US3841979A - Method of preparing surfaces for electroplating - Google Patents
Method of preparing surfaces for electroplating Download PDFInfo
- Publication number
- US3841979A US3841979A US00343730A US34373073A US3841979A US 3841979 A US3841979 A US 3841979A US 00343730 A US00343730 A US 00343730A US 34373073 A US34373073 A US 34373073A US 3841979 A US3841979 A US 3841979A
- Authority
- US
- United States
- Prior art keywords
- copper
- per liter
- grams per
- panel
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/244—Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
Definitions
- This invention relates to a method of treating metal prior to copper plating. More specifically, this invention relates to the application of thin adherent copper deposits or film prior to the electrodeposition of relatively thick copper deposits from plating solutions.
- a preliminary copper strike from a cyanide bath or a nickel strike from an acidic nickel plating bath is first used to avoid poorly adherent immersion deposits before acid copper plating.
- This invention is directed to a process for coating metal surfaces with a copper film prior to the electrodeposition of copper from copper plating baths comprising treating said metal surface in a solution containing 0.01 to 10 grams per liter of a copper salt of a nonoxidizing acid; 0.1 grams per liter to 500 grams per liter of a nonoxidizing acid; and 0.1 to grams per liter of a polyether containing at least 5 ether oxygen atoms per molecule, thereby obtaining a copper film effecting good copper plate adherence on basis metals from copper plating baths.
- Copper salts operable in the practice of this invention include copper sulfate, copper fluoborate, and copper phosphate.
- Copper pretreatment baths of this invention are distinguished from aqueous acidic copper plating baths by their deficiency of copper.
- Typical amounts of copper include about 0.025 to 2.5 grams per liter as metallic copper (preferably 0.025 to 0.625 grams per liter); or 0.1 to 10 grams per liter as CuSO -5H O or Cu(BF (preferably 0.1 to 2.5 grams per liter).
- Polyethers which may be used according to process of the invention have at least 5 ether oxygen atoms and include polyethers of the formulae:
- Suitable polyethers which may be used according to the invention include polyethers set forth in Table I.
- the polyether additives may be employed in effective amounts, typically 0.1 to 100 grams per liter and preferably 1 to 25 grams per liter to give good adhesion properties.
- the polyethers of this invention may be derived from 1,2 olefin oxides such as ethylene oxide, propylene oxide, 1,2 butylene oxide, etc.; from 4- and 5-membered ring cyclic ethers such as oxetane, 2,3-dichloromethyloxetane, etc.; from glycidyl esters and ethers such as allyl glycidyl ether, glycidyl acetate, and phenyl glycidyl ether and mixtures of the foregoing.
- 1,2 olefin oxides such as ethylene oxide, propylene oxide, 1,2 butylene oxide, etc.
- 4- and 5-membered ring cyclic ethers such as oxetane, 2,3-dichloromethyloxetane, etc.
- glycidyl esters and ethers such as allyl glycidyl ether, glycidyl a
- Hwmimywmtoh (oaHtoMotHiOnH NCH CHgN H(C2H4O)y(03H5O oinfionwiniogn wherein x is about 3 and y is about 3-4;
- the basis metals which are treated by the pretreatment process of this invention are preferably ferrous metals such as steel, iron, etc., although most common metals and their alloys can be pretreated with Applicants copper films for subsequent copper plating.
- the nonoxidizing acids of this invention are preferably sulfuric acid H and fiuoboric acid HBF
- the immersion baths of this invention should be at a temperature of 10 C. to 60 C., (preferably 20 C. to 40 C.). While this invention is completely operable without the use of current as shown by examples hereinafter, this invention may also be practiced with current for instance a cathode current density of 0.1 to 60 amperes per square decimeter. While agitation is not necessary for the practice of the invention, air agitation, volume agitation, and mechanical agitation may be used with no deleterious effect.
- This invention is the deposition of a film of copper from a solution comprising 0.01 grams per liter to 10 grams per liter of a copper salt selected from the group consisting of copper sulfate, copper phosphate and copper :lluoborate, 0.1 grams per liter to 500 grams per liter of a nonoxidizing acid, and 0.1 grams per liter to grams per liter of a polyether containing at least 5 ether oxygen atoms per molecule; and after deposition of said strike coating of copper, electrodepositing copper thereon from an aqueous copper plating bath.
- a copper salt selected from the group consisting of copper sulfate, copper phosphate and copper :lluoborate
- 0.1 grams per liter to 500 grams per liter of a nonoxidizing acid and 0.1 grams per liter to grams per liter of a polyether containing at least 5 ether oxygen atoms per molecule
- the copper strike of this invention may he deosited electrolytically at a temperature of 10 C. to 60 C., with the use of a current density of 1 a.s.d. to 20 a.s.d.
- the fist step the essence of the invention, is to form a thin, dense, strongly adherent layer or strike coating. Under the above conditions, the strike coating is formed in from 20 seconds to 3 minutes depending upon the current density, the copper ion concentration, and various additives of the strike solution.
- the article is transferred from the strike bath of this invention to an aqueous acidic copper plating bath containing chloride ions and organic additives without permitting the article to dry and without rinsing it.
- this invention provides a process for electrodepositing bright copper from aqueous acidic baths comprising buffing the metal surface, cleaning by immersing the pretreated metal surface in an organic solvent; electrolytically degreasing said surface electrolytically in alkaline solution; rinsing, immersing in an acid bath thereby obtaining a bright, clean metal surface; depositing on said surface a strike coating of copper from a solution containing 0.01 grams per liter to 10 grams per liter of a copper salt; 0.1 grams TABLE II Grams Grams (preferable) Compound per liter per liter Sulfate bath CuSo4-5H2O 150-300 220 2S0; l-ll0 60 Cl- 1 5-100 1 20-40 Fluoborate bath C11(BF4)2 100-600 224 HBF 1-60 3. 5 HaBOs 0-30 15 Cl- 1 5-100 1 -40 1 Mg./l.
- the basis metals which may be pretreated with the process of this invention include ferrous metals, such as steel, iron, etc.; zinc and its alloys including zinc-base die-cast articles; nickel, including nickel alloys with other metals such as cobalt, iron, chromium, aluminum, including its alloys.
- Example 1 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 1 gram per liter of cupric sulfate pentahydrate (CuSO -5H O) and 100 grams per liter of sulfuric acid (H 50 and 16 grams per liter of an ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential suflicient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns.
- CuSO -5H O cupric sulfate pentahydrate
- sulfuric acid H 50 and 16 grams per liter of an ethoxylated propoxylated lauryl alcohol (MW 1020)
- Example 2 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 1 gram per liter cupric sulfate pentahydrate (CuSO -5H O) and 60 grams per liter of sulfuric acid (H 80 and 1 gram per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential sufficient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns.
- CuSO -5H O cupric sulfate pentahydrate
- sulfuric acid H 80 and 1 gram per liter of ethoxylated propoxylated lauryl alcohol (MW 1020)
- Example 3 After thoroughly pickling and cleaning a steel panel, 2.5 cm. Wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.1 grams per liter of cupric sulfate pentahydrate (CuSO -5H O). and 60 grams per liter of sulfuric acid (H and 10 grams per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential suflicient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns.
- CuSO -5H O cupric sulfate pentahydrate
- MW 1020 ethoxylated propoxylated lauryl alcohol
- Example 4 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 1 gram per liter of cupric sulfate pentahydrate (CuSO -5H O) and grams per liter of phosphoric acid (H PO and 16 grams per liter of an ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential suflicient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns.
- CuSO -5H O cupric sulfate pentahydrate
- H PO grams per liter of phosphoric acid
- MW 1020 ethoxylated propoxylated lauryl alcohol
- Example 5 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 1 gram per liter of cupric sulfate pentahydrate (CuSO -5H O) and 100 grams per liter of fluoboric acid (HBF and 16 grams per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential sufficient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns. The edges of the panel were ground down to the steel. The copper was easily pulled off the top of the panel but could not be pulled off the bottom half, which had been treated in the above solution, indicating excellent adhesion.
- CuSO -5H O cupric sulfate pentahydrate
- HHF fluoboric
- Example 6 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H 80 and 10 grams per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., without current. After 20 seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensitive masking tape 202 was firmly applied to half the width of the panel along its entire length.
- aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H 80 and 10 grams per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., without current.
- MW 1020 ethoxylated propoxylated lauryl alcohol
- the tape was then peeled off the panel.
- the panel was then examined for bare steel and the tape was examined for copper flakes.
- the tape test revealed excellent adhesion.
- Example 7 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H 80 and grams per liter of polyethylene glycol (MW 1000) having the following structure H(OC H OH, at 24 C., without current. After seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensitive masking tape 202 was firmly applied to half the width of the panel along its entire length.
- MW 1000 polyethylene glycol
- the tape was then peeled oi? the panel.
- the panel was then examined for bare steel and the tape was examined for copper flakes.
- the tape test revealed excellent adhesion.
- Example 8 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H 80 and 10 grams per liter of polyethylene glycol (6000) having thefollowing structure H(OC H O'H, at 24 C., with an applied cathodic potential sufiicient to produce an average current density of 2.7 a.s.d. after the panel was half immersed. After '20 seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensitive masking tape 202 was firmly applied to half the width of the panel along its entire length.
- 6000 polyethylene glycol
- the tape was peeled off the panel. The panel was then examined for bare steel and the tape was examined for copper flakes.
- the tape test revealed excellent adhesion.
- Example 9 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H and 10 grams per liter of ethoxylated lauryl alcohol (MW 1286, having the following structure at 24 C., with an applied cathodic potential sufiicient to produce an average current density of 2.7 a.s.d. after the panel was half immersed. After 20 seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensitive masking tape 202 was firmly applied to half the width of the panel along its entire length.
- aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H and 10 grams per liter of ethoxylated lauryl alcohol (MW 1286, having the following structure at 24 C., with
- the tape was then peeled off the panel.
- the panel was then examined for bare steel and the tape was examined for copper flakes.
- the tape test revealed excellent adhesion.
- Example 10 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter H and 10 grams per liter nonyl phenoxy polyoxyethylene ethanol (MW 1540), having the following structure Cv n-(0 (32 930011 at 24 C., without current. After 20 seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensi tive masking tape 202 was firmly applied to half the width of the panel along its entire length.
- MW 1540 nonyl phenoxy polyoxyethylene ethanol
- the tape was then peeled off the panel.
- the panel was then examined for bare steel and the tape was examined for copper flakes.
- the tape test revealed excellent adhesion.
- Example 11 After thoroughly pickling and cleaning a steel panel, 10 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter CuSO -5H O and grams per liter H 80 and 20 grams per liter ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential sufficient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 15 seconds the panel was rinsed with water and transferred to a pyrophosphate copper plating bath and 25 microns of copper was plated on it.
- MW 1020 ethoxylated propoxylated lauryl alcohol
- Example 12 After thoroughly pickling and cleaning a steel tube, approximately 2.5 cm. in diameter and 30 cm. long, the tube was immersed into an aqueous solution containing 0.5 grams per liter CuSO -5H O and 100 grams per liter H 80 and 20 grams per liter ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structlllC CH3(CH2) (OCgH4)15(OC3H )3OH at 24 C., out current. After 20 seconds the tube was transferred to an acid copper plating bath and plated so that there was an average thickness of 25 microns of copper on the outside of the tube.
- aqueous solution containing 0.5 grams per liter CuSO -5H O and 100 grams per liter H 80 and 20 grams per liter ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structlllC CH3(CH2) (OCgH4)15(OC3H )3OH at 24 C., out current.
- the tube was transferred to an
- the tube was longitudinally cut in half and examined.
- the copper on the outside of the tube had excellent adhesion to the tube. And further, the inside of the tube also had a uniform adherent coating of copper in it.
- Example 13 After thoroughly pickling and cleaning a steel tube approximately 2.5 cm. in diameter and 30 cm. long, the tube was given a strike from a typical cyanide copper strike solution for approximately 5 minutes at about 5.4 a.s.d. The tube was then rinsed with water, dipped in a 2% (by volume) sulfuric acid solution, again rinsed with water and transferred to an acid copper plating bath and plated so that there was an average thickness of 25 microns of copper on the outside of the tube.
- the tube was longitudinally cut in half and examined.
- the copper on the outside of the tube had excellent adhesion to the tube. But the copper on the inside of the tube was loose and flaky.
- Example 14 After thoroughly cleaning a zinc die cast automobile handle, it was immersed into an aqueous solution containing 1 gram per liter CuSO -H O and 60 grams per liter H 80 and 20 grams per liter of an ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure CH3(CH2)11(OC2H4)15(OC3HG)3OH, at 24 C., with an applied cathodic potential sufficient to produce an average current density of 8.0 a.s.d. after the handle was immersed. After 1 minute the handle was rinsed with water and transferred to a pyrophosphate copper plating bath where it was plated with copper to an average thickness of 7.5 microns. The handle was again rinsed with water and then transferred to an acid copper plating solution where an average thickness of 25 microns of copper was plated on it.
- MW 1020 ethoxylated propoxylated lauryl alcohol
- a process for electrodepositing bright copper from aqueous acidic baths comprising bufiing a metal surface; immersing said pretreated metal surface in organic solvent; then electrolytically cleaning said surface in an alkaline solution, rising said surface, immersing said surface in acid, rinsing said surface thereby obtaining a bright, clean metal surface; depositing on said surface a coating of copper from a solution containing: 0.01 grams per liter to 10 grams per liter of CuSO -5H O; 0.1 grams per liter to 500 grams per liter of nonoxidizing acid; and 0.1 grams per liter to 100 grams per liter of a polyether containing at least 5 ether oxygen atoms per molecule; and electrodepositing on said strike coating a relatively thicker layer of bright, strongly leveled, ductile copper from a copper plating bath.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
1. AN AQUEOUS FOR ELECTRODEPOSITING BRIGHT COPPER FROM AQUEOUS ACIDIC BATHS COMPRISING BUFFING A METAL SURFACE; IMMERSING SAID PRETREATED METAL SURFACE IN ORGANIC SOLVENT; THEN ELECTROLYTICALLY CLEANING SAID SURFACE IN AN ALKALINE SOLUTION, RISING SAID SURFACE, IMMERSING SAID SURFACE IN ACID, RINSING SAID SURFACE THEREBY OBTAINING A BRIGHT, CLEAN METAL SURFACE; DEPOSITING ON SAID SURFACE A COATING OF COPPER FROM SOLUTION CONTAINING: 0.01 GRAMS PEER LITER TO 10 GRAMS PER LITER OF CUSO4.5H2O; 0.1 GRAMS PER LITER TO 500 GRAMS PER LITER OF NONOXIDIZING ACID; AND 0.1 GRAMS PER LITER TO 100 GRAMS PER LITER OF A POLYETHER CONTAINING AT LEAST 5 ETHER OXYGEN ATOMS PER MOLECULE; AND ELECTRODEPOSITING ON SAID STRIKE COATING A RELATIVELY THICKER LAYER OF BRIGHT, STRONGLY LEVELED, DUCTILE COPPER FROM A COPPER PLATING BATH.
Description
United States Patent 3,841,979 METHOD OF PREPARING SURFACES FOR ELECTROPLATING Donald A. Arcilesi, Detroit, Mich., assignor to M & T Chemicals Inc., Greenwich, Conn.
No Drawing. Original application Aug. 20, 1971, Ser. No. 173,645, now Patent No. 3,751,289. Divided and this application Mar. 22, 1973, Ser. No. 343,730
Int. Cl. C23f 17/00 U.S. Cl. 204-38 B 1 Claim ABSTRACT OF THE DISCLOSURE This invention relates to adherent copper films formed by immersion, or electrolytically on metallic objects from an aqueous solution of (l) a nonoxidizing acid, (2) a copper salt of a nonoxidizing acid, and (3) a polyether exhibiting at least 5 ether oxygen atoms per molecule; to processes for coating said films; and to compositions for the deposition of said adherent copper films.
METHOD OF PREPARING SURFACES FOR ELECTROPLATING This application is a divisional application of co -pending application Ser. No. 173,645, filed Aug. 20, 1971, now U.S. Pat. 3,751,289.
This invention relates to a method of treating metal prior to copper plating. More specifically, this invention relates to the application of thin adherent copper deposits or film prior to the electrodeposition of relatively thick copper deposits from plating solutions.
Because loose, nonadherent, displacement films of copper are formed on iron, steel, and Zinc when these basis metals are immersed in acid copper baths, a cyanide copper or a nickel strike plate has, according to the prior art, been required before plating from an acid copper bath.
For example, when acid copper baths are used for plating steel or ferrous articles such as automobile bumper bars, hubcaps, printing rolls, etc., a preliminary copper strike from a cyanide bath or a nickel strike from an acidic nickel plating bath is first used to avoid poorly adherent immersion deposits before acid copper plating.
After strike deposition from a cyanide bath, the work must be thoroughly rinsed, dipped in a dilute solution of hydrochloric or sulfuric acid to neutralize any undissolved alkaline material, and rinsed again before plating in the acid bath. After nickel strike or nickel chloride immersion dip, thorough rinsing is required to prevent the drag-in of chloride into the acid copper bath. Neither the cyanide copper strike nor the nickel strike produce deposits in deeply recessed areas such as the inside of tubes; consequently a loosely adherent copper deposit forms in these areas on subsequent plating from an acid copper bath. 7
It is an object of this invention to provide an adherent copper film on metallic objects which effects good adhesion of subsequent copper deposits from copper plating baths, even in deeply recessed areas such as the inside of tubes. It is another object of this invention to provide an adherent copper film such that the work does not have to be rinsed between the strike or immersion dip and the acid copper plating baths, as is necessary after conven tional strikes. It is an object of this invention to prevent formation of badly adherent copper electrodeposits. Other objects of this invention will be apparent from the following description.
This invention is directed to a process for coating metal surfaces with a copper film prior to the electrodeposition of copper from copper plating baths comprising treating said metal surface in a solution containing 0.01 to 10 grams per liter of a copper salt of a nonoxidizing acid; 0.1 grams per liter to 500 grams per liter of a nonoxidizing acid; and 0.1 to grams per liter of a polyether containing at least 5 ether oxygen atoms per molecule, thereby obtaining a copper film effecting good copper plate adherence on basis metals from copper plating baths. Copper salts operable in the practice of this invention include copper sulfate, copper fluoborate, and copper phosphate.
Copper pretreatment baths of this invention are distinguished from aqueous acidic copper plating baths by their deficiency of copper. Typical amounts of copper include about 0.025 to 2.5 grams per liter as metallic copper (preferably 0.025 to 0.625 grams per liter); or 0.1 to 10 grams per liter as CuSO -5H O or Cu(BF (preferably 0.1 to 2.5 grams per liter).
Polyethers which may be used according to process of the invention have at least 5 ether oxygen atoms and include polyethers of the formulae:
R NZ to where R is a monovalent radical such as H, alkyl, alkenyl, alkyuyl, alkylaryl, arylalkyl or a heterocyclic radical; and R" is a m-valent aliphatic, aromatic or heterocyclic radical; m=2 to 100; and
where u and v=0 to 4, but at least one of u or v must be greater than zero; r+s=6 to 1000; and T=H, alkyl, benzyl, -SO3M, C H2 SO3M, ''PO3H2, or
Suitable polyethers which may be used according to the invention include polyethers set forth in Table I. The polyether additives may be employed in effective amounts, typically 0.1 to 100 grams per liter and preferably 1 to 25 grams per liter to give good adhesion properties.
The polyethers of this invention may be derived from 1,2 olefin oxides such as ethylene oxide, propylene oxide, 1,2 butylene oxide, etc.; from 4- and 5-membered ring cyclic ethers such as oxetane, 2,3-dichloromethyloxetane, etc.; from glycidyl esters and ethers such as allyl glycidyl ether, glycidyl acetate, and phenyl glycidyl ether and mixtures of the foregoing.
TABLE I CH3 CH3 CH3 CH3 EH3 I-Ig [31th] m J) wherein x=9-10, or wherein x=30, or wherein 36:40;
CyHn-Q-O cnzcniom 11-0 1aH250(CHiC z O 25H H HC:H2x+1--CH3 N-(cI-noHimyH HECHZO)IH wherein x=9-12, and y+z= 15;
Hwmimywmtoh (oaHtoMotHiOnH NCH CHgN H(C2H4O)y(03H5O oinfionwiniogn wherein x is about 3 and y is about 3-4;
wherein x is about 13;
HO(C H O) H wherein x is about 33;
HO(C H O) H v wherein at is about 12;
CH3 CH3 crnomfib-om-om--cmom 3H 3H [a is m a. JHCHa JHCHa a... l a.
wherein m =about 12-25 and n=about 1-2;
cm CH: CHsCHz-CI-BCHz--CHKHL 5 A Forum; JHCHa [a 5 6 (EH. 6H, in in c, 6 1'1 11 m=about 12-25 and n=1-2;
CHa(CH )CHCH3 wherein p=about 5-6 or 16.
The basis metals which are treated by the pretreatment process of this invention are preferably ferrous metals such as steel, iron, etc., although most common metals and their alloys can be pretreated with Applicants copper films for subsequent copper plating.
Advantages obtained by the practice of this invention include:
1. Excellent adhesion of subsequent copper deposits over a wide concentration range of the constituents of the invented solution used as an immersion dip prior to copper plating.
2. The concentration ranges and the reliability were greatly increased by making the work cathodic and using the invented solution as to strike bath.
3. In contrast to cyanide or nickel strikes one can get good adhesion even if current is not used. Therefore, we can get good adhesion even in very deeply recessed areas such as the inside of a tube.
4. Work does not have to be rinsed between the strike or immersion dip of this invention and the acid copper plating bath, as it does after conventional strikes. It may be cycled directly from the coating solution of this invention to the plating bath.
The nonoxidizing acids of this invention are preferably sulfuric acid H and fiuoboric acid HBF The immersion baths of this invention should be at a temperature of 10 C. to 60 C., (preferably 20 C. to 40 C.). While this invention is completely operable without the use of current as shown by examples hereinafter, this invention may also be practiced with current for instance a cathode current density of 0.1 to 60 amperes per square decimeter. While agitation is not necessary for the practice of the invention, air agitation, volume agitation, and mechanical agitation may be used with no deleterious effect.
This invention according to one of its aspects, is the deposition of a film of copper from a solution comprising 0.01 grams per liter to 10 grams per liter of a copper salt selected from the group consisting of copper sulfate, copper phosphate and copper :lluoborate, 0.1 grams per liter to 500 grams per liter of a nonoxidizing acid, and 0.1 grams per liter to grams per liter of a polyether containing at least 5 ether oxygen atoms per molecule; and after deposition of said strike coating of copper, electrodepositing copper thereon from an aqueous copper plating bath.
Optionally, the copper strike of this invention may he deosited electrolytically at a temperature of 10 C. to 60 C., with the use of a current density of 1 a.s.d. to 20 a.s.d. The fist step, the essence of the invention, is to form a thin, dense, strongly adherent layer or strike coating. Under the above conditions, the strike coating is formed in from 20 seconds to 3 minutes depending upon the current density, the copper ion concentration, and various additives of the strike solution.
For electrodeposition of bright, strongly leveled, ductile copper, the article is transferred from the strike bath of this invention to an aqueous acidic copper plating bath containing chloride ions and organic additives without permitting the article to dry and without rinsing it.
In accordance with certain of its aspects this invention provides a process for electrodepositing bright copper from aqueous acidic baths comprising buffing the metal surface, cleaning by immersing the pretreated metal surface in an organic solvent; electrolytically degreasing said surface electrolytically in alkaline solution; rinsing, immersing in an acid bath thereby obtaining a bright, clean metal surface; depositing on said surface a strike coating of copper from a solution containing 0.01 grams per liter to 10 grams per liter of a copper salt; 0.1 grams TABLE II Grams Grams (preferable) Compound per liter per liter Sulfate bath CuSo4-5H2O 150-300 220 2S0; l-ll0 60 Cl- 1 5-100 1 20-40 Fluoborate bath C11(BF4)2 100-600 224 HBF 1-60 3. 5 HaBOs 0-30 15 Cl- 1 5-100 1 -40 1 Mg./l.
The basis metals which may be pretreated with the process of this invention include ferrous metals, such as steel, iron, etc.; zinc and its alloys including zinc-base die-cast articles; nickel, including nickel alloys with other metals such as cobalt, iron, chromium, aluminum, including its alloys.
For the purpose of providing those skilled in the art with a better understanding of this invention, the following examples are set forth.
Example 1 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 1 gram per liter of cupric sulfate pentahydrate (CuSO -5H O) and 100 grams per liter of sulfuric acid (H 50 and 16 grams per liter of an ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential suflicient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns.
The edges of the panel were ground down to the steel. The copper was easily pulled off the top of the panel but could not be pulled off the bottom half, which had been treated in the above solution, indicating excellent adhesion.
Other panels were done without current in the above treatment solution and/or with water rinsing between the treatment solution and the plating bath and the plated deposits still had excellent adhesion to the panel. How- 5 ever, under some conditions it is advantageous to use current in the treatment solution and water rinse.
Example 2 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 1 gram per liter cupric sulfate pentahydrate (CuSO -5H O) and 60 grams per liter of sulfuric acid (H 80 and 1 gram per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential sufficient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns.
The edges of the panel were ground down to the steel.
6 The copper was easily pulled off the top of the panel but could not be pulled off the bottom half, which had been treated in the above solution, indicating excellent adhesion.
Example 3 After thoroughly pickling and cleaning a steel panel, 2.5 cm. Wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.1 grams per liter of cupric sulfate pentahydrate (CuSO -5H O). and 60 grams per liter of sulfuric acid (H and 10 grams per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential suflicient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns.
The edges of the panel were ground down to the steel. The copper was easily pulled off the top of the panel but could not be pulled off the bottom half, which had been treated in the above solution, indicating excellent adhesion.
Example 4 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 1 gram per liter of cupric sulfate pentahydrate (CuSO -5H O) and grams per liter of phosphoric acid (H PO and 16 grams per liter of an ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential suflicient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns.
The edges of the panel were ground down to the steel. The copper was easily pulled off the top of the panel but could not be pulled off the bottom half, which had been treated in the above solution, indicating excellent adhesion.
Example 5 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 1 gram per liter of cupric sulfate pentahydrate (CuSO -5H O) and 100 grams per liter of fluoboric acid (HBF and 16 grams per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential sufficient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 30 seconds the panel was transferred to an acid copper plating bath where it was plated with copper to an average thickness of 75 microns. The edges of the panel were ground down to the steel. The copper was easily pulled off the top of the panel but could not be pulled off the bottom half, which had been treated in the above solution, indicating excellent adhesion.
Example 6 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H 80 and 10 grams per liter of ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., without current. After 20 seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensitive masking tape 202 was firmly applied to half the width of the panel along its entire length.
The tape was then peeled off the panel. The panel was then examined for bare steel and the tape was examined for copper flakes.
The tape test revealed excellent adhesion.
Example 7 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H 80 and grams per liter of polyethylene glycol (MW 1000) having the following structure H(OC H OH, at 24 C., without current. After seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensitive masking tape 202 was firmly applied to half the width of the panel along its entire length.
The tape was then peeled oi? the panel. The panel was then examined for bare steel and the tape was examined for copper flakes.
The tape test revealed excellent adhesion.
Example 8 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H 80 and 10 grams per liter of polyethylene glycol (6000) having thefollowing structure H(OC H O'H, at 24 C., with an applied cathodic potential sufiicient to produce an average current density of 2.7 a.s.d. after the panel was half immersed. After '20 seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensitive masking tape 202 was firmly applied to half the width of the panel along its entire length.
The tape was peeled off the panel. The panel was then examined for bare steel and the tape was examined for copper flakes.
The tape test revealed excellent adhesion.
Example 9 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter of H and 10 grams per liter of ethoxylated lauryl alcohol (MW 1286, having the following structure at 24 C., with an applied cathodic potential sufiicient to produce an average current density of 2.7 a.s.d. after the panel was half immersed. After 20 seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensitive masking tape 202 was firmly applied to half the width of the panel along its entire length.
The tape was then peeled off the panel. The panel was then examined for bare steel and the tape was examined for copper flakes.
The tape test revealed excellent adhesion.
8 Example 10 After thoroughly pickling and cleaning a steel panel, 2.5 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter of CuSO -5H O and 100 grams per liter H and 10 grams per liter nonyl phenoxy polyoxyethylene ethanol (MW 1540), having the following structure Cv n-(0 (32 930011 at 24 C., without current. After 20 seconds the panel was dipped into an acid copper plating bath for approximately one second and quickly rinsed in water. Then the panel was dried and a strip of Scotch brand pressure sensi tive masking tape 202 was firmly applied to half the width of the panel along its entire length.
The tape was then peeled off the panel. The panel was then examined for bare steel and the tape was examined for copper flakes.
The tape test revealed excellent adhesion.
Example 11 After thoroughly pickling and cleaning a steel panel, 10 cm. wide and 20 cm. long, half of it was immersed into an aqueous solution containing 0.5 grams per liter CuSO -5H O and grams per liter H 80 and 20 grams per liter ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure at 24 C., with an applied cathodic potential sufficient to produce an average current density of 8.0 a.s.d. after the panel was half immersed. After 15 seconds the panel was rinsed with water and transferred to a pyrophosphate copper plating bath and 25 microns of copper was plated on it.
The edges of the panel were ground down to the steel. The copper was easily pulled off the top of the panel but could not be pulled off the bottom half, which had been treated in the above solution, indicating excellent adhesion.
Example 12 After thoroughly pickling and cleaning a steel tube, approximately 2.5 cm. in diameter and 30 cm. long, the tube was immersed into an aqueous solution containing 0.5 grams per liter CuSO -5H O and 100 grams per liter H 80 and 20 grams per liter ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structlllC CH3(CH2) (OCgH4)15(OC3H )3OH at 24 C., out current. After 20 seconds the tube was transferred to an acid copper plating bath and plated so that there was an average thickness of 25 microns of copper on the outside of the tube.
The tube was longitudinally cut in half and examined. The copper on the outside of the tube had excellent adhesion to the tube. And further, the inside of the tube also had a uniform adherent coating of copper in it.
Example 13 (Control) After thoroughly pickling and cleaning a steel tube approximately 2.5 cm. in diameter and 30 cm. long, the tube was given a strike from a typical cyanide copper strike solution for approximately 5 minutes at about 5.4 a.s.d. The tube was then rinsed with water, dipped in a 2% (by volume) sulfuric acid solution, again rinsed with water and transferred to an acid copper plating bath and plated so that there was an average thickness of 25 microns of copper on the outside of the tube.
The tube was longitudinally cut in half and examined. The copper on the outside of the tube had excellent adhesion to the tube. But the copper on the inside of the tube was loose and flaky.
If one wanted to process this tube through other plating baths, e.g. a nickel plating bath, it would be very probable that the copper would flake oif from the inside of the tube thereby contaminating the plating solution.
Example 14 After thoroughly cleaning a zinc die cast automobile handle, it was immersed into an aqueous solution containing 1 gram per liter CuSO -H O and 60 grams per liter H 80 and 20 grams per liter of an ethoxylated propoxylated lauryl alcohol (MW 1020), having the following structure CH3(CH2)11(OC2H4)15(OC3HG)3OH, at 24 C., with an applied cathodic potential sufficient to produce an average current density of 8.0 a.s.d. after the handle was immersed. After 1 minute the handle was rinsed with water and transferred to a pyrophosphate copper plating bath where it was plated with copper to an average thickness of 7.5 microns. The handle was again rinsed with water and then transferred to an acid copper plating solution where an average thickness of 25 microns of copper was plated on it.
Both the appearance of the plated deposit and its adhesion to the basis metal were excellent.
Although this invention has been illustrated by reference to specific embodiments, modifications thereof which are clearly within the scope of the invention will be apparent to those skilled in the art.
I claim:
1. A process for electrodepositing bright copper from aqueous acidic baths comprising bufiing a metal surface; immersing said pretreated metal surface in organic solvent; then electrolytically cleaning said surface in an alkaline solution, rising said surface, immersing said surface in acid, rinsing said surface thereby obtaining a bright, clean metal surface; depositing on said surface a coating of copper from a solution containing: 0.01 grams per liter to 10 grams per liter of CuSO -5H O; 0.1 grams per liter to 500 grams per liter of nonoxidizing acid; and 0.1 grams per liter to 100 grams per liter of a polyether containing at least 5 ether oxygen atoms per molecule; and electrodepositing on said strike coating a relatively thicker layer of bright, strongly leveled, ductile copper from a copper plating bath.
References Cited UNITED STATES PATENTS 3,267,010 8/1966 Creutz et a1. 20452 R JOHN H. MACK, Primary Examiner R. L. ANDREWS, Assistant Examiner US. Cl. X.R.
Claims (1)
1. AN AQUEOUS FOR ELECTRODEPOSITING BRIGHT COPPER FROM AQUEOUS ACIDIC BATHS COMPRISING BUFFING A METAL SURFACE; IMMERSING SAID PRETREATED METAL SURFACE IN ORGANIC SOLVENT; THEN ELECTROLYTICALLY CLEANING SAID SURFACE IN AN ALKALINE SOLUTION, RISING SAID SURFACE, IMMERSING SAID SURFACE IN ACID, RINSING SAID SURFACE THEREBY OBTAINING A BRIGHT, CLEAN METAL SURFACE; DEPOSITING ON SAID SURFACE A COATING OF COPPER FROM SOLUTION CONTAINING: 0.01 GRAMS PEER LITER TO 10 GRAMS PER LITER OF CUSO4.5H2O; 0.1 GRAMS PER LITER TO 500 GRAMS PER LITER OF NONOXIDIZING ACID; AND 0.1 GRAMS PER LITER TO 100 GRAMS PER LITER OF A POLYETHER CONTAINING AT LEAST 5 ETHER OXYGEN ATOMS PER MOLECULE; AND ELECTRODEPOSITING ON SAID STRIKE COATING A RELATIVELY THICKER LAYER OF BRIGHT, STRONGLY LEVELED, DUCTILE COPPER FROM A COPPER PLATING BATH.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00343730A US3841979A (en) | 1971-08-20 | 1973-03-22 | Method of preparing surfaces for electroplating |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17364571A | 1971-08-20 | 1971-08-20 | |
US00343730A US3841979A (en) | 1971-08-20 | 1973-03-22 | Method of preparing surfaces for electroplating |
Publications (1)
Publication Number | Publication Date |
---|---|
US3841979A true US3841979A (en) | 1974-10-15 |
Family
ID=26869383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00343730A Expired - Lifetime US3841979A (en) | 1971-08-20 | 1973-03-22 | Method of preparing surfaces for electroplating |
Country Status (1)
Country | Link |
---|---|
US (1) | US3841979A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4046646A (en) * | 1973-09-04 | 1977-09-06 | Miele & Cie | Method of galvanizing steel parts |
US4078977A (en) * | 1976-09-13 | 1978-03-14 | Fountain Laurence R | Surface preparation of a damaged braze for rebrazing |
US4131519A (en) * | 1976-08-04 | 1978-12-26 | Ppg Industries, Inc. | Cathode electrocatalyst |
US4376685A (en) * | 1981-06-24 | 1983-03-15 | M&T Chemicals Inc. | Acid copper electroplating baths containing brightening and leveling additives |
EP1199383A2 (en) * | 2000-10-20 | 2002-04-24 | Shipley Company LLC | Seed layer repair bath |
US6656606B1 (en) | 2000-08-17 | 2003-12-02 | The Westaim Corporation | Electroplated aluminum parts and process of production |
EP1111096A3 (en) * | 1999-12-15 | 2004-02-11 | Shipley Company LLC | Seed layer repair method |
EP1415021A1 (en) * | 2001-08-09 | 2004-05-06 | Nikko Materials USA, Inc. | Copper on invar composite and method of making |
-
1973
- 1973-03-22 US US00343730A patent/US3841979A/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4046646A (en) * | 1973-09-04 | 1977-09-06 | Miele & Cie | Method of galvanizing steel parts |
US4131519A (en) * | 1976-08-04 | 1978-12-26 | Ppg Industries, Inc. | Cathode electrocatalyst |
US4078977A (en) * | 1976-09-13 | 1978-03-14 | Fountain Laurence R | Surface preparation of a damaged braze for rebrazing |
US4376685A (en) * | 1981-06-24 | 1983-03-15 | M&T Chemicals Inc. | Acid copper electroplating baths containing brightening and leveling additives |
EP1111096A3 (en) * | 1999-12-15 | 2004-02-11 | Shipley Company LLC | Seed layer repair method |
US6656606B1 (en) | 2000-08-17 | 2003-12-02 | The Westaim Corporation | Electroplated aluminum parts and process of production |
US6692630B2 (en) | 2000-08-17 | 2004-02-17 | The Westaim Corporation | Electroplated aluminum parts and process for production |
EP1199383A2 (en) * | 2000-10-20 | 2002-04-24 | Shipley Company LLC | Seed layer repair bath |
EP1199383A3 (en) * | 2000-10-20 | 2004-02-11 | Shipley Company LLC | Seed layer repair bath |
EP1415021A1 (en) * | 2001-08-09 | 2004-05-06 | Nikko Materials USA, Inc. | Copper on invar composite and method of making |
EP1415021A4 (en) * | 2001-08-09 | 2005-03-09 | Nikko Materials Usa Inc | Copper on invar composite and method of making |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2075063A (en) | Process for plating polumeric substrates | |
US3832291A (en) | Method of preparing surfaces for electroplating | |
US2391289A (en) | Bright copper plating | |
US3751289A (en) | Method of preparing surfaces for electroplating | |
US4765871A (en) | Zinc-nickel electroplated article and method for producing the same | |
US3841979A (en) | Method of preparing surfaces for electroplating | |
GB2062010A (en) | Electroplating Bath and Process | |
US3247082A (en) | Electrodeposition of a corrosion resistant coating | |
US3669854A (en) | Zinc electroplating electrolyte and process | |
US3684666A (en) | Copper electroplating in a citric acid bath | |
US20040074775A1 (en) | Pulse reverse electrolysis of acidic copper electroplating solutions | |
US2811484A (en) | Electrodeposition of zinc on magnesium and its alloys | |
US3895969A (en) | Composition and process for inhibiting corrosion of non-ferrous metal surfaced articles and providing surface for synthetic resin coating compositions | |
US2411674A (en) | Art of electrodeposition of copper | |
US2624684A (en) | Method and composition for coating aluminum with tin | |
US3511759A (en) | Method and electrolytes for electro-depositing black chromium | |
EP0339578A1 (en) | Method for producing black colored steel strip | |
US2511952A (en) | Process of plating zinc on aluminum | |
US3284323A (en) | Electroplating of aluminum and its alloys | |
CN111876804A (en) | Zinc-nickel alloy electroplating solution and electroplating method | |
US2391039A (en) | Method of coating metal articles | |
US3235404A (en) | Method and compositions for zinc coating aluminum | |
US4192722A (en) | Composition and method for stannate plating of large aluminum parts | |
US3535212A (en) | Nickel plating process | |
US1211218A (en) | Process for plating metals. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ATOCHEM NORTH AMERICA, INC., PENNSYLVANIA Free format text: MERGER;ASSIGNORS:ATOCHEM INC., A CORP. OF DE.;M&T CHEMICALS INC., A CORP. OF DE., (MERGED INTO);PENNWALT CORPORATION, A CORP. OF PA., (CHANGED TO);REEL/FRAME:005305/0866 Effective date: 19891231 |
|
AS | Assignment |
Owner name: M&T HARSHAW, P.O. BOX 6768, 2 RIVERVIEW DRIVE, SOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ATOCHEM NORTH AMERICA, INC., A CORP. OF PENNSYLVANIA;REEL/FRAME:005689/0062 Effective date: 19910424 |