US3861827A - Diaphragm support lugs - Google Patents
Diaphragm support lugs Download PDFInfo
- Publication number
- US3861827A US3861827A US450542A US45054274A US3861827A US 3861827 A US3861827 A US 3861827A US 450542 A US450542 A US 450542A US 45054274 A US45054274 A US 45054274A US 3861827 A US3861827 A US 3861827A
- Authority
- US
- United States
- Prior art keywords
- diaphragm
- shoulder
- outer casing
- casing
- halves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011068 loading method Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012856 packing Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/246—Fastening of diaphragms or stator-rings
Definitions
- a turbomachine such as a steam turbine includes an outer casing having a rotor mounted therein.
- An axial flow steam path may be defined by several stages each comprised of a turbine wheel and a diaphragm.
- Each turbine wheel is attached to the rotor, rotatable therewith, and includes an annular array of radial, outwardly extending blades.
- Each diaphragm is attached to the turbine outer casing and forms an annulus around the rotor.
- the diaphragm includes stationary nozzles approximately aligned with its respective turbine wheel blades and at its inner diameter includes shaft packings.
- the purpose of the diaphragm is to prevent axial leakage of steam while defining an axial flow path for steam through its nozzle portion.
- the present invention is applicable but not limited to turbomachines used in naval applications such as submarines. Such vessels may encounter vertical shock loadings due to enemy ordnance such as depth charges.
- This invention is particularly useful in turbomachinery having an outer casing divided along its horizontal centerline into upper and lower casing halves. Each casing half on each side includes a step or cutout for accommodating upper and lower support lugs.
- Each support lug is formed with an axially extending shoulder which is inserted into a respective upper or lower diaphragm slot forming an interlocking joint on each side of the turbine casing upper and lower halves.
- Vertical dowels or pins are inserted through each lug shoulder and abutting diaphragm portions whereby relative movement is prevented between the turbine casing and diaphragm.
- FIG. 1 is an end elevation view of a turbomachine casing and diaphragm.
- FIG. 2 is an enlarged side elevation view of a turbomachine horizontal joint in the axial direction according to the prior art.
- FIG. 3 is an enlarged side elevation view of a turbomachine horizontal joint in the axial direction according to the present invention.
- a turbomachine outer casing 11 divided along its horizontal joint, includes upper and lower casing halves 11A and 118, respectively.
- a diaphragm 13 also divided along its horizontal axis into upper and lower diaphragm halves 13A and 138.
- the diaphragm forms an annulus about the rotor (not shown) including an annulus of nozzle blades 15.
- Part of the diaphragm support is provided by lugs 17 on each side of the outer casing.
- There may be other support means provided between the diaphragm and outer casing such as a vertical adjustment screw (not shown) along the vertical axis in the lower casing but this does not form part of the present invention.
- FIG. 2 shows one type of diaphragm support according to the prior art wherein like numbers correspond to like parts.
- Upper and lower casing halves include a step or cutout portion 19 along the horizontal axis at the di aphragm location.
- Lower lug 178 includes a shoulder 21B which extends axially into slot 238 formed in the lower diaphragm.
- a screw 25B is then inserted parallel to the horizontal joint through lug 17B and into the lower diaphragm 13B.
- the upper diaphragm 13A is assembled to the upper outer casing 11A in a similar manner.
- Upper lug 17A is inserted into cutout l9 and includes an axially extended shoulder 21A.
- the shoulder 21A is inserted into a slot 23A in the diaphragm and the assembly is held together by screw 25A.
- Screw 25A is staked by the bolt 29 which is drilled into the upper casing half.
- Bolt 29 is a lifting bolt so that when upper casing 11A is removed from the lower casing, the diaphragm will be retained in the upper casing.
- upper and lower casing halves 11A and 118 have a stepped or cutout portion 19 at the diaphragm location, one on each side of the turbine for each diaphragm.
- a lower lug 17B is axially inserted into the cutout and includes a shoulder 21B inserted into a diaphragm slot 238 of the lower diaphragm half 138.
- An upper lug 17A is inserted into the cutout and includes a shoulder 21A inserted into a diaphragm slot 23A of the upper dia-.
- FIG. 3 Staking pins in the lower support lugs are obviated.
- Vertical pins 35A and 35B are dowel pins and hence not threaded providing a stronger connection between the lug shoulders and diaphragms. Under vertical shock loading slight deformations of the shoulders, in the arrangement shown in FIG. 2 (prior art) may cause failure in tension and bending of screws 25A and 258 whereas vertical loadings in the invention as shown and described in FIG. 3 can withstand considerably higher vertical shock loadings.
- a turbomachine including an outer casing divided along a horizontal joint into upper and lower outer cas ing halves and further including a diaphragm within the outer casing, the diaphragm divided into upper and lower diaphragm halves within the outer casing; and, means for mounting the diaphragm halves within their respective outer casing halves comprising:
- each fastener having a portion thereof positioned in at least one shoulder and another portion thereof positioned in the diaphragm whereby movement of the diaphragm relative to the outer casing is prevented.
- each vertical fastener is a smooth pin.
- each lug shoulder and each diaphragm slot extend in the axial direction.
- each vertical fastener is perpendicular to the horizontal centerline of the turbomachine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
In a turbomachine casing divided along a horizontal joint into upper and lower casing halves, a diaphragm is supported on each side by upper and lower lugs including shoulder portions which interlock with respective upper and lower diaphragm halves. A vertical pin is inserted through each shoulder and into abutting diaphragm portions to prevent relative movement between the turbine casing and diaphragm.
Description
United States Patent Peabody et a].
[451 Jan. 21, 1975 DIAPHRAGM SUPPORT LUGS Inventors: Bayard W. Peabody, Baldwinville,
Maine; Robert F. Cericola, Greenville, SC.
General Electric Company, Schenectady, N.Y.
Filed: Mar. 12, 1974 Appl. No.: 450,542
Assignee:
U.S. Cl 415/219, 415/217, 248/2 Int. Cl. F01d 25/24, FOld 25/28 Field of Search ..415/126,219 R,217,218,
References Cited UNITED STATES PATENTS 7/1941 Webster 415/219 R 3/1970 Martin et a1, 415/219 R 12/1970 Brown et al 415/219 R Primary ExaminerCarlton R. Croyle Assistant Examiner-L. J. Casaregola Attorney, Agent, or Firm-John F. Ahern; James W. Mitchell [57] ABSTRACT 5 Claims, 3 Drawing Figures DIAPHRAGM SUPPORT LUGS BACKGROUND OF THE INVENTION This invention was made under contract with the U.S. Government, Department of the Navy. The inven tion relates, in general, to turbomachines; and, in particular, to means for supporting a turbine diaphragm relative to the turbine outer casing.
A turbomachine such as a steam turbine includes an outer casing having a rotor mounted therein. An axial flow steam path may be defined by several stages each comprised of a turbine wheel and a diaphragm. Each turbine wheel is attached to the rotor, rotatable therewith, and includes an annular array of radial, outwardly extending blades. Each diaphragm is attached to the turbine outer casing and forms an annulus around the rotor. The diaphragm includes stationary nozzles approximately aligned with its respective turbine wheel blades and at its inner diameter includes shaft packings. As is well known in the art, the purpose of the diaphragm is to prevent axial leakage of steam while defining an axial flow path for steam through its nozzle portion. Accordingly, radial clearances between the diaphragm and outer casing; and, between the diaphragm and rotor are critical. Misalignment, caused by support lug failure may have deleterious effects on turbine operation such as loss of efficiency and packing rub which can necessitate turbine shutdown.
It is one object of the present invention to provide a diaphragm support capable of withstanding vertical shock loads.
It is another object of the present invention to provide a diaphragm support wherein staking screws are obviated.
The present invention is applicable but not limited to turbomachines used in naval applications such as submarines. Such vessels may encounter vertical shock loadings due to enemy ordnance such as depth charges. This invention is particularly useful in turbomachinery having an outer casing divided along its horizontal centerline into upper and lower casing halves. Each casing half on each side includes a step or cutout for accommodating upper and lower support lugs. Each support lug is formed with an axially extending shoulder which is inserted into a respective upper or lower diaphragm slot forming an interlocking joint on each side of the turbine casing upper and lower halves. Vertical dowels or pins are inserted through each lug shoulder and abutting diaphragm portions whereby relative movement is prevented between the turbine casing and diaphragm.
The novel features believed characteristic of the present invention are set forth in the appended claims. The invention itself, however, together with further objects and advantages thereof, may best be understood with reference to the following description, taken in connection with the appended drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is an end elevation view of a turbomachine casing and diaphragm.
FIG. 2 is an enlarged side elevation view of a turbomachine horizontal joint in the axial direction according to the prior art.
FIG. 3 is an enlarged side elevation view of a turbomachine horizontal joint in the axial direction according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION Referring now to FIG. 1, a turbomachine outer casing 11, divided along its horizontal joint, includes upper and lower casing halves 11A and 118, respectively. Within the outer casing is a diaphragm 13, also divided along its horizontal axis into upper and lower diaphragm halves 13A and 138. When assembled, the diaphragm forms an annulus about the rotor (not shown) including an annulus of nozzle blades 15. Part of the diaphragm support is provided by lugs 17 on each side of the outer casing. There may be other support means provided between the diaphragm and outer casing such as a vertical adjustment screw (not shown) along the vertical axis in the lower casing but this does not form part of the present invention.
FIG. 2 shows one type of diaphragm support according to the prior art wherein like numbers correspond to like parts. Upper and lower casing halves include a step or cutout portion 19 along the horizontal axis at the di aphragm location. Lower lug 178 includes a shoulder 21B which extends axially into slot 238 formed in the lower diaphragm. A screw 25B is then inserted parallel to the horizontal joint through lug 17B and into the lower diaphragm 13B. The screw 25B is then staked by a vertical pin 27. Alignment of the diaphragm may be provided by shaving the underside of lower lug 173.
The upper diaphragm 13A is assembled to the upper outer casing 11A in a similar manner. Upper lug 17A is inserted into cutout l9 and includes an axially extended shoulder 21A. The shoulder 21A is inserted into a slot 23A in the diaphragm and the assembly is held together by screw 25A. Screw 25A is staked by the bolt 29 which is drilled into the upper casing half. Bolt 29 is a lifting bolt so that when upper casing 11A is removed from the lower casing, the diaphragm will be retained in the upper casing.
Having described the prior art, and now referring to FIG. 3 wherein like parts are given like numbers, upper and lower casing halves 11A and 118 have a stepped or cutout portion 19 at the diaphragm location, one on each side of the turbine for each diaphragm. A lower lug 17B is axially inserted into the cutout and includes a shoulder 21B inserted into a diaphragm slot 238 of the lower diaphragm half 138. An upper lug 17A is inserted into the cutout and includes a shoulder 21A inserted into a diaphragm slot 23A of the upper dia-.
The following advantages and operations are now pointed out with respect to FIG. 3. Staking pins in the lower support lugs are obviated. Vertical pins 35A and 35B are dowel pins and hence not threaded providing a stronger connection between the lug shoulders and diaphragms. Under vertical shock loading slight deformations of the shoulders, in the arrangement shown in FIG. 2 (prior art) may cause failure in tension and bending of screws 25A and 258 whereas vertical loadings in the invention as shown and described in FIG. 3 can withstand considerably higher vertical shock loadings.
While there is shown what is considered, at present, to be the preferred embodiment of the invention, it is, of course, understood that various other modifications may be made therein. Such modifications may include a single dowel pin rather than upper and lower dowel pins for each side of the turbine casing It is intended to claim all such modifications as fall within the true spirit and scope of the present invention. I
What is claimed is:
l. A turbomachine including an outer casing divided along a horizontal joint into upper and lower outer cas ing halves and further including a diaphragm within the outer casing, the diaphragm divided into upper and lower diaphragm halves within the outer casing; and, means for mounting the diaphragm halves within their respective outer casing halves comprising:
upper and lower casing lugs mounted in a cutout portion on each side of the outer casing;
a shoulder formed on each lug;
a slot formed on each side of a respective diaphragm half, each shoulder extending into its respective diaphragm slot;
at least one substantially vertical fastener on each side of the turbomachine casing, each fastener having a portion thereof positioned in at least one shoulder and another portion thereof positioned in the diaphragm whereby movement of the diaphragm relative to the outer casing is prevented.
2. The device recited in claim 1 wherein there is one substantially vertical fastener for each casing lug. the fastener inserted through each shoulder and having each end terminating in a portion of the diaphragm abutting the shoulder.
3. The device recited in claim 1 wherein each vertical fastener is a smooth pin.
4. The device recited in claim 1 wherein each lug shoulder and each diaphragm slot extend in the axial direction.
5. The device recited in claim 1 wherein each vertical fastener is perpendicular to the horizontal centerline of the turbomachine.
Claims (5)
1. A turbomachine including an outer casing divided along a horizontal joint into upper and lower outer casing halves and further including a diaphragm within the outer casing, the diaphragm divided into upper and lower diaphragm halves within the outer casing; and, means for mounting the diaphragm halves within their respective outer casing halves comprising: upper and lower casing lugs mounted in a cutout portion on each side of the outer casing; a shoulder formed on each lug; a slot formed on each side of a respective diaphragm half, each shoulder extending into its respective diaphragm slot; at least one substantially vertical fastener on each side of the turbomachine casing, each fastener having a portion thereof positioned in at least one shoulder and another portion thereof positioned in the diaphragm whereby movement of the diaphragm relative to the outer casing is prevented.
2. The device recited in claim 1 wherein there is one substantially vertical fastener for each casing lug, the fastener inserted through each shoulder and having each end terminating in a portion of the diaphragm abutting the shoulder.
3. The device recited in claim 1 wherein each vertical fastener is a smooth pin.
4. The device recited in claim 1 wherein each lug shoulder and each diaphragm slot extend in the axial direction.
5. The device recited in claim 1 wherein each vertical fastener is perpendicular to the horizontal centerline of the turbomachine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US450542A US3861827A (en) | 1974-03-12 | 1974-03-12 | Diaphragm support lugs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US450542A US3861827A (en) | 1974-03-12 | 1974-03-12 | Diaphragm support lugs |
Publications (1)
Publication Number | Publication Date |
---|---|
US3861827A true US3861827A (en) | 1975-01-21 |
Family
ID=23788498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US450542A Expired - Lifetime US3861827A (en) | 1974-03-12 | 1974-03-12 | Diaphragm support lugs |
Country Status (1)
Country | Link |
---|---|
US (1) | US3861827A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3947150A (en) * | 1974-01-15 | 1976-03-30 | Stal-Laval Turbin Ab | Axial turbine split diaphragm locking device |
US4204803A (en) * | 1978-07-21 | 1980-05-27 | General Electric Company | Diaphragm support |
US5772401A (en) * | 1995-10-13 | 1998-06-30 | Dresser-Rand Company | Diaphragm construction for turbomachinery |
EP1180581A2 (en) * | 2000-08-09 | 2002-02-20 | General Electric Company | Interchangeable turbine diaphragm halves and related support system |
US6364606B1 (en) | 2000-11-08 | 2002-04-02 | Allison Advanced Development Company | High temperature capable flange |
US6547523B2 (en) * | 2001-09-12 | 2003-04-15 | General Electric Company | Diaphragm screw support for and method of supporting a turbine diaphragm |
US20050042085A1 (en) * | 2003-08-08 | 2005-02-24 | William Richards | Arrangement for mounting a non-rotating component |
US20070119174A1 (en) * | 2005-11-30 | 2007-05-31 | General Electric Company | Adjustable support bar for steam turbine diaphragms |
US20080286098A1 (en) * | 2007-05-17 | 2008-11-20 | Siemens Power Generation, Inc. | Wear minimization system for a compressor diaphragm |
US20080317591A1 (en) * | 2007-06-19 | 2008-12-25 | Siemens Power Generation, Inc. | Centerline suspension for turbine internal component |
DE102008060705A1 (en) * | 2008-12-05 | 2010-06-10 | Man Turbo Ag | Horizontally split turbomachine housing |
US20110097201A1 (en) * | 2009-10-28 | 2011-04-28 | Alstom Technology Ltd | Steam turbine casing system |
US20110116919A1 (en) * | 2009-11-13 | 2011-05-19 | General Electric Company | Support bar for turbine diaphragm that facilitates reduced maintenance cycle time and cost |
US20110305566A1 (en) * | 2010-06-11 | 2011-12-15 | General Electric Company | Adjustable support apparatus for steam turbine nozzle assembly |
US20130022453A1 (en) * | 2011-07-19 | 2013-01-24 | General Electric Company | Alignment member for steam turbine nozzle assembly |
US20130078089A1 (en) * | 2011-09-26 | 2013-03-28 | General Electric Company | Steam turbine single shell extraction lp casing |
US20130323026A1 (en) * | 2012-05-30 | 2013-12-05 | Dresser-Rand Company | Method and apparatus for supporting and aligning diaphragms in turbomachines |
US20150176435A1 (en) * | 2012-07-11 | 2015-06-25 | Mitsubishi Hitachi Power Systems, Ltd. | Axial-flow exhaust turbine |
US20170074109A1 (en) * | 2014-03-06 | 2017-03-16 | Mitsubishi Hitachi Power Systems, Ltd. | Support device, turbine, and support method |
US20190072108A1 (en) * | 2017-09-05 | 2019-03-07 | Mitsubishi Heavy Industries Compressor Corporation | Compressor, upper half assembly of the compressor, upper half diaphragm of the compressor, and compressor assembling method |
US10233770B2 (en) * | 2014-01-27 | 2019-03-19 | Mitsubishi Hitachi Power Systems, Ltd. | Position adjustment device, rotating machine provided with same, and position adjustment method |
JPWO2018042648A1 (en) * | 2016-09-05 | 2019-06-24 | 三菱重工コンプレッサ株式会社 | Steam turbine assembling method, steam turbine, and upper half assembly |
JPWO2018042649A1 (en) * | 2016-09-05 | 2019-06-24 | 三菱重工コンプレッサ株式会社 | Steam turbine assembling method, steam turbine, and upper half assembly |
US10934892B2 (en) * | 2016-08-16 | 2021-03-02 | General Electric Technology Gmbh | Axial flow turbine having a diaphragm split in two halves at a horizontal joint plane |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2247423A (en) * | 1940-01-25 | 1941-07-01 | Gen Electric | Elastic fluid turbine diaphragm supporting and centering arrangement |
US3498727A (en) * | 1968-01-24 | 1970-03-03 | Westinghouse Electric Corp | Blade ring support |
US3544233A (en) * | 1968-07-29 | 1970-12-01 | Westinghouse Electric Corp | Turbine nozzle chamber support arrangement |
-
1974
- 1974-03-12 US US450542A patent/US3861827A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2247423A (en) * | 1940-01-25 | 1941-07-01 | Gen Electric | Elastic fluid turbine diaphragm supporting and centering arrangement |
US3498727A (en) * | 1968-01-24 | 1970-03-03 | Westinghouse Electric Corp | Blade ring support |
US3544233A (en) * | 1968-07-29 | 1970-12-01 | Westinghouse Electric Corp | Turbine nozzle chamber support arrangement |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3947150A (en) * | 1974-01-15 | 1976-03-30 | Stal-Laval Turbin Ab | Axial turbine split diaphragm locking device |
US4204803A (en) * | 1978-07-21 | 1980-05-27 | General Electric Company | Diaphragm support |
US5772401A (en) * | 1995-10-13 | 1998-06-30 | Dresser-Rand Company | Diaphragm construction for turbomachinery |
EP1180581A3 (en) * | 2000-08-09 | 2004-01-07 | General Electric Company | Interchangeable turbine diaphragm halves and related support system |
EP1180581A2 (en) * | 2000-08-09 | 2002-02-20 | General Electric Company | Interchangeable turbine diaphragm halves and related support system |
US6352405B1 (en) * | 2000-08-09 | 2002-03-05 | General Electric Company | Interchangeable turbine diaphragm halves and related support system |
US6364606B1 (en) | 2000-11-08 | 2002-04-02 | Allison Advanced Development Company | High temperature capable flange |
US6547523B2 (en) * | 2001-09-12 | 2003-04-15 | General Electric Company | Diaphragm screw support for and method of supporting a turbine diaphragm |
US20050042085A1 (en) * | 2003-08-08 | 2005-02-24 | William Richards | Arrangement for mounting a non-rotating component |
US7121789B2 (en) * | 2003-08-08 | 2006-10-17 | Rolls-Royce Plc | Arrangement for mounting a non-rotating component |
US20070119174A1 (en) * | 2005-11-30 | 2007-05-31 | General Electric Company | Adjustable support bar for steam turbine diaphragms |
US7458770B2 (en) * | 2005-11-30 | 2008-12-02 | General Electric Company | Adjustable support for steam turbine diaphragms |
US20080286098A1 (en) * | 2007-05-17 | 2008-11-20 | Siemens Power Generation, Inc. | Wear minimization system for a compressor diaphragm |
US7758307B2 (en) | 2007-05-17 | 2010-07-20 | Siemens Energy, Inc. | Wear minimization system for a compressor diaphragm |
US8430625B2 (en) * | 2007-06-19 | 2013-04-30 | Siemens Demag Delaval Turbomachinery, Inc. | Centerline suspension for turbine internal component |
US20080317591A1 (en) * | 2007-06-19 | 2008-12-25 | Siemens Power Generation, Inc. | Centerline suspension for turbine internal component |
US8790076B2 (en) | 2007-06-19 | 2014-07-29 | Demag Delaval Turbomachinery, Inc. | Centerline suspension for turbine internal component |
DE102008060705A1 (en) * | 2008-12-05 | 2010-06-10 | Man Turbo Ag | Horizontally split turbomachine housing |
DE102008060705B4 (en) * | 2008-12-05 | 2019-05-16 | Man Energy Solutions Se | Horizontally split turbomachine housing |
US20100143113A1 (en) * | 2008-12-05 | 2010-06-10 | Man Turbo Ag | Horizontally Split Flow Machine Housing |
US8454308B2 (en) | 2008-12-05 | 2013-06-04 | Man Diesel & Turbo Se | Horizontally split flow machine housing |
US8834110B2 (en) * | 2009-10-28 | 2014-09-16 | Alstom Technology Ltd | Steam turbine casing system |
US20110097201A1 (en) * | 2009-10-28 | 2011-04-28 | Alstom Technology Ltd | Steam turbine casing system |
RU2552628C2 (en) * | 2009-11-13 | 2015-06-10 | Дженерал Электрик Компани | Support stand for turbine diaphragm, support stand structure for turbine diaphragm and steam turbine |
US8414258B2 (en) * | 2009-11-13 | 2013-04-09 | General Electric Company | Support bar for turbine diaphragm that facilitates reduced maintenance cycle time and cost |
EP2322767A3 (en) * | 2009-11-13 | 2014-06-04 | General Electric Company | Support bar for turbine diaphragm that facilitates reduced maintenance cycle time and cost |
JP2011106452A (en) * | 2009-11-13 | 2011-06-02 | General Electric Co <Ge> | Support bar for turbine diaphragm that facilitates reduced maintenance cycle time and cost |
US20110116919A1 (en) * | 2009-11-13 | 2011-05-19 | General Electric Company | Support bar for turbine diaphragm that facilitates reduced maintenance cycle time and cost |
US20110305566A1 (en) * | 2010-06-11 | 2011-12-15 | General Electric Company | Adjustable support apparatus for steam turbine nozzle assembly |
US8662830B2 (en) * | 2010-06-11 | 2014-03-04 | General Electric Company | Adjustable support apparatus for steam turbine nozzle assembly |
US20130022453A1 (en) * | 2011-07-19 | 2013-01-24 | General Electric Company | Alignment member for steam turbine nozzle assembly |
US8834113B2 (en) * | 2011-07-19 | 2014-09-16 | General Electric Company | Alignment member for steam turbine nozzle assembly |
US20130078089A1 (en) * | 2011-09-26 | 2013-03-28 | General Electric Company | Steam turbine single shell extraction lp casing |
US9828878B2 (en) * | 2012-05-30 | 2017-11-28 | Dresser-Rand Company | Method and apparatus for supporting and aligning diaphragms in turbomachines |
US20130323026A1 (en) * | 2012-05-30 | 2013-12-05 | Dresser-Rand Company | Method and apparatus for supporting and aligning diaphragms in turbomachines |
US20150176435A1 (en) * | 2012-07-11 | 2015-06-25 | Mitsubishi Hitachi Power Systems, Ltd. | Axial-flow exhaust turbine |
US10072528B2 (en) * | 2012-07-11 | 2018-09-11 | Mitsubishi Hitachi Power Systems, Ltd. | Axial-flow exhaust turbine |
US10233770B2 (en) * | 2014-01-27 | 2019-03-19 | Mitsubishi Hitachi Power Systems, Ltd. | Position adjustment device, rotating machine provided with same, and position adjustment method |
US20170074109A1 (en) * | 2014-03-06 | 2017-03-16 | Mitsubishi Hitachi Power Systems, Ltd. | Support device, turbine, and support method |
US10436045B2 (en) * | 2014-03-06 | 2019-10-08 | Mitsubishi Hitachi Power Systems, Ltd. | Support device, turbine, and support method |
US10934892B2 (en) * | 2016-08-16 | 2021-03-02 | General Electric Technology Gmbh | Axial flow turbine having a diaphragm split in two halves at a horizontal joint plane |
JPWO2018042648A1 (en) * | 2016-09-05 | 2019-06-24 | 三菱重工コンプレッサ株式会社 | Steam turbine assembling method, steam turbine, and upper half assembly |
JPWO2018042649A1 (en) * | 2016-09-05 | 2019-06-24 | 三菱重工コンプレッサ株式会社 | Steam turbine assembling method, steam turbine, and upper half assembly |
EP3492710A4 (en) * | 2016-09-05 | 2019-07-24 | Mitsubishi Heavy Industries Compressor Corporation | Steam turbine assembling method, steam turbine, and upper half assembly |
EP3492711A4 (en) * | 2016-09-05 | 2019-07-24 | Mitsubishi Heavy Industries Compressor Corporation | Steam turbine assembling method, steam turbine, and upper half assembly |
US11022000B2 (en) | 2016-09-05 | 2021-06-01 | Mitsubishi Heavy Industries Compressor Corporation | Steam turbine assembling method, steam turbine, and upper half assembly |
US11047261B2 (en) * | 2016-09-05 | 2021-06-29 | Mitsubishi Heavy Industries Compressor Corporation | Steam turbine assembling method, steam turbine, and upper half assembly |
US20190072108A1 (en) * | 2017-09-05 | 2019-03-07 | Mitsubishi Heavy Industries Compressor Corporation | Compressor, upper half assembly of the compressor, upper half diaphragm of the compressor, and compressor assembling method |
US10954959B2 (en) * | 2017-09-05 | 2021-03-23 | Mitsubishi Heavy Industries Compressor Corporation | Compressor, upper half assembly of the compressor, upper half diaphragm of the compressor, and compressor assembling method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3861827A (en) | Diaphragm support lugs | |
US4305696A (en) | Stator vane assembly for a gas turbine engine | |
US3126149A (en) | Foamed aluminum honeycomb motor | |
US2963268A (en) | Pressurized seal | |
US4391565A (en) | Nozzle guide vane assemblies for turbomachines | |
US3519366A (en) | Turbine diaphragm seal structure | |
US4716721A (en) | Improvements in or relating to gas turbine engines | |
GB1484936A (en) | Gas turbine engines | |
US3393894A (en) | Blade assembly | |
GB1008526A (en) | Axial flow bladed rotor, e.g. for a turbine | |
GB1523668A (en) | Turbomachinery stator assembly | |
GB1318654A (en) | Bladed rotors | |
GB1277212A (en) | A sealing device | |
US3572733A (en) | Shaft seal used in gas turbine engines | |
GB609220A (en) | Improvements in or relating to nozzles and stationary blades for turbines and like machines | |
US3155395A (en) | Shaft packing assembly | |
US3292900A (en) | Vibration-damping fixing of moving blades for axial-flow turbo-machines | |
GB1142951A (en) | An arrangement for radially positioning a first annular member relatively to a second annular member | |
US3051437A (en) | Rotors, for example rotor discs for axial-flow turbines | |
US2982519A (en) | Stator vane assembly for axial-flow fluid machine | |
GB867759A (en) | Stator vane assemblies for axial-flow compressors or turbines | |
US3129922A (en) | Self centering ring seal | |
US3844675A (en) | Plural shell axial turbine for operation with high pressure, high temperature steam | |
GB902064A (en) | Blade damping means for compressors and turbines | |
GB797445A (en) | Improvements in or relating to rotary fluid machines, for example turbines and compressors |