[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3875754A - Method for cryogenic freezing of fluid-filled pouches - Google Patents

Method for cryogenic freezing of fluid-filled pouches Download PDF

Info

Publication number
US3875754A
US3875754A US38530873A US3875754A US 3875754 A US3875754 A US 3875754A US 38530873 A US38530873 A US 38530873A US 3875754 A US3875754 A US 3875754A
Authority
US
United States
Prior art keywords
pouch
fluid
retaining force
restraining
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Clifford C Faust
Philip F Cilia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/176,214 external-priority patent/US3952536A/en
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to US38530873 priority Critical patent/US3875754A/en
Application granted granted Critical
Publication of US3875754A publication Critical patent/US3875754A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • A01N1/0252Temperature controlling refrigerating apparatus, i.e. devices used to actively control the temperature of a designated internal volume, e.g. refrigerators, freeze-drying apparatus or liquid nitrogen baths
    • A01N1/0257Stationary or portable vessels generating cryogenic temperatures
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0263Non-refrigerated containers specially adapted for transporting or storing living parts whilst preserving, e.g. cool boxes, blood bags or "straws" for cryopreservation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/801Bags
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing

Definitions

  • ABSTRACT Viable fluids such as blood components are rapidly frozen in plastic or the like pouches for transportation and/or storage by placing a flat pouch slack filled with fluid between two substantially planar parallel restraining surfaces such as metal plates of greater perimeter than the flattened slack filled pouch which are rigid enough to prevent sagging of the pouch when it is vertically disposed and flexible enough to accommodate expansion of the pouch flat sides during the freezing operation.
  • the restraining surfaces are retained against separation by retaining means applied against at least a portion of the outer surface of each pouch restraining means and the entire assembly is immersed in a cryogenic medium to rapidly freeze the fluid.
  • This invention relates to a method and apparatus for rapid freezing fluids into uniformly thin layer like transportable and storable unitary packages handled at cryogenic temperatures in the order of about that of liquid nitrogen. More particularly. the present invention relates to a method and apparatus for the packaging and rapid freezing of viable and perishable fluids. particularly biomedical fluids such as blood, blood platelets and other fluid components of blood into thin layer like package units which are easily handled and stored at cryogenic temperatures without suffering breakage, leakage, contamination or other damage.
  • a flexible pouch has a maximum fluid containing capability equal to the volume of the spherical form it will naturally assume when filled while unrestrained in any manner. Since the fluid containing volume of such a pouch however lessens considerably as the pouch shape changes from the spherical to the flat shape, it is necessary that the pouches in practicing this invention be slack filled, that is to say with a fluid volume not more than will insure maintenance of the desired thickness and shape when held flattened and restrained. In order to maintain this desired cross section and overall package configuration with such pouches during the freezing operation they must perforce be kept flattened and an obvious way to do this is to freeze the fluid filled packages in a horizontal orientation.
  • the metal Since the metal is opaque it is impossible to inspect the inside of the container for the possible presence of particulate foreign matter or other visible indicia of contamination or to see the contained product itself.
  • the container units are expensive to fabricate and are not reusable. Further, it is virtually impossible to apply any sort of kneading action when desired to effect mixing of the fluid product during the thaw process since the container metal walls cannot be kneaded in the manner of flexible plastic pouches.
  • viable and perishable fluids particularly fluid blood components, which is uncomplicated. easily used and maintained sterile and which produces a product which can be handled, transported, stored and utilized without the need for any extraordinary protec tion against physical damage.
  • a still further object of the invention is to provide a packaged blood component freezing method and apparatus which are capable of making the desired packaged frozen blood product inexpensively using commercially available plastic sterile pouches which are readily discardable after a single utilization with minimal waste material accrual.
  • FIG. 1 is a perspective view of a cryogenic media container and its cover.
  • FIG. 2 is a perspective view ofajig fixture for retaining plate restrained bagged fluids in a container during freezing.
  • FIG. 3 is a perspective view of a hinged closeable restraining plate set used in conjunction with the jig of FIG. 2 showing a fluid filled pouch in place on one of the plates.
  • FIG. 4 is a perspective view of the jig fixture of FIG. 2 with a loaded restraining plate set of FIG. 3 partly inserted.
  • FIG. 5 is a perspective view of an alternative form of plate set for restraining bagged fluids.
  • FIG. 6 is an enlarged fragmented cross section through the assembled plate set of FIG. 5 and FIG. 7 is a perspective view of a modified form of hinged plate set.
  • the present invention comprehends freezing fluids into thin layer-like transportable and storable unitary packages comprising. in combination, slack fill ing a pouch of flexible plastic material with a fluid to be frozen, flattening and disposing the slack filled pouch between two closely spaced substantially parallel planar surfaces, restraining the surfaces against separation from the flattened pouch disposed therebetween with a retaining force sufficient to prevent sagging distortion of the unfrozen fluid fi led package when it is vertically disposed applied to a portion of said surfaces less than the total surface area, immersing the assembled fluid filled package and the retained restraining surfaces in a substantially vertical orientation into a cryogenic medium having a temperature on the order of about that of liquid nitrogen for a time sufficient to effect solid freezing and continued subcooling of the packaged fluid down to the preselected cryogenic temperature.
  • FIG. 1 shows a cryogenic medium container and its cover, specifically a liquid nitrogen container 11 and cover 13 used in the freezing operations according to the invention.
  • Liquid nitrogen at a temperature in the order of about I 96C. fills container 11 and fast freezes the fluids immersed therein within a matter of seconds.
  • a jig shown generally at 15 in FIG. 2 is used interiorly of container 11 to support the plate restrained slack filled pouches or bags being frozen.
  • Jig 15 comprises a circular flat base 17 to which is perpendicularly centrally attached an upright plate retainer 19 cut or cast from flat stock to define slots 21 disposed to hold the bags and restraining plates.
  • Insulating strips 23 of any suitable preferably nonmetallic material may also be provided and attached to the plate retainer 19 by means of screws 25 in holes 27 or any other suitable attachment means. Insulating strips 23 are provided mainly to effect friction reduction in sliding the assembled plates into and out of the jig fixture and to prevent galling or seizing of the jig metal to plate metal contacts which is known to occur at cryogenic temperatures. The insulating strips 23 also obviate heat flow losses between the plates pouch assembly and the jig fixture metal mass but this consideration is not of great significance when the jig fixture assembly is left normally to-reside in the cryogenic medium container.
  • FIG. 3 shows a restraining plate set indicated generally as 29 used in conjunction with the jig of FIG. 2.
  • the restraining plate set 29 comprises a first plate 31 having a closure return 33 along one edge and hinge bosses 35 at the opposite end.
  • Plate 31 is hinge connected to a second plate 37 with hinge pins 39 fitted through the first plate hinge bosses 35 and companion hinge bosses 41 on second plate 37.
  • Second plate 37 is provided with a closure return 43 along the closure or edge opposite the hinged edge and with a handle 45.
  • the closure returns 33, 43, the hinge bosses 35, 41 and, if desired. additional edge returns along the hinged side, the plates have no other edge returns.
  • a transparent plastic pouch 47 slack filled with fluid and flattened is shown arranged on the first plate 31.
  • a pouch 47 is slack filled with the fluid to be frozen, laid flat on the first or lower plate of hinged restraining plate set 29, the plate set is closed and the assembly slid vertically into a slot 21 of the jig 15 as illustrated in FIG. 4 of the drawings.
  • the lines of contact are along the vertical centers of the outer surfaces ofthe plates 31, 37 and the friction reducing insulating strips 23 as shown and, in instances where for one reason or another the jig fixture is being loaded outside the cryogenic medium container, there is little or no contact of high heat conduction significance between the plate set 29 and fluid to be frozen and the mass of plate retainer 19.
  • One or more slack filled pouches and restraining plate sets may be loaded into the jig fixture 15 depending upon the respective sizes and shapes of the cryogenic medium container, the flat fluid filled pouches in vertical orientation in their respective restraining plate sets and, to some minor extent, the desired freezing rate,
  • the loaded jig fixture is lowered into the liquid nitrogen container 11, which may then be closed with cover 13, for a time sufficient to effect the freezing of the fluid, the cover if used is removed, the loaded jig lifted out and unloaded and the product, comprising the frozen fluid filled pouch and its set of restraining plates, now acting as physical protectors for the pouch, is ready as a package for storage, shipment and so forth under low temperature cryogenic environments.
  • the unloaded jig 15 fixture assembly is left to reside permanently within the container 13 submerged in liquid nitrogen and the slack filled pouch 47 secured in the plate set is directed into the container and slid into a slot 21 of the jig in situ. Since there is little or no heat flow downward into an open container of liquid nitrogen such as would detrimentally affect the rapid freezing step, it is usually unnecessary to close the container 11 with its cover 13. During the freezing operation any expansion, which may be considerable, occurring cross sectionally in the fluid is easily accommodated since the retaining force on restraining plates 31, 37 is applied only vertically centrally of the assembly along the lines of contact with the insulating strips 23.
  • FIGS. 5 and 6 of the drawings show an alternative form of restraining plate set comprising two separate plates 49 and 51 which clip together without hinge means and thus restrain the fluid filled bag to be frozen.
  • Plate 49 is provided with curved edge returns 53 and 55 which snap over companion edge returns 57, 59 provided on plate 51.
  • a lip type protrusion 61 may be provided on one of the plates, 49 for example, to latch into a receptor slot 63 on the other plate.
  • the plates may be kept aligned and latched against lateral movement by means of a spring loaded pin or detent latch on one of the plates disposed to engage a hole or latch port on the other.
  • one or the other or both plates of a set may be made foraminous by inclu sion of perforations 69 therethrough illustrated in FIG. 7 of the drawings. It is important in the use of foraminous plates however that the holes not be overly large or sharp edged to avoid bag blistering and blister rim cutting occasioned by rapid freeze expansion. Foraminah plates provide the added advantage of prompting faster rapid freeze rates since the cryogenic freezing medium is in direct contact with exposed portions of the fluid filled pouch.
  • a further modification, and one which permits the elimination of the jig fixture l5 assembly if so desired, is to form one or the other or both of the restraining plates to a slightly concave shape as illustrated by the shape of plate 49 in FIGS. 5 and 6 of the drawings.
  • Concave shaped plates yield to the expansive forces developed in the fluids being frozen and tend to produce a substantially uniform cross section flat planar parallel surfaced product at the completion ofthe freezing step.
  • Concave formed plates may also be employed successfully in the apparatus embodiment illustrated in FIG. 3 of the drawings and this embodiment may then also be utilized in the cryogenic medium container without the need for additional equipment such as the jig l5 fixture.
  • the unhinged embodiments of re straining plates such as illustrated in FIGS. 5 and 6 of the drawings may be used in conjunction with the jig fixture either with or without the concavity feature depending on the choice of the practitioner.
  • the restraining plate assemblies may be removed and the frozen fluid filled pouch used as the product.
  • maximum protection for the frozen pouch is obtained by leaving the restraining plates on the pouch until the time of utilization.
  • the term "substantially" in respect of the flatness, uniformity of cross section, planarity and parallelism of the restraining surfaces and plates is intended to so qualify these features as to include surface protrusions, intrusions, interruptions, and perforations, those described as well as others, the concavity of the plates in particular embodiments of apparatus according to the invention and the bowing or other slight deformation of the plates occurring inherently due to freeze expansion of the pouch cross section.
  • the term separable as applied to the plates according to the invention is intended to mean that the plates may be connected by hinges or similar means, the only essential requirement being that they are capable of being opened to receive a fluid filled package and closeable over it.
  • the mechanical components of the present invention may be made of any materials capable of low temperature duty.
  • Aluminum has been found particularly suitable for the restraining plates and the jig fixture.
  • Stainless steel has also been used.
  • Any durable plastic capable of withstanding low temperatures is suitable for the insulating strips 23.
  • a bag or pouch type which has been used successfully in practicing the invention is made of seamless oriented polyolefin tubing having a wall thickness of 0075mm, flattened, cut and heat sealed at the open edges to make a flat length of approximately 27cfn and a flat width of approximately 28cm. It is customary in such pouches to have a second heat seal parallel to the first at the top of the pouch to insure firm anchoring of the vent and filling-dispensing tubes attached to the pouch.
  • the fluid capacity of such a pouch is about 4,000ml.
  • the bag is slack filled to about from 550ml to 600ml, usually depending on the volume of the donor specimen. With this order of slack filled volume the flattened bag will enclose a fluid thickness of from 5mm to 10mm, a preferred fluid thickness being from about 7mm to about 8mm.
  • the restraining plate sets employed were made of aluminum sheets of 0.157mm thickness, about 28cm width and about 30cm length.
  • One plate of each set was provided two longitudinally extending protrusions or retention ribs each about 10cm long and the other plate with a laterally extending retention rib about l2.5cm long. These ribs were about 0.8cm wide and protruded inwardly to the contained pouch from about 2mm to about 3mm from the plate inner surface.
  • the prepared samples were frozen in about 30 seconds in liquid nitrogen, subcooled for about 5 minutes, some with a jig l5 fixture and some without, removed from the liquid nitrogen and the restraining plates left These frozen product samples were handled, stored and ultimately thawed with ease and with complete maintenance structural and sterile integrity. Several such samples were drop tested in end and corner drops from a height of about 2 feet to a concrete floor and suffered no pouch rupture.
  • a method for freezing fluids into thin layer like transportable and storable unitary packages comprising the steps of a. slack filling a pouch of flexible plastic material with a fluid to be frozen.
  • cryogenic medium having a temperature on the order of about that of liq uid nitrogen for a time sufficient to effect solid freezing and continued subcooling of the packaged fluid down to a preselected cryogenic temperature and e. removing the assembled frozen package from the cryogenic medium.
  • a method according to claim I combined with added steps of removing the retaining force and the restraining surfaces from the frozen fluid filled pouch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

Viable fluids such as blood components are rapidly frozen in plastic or the like pouches for transportation and/or storage by placing a flat pouch slack filled with fluid between two substantially planar parallel restraining surfaces such as metal plates of greater perimeter than the flattened slack filled pouch which are rigid enough to prevent sagging of the pouch when it is vertically disposed and flexible enough to accommodate expansion of the pouch flat sides during the freezing operation. The restraining surfaces are retained against separation by retaining means applied against at least a portion of the outer surface of each pouch restraining means and the entire assembly is immersed in a cryogenic medium to rapidly freeze the fluid.

Description

United States Patent 191 Faust et al.
[ METHOD FOR CRYOGENIC FREEZING OF FLUID-FILLED POUCHES [75] lnventors: Clifford C. Faust, Riverside: Philip F. Cilia, Bridgeview, both of ill.
[73] Assignee: Union Carbide Corporation, New
York. NY.
[22] Filed: Aug. 3, i973 [21] Appl. No.: 385,308
Related U.S. Application Data [62] Division of Ser. No. 176,214, Aug. 30, 197i.
[ Apr. 8, 1975 Primary E.\'aminer-Meyer Perlin Assistant E.\'uminerR0nald C. Capossela Attorney, Agenl, ur FirmMaurice W. Ryan [57] ABSTRACT Viable fluids such as blood components are rapidly frozen in plastic or the like pouches for transportation and/or storage by placing a flat pouch slack filled with fluid between two substantially planar parallel restraining surfaces such as metal plates of greater perimeter than the flattened slack filled pouch which are rigid enough to prevent sagging of the pouch when it is vertically disposed and flexible enough to accommodate expansion of the pouch flat sides during the freezing operation. The restraining surfaces are retained against separation by retaining means applied against at least a portion of the outer surface of each pouch restraining means and the entire assembly is immersed in a cryogenic medium to rapidly freeze the fluid.
7 Claims, 7 Drawing Figures PATENTEU APR 8 I975 SILU 2 UF 3 HEHTEU APR 81875 saasuauga METHOD FOR CRYOGENIC FREEZING F FLUID-FILLED POUCHES This is a division of application Ser. No. l76,2l4, filed Aug. 30, 1971.
This invention relates to a method and apparatus for rapid freezing fluids into uniformly thin layer like transportable and storable unitary packages handled at cryogenic temperatures in the order of about that of liquid nitrogen. More particularly. the present invention relates to a method and apparatus for the packaging and rapid freezing of viable and perishable fluids. particularly biomedical fluids such as blood, blood platelets and other fluid components of blood into thin layer like package units which are easily handled and stored at cryogenic temperatures without suffering breakage, leakage, contamination or other damage.
The effective and efficient sterile packaging and preservation for future use of biological fluids such as fluid components of blood has long been and continues to be of great importance and interest in the biomedical arts. Significant progress has been made in this area using rapid freeze preservation techniques involving a variety of cryoprotective systems in conjunction with freeze-thaw-wash methods applied to such fluids in containers. Preservatives and/or cryoprotective agents such as glycerol and other additives may also be included in the containers with the fluid to be processed in quanities and manners within the ken of persons familiar with the art. This new technology makes possible hitherto unattainable desiderata such as the ready availability from freeze storage of blood platelets for leukemia patient treatments, rare blood type components which may now be effectively preserved and stored. red blood cells for treatment of oxygen deficiency cases and the facile handling of blood plasma. With regard to freezing operations on such fluids, the cellular components of blood in particular, it is important to maintain the fluid mass in as uniform a cross section as possible mainly in order to attain the controllable rapid freeze and thaw rates essential to the prevention of rupture or other damage to the cells and also to produce a uniform product suitable for storage. It has been found that a relatively uniform flat thin cross section is particularly suitable and yields a high quality product with nicely controllable rapid freeze and thaw rates. These desirable relatively flat thin and uniform cross sections are obtained inherently with the use of flexible flat packages or pouches such as the pouches described and illustrated in US. Pat. No. 3,576,650 to Underwood. A flexible pouch has a maximum fluid containing capability equal to the volume of the spherical form it will naturally assume when filled while unrestrained in any manner. Since the fluid containing volume of such a pouch however lessens considerably as the pouch shape changes from the spherical to the flat shape, it is necessary that the pouches in practicing this invention be slack filled, that is to say with a fluid volume not more than will insure maintenance of the desired thickness and shape when held flattened and restrained. In order to maintain this desired cross section and overall package configuration with such pouches during the freezing operation they must perforce be kept flattened and an obvious way to do this is to freeze the fluid filled packages in a horizontal orientation. The freezing of horizontally oriented flat packaged fluids however has been found adversely to affect the rapidity and uniformity of freeze rates because when a fluid filled package and its support are immersed in the cryogenic medium. liquid nitrogen for instance, gas bubbles of the vaporized freezing medium form beneath the underside of the horizontally disposed assembly creating random insulative pockets which interfere with an even and rapid heat transfer from the product being frozen.
Efforts to obviate the problems attending rapid horizontal freezing of such fluids have led to the develop ment and use of thin rigid stainless steel fluid containers which maintain the fluid cross section as desired independently of container position, can be immersed vertically in the freezing medium and make for very rapid freeze rates due to the good thermal conductivity of the metal. Such containers are also suitably durable and puncture resistant for handling, transport and storage. There are however numerous disadvantages to these metal containers. First and of great importance the necessity of venting a viable fluid metal container to the atmosphere during both filling and dispensing makes for difficulty in maintaining the sterility essential to the use of such product particularly in effecting a sterile closure on the filled container. Since the metal is opaque it is impossible to inspect the inside of the container for the possible presence of particulate foreign matter or other visible indicia of contamination or to see the contained product itself. The container units are expensive to fabricate and are not reusable. Further, it is virtually impossible to apply any sort of kneading action when desired to effect mixing of the fluid product during the thaw process since the container metal walls cannot be kneaded in the manner of flexible plastic pouches.
Thus it can be seen that efforts to date in the art of cryogenic processing of viable and perishable fluids have solved one set of problems only to encounter others. Further efforts directed to improving either the horizontal or the vertical freezing techniques similarly have produced less than completely satisfactory results.
So was the state of the art at the time the present invention was conceived and developed with the object of providing a method and apparatus for the rapid vertical freezing of viable and perishable fluids in plastic pouches while attaining the benefits but none of the disadvantages attaching to the use of the metal containers heretofore used in vertical freezing techniques.
It is a further and important object of this invention to provide a method and apparatus for the cryogenic freezing of viable and perishable fluids. particularly fluid blood components, which is uncomplicated. easily used and maintained sterile and which produces a product which can be handled, transported, stored and utilized without the need for any extraordinary protec tion against physical damage.
A still further object of the invention is to provide a packaged blood component freezing method and apparatus which are capable of making the desired packaged frozen blood product inexpensively using commercially available plastic sterile pouches which are readily discardable after a single utilization with minimal waste material accrual.
These and other objects of the present invention will be the more readily understood from the ensuing description and the drawings wherein FIG. 1 is a perspective view of a cryogenic media container and its cover.
FIG. 2 is a perspective view ofajig fixture for retaining plate restrained bagged fluids in a container during freezing.
FIG. 3 is a perspective view of a hinged closeable restraining plate set used in conjunction with the jig of FIG. 2 showing a fluid filled pouch in place on one of the plates.
FIG. 4 is a perspective view of the jig fixture of FIG. 2 with a loaded restraining plate set of FIG. 3 partly inserted.
FIG. 5 is a perspective view of an alternative form of plate set for restraining bagged fluids.
FIG. 6 is an enlarged fragmented cross section through the assembled plate set of FIG. 5 and FIG. 7 is a perspective view of a modified form of hinged plate set.
In general the present invention comprehends freezing fluids into thin layer-like transportable and storable unitary packages comprising. in combination, slack fill ing a pouch of flexible plastic material with a fluid to be frozen, flattening and disposing the slack filled pouch between two closely spaced substantially parallel planar surfaces, restraining the surfaces against separation from the flattened pouch disposed therebetween with a retaining force sufficient to prevent sagging distortion of the unfrozen fluid fi led package when it is vertically disposed applied to a portion of said surfaces less than the total surface area, immersing the assembled fluid filled package and the retained restraining surfaces in a substantially vertical orientation into a cryogenic medium having a temperature on the order of about that of liquid nitrogen for a time sufficient to effect solid freezing and continued subcooling of the packaged fluid down to the preselected cryogenic temperature.
With reference to the drawings, FIG. 1 shows a cryogenic medium container and its cover, specifically a liquid nitrogen container 11 and cover 13 used in the freezing operations according to the invention. Liquid nitrogen at a temperature in the order of about I 96C. fills container 11 and fast freezes the fluids immersed therein within a matter of seconds. A jig shown generally at 15 in FIG. 2 is used interiorly of container 11 to support the plate restrained slack filled pouches or bags being frozen. Jig 15 comprises a circular flat base 17 to which is perpendicularly centrally attached an upright plate retainer 19 cut or cast from flat stock to define slots 21 disposed to hold the bags and restraining plates. Insulating strips 23 of any suitable preferably nonmetallic material may also be provided and attached to the plate retainer 19 by means of screws 25 in holes 27 or any other suitable attachment means. Insulating strips 23 are provided mainly to effect friction reduction in sliding the assembled plates into and out of the jig fixture and to prevent galling or seizing of the jig metal to plate metal contacts which is known to occur at cryogenic temperatures. The insulating strips 23 also obviate heat flow losses between the plates pouch assembly and the jig fixture metal mass but this consideration is not of great significance when the jig fixture assembly is left normally to-reside in the cryogenic medium container.
FIG. 3 shows a restraining plate set indicated generally as 29 used in conjunction with the jig of FIG. 2. The restraining plate set 29 comprises a first plate 31 having a closure return 33 along one edge and hinge bosses 35 at the opposite end. Plate 31 is hinge connected to a second plate 37 with hinge pins 39 fitted through the first plate hinge bosses 35 and companion hinge bosses 41 on second plate 37. Second plate 37 is provided with a closure return 43 along the closure or edge opposite the hinged edge and with a handle 45. Other than the closure returns 33, 43, the hinge bosses 35, 41 and, if desired. additional edge returns along the hinged side, the plates have no other edge returns. It is of significance in the present invention to provide return-free edges along the sides other than the closure side and hinge side to obviate plate buckling and other undesirable distortion which have been found to occur with the use of plates having full perimeter returns. A transparent plastic pouch 47 slack filled with fluid and flattened is shown arranged on the first plate 31.
In using the above described apparatus according to the present invention, a pouch 47 is slack filled with the fluid to be frozen, laid flat on the first or lower plate of hinged restraining plate set 29, the plate set is closed and the assembly slid vertically into a slot 21 of the jig 15 as illustrated in FIG. 4 of the drawings. The lines of contact are along the vertical centers of the outer surfaces ofthe plates 31, 37 and the friction reducing insulating strips 23 as shown and, in instances where for one reason or another the jig fixture is being loaded outside the cryogenic medium container, there is little or no contact of high heat conduction significance between the plate set 29 and fluid to be frozen and the mass of plate retainer 19. One or more slack filled pouches and restraining plate sets may be loaded into the jig fixture 15 depending upon the respective sizes and shapes of the cryogenic medium container, the flat fluid filled pouches in vertical orientation in their respective restraining plate sets and, to some minor extent, the desired freezing rate, The loaded jig fixture is lowered into the liquid nitrogen container 11, which may then be closed with cover 13, for a time sufficient to effect the freezing of the fluid, the cover if used is removed, the loaded jig lifted out and unloaded and the product, comprising the frozen fluid filled pouch and its set of restraining plates, now acting as physical protectors for the pouch, is ready as a package for storage, shipment and so forth under low temperature cryogenic environments. In usual practice according to the invention however, the unloaded jig 15 fixture assembly is left to reside permanently within the container 13 submerged in liquid nitrogen and the slack filled pouch 47 secured in the plate set is directed into the container and slid into a slot 21 of the jig in situ. Since there is little or no heat flow downward into an open container of liquid nitrogen such as would detrimentally affect the rapid freezing step, it is usually unnecessary to close the container 11 with its cover 13. During the freezing operation any expansion, which may be considerable, occurring cross sectionally in the fluid is easily accommodated since the retaining force on restraining plates 31, 37 is applied only vertically centrally of the assembly along the lines of contact with the insulating strips 23.
FIGS. 5 and 6 of the drawings show an alternative form of restraining plate set comprising two separate plates 49 and 51 which clip together without hinge means and thus restrain the fluid filled bag to be frozen. Plate 49 is provided with curved edge returns 53 and 55 which snap over companion edge returns 57, 59 provided on plate 51. To insure alignment of the assembled plates 49, 51 and to facilitate opening, a lip type protrusion 61 may be provided on one of the plates, 49 for example, to latch into a receptor slot 63 on the other plate. Alternatively but similarly the plates may be kept aligned and latched against lateral movement by means of a spring loaded pin or detent latch on one of the plates disposed to engage a hole or latch port on the other.
It has also been found advantageous to interrupt the flat planar surfaces of the bag contacting surfaces of restraining plates of all types with ridges 65 or dimples 67 or the like to lock or immobilize the slack filled bag in place for handling prior to freezing and to impart additional structural integrity to the frozen product after freezing. Further in this respect, one or the other or both plates of a set may be made foraminous by inclu sion of perforations 69 therethrough illustrated in FIG. 7 of the drawings. It is important in the use of foraminous plates however that the holes not be overly large or sharp edged to avoid bag blistering and blister rim cutting occasioned by rapid freeze expansion. Forami nous plates provide the added advantage of prompting faster rapid freeze rates since the cryogenic freezing medium is in direct contact with exposed portions of the fluid filled pouch.
A further modification, and one which permits the elimination of the jig fixture l5 assembly if so desired, is to form one or the other or both of the restraining plates to a slightly concave shape as illustrated by the shape of plate 49 in FIGS. 5 and 6 of the drawings. Concave shaped plates yield to the expansive forces developed in the fluids being frozen and tend to produce a substantially uniform cross section flat planar parallel surfaced product at the completion ofthe freezing step. In the use of concave plates according to the present invention it is the concavity itself which imparts and applies the retaining force in part centrally to the restrained surfaces and, in the illustrated embodiment, applies such force centrally horizontally across the width of the slack filled pouch being frozen. Concave formed plates may also be employed successfully in the apparatus embodiment illustrated in FIG. 3 of the drawings and this embodiment may then also be utilized in the cryogenic medium container without the need for additional equipment such as the jig l5 fixture. Conversely, the unhinged embodiments of re straining plates such as illustrated in FIGS. 5 and 6 of the drawings may be used in conjunction with the jig fixture either with or without the concavity feature depending on the choice of the practitioner.
In respect of planar interruptions such as exemplified by the ridges 65 and the dimples 67, other forms have been used successfully such as for example a full area grid form protrusion which imparts a waffle like appearance to the frozen fluid filled pouch.
While it has been expedient and inexpensive in most cases in practicing the present invention to transport, store and otherwise handle the frozen fluid product in the restraining plates, whatever type used, until utilization ofthe fluid, the restraining plate assemblies may be removed and the frozen fluid filled pouch used as the product. However, maximum protection for the frozen pouch is obtained by leaving the restraining plates on the pouch until the time of utilization.
In the description of the present invention the term "substantially" in respect of the flatness, uniformity of cross section, planarity and parallelism of the restraining surfaces and plates is intended to so qualify these features as to include surface protrusions, intrusions, interruptions, and perforations, those described as well as others, the concavity of the plates in particular embodiments of apparatus according to the invention and the bowing or other slight deformation of the plates occurring inherently due to freeze expansion of the pouch cross section. Similarly, the term separable" as applied to the plates according to the invention is intended to mean that the plates may be connected by hinges or similar means, the only essential requirement being that they are capable of being opened to receive a fluid filled package and closeable over it.
The mechanical components of the present invention may be made of any materials capable of low temperature duty. Aluminum has been found particularly suitable for the restraining plates and the jig fixture. Stainless steel has also been used. Any durable plastic capable of withstanding low temperatures is suitable for the insulating strips 23. A bag or pouch type which has been used successfully in practicing the invention is made of seamless oriented polyolefin tubing having a wall thickness of 0075mm, flattened, cut and heat sealed at the open edges to make a flat length of approximately 27cfn and a flat width of approximately 28cm. It is customary in such pouches to have a second heat seal parallel to the first at the top of the pouch to insure firm anchoring of the vent and filling-dispensing tubes attached to the pouch. When filled without the application of restraint of any kind, that is to say while freely suspended, the fluid capacity of such a pouch is about 4,000ml. In actual use the bag is slack filled to about from 550ml to 600ml, usually depending on the volume of the donor specimen. With this order of slack filled volume the flattened bag will enclose a fluid thickness of from 5mm to 10mm, a preferred fluid thickness being from about 7mm to about 8mm.
EXAMPLES Several laboratory tests were performed freezing human whole blood according to the present invention. In these tests samples were prepared using bags similar to those described hereinabove each having a tubing wall thickness of 0075mm, a heat seal at the bottom, two parallel heat seals at the top. a length between seals of approximately 26.5cm and a flat width of about 28.0cm. The bags were slack filled each to about 575ml with blood, and placed flattened to a thickness of about 7.5mm into restraining plate sets of the type shown in the drawings.
The restraining plate sets employed were made of aluminum sheets of 0.157mm thickness, about 28cm width and about 30cm length. One plate of each set was provided two longitudinally extending protrusions or retention ribs each about 10cm long and the other plate with a laterally extending retention rib about l2.5cm long. These ribs were about 0.8cm wide and protruded inwardly to the contained pouch from about 2mm to about 3mm from the plate inner surface.
The prepared samples were frozen in about 30 seconds in liquid nitrogen, subcooled for about 5 minutes, some with a jig l5 fixture and some without, removed from the liquid nitrogen and the restraining plates left These frozen product samples were handled, stored and ultimately thawed with ease and with complete maintenance structural and sterile integrity. Several such samples were drop tested in end and corner drops from a height of about 2 feet to a concrete floor and suffered no pouch rupture.
In respect of structural integrity, protection against drop damage in particular. it is advantageous to load the slack filled pouches transversely into the restraining plates. that is with the heat seals at right angles to the restraining plate set closure returns. parallel to the plate set open edges and with the heat seals folded over or under the flattened pouch prior to plate set closure and freezing. This technique which is illustrated in FIG. 7 of the drawings will more effectively insulate the heat seals and their junctures with the pouch main body, areas which are somewhat weaker than the overall body of the pouch, from shock damage such as occasioned by accidental drops.
In the light of the foregoing disclosure numerous alternative modes of practicing the present invention, but within its scope and spirit, will undoubtedly occur to persons familiar with the art. It is intended therefore that the specification and appended drawings be considered illustrative only and not construed in any limiting sense.
What is claimed is:
l. A method for freezing fluids into thin layer like transportable and storable unitary packages comprising the steps of a. slack filling a pouch of flexible plastic material with a fluid to be frozen.
b. disposing and flattening the slack filled pouch between two substantially parallel planar surfaces to form a package,
c. restraining the surfaces against separation with a retaining force applied in part centrally to a portion of said surfaces less than the total surface area thereof, said retaining force being sufficient to prevent sagging distortion of the unfrozen slack filled pouch when it is vertically disposed between said surfaces,
d. immersing the assembled slack filled pouch and the retained restraining surfaces in a substantially vertical orientation into a cryogenic medium having a temperature on the order of about that of liq uid nitrogen for a time sufficient to effect solid freezing and continued subcooling of the packaged fluid down to a preselected cryogenic temperature and e. removing the assembled frozen package from the cryogenic medium.
2. A method according to claim 1 combined with the further step of removing that part of the retaining force applied centrally to a portion of said surfaces.
3. A method according to claim I combined with added steps of removing the retaining force and the restraining surfaces from the frozen fluid filled pouch.
4. A method according to claim 1 wherein that part of the retaining force applied centrally to a portion of said surfaces is applied substantially linearly.
5. A method according to claim 4 wherein the substantially linearly applied retaining force is applied vertically during the freezing step.
6. A method according to claim 4 wherein the substantially linearly applied retaining force is applied horizontally during the freezing step.
7. A method according to claim 5 wherein said retaining force is applied to not more than 10 percent of said surfaces.

Claims (7)

1. A method for freezing fluids into thin layer like transportable and storable unitary packages comprising the steps of a. slack filling a pouch of flexible plastic material with a fluid to be frozen. b. disposing and flattening the slack filled pouch between two substantially parallel planar surfaces to form a package, c. restraining the surfaces against separation with a retaining force applied in part centrally to a portion of said surfaces less than the total surface area thereof, said retaining force being sufficient to prevent sagging distortion of the unfrozen slack filled pouch when it is vertically disposed between said surfaces, d. immersing the assembled slack filled pouch and the retained restraining surfaces in a substantially vertical orientation into a cryogenic medium having a temperature on the order of about that of liquid nitrogen for a time sufficient to effect solid freezing and continued subcooling of the packaged fluid down to a preselected cryogenic temperature and e. removing the assembled frozen package from the cryogenic medium.
2. A method according to claim 1 combined with the further step of removing that part of the retaining force applied centrally to a portion of said surfaces.
3. A method according to claim 1 combined with added steps of removing the retaining force and the restraining surfaces from the frozen fluid filled pouch.
4. A method according to claim 1 wherein that part of the retaining force applied centrally to a portion of said surfaces is applied substantially linearly.
5. A method according to claim 4 wherein the substantially linearly applied retaining force is applied vertically during the freezing step.
6. A method according to claim 4 wherein the substantially linearly applied retaining force is applied horizontally during the freezing step.
7. A method according to claim 5 wherein said retaining force is applied to not more than 10 percent of said surfaces.
US38530873 1971-08-30 1973-08-03 Method for cryogenic freezing of fluid-filled pouches Expired - Lifetime US3875754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US38530873 US3875754A (en) 1971-08-30 1973-08-03 Method for cryogenic freezing of fluid-filled pouches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/176,214 US3952536A (en) 1971-08-30 1971-08-30 Apparatus for cryogenic freezing of fluid filled pouches
US38530873 US3875754A (en) 1971-08-30 1973-08-03 Method for cryogenic freezing of fluid-filled pouches

Publications (1)

Publication Number Publication Date
US3875754A true US3875754A (en) 1975-04-08

Family

ID=26871996

Family Applications (1)

Application Number Title Priority Date Filing Date
US38530873 Expired - Lifetime US3875754A (en) 1971-08-30 1973-08-03 Method for cryogenic freezing of fluid-filled pouches

Country Status (1)

Country Link
US (1) US3875754A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059967A (en) * 1976-02-19 1977-11-29 The Community Blood Council Of Greater New York, Inc. Process for freezing blood platelets
US4223723A (en) * 1978-01-12 1980-09-23 Wisconsin Alumni Research Foundation Heat transfer in boiling liquified gas
US4251995A (en) * 1979-04-25 1981-02-24 Hedbergska Stiftelsen Method of freezing human blood platelets in glycerol-glucose using a statically controlled cooling rate device
US4304293A (en) * 1979-06-18 1981-12-08 Helmholtz-Institut Fur Biomedizinische Technik Process and apparatus for freezing living cells
US4327799A (en) * 1979-06-18 1982-05-04 Helmholtz-Institut Fur Biomedizinische Technik Process and apparatus for freezing living cells
US4437315A (en) 1981-07-23 1984-03-20 Franrica Mfg. Inc. Flexible bag cooling arrangement
US4469227A (en) * 1983-08-17 1984-09-04 Clifford Faust Package for cryogenically frozen liquids
US4565073A (en) * 1985-02-07 1986-01-21 Armour Pharmaceutical Co. Freezing frame for a plasma container
US4630448A (en) * 1985-10-25 1986-12-23 Baxter Travenol Laboratories, Inc. Container for storing solid living tissue portions
US5168712A (en) * 1990-03-19 1992-12-08 Instacool Inc. Of North America Rapid cooling through a thin flexible membrane
US5321955A (en) * 1992-12-22 1994-06-21 Leonard Rex D Cryogenic shipping system
US5419143A (en) * 1992-12-22 1995-05-30 International Cryogenics, Inc. Cryogenic apparatus for sample protection in a dewar
US5423186A (en) * 1993-02-10 1995-06-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and device for freezing substances contained in receptacles
US6029457A (en) * 1997-07-01 2000-02-29 Mve, Inc. Wide mouth vacuum-insulated receptacle
US6067803A (en) * 1996-10-23 2000-05-30 Wolsey; Henry Garnet Cooling pouch
US6073540A (en) * 1998-11-10 2000-06-13 Fmc Corporation Apparatus for heating or cooling product containers
US6378314B1 (en) * 2001-02-06 2002-04-30 Charles J. Clark Cryogenic system having unique storage frames for storing bio-organic specimens
US6467642B2 (en) 2000-12-29 2002-10-22 Patrick L. Mullens Cryogenic shipping container
US6539726B2 (en) 2001-05-08 2003-04-01 R. Kevin Giesy Vapor plug for cryogenic storage vessels
US20050153041A1 (en) * 2004-01-09 2005-07-14 Technican Company Ltd. Quick-freezing method and device for food with liquid surface contact
US20090158755A1 (en) * 2007-12-21 2009-06-25 Sartorius Stedim Freeze Thaw Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US20100072216A1 (en) * 2008-09-24 2010-03-25 Sartorius Stedim Systems, Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US20150091430A1 (en) * 2013-09-30 2015-04-02 Thermo Fisher Scientific (Asheville) Llc Removable storage basket and associated methods for storing items within a freezer
CN105173409A (en) * 2015-08-27 2015-12-23 天津瀛德科技有限公司 Filling type cold storage package
EP3044120A4 (en) * 2013-09-09 2017-04-19 Inovatzia, Inc. Reusable cryogenic carrying case for biological materials
CN109178564A (en) * 2018-09-13 2019-01-11 贵州省人民医院 A kind of Portable field blood preseration device
US20200196593A1 (en) * 2018-12-21 2020-06-25 Fenwal, Inc. Methods and Systems for Platelet Cryopreservation
US11352262B2 (en) 2017-12-18 2022-06-07 Praxair Technology, Inc. Methods for automatic filling, charging and dispensing carbon dioxide snow block

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2260450A (en) * 1940-04-24 1941-10-28 Gen Foods Corp Method of freezing food products
US2964920A (en) * 1958-01-10 1960-12-20 Philco Corp Refrigeration
US3683635A (en) * 1970-12-07 1972-08-15 Mario Campanelli Freeze stabilized insulin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2260450A (en) * 1940-04-24 1941-10-28 Gen Foods Corp Method of freezing food products
US2964920A (en) * 1958-01-10 1960-12-20 Philco Corp Refrigeration
US3683635A (en) * 1970-12-07 1972-08-15 Mario Campanelli Freeze stabilized insulin

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059967A (en) * 1976-02-19 1977-11-29 The Community Blood Council Of Greater New York, Inc. Process for freezing blood platelets
US4223723A (en) * 1978-01-12 1980-09-23 Wisconsin Alumni Research Foundation Heat transfer in boiling liquified gas
US4251995A (en) * 1979-04-25 1981-02-24 Hedbergska Stiftelsen Method of freezing human blood platelets in glycerol-glucose using a statically controlled cooling rate device
US4304293A (en) * 1979-06-18 1981-12-08 Helmholtz-Institut Fur Biomedizinische Technik Process and apparatus for freezing living cells
US4327799A (en) * 1979-06-18 1982-05-04 Helmholtz-Institut Fur Biomedizinische Technik Process and apparatus for freezing living cells
US4437315A (en) 1981-07-23 1984-03-20 Franrica Mfg. Inc. Flexible bag cooling arrangement
US4469227A (en) * 1983-08-17 1984-09-04 Clifford Faust Package for cryogenically frozen liquids
US4565073A (en) * 1985-02-07 1986-01-21 Armour Pharmaceutical Co. Freezing frame for a plasma container
US4630448A (en) * 1985-10-25 1986-12-23 Baxter Travenol Laboratories, Inc. Container for storing solid living tissue portions
US5168712A (en) * 1990-03-19 1992-12-08 Instacool Inc. Of North America Rapid cooling through a thin flexible membrane
US5557943A (en) * 1990-03-19 1996-09-24 Thermogenesis Corporation Rapid cooling through a thin flexible membrane
US5321955A (en) * 1992-12-22 1994-06-21 Leonard Rex D Cryogenic shipping system
US5419143A (en) * 1992-12-22 1995-05-30 International Cryogenics, Inc. Cryogenic apparatus for sample protection in a dewar
US5423186A (en) * 1993-02-10 1995-06-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and device for freezing substances contained in receptacles
US6067803A (en) * 1996-10-23 2000-05-30 Wolsey; Henry Garnet Cooling pouch
US6029457A (en) * 1997-07-01 2000-02-29 Mve, Inc. Wide mouth vacuum-insulated receptacle
US6073540A (en) * 1998-11-10 2000-06-13 Fmc Corporation Apparatus for heating or cooling product containers
US6194015B1 (en) 1998-11-10 2001-02-27 Fmc Corporation Method for heating or cooling product containers
US6467642B2 (en) 2000-12-29 2002-10-22 Patrick L. Mullens Cryogenic shipping container
US6378314B1 (en) * 2001-02-06 2002-04-30 Charles J. Clark Cryogenic system having unique storage frames for storing bio-organic specimens
US6539726B2 (en) 2001-05-08 2003-04-01 R. Kevin Giesy Vapor plug for cryogenic storage vessels
US7628029B2 (en) * 2004-01-09 2009-12-08 Technican Company Ltd. Quick-freezing method and device for food with liquid surface contact
US20050153041A1 (en) * 2004-01-09 2005-07-14 Technican Company Ltd. Quick-freezing method and device for food with liquid surface contact
US9933113B2 (en) 2007-12-21 2018-04-03 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US10088106B2 (en) 2007-12-21 2018-10-02 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US20090158755A1 (en) * 2007-12-21 2009-06-25 Sartorius Stedim Freeze Thaw Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US9301520B2 (en) 2007-12-21 2016-04-05 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US9161527B2 (en) 2007-12-21 2015-10-20 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US8177123B2 (en) 2008-09-24 2012-05-15 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US20100072216A1 (en) * 2008-09-24 2010-03-25 Sartorius Stedim Systems, Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
EP3044120A4 (en) * 2013-09-09 2017-04-19 Inovatzia, Inc. Reusable cryogenic carrying case for biological materials
US9140482B2 (en) * 2013-09-30 2015-09-22 Thermo Fisher Scientific (Asheville) Llc Removable storage basket and associated methods for storing items within a freezer
US20150091430A1 (en) * 2013-09-30 2015-04-02 Thermo Fisher Scientific (Asheville) Llc Removable storage basket and associated methods for storing items within a freezer
CN105173409A (en) * 2015-08-27 2015-12-23 天津瀛德科技有限公司 Filling type cold storage package
US11352262B2 (en) 2017-12-18 2022-06-07 Praxair Technology, Inc. Methods for automatic filling, charging and dispensing carbon dioxide snow block
CN109178564A (en) * 2018-09-13 2019-01-11 贵州省人民医院 A kind of Portable field blood preseration device
CN109178564B (en) * 2018-09-13 2020-04-03 青岛大学附属医院 Portable field blood preservation device
US20200196593A1 (en) * 2018-12-21 2020-06-25 Fenwal, Inc. Methods and Systems for Platelet Cryopreservation

Similar Documents

Publication Publication Date Title
US3875754A (en) Method for cryogenic freezing of fluid-filled pouches
US3952536A (en) Apparatus for cryogenic freezing of fluid filled pouches
US4090374A (en) Apparatus for cryogenic freezing of fluid filled pouches
US4194369A (en) Cryogenically frozen package articles
US5103651A (en) Plasma storage freezer and thermal transport device
US4565073A (en) Freezing frame for a plasma container
US4131200A (en) Thermoplastic blood bag
US4262494A (en) Portable device for cryopreservation, transportation and temporary cryogenic storage of semen and other similar tissue
US2662520A (en) Preservation and storage of biological materials
US4292817A (en) Controlled temperature shipping assembly
US4469227A (en) Package for cryogenically frozen liquids
WO2000044641A2 (en) Improved lyophilization apparatus and methods
KR890001396B1 (en) Container for freezing and storage of foodstuffs
AU2019252550A1 (en) Systems and methods for cryostorage bag protection
US5935848A (en) Deep-freezing container
US4609102A (en) Plastic film bag lyophilization system
IL44333A (en) Expandable holder apparatus for flattening and freezing fluid-containing flexible pouches
US20130052730A1 (en) Methods and system for cryogenic preservation of cells
CN112804875B (en) Apparatus and method for freezing biological solution
CN220743870U (en) Sample bag storage box
JP6878893B2 (en) Cell container protective container and temperature control method
CN214002474U (en) Express packaging box for crabs
CN211944451U (en) Biological specimen transfer box
US20230030092A1 (en) Thermal Capacitors, Systems, and Methods for Rapid Freezing or Heating of Biological Materials
CN214608734U (en) Pollution-free virus sample transfer device