. the excess will range from about 5 to 200 percent with the most desirable amount ranging from 5 to about 15 percent.
Once the reactants have been introduced into the reaction vessel the reactants are thoroughly agitated and the reaction mixture is heated to its reflux temperature which will generally be within the range of about 60 to l05 (I. When desirable an additional amount of the oil-soluble sulfonic acid can be introduced into the reaction mixture during the heating period before the mixture reaches its reflux temperature. However. care must be exercised to insure that the introduction of the additional oil-soluble sulfonic acid does not dilute the reaction mixture to such an extent that the metal halide is no longer present in a stoichiometric excess. Generally. when additional oil-soluble sulfonic acid is introduced the amount will range from about 50 to 100 weight percent based on sulfonic acid present and at a temperature in the range of about 60 to 105 C.
When the reaction mixture reaches its reflux temperature it is maintained at such temperature under reflux conditions for an effective period of time to allow the metalhalide and oil-soluble sulfonic acid to react and form the desired oil-soluble meal sulfonate. The reflux time of the reaction mixture can vary widely but will generally range from about I to about 6 hours. It is often desirable to introduce to the mixture after same has refluxed for about 1 to 6 hours from about I to weight percent water based on sulfonic acid. The reaction mixture containing the water is then maintained at reflux conditions for an additional period of time ranging from 0.l to 2 hours.
After the above-described reflux steps have been carried out the mixture is stripped of the volatile components. Any suitable method for removing the volatile components can be employed such as heating the mixture to a temperature from about 125 to 175C. From about 20 to 300 weight percent ofa nonvolatile organic carrier component (based on sulfonic acid] is introduced at any convenient point. such as during the reflux period. Residual volatile material is removed by any suitable means such as vacuum stripping or stripping said mixture with a gas such as nitrogen. carbon dioxide. air and the like for a period of time ranging from 0.2 to 6 hours. The stripped product normally is clarified by filtration of the stripped product through a desirable inert absorbent such as alumina. diatomaceous earth, pumice and the like.
The metal halide which can be employed in the production of the oil-soluble metal sulfonates can be any suitable halide ofaluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum, rubidium. and osmium. Examples of such halides are aluminum chloride. aluminum bromide. aluminum fluoride. chromium chloride. chromium bromide, chromium fluoride. ferric chloride. ferric bromide, ferric fluoride. molybdenum fluoride. vanadium chloride, vanadium bromide. vanadium fluoride. titanium chloride. titanium bromide. titanium fluoride. indium chloride. indium bromide. indium fluoride. niobium chloride. niobium bromide. niobium fluoride. tantalum chloride. tantalum bromide. tantalum fluoride. rubidium chloride. rubidium bromide. rubidium fluoride. osmium chloride. osmium bromide. and osmium fluoride. Especially desirable results have been obtained wherein the metal halide is the metal chloride. In addition. mixtures of the metal halide and a metal oxide can be employed. When such a mixture is employed the metal halide will be present in such mixture in an amount ranging from about 0.25 to 8 moles per mole metal oxide. Examples of suitable mixtures of the halide and oxide components are: AlCl;,'Al- ,O;. (and hydrates); FeCl -Fe O CrClybH OCr o TiCl.-'li()- and the like.
Suitable oil-soluble hydrocarbon sulfonic acids include alkane sulfonic acid. aromatic sulfonic acid. alkaryl sulfonic acid. aralkyl sulfonic acid. and the natural petroleum mahogany sulfonic acids. The mahogany sulfonic acids include any of those materials which may be obtained by concentrated or fuming sulfuric acid treatment of petroleum fractions. particularly the higher boiling lubricating oil distillates and white oil distillates. The higher molecular weight petroleum oilsoluble mahogany sulfonic acids are condensedring compounds. which condensed-rings may be aromatic or hydroaromatic in nature. Alkyl and/or cycloalkyl substituents may be present in the mahogany sulfonic acids.
The terms oil-soluble sulfonic acids." as used herein. refers to those materials wherein the hydrocarbon portion of the molecule has a molecular weight in the range of about 300 to about 1.000. Preferably. this molecular weight is in the range of about 370 to about 700. These oilsoluble sulfonic acids can be either synthetic sulfonic acids or the so-called mahogany or natural sulfonic acids. The term mahogany sulfonic acid is believed to be well understood. since it is amply described in the literature. The term synthetic sulfonic acids" refers to those materials which are prepared by sulfonation of hydrocarbon feedstocks which are pre pared synthetically. The synthetic sulfonic acids can be derived from either alkyl or alkaryl hydrocarbons. in addition. they can be derived from hydrocarbons having cycloalkyl (i.e.. naphthenic) groups in the side chains attached to the benzene ring. The alkyl groups in the alkaryl hydrocarbons can be straight or branched chain. The alkaryl radical can be derived from benzene. toluene. ethyl benzene. xylene isomers. or naphthalene.
An example of a hydrocarbon feedstock which has been particularly useful in preparing synthetic sulfonic acids is a material known as postdodecylbenzene. Postdodecylbenzene is a bottoms product of the manufac ture of dodecylbenzene. The alkyl groups of postdodecylbenzene are branched chain. Postdodecylbenzene consists of monoalkylbenzenes and dialkylbenzenes in the approximate mole ratio of 2:3 and has typical properties as follows:
Specific gravity at 38 degrees C 0.8649 Average molecular weight 385 Percent sulfonatable 88 ASTM D-lSR Engler:
l.B.P.. degrees F 647 5 degrees F 682 50 degrees F 715 90 degrees F 760 degrees F 775 F.B.P. degrees F 779 Refractive index at 23 degrees C 1 1.4900 Viscosity at:
l0 degrees C. ccntistokes 2800 20 degrees C. ccntistokes 280 40 degrees C. centistokes 78 80 degrees C. centistokes l8 Aniline point. degrees C 6) Pour Point. degrees F 25 An example of another hydrocarbon feedstock which is particuarly useful in preparing synthetic sulfonic acids is a material referred to as dimer alkylate. "Dimer alkyl-ate" has a long branched-chain alkyl group. Briefly described. dimer alkylate is prepared by the following steps:
1. dimerization of a suitable feedstock. such as cat poly gasoline; and
2. alkylation of an aromatic hydrocarbon with the dimer formed in step t l Preferably, the dimerization step uses a FriedeLC'rafts alkylation sludge as the catalyst. This process and the resulting product are described in US. Pat. 3.410.925.
An example of another hydrocarbon feedstock which is particularly useful for preparing synthetic sulfonic acids which can be used in my invention is a material which I refer to as NAB Bottoms." NAB Bottoms are predominantly di-n-alkyl aromatic hydrocarbon wherein the alkyl groups contain from eight to l8 carbon atoms. They are distinguished primarily from the preceding sulfonation feedstocks in that they are straight chain and contain a large amount of disubstituted material. A process of preparing these materials and the resulting product are described in application Ser. No. 62.211. filed Aug. 7. l970. and being a continuation-in-part of application Ser. No. 529.284. filed Feb. 23. 1966. and now abandoned. Application Ser. Nos. 62.21 I and 529.284 have the same assignee as the present application. The product is also described in US. Pat. No. 3.288.716, which is concerned with an additional use for the product. other than sulfonation feedstock. Another process of preparing these materi als is described in application Ser. No. 53.352, filed Aug. 6, 1970. and having the same assignee as the present application. Application Ser. No. 53.352 is a continuationJn-part of application Ser. No. 529.284. Still another process of preparing a di nalkaryl product is described in application Ser. No. [04.476. filed Jan. 7. I97]. which is a continuation-in-part of application Ser. No. 52l.794. filed Jan. 20. 1966. and now abandoned.
In order to make my disclosure even more complete. U.S. Pat. No. 3.410.925 and application Ser. Nos. 53.352; 62.2ll and 104.7476, are made a part of this disclosure.
In addition to the sulfonic acids derived from the foregoing described hydrocarbon feedstock. examples of other suitable sulfonic acids include the following: mono and poly-substituted naphthalene sulfonic acid. dinonyl naphthalene sulfonic acid. diphertyl ether sulfonic acid. naphthalene disulfide sulfonic acid, dicetyl thianthrene sulfonic acid. dialauryl betanaphthol sulfonic acid. dicapryl nitronaphthalene sulfonic acid. unsaturated paraffin wax sulfonic acid. hydroxy substituted paraffin wax sulfonic acid. tetraamylene sulfonic acid. monoand poly-chlorosubstituted paraffin wax sulfonic acid. nitrosoparaffin wax sulfonic acid, cycloaliphatic sulfonic acid such as lauryl-cyclohexyl sulfonic acid. monoand polywax-substituted cyclohexyl sulfonic acid. and the like.
The corresponding hydrocarbon sulfonic acid is usu' ally prepared by treating the hydrocarbon with concentrated sulfuric acid. fuming sulfur acid or sulfur trioxide. The sulfonation of hydrocarbons is well known and details need not be given. The sulfonic acid may also be purified by any suitable means: i.e.. treatment with inorganic base. ion exchange, water washing and the like.
As previously stated the oil-soluble sulfonic acid is often diluted with a volatile solvent. The volatile solvent can be any suitable hydrocarbon. preferably a low boiling hydrocarbon such as hexane or naphtha which may readily be removed from the metal sulfonatc prod uct when desired.
With respect to the types of nonvolatile carriers which may be utilized in the process. a wide variety of materials have been found suitable for such usage. The principal requisites desired in the nonvolatile carrier are that it will dissolve the dispersing agents utilized in the process. and that such solutions will be relatively stable when the basic metallic compounds are peptized in the dispersion by the dispersing agent. Examples of such nonvolatile carriers which may be employed include mineral lubricating oil obtained by any of the conventional refining procedures; vegetable oils. such as corn oil. cottonseed oil. castor oil. etc: animal oil. such as lard oil. sperm oil. etc; and synthetic oils. such as polymers of propylene. polyoxyalkylenes. polyoxypropylene, dicarbosylic acid esters. such as esters of adipic and azelaic acids with alcohols such as butyl. 2- ethyl hexyl and dodecyl alcohols. and esters of acids of phosphorus. such as diethyl ester of decanephosphonic acid and tricresyl phosphate. The preferred nonvolatile carriers are liquid lubricating oils. either mineral or synthetic. In addition, sulfonic acid stock such as previously described hereinahove can be employed as the nonvolatile carrier. If desired. the nonvolatile carriers may be diluted with a solvent to reduce the viscosity. Suitable solvents include petroleum naphtha or hydrocarbons. such as hexane. heptanc. octane. benzene. toluene. or xylene.
In order to more fully illustrate the nature of the present invention the following examples are given. However. it is to be understood that the examples are for illustrative purposes only and are not intended to unduly limit or restrict the scope of the present invention. In each example the sulfonic acid was derived frm an alkylaromatic which was predominantly di-nalkylbenzenes having a combined molecular weight of about 420. unless otherwise specified.
EXAMPLE I To a creased l-liter flask was charged 2 l 2.0 grams of sulfonic acid and 27.4 grams of anhydrous MoCl; during mechanical agitation. Heat was applied and the reaction was taken to 70 C. whereupon an additional 2 l 2.0 grams of sulfonic acid was charged and the reaction taken to reflux temperature and refluxed for 2 hours. 5 ml. water was charged followed by additional refluxing. then the volatiles were taken overhead to a pot temperature of 150 C; 170 grams'of 80 pale oil was charged at about l 10 C. The product was then stripped with N gas for 15 minutes and filtered through Hyflo. The product was analyzed and found to contain 2.6 weight percent molybdenum and 0.04 weight percent chlorine.
EXAMPLE 2 Sulfonic Acid 2 l 2.0 grams l2.8 t grams Anhydrous Mocls, 80. I. grams 80 Palc Oil ll) ml. Water The product produced was filtered as in Example l and found to contain l.7 weight percent molybdenum.
EXAMPLE 3 The general procedure described in Example 2 was, followed. The charge employed was as follows:
250 grams Sulfonic Acid 34.) grams CrClflsHJ) I20 grams 8i) Pale Oil The mixture of the acid and chromium compound was heated to its reflux temperature and maintained under reflux conditions for 2 hours. The pale oil was then added to the mixture at 100 C. After additional refluxing the product was heated to l(l C and stripped for l5 minutes with N gas. The stripped product was then filtered and analyzed to contain 2.4 weight percent chromium and 0.02 weight percent chlorine.
i g EXAMPLE 4 The procedureof Examplel is employed in this example. The sulfonic acid was charged in two equal increments of 125 grams. The total charge to the reaction flask is as follows:
I 25H grams Sullonic Acid l6.-l grams Anhydrous (rCl 12H grams 8U Pale Oil EXAMPLE 5 An experiment was conducted on the production of iron sulfonatissusing the general procedure of Example 2 wherein all the sulfonic acid was charged at ambient temperature. The charge employed was as follows:
135 grams Stillonic Acid 3H1) grams Ht) Pale Oil Uh grams Anhydrous FcCl liLU grams Water The sulfonic acid-FeCL, mixture was heated to its reflux temperature and refluxed for 2 hours. Ten milliliters of water was then charged followed by additional refluxing. The volatiles were then taken overhead to a pot temperature of l50 C. The pale oil was then charged to the mixture at about I it) C. The resulting product was then stripped with N gas for about 15 minutes and filtered. The product was analyzed and found to contain 2.4 weight percent iron.
EXAMPLE (1 To a creased one-liter flask was charged l 13.3 grams of sulfonic acid and 21.8 grams of FeCl oH O during mechanical agitation. The sulfonic acid was diluted r with 50 milliliters of n'heptane. Heat was applied and the reaction mixture was taken to C whereupon an additional i 13.0 grams of sulfonic acid was charged to the mixture. Theresulting reaction mixture was then heated to a pot temperature of about C at which point about 13o milliliters of volatile materials were removed overhead. The mixture was then refluxed for 2 hours. At the end of the reflux period the volatile components remaining were taken overhead to a pot temperature of l50 C. The product remaining was then stripped with N gas at C for 45 minutes. The pale oil was then charged to the stripped product. The resulting product was filtered and found to contain 2.5 weight percent iron and less than 0.0l weight percent chlorine.
EXAMPLE 7 in this experiment the sulfonic acid was charged to a reaction flask and residual water was removed by azeotropic distillation. The sulfonic acid was then employed to prepare a niobium sulfonate composition as follows:
The charge employed was:
209 grams Sulfonic Acid 12 grams Anhydrous NbCl l8 grams 8U Pale Oil The general procedure of Example l was followed. The sulfonic acid was charged in equal increments and the reflux period was 2 hours. The 80 pale oil was charged to the mixture at l25 C and the product was stripped with N gas for 15 minutes at l50 C. The product was filtered and found to contain 3.3 weight percent niobium and less than 0.01 weight percent chlorine.
The above examples clearly indicate the preparation of oil-soluble metal sulfonates by the process of the present invention.
Having thus described the invention, I claim:
1. A process for producing oil-soluble sulfonates containing metal constituents, which sulfonates have a long shelf life without precipitation of the metal constituents, comprising:
a. mixing at least a stoichiometric amount of a metal halide selected from the group consisting of aluminum. chromium. iron, molybdenum. vanadium. titanium, indium, niobium, tantalum. rubidium, osmium. and mixtures thereof, with water and an oilsoluble sulfonic acid having a molecular weight in the range of about 300 to about 1000 to form a reaction mixture.
b. agitating and heating said reaction mixture to a temperature in the range of 60 to [05C.
c. introducing into the reaction mixture an additional amount of the oil-soluble sulfonic acid in an amount of from 50 to 200 weight percent based on the oil-soluble sulfonic acid already in the reaction mixture.
d. continuing the agitation and heating of the reaction mixture to the reflux temperature of said mixture for a period of time effective to allow formation of a metal sulfonate substantially free of said halide. and
e. recovering from the reaction product of step (d) the metal sulfonate.
2. The process of claim l wherein said oil-soluble sulfonic acid is diluted with from about 15 to lSU weight percent of an inert volatile sohcnt and said reflux temperature is in the range of about 60 to l05 C.
3. The process of claim 2 wherein said inert volatile solvent is a low boiling hydrocarbon selected from the group consisting of hexane and naphtha.
4. The process of claim 1 wherein said reaction mixture is maintained at its reflux temperature for a period of time ranging from about 1 to 6 hours.
5. The processs of claim 4 which includes the step of admixing from about l to about weight percent water. based on the amount ofsulfonic acid employed. to said mixture after same has refluxed and then heating the mixture to its reflux temperature and maintaining same under reflux condition for a period of time ranging from 0.1 to 2 hours.
6. The process of claim 1 wherein the refluxed mixture is stripped of volatile components by heating said refluxed mixture to a temperature within the range of about l25 to 175C and includes the step of admixing from about 20 to 300 weight percent of a nonvolatile organic carrier component to said reflux mixture during refluxing of same.
7. The process of claim 6 which includes the additional purification steps of stripping the product with an inert gas selected from the group consisting of nitrogen. carbon dioxide. air. and mixtures thereof for a period of time ranging from about 0.2 to 6 hours and liltering the gas stripped product through an inert absor- Beat hiatetlal selected from the group consisting of alurains, diatoma'c'eous earth and pumice.
8. The process of claim 7 wherein said metal halide is present in a mixture of said metal halide and a metal oxide. said metal halide being present in said mixture in an amount ranging from about 0.25 to 8 moles of said metal halide per mole of said metal oxide.
9. The process of claim 8 wherein said oil-soluble sulfonic acid has a molecular weight in the range of about 370 to about 700 and is produced synthetically by the sulfonation of an alkylate selected from the group consisting of dimer alkylate and NAB Bottoms alkylate. and said nonvolatile carrier component is pale oil.
10. The process of claim 9 wherein said nonvolatile carrier is diluted with a solvent selected from the group consisting of petroleum naphtha. hexane, heptane. octane. benzene. toluene. and xylene.
ll. A process for producing oil-soluble sulfonates containing metal constituents. which sultonates have a long shelf life without precipitation of the metal constituents. comprising:
a. mixing at least a stoichiometric amount of a metal halide selected from the group consisting otaluminum. chromium. iron. molybdenum. vanadium. titanium. indium. niobium. tantalum. rubidium. osmium. and mixtures thereof. with water and an oilsoluble sulfonic acid having a molecular weight in the range of about 300 to about L000 to form a reaction mixture.
b. agitating and heating said reaction mixture to the reflux temperature of said mixture for a period of time effective to allow formation of a metal sulfonate substantially free of said halide. and admixing from about 1 to about 25 weight percent water. based on the amount of sulfonic acid employed. to said mixture after same has refluxed and then heating the mixture to its reflux temperature and maintaining same under reflux condition for a period of time ranging from 0.1 to 2 hours.
d. recovering from the reaction product of step (c) the metal sulfonate.
12. The process of claim ll which includes the step of admixing from about 50 to 200 weight percent additional oil-soluble sulfonic acid to said reaction mixture during the heating of said mixture. and while said mixture is at a temperature within the range of about 60 to 105C.
l i l UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. L 3, 97,470
DATED July 29, 1975 |NVENTOR(S) Roy C. Sias tt is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below Column 3, line 18, change '"meal" to"metal" Signed and Scaled this seventeenth D ay Of February I 9 76 [SEAL] A rresr:
RUTH C. MASON C. MARSHALL DANN Arresting Officer (mnmr'xsr'mrer uj'Parenrs and Trademarks
Claims (12)
1. A PROCESS FOR PRODUCING OIL-SOLUBLE SULFONATES CONTAINING METAL CONSTITUENTS, WHICH SULFONATES HAVE A LONG SHELF LIKE WITHOUT PRECIPITATION OF THE METAL CONSTITUENTS, COMPRISING: A. MIXING AT LEAST A STOICHIOMETRIC AMOUNT OF A METAL HALIDE SELECTED FROM THE GROUP CONSISTING OF ALUMINUM, CHROMINUM, RION, MOLYBDENUM, VANADIUM, TITANIUM, INDIUM, NIOBIUM, TANTALUM, RUBIDIUM, OSMIUM, AND MIXTURES THEREOF, WITH WATER AND AN OIL-SOLUBLE SULFONIC ACID HAVING A MOLECULAR WEIGHT IN THE RANGE OF ABOUT 300 TO ABOUT 1000 TO FOM A REACTION MITURE, B. AGITATING AND HEATING SAID REACTION MIXTURE TO A TEMPERATURE IN THE RANGE OF 60* TO 105*C, C. INTRODUCING INTO THE REACTION MIXTURE AN ADDITIONAL AMOUNT OF THE OIL-SOLUBLE SULFONIC ACID IN AN AMOUNT OF FROM 50 TO 200 WEIGHT PERCENT BASED ON THE OIL-SOLUBLE SUFLONIC ACID ALREADY IN THE REACTION MIXTURE, D. CONTINUING THE AGITATION AND HEATING OF THE REACTION MIXTURE TO THE REFLUX TEMPERATURE OF SAID MIXTURE FOR A PERIOD OF TIME EFFECTIVE TO ALLOW FORMATION OF A METAL SULFONATE SUBSTANTIALLY FREE OF SAID HALIDE, AND E. RECOVERING FROM THE REACTION PRODUCT OF STEP (D) THE METAL SULFONATE.
2. The process of claim 1 wherein said oil-soluble sulfonic acid is diluted with from about 25 to 150 weight percent of an inert volatile solvent and said reflux temperature is in the range of about 60* to 105* C.
3. The process of claim 2 wherein said inert volatile solvent is a low boiling hydrocarbon selected from the group conSisting of hexane and naphtha.
4. The process of claim 1 wherein said reaction mixture is maintained at its reflux temperature for a period of time ranging from about 1 to 6 hours.
5. The processs of claim 4 which includes the step of admixing from about 1 to about 25 weight percent water, based on the amount of sulfonic acid employed, to said mixture after same has refluxed and then heating the mixture to its reflux temperature and maintaining same under reflux condition for a period of time ranging from 0.1 to 2 hours.
6. The process of claim 1 wherein the refluxed mixture is stripped of volatile components by heating said refluxed mixture to a temperature within the range of about 125* to 175*C and includes the step of admixing from about 20 to 300 weight percent of a nonvolatile organic carrier component to said reflux mixture during refluxing of same.
7. The process of claim 6 which includes the additional purification steps of stripping the product with an inert gas selected from the group consisting of nitrogen, carbon dioxide, air, and mixtures thereof for a period of time ranging from about 0.2 to 6 hours and filtering the gas stripped product through an inert absorbent material selected from the group consisting of alumina, diatomaceous earth and pumice.
8. The process of claim 7 wherein said metal halide is present in a mixture of said metal halide and a metal oxide, said metal halide being present in said mixture in an amount ranging from about 0.25 to 8 moles of said metal halide per mole of said metal oxide.
9. The process of claim 8 wherein said oil-soluble sulfonic acid has a molecular weight in the range of about 370 to about 700 and is produced synthetically by the sulfonation of an alkylate selected from the group consisting of dimer alkylate and NAB Bottoms alkylate, and said nonvolatile carrier component is pale oil.
10. The process of claim 9 wherein said nonvolatile carrier is diluted with a solvent selected from the group consisting of petroleum naphtha, hexane, heptane, octane, benzene, toluene, and xylene.
11. A process for producing oil-soluble sulfonates containing metal constituents, which sulfonates have a long shelf life without precipitation of the metal constituents, comprising: a. mixing at least a stoichiometric amount of a metal halide selected from the group consisting of aluminum, chromium, iron, molybdenum, vanadium, titanium, indium, niobium, tantalum, rubidium, osmium, and mixtures thereof, with water and an oil-soluble sulfonic acid having a molecular weight in the range of about 300 to about 1,000 to form a reaction mixture, b. agitating and heating said reaction mixture to the reflux temperature of said mixture for a period of time effective to allow formation of a metal sulfonate substantially free of said halide; and c. admixing from about 1 to about 25 weight percent water, based on the amount of sulfonic acid employed, to said mixture after same has refluxed and then heating the mixture to its reflux temperature and maintaining same under reflux condition for a period of time ranging from 0.1 to 2 hours, d. recovering from the reaction product of step (c) the metal sulfonate.
12. The process of claim 11 which includes the step of admixing from about 50 to 200 weight percent additional oil-soluble sulfonic acid to said reaction mixture during the heating of said mixture, and while said mixture is at a temperature within the range of about 60* to 105*C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US359302A US3897470A (en) | 1971-05-14 | 1973-05-11 | Process for producing oil-soluble metal sulfonates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14826471A | 1971-05-14 | 1971-05-14 | |
US359302A US3897470A (en) | 1971-05-14 | 1973-05-11 | Process for producing oil-soluble metal sulfonates |
Publications (1)
Publication Number | Publication Date |
---|---|
US3897470A true US3897470A (en) | 1975-07-29 |
Family
ID=26845701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US359302A Expired - Lifetime US3897470A (en) | 1971-05-14 | 1973-05-11 | Process for producing oil-soluble metal sulfonates |
Country Status (1)
Country | Link |
---|---|
US (1) | US3897470A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4010185A (en) * | 1975-05-22 | 1977-03-01 | Continental Oil Company | Stable oil-soluble metal sulfonate analytical standards |
US4138351A (en) * | 1975-09-16 | 1979-02-06 | Agfa-Gevaert N.V. | Electrophoretic liquid developer containing a metal alkyl sulphonate |
DE3009657A1 (en) * | 1979-03-16 | 1980-09-25 | Inst Francais Du Petrol | ORGANICALLY SOLUBLE HIGH-IRON COMPLEXES USED AS COMBUSTION ADJUVANTS IN FLAMMABLE LIQUIDS |
US4263151A (en) * | 1979-08-03 | 1981-04-21 | Petrolite Corporation | Oil solutions and/or dispersions of hydrated chromium oxides |
US4708784A (en) * | 1986-10-10 | 1987-11-24 | Phillips Petroleum Company | Hydrovisbreaking of oils |
US5162555A (en) * | 1989-12-18 | 1992-11-10 | Cassella Aktiengesellschaft | Process and apparatus for preparing a solution of a non-ferrous metal sulphonate |
US8889599B1 (en) | 2013-05-20 | 2014-11-18 | Halliburton Energy Services, Inc. | Methods for use of oil-soluble weighting agents in subterranean formation treatment fluids |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1396320A (en) * | 1919-12-03 | 1921-11-08 | Robert M Cole | Method of obtaining a sodium salt from a hydrocarbon monosulfonic acid |
US1836204A (en) * | 1930-11-03 | 1931-12-15 | Du Pont | Separation of 2-nitronaphthalene-4, 8-disulphonic acid from isomers |
US1968964A (en) * | 1932-04-04 | 1934-08-07 | Gen Aniline Works Inc | Normal ferrous salt of 2-nitronaphthalene-4.8-disulphonic acid |
US2430815A (en) * | 1945-03-31 | 1947-11-11 | Atlantic Refining Co | Increasing adhesivity of bitumens for mineral aggregates |
US2779784A (en) * | 1954-05-13 | 1957-01-29 | Continental Oil Co | Basic alkaline earth metal sulfonates and method of making same |
US2865957A (en) * | 1955-11-25 | 1958-12-23 | Phillips Petroleum Co | Preparation of petroleum sulfonic acids and sulfonate derivatives thereof |
US2868823A (en) * | 1954-11-29 | 1959-01-13 | Texas Co | Alkylation catalyst |
US3021280A (en) * | 1956-12-17 | 1962-02-13 | Continental Oil Co | Method of dispersing barium hydroxide in a non-volatile carrier |
-
1973
- 1973-05-11 US US359302A patent/US3897470A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1396320A (en) * | 1919-12-03 | 1921-11-08 | Robert M Cole | Method of obtaining a sodium salt from a hydrocarbon monosulfonic acid |
US1836204A (en) * | 1930-11-03 | 1931-12-15 | Du Pont | Separation of 2-nitronaphthalene-4, 8-disulphonic acid from isomers |
US1968964A (en) * | 1932-04-04 | 1934-08-07 | Gen Aniline Works Inc | Normal ferrous salt of 2-nitronaphthalene-4.8-disulphonic acid |
US2430815A (en) * | 1945-03-31 | 1947-11-11 | Atlantic Refining Co | Increasing adhesivity of bitumens for mineral aggregates |
US2779784A (en) * | 1954-05-13 | 1957-01-29 | Continental Oil Co | Basic alkaline earth metal sulfonates and method of making same |
US2868823A (en) * | 1954-11-29 | 1959-01-13 | Texas Co | Alkylation catalyst |
US2865957A (en) * | 1955-11-25 | 1958-12-23 | Phillips Petroleum Co | Preparation of petroleum sulfonic acids and sulfonate derivatives thereof |
US3021280A (en) * | 1956-12-17 | 1962-02-13 | Continental Oil Co | Method of dispersing barium hydroxide in a non-volatile carrier |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4010185A (en) * | 1975-05-22 | 1977-03-01 | Continental Oil Company | Stable oil-soluble metal sulfonate analytical standards |
US4138351A (en) * | 1975-09-16 | 1979-02-06 | Agfa-Gevaert N.V. | Electrophoretic liquid developer containing a metal alkyl sulphonate |
DE3009657A1 (en) * | 1979-03-16 | 1980-09-25 | Inst Francais Du Petrol | ORGANICALLY SOLUBLE HIGH-IRON COMPLEXES USED AS COMBUSTION ADJUVANTS IN FLAMMABLE LIQUIDS |
US4347062A (en) * | 1979-03-16 | 1982-08-31 | Institut Francais Du Petrole | Complexes of high iron content soluble in organic media and usable as combustion additives in liquid fuels |
US4263151A (en) * | 1979-08-03 | 1981-04-21 | Petrolite Corporation | Oil solutions and/or dispersions of hydrated chromium oxides |
US4708784A (en) * | 1986-10-10 | 1987-11-24 | Phillips Petroleum Company | Hydrovisbreaking of oils |
US5162555A (en) * | 1989-12-18 | 1992-11-10 | Cassella Aktiengesellschaft | Process and apparatus for preparing a solution of a non-ferrous metal sulphonate |
US8889599B1 (en) | 2013-05-20 | 2014-11-18 | Halliburton Energy Services, Inc. | Methods for use of oil-soluble weighting agents in subterranean formation treatment fluids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3865737A (en) | Process for preparing highly-basic, magnesium-containing dispersion | |
US2760970A (en) | Process for the preparation of substantially pure metal salts of organic sulfonic acids | |
US4645610A (en) | Method for the preparation of olefin polysulfides, the products obtained and their utilization as lubricant additives | |
US2316087A (en) | Lubricant | |
US2416281A (en) | Mineral oil composition | |
US2916454A (en) | Preparation of complex carbonated metal salts of alkyl phenol sulfides and mineral oil fractions containing the same | |
US3046224A (en) | High barium content complex salts of sulfonic acids and petroleum fractions containing the same | |
US2688612A (en) | Preparation of phosphorus sulfidehydrocarbon reaction products and removal of inorganic phosphorous acids therefrom | |
US2402448A (en) | Chemical process | |
US3282838A (en) | Petroleum liquids containing amine salts of molybdic acid | |
US2378820A (en) | Lubricating oil | |
US3897470A (en) | Process for producing oil-soluble metal sulfonates | |
US2493217A (en) | Mineral oil composition | |
US2403474A (en) | Additive for lubricants | |
EP0493933A1 (en) | Improved overbased calcium sulfonate | |
US2421004A (en) | Mineral oil composition | |
US3830739A (en) | Preparation of hyperbasic dispersions | |
US2739124A (en) | High metal content complex salts of sulfonic acids and mineral oil compositions thereof | |
US3021280A (en) | Method of dispersing barium hydroxide in a non-volatile carrier | |
US2362292A (en) | Lubricant | |
US3127348A (en) | Table i | |
US3931265A (en) | Process for producing anionic metal-containing sulfonates | |
US2790766A (en) | Complex metal salts of phosphoric acid esters and mineral oil compositions containing the same | |
US2889279A (en) | Metal-containing organic compositions and method of preparing same | |
US2763615A (en) | Carboxylic acid derivatives and lubricants containing them |