[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3732036A - Summing valve arrangement - Google Patents

Summing valve arrangement Download PDF

Info

Publication number
US3732036A
US3732036A US00127738A US3732036DA US3732036A US 3732036 A US3732036 A US 3732036A US 00127738 A US00127738 A US 00127738A US 3732036D A US3732036D A US 3732036DA US 3732036 A US3732036 A US 3732036A
Authority
US
United States
Prior art keywords
pressure
valve
pumps
pump
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00127738A
Inventor
W Busbey
D Hopkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Tractor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Tractor Co filed Critical Caterpillar Tractor Co
Application granted granted Critical
Publication of US3732036A publication Critical patent/US3732036A/en
Assigned to CATERPILLAR INC., A CORP. OF DE. reassignment CATERPILLAR INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CATERPILLAR TRACTOR CO., A CORP. OF CALIF.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/007Installations or systems with two or more pumps or pump cylinders, wherein the flow-path through the stages can be changed, e.g. from series to parallel

Definitions

  • the present invention relates to horsepower controlling means and pertains more particularly to a summing valve arrangement that is operable to control the horsepower output from a plurality of hydraulic pumps.
  • Many hydraulic machines are designed to perform a plurality of functions either independently or simultaneously. These machines normally employ two or more variable displacement pumps, driven by a single internal combustion engine for supplying fluid to motors for performing the functions. Each pump is normally capable of delivering the entire horsepower output of the engine to the motor or motors which it is arranged to supply. Thus, when several functions are being performed simultaneously be motors that are supplied by separate pumps, the horsepower demand of the load may exceed the horsepower capability of the engine and cause it to stall.
  • the primary object of the present invention to provide a simple and inexpensive control system for controlling the horsepower output of a plurality of pumps.
  • a further object of the present invention is to provide simple horsepower controlling means for a plurality of variable displacement pumps that eliminates the need for complicated arrangements of cams and link ages.
  • the output pressures from a plurality of variable displacements are summated and utilized to operate a valve to control fluid from a source for varying the displacement of said pumps.
  • FIG. 1 is a schematic illustration, partially in section of a pump control circuit embodying a preferred embodiment of the present invention
  • FIG. 2 is a view taken generally along lines Il-II of FIG. 1;
  • FIG. 3 is an elevational view in section of a modification of the summing valve of the present invention.
  • FIG. 4 is a schematic layout of an alternate embodiment of the present invention.
  • FIG. 5 is an end view, in section, of the summing valve of FIG. 4.
  • a horsepower controlling means comprising a pair of variable displacement pumps 10 and I2 driven by a common prime mover such as an internal combustion engine and each having a servo control motor and valve 14 and 16 interconnected by means of conduits 18 and 19.
  • the servo motors 14 and 16 may be of conventional design.
  • the output from the pumps 10 and 12 is supplied by means of suitable conduits 20 and 22 for operation of the implements for a hydraulic machine such as an excavator or loader (not shown). It should be emphasized that this system is not limited to two pumps 10 and 12 but may include any number of variable displacement pumps.
  • the pumps are arranged such that they are normally in the maximum flow position with the control means of the present invention operative to reduce the pump output in response to overload conditions in the operation control circuit.
  • a source of fluid pressure comprising in this embodiment a fixed displacement pump 24, preferably driven by the same prime mover or engine 25 which drives the variable displacement pumps, communicates by way of a conduit 26 and a summing valve 28 with the conduit 18 and 19 for supplying control fluid or pressure to the servo control systems 14 and 16 for varying the displacement of the pumps 10 and 12.
  • the pump 24 is preferably driven by the same prime mover means as the variable displacement pumps 10 and 12, so that the source of control pressure will be related to the horsepower output of the prime mover.
  • the valve 28 comprises a housing 30 having a bore 32 communicating with inlet conduit 26 by means of an inlet passageway 33.
  • the bore 32 is also in communication with conduits l8 and 19 by means of an annular passageway 68 and an outlet passageway 34.
  • a spool 36 is slidably disposed in the bore 32 and biased by.
  • valve spool 36 is also provided with further pressure responsive means which comprises a piston 60 disposed in a bore 62 formed in the spool 36 and having a pressure chamber 64 in communication by way of the passageway 66 with an annular passageway 68 in communication with bore 32 and outlet passageway 34.
  • a metering slot 70 is formed on spool 36 to meter the flow of fluid from the inlet 33 to the entering of passageway 68.
  • the summing valve arrangement operates to control the horsepower output of the variable displacement fluid pumps 10 and 12.
  • fluid is delivered along lines 20 and 22 of the various control valves controlling the implements. Since these pumps are variable in displacement, the flow rate delivered by the pumps can vary according to the demand from the working implements of the machine. So long as the flow rate and pressure of the system plus pump losses does not exceed the maximum horsepower of the prime mover or engine 25, the summing valve assembly will remain inactive. However, when the pressure in the output lines 20 and 22 exceeds a predetermined value, the flow delivery rate of the two variable pumps must then be decreased in order to prevent the pumps from stalling the engine 25 of the machine. Such stalling will occur when the pump demands more horsepower than the machine prime mover is capable of producing.
  • a portion of the output from pump 10 passes through a pressure reducing valve 55 along conduit 56 and into chambers 48 and 52.
  • the portion of the fluid from pump 12 passes through pressure reducing valve 57 along conduit 58 and into the chambers 50 and 54.
  • the purpose of the reducing valves 55 and 57 is to reduce the pressure output from the pumps by a factor of approximately 10 to l.
  • the pressure in the chambers 48, 50, 52 and 54 exert a force on pistons 40, 42, 44 and 46 and consequently on the valve 36.
  • the force of the pistons begin to move the spool 36 to the right against a force of spring 38.
  • Communication is then established between annular inlet 33 and the outlet passage 34 by way of metering slot 70. This causes the output from pump 24 to be delivered along the conduits to servo valves 14 and 16 ofthe pumps 10 and 12.
  • This pressurized fluid activates the servo valves and swivels the two pumps to a lower position of volumetric delivery.
  • the amount that the delivery rate of the two variable pumps is reduced is dependent on the distance that the spool 36 moves to the right which is dependent on the pressure in lines 56 and 58 working on the four pistons 40, 42, 44 and 46. Since the horsepower output of the pump is a function of the pressure and the volume, a reduction of the volume output permits the pressure to remain substantially the same or to even increase without an increase in horsepower requirement.
  • the pressure applied to the servo valves 14 and 16 will begin to relax due to a drain orifice 72 which permits the fluid from lines 18 and 19 to drain back to the sump.
  • the stroke of the pumps begins to increase again until an equilibrium position is maintained.
  • the spool has been modified in a manner that it eliminates the drain orifice or restriction 72 and the spring 38 of the previous embodiment.
  • the spool is nearly identical to the spool 36 of the previous embodiment.
  • it has been provided with a slot 82 which provides communication between the passage 34 and the bore at the right hand end of the spool and consequently the drain passage 74 back to drain.
  • the orifice 72, a restriction of the previous embodiment is eliminated and replaced by a plug 84.
  • the lines 18 and 19 are drained only when required, that is, only when the spool 80 is in such a position as to cut off communication between inlet 33 and outlet 34.
  • Another modification of spool 80 over the previous embodiment was to increase the diameter of bore 61 and piston 63 in order to provide the required force balance to position the spool 80 without the use of a spring such as 38 in FIG. 1.
  • FIG. 4 there is illustrated a modified arrangement of the control system.
  • Identical components, as in the previous embodiment, are identified by the same numerals.
  • all the major pumps in the system whether fixed or variable displacement, contribute in supplying fluid for actuation of the summing valve 28.
  • a portion of the fluid for controlling the summing valve is from a pump whose output is in proportion to engine speed.
  • the output is supplied to pressure sensitive cylinder arrangements 81, 82, 85, 87 and 89 similar to those in the previous embodiment.
  • the size and/or number of the pressure response chambers 81, 83, 85, 87 and 89 may vary in accordance with the ratio of the load from each pump to that of the total pump load.
  • the actuating force contributed from each pump is in proportion to the total system.
  • a pump supplying only half the horsepower of a second pump in the system would also be arranged to have, for example, one sensing element as compared to two for the second pump, if the diameters of the sensing elements are the same.
  • the supply line 56 is tapped by a branch conduit 86 and supplies through a check valve 88 to the inlet conduit 90 of the control valve 28.
  • the supply line 91 from pump 24 is tapped by branch conduit 92 having a check valve 94 and supplies to the inlet conduit 90.
  • branch conduit 96 taps the supply from conduit 58 and supplies it by way of the check valve 98 to the inlet 90. With this arrangement, the supply into or across the control valve 28 from inlet 90 will be from the pump having the greatest outlet pressure.
  • the present control system is not to be limited to a specific number of variable displacement pumps but may be used in conjunction with any number of variable pumps either alone or in combination with a number of fixed displacement pumps.
  • a horsepower controlling system comprising in combination:
  • variable displacement pumps driven by a common prime mover and including pressure responsive means for varying the displacement of said pump
  • a source of actuating pressure comprising a fixed displacement pump driven by said common prime mover for actuating said pressure responsive means;
  • valve having a bore in communication with said source of actuating pressure and with said pressure responsive means
  • a spool disposed in said bore and operative to control said communication
  • a piston selectively communicating with said source of actuating pressure and operatively connected to said valve to oppose said plurality of individual pistons.
  • a horsepower controlling system for controlling the horsepower output of a plurality of variable displacement pumps driven by a single prime mover, said system comprising:
  • a source of control pressure comprising a fixed displacement pump driven by said prime mover for controlling the displacement of said pumps;
  • valve having a pre-determined bias to a cut-off position for controlling the communication of said control pressure with said pump displacement means
  • pressure responsive means responsive to the sum of the output pressure of said pumps for moving said valve to control said control pressure; pressure responsive means responsive to the output of said variable displacement pumps to bias said valve in a direction to provide open communication between said source of control pressure and said pump displacement controlling means, said pressure responsive means comprising a plurality of pistons disposed in cylinders,
  • said piston being responsive to communicate one end of said piston with said source of control pressure when said valve is positioned for open communication, whereby said piston urges said valve toward a non-communicating position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

There is disclosed control means that is operative to vary the horsepower output of a plurality of variable displacement pumps in response to the sum of the outputs of the pumps.

Description

limited States Patent [1 1 [111 3,732fl36 Busbey et al. 1 May 8, 1973 1541 SUMMING VALVE ARRANGEMENT 2,441,779 5 1648 Troeg er 01 a1. .417/212 2,618,222 11/1952 Davis et al r ..417/222 [75] Inventors. William F. B usbey, Pekm, Donald L. 2,629,982 3/l953 Hooker A "417/216 I HOPkIIISJOIICt, 190th Oflll 3,093,081 6/1963 Budzich ..417/2l6 [73] Assignee: Caterpiller Tractor Co., Peoria, 111. FOREIGN PATENTS OR APPLICATIONS [22] 1971 1,528,476 9/1969 Germany ..417/426 21 APPL 127 738 1,922,269 11/1970 Germany ..417/216 Primary ExaminerWilliam L. Freeh [52] US. Cl ..4l7/216, 417/222 AssistantExaminer LeOna1-d E. Smith [5 Int. 4tt rney-Tjensvold Feix & Lempio [58] Field of Search ..417/212,213,216,
417/217, 426, 429, 199, 201, 202, 218, 222; [57] ABSTRACT I 91/506 There is disclosed control means that is operative to [56] References Cited vary the horsepower output of a plurality of variable displacement pumps 111 response to the sum of the out UNITED STATES PATENTS P of the P p 2,936,588 5/1960 Van Gerpen ..417/212 7 Claims, 5 Drawing Figures Pmmmm m 3,732,036
' SHEET 1 OF 3 ENGINE.
INVENTORS WILLIAM F. SBEY DONALD L. PKINS PATENTEUHAY 8% 3,732,036
SHEET 2 [IF 3 INVENTORS WILLIAM F. BUSBEY DONALD L.. HOPKINS pmgwg m 813% SHEET 3 OF 3 ENGINE INVENTORS WILLIAM F. BUSBEY DONALD L. HOPKINS SUNHVIING VALVE ARRANGEMENT BACKGROUND OF THE INVENTION The present invention relates to horsepower controlling means and pertains more particularly to a summing valve arrangement that is operable to control the horsepower output from a plurality of hydraulic pumps.
Many hydraulic machines are designed to perform a plurality of functions either independently or simultaneously. These machines normally employ two or more variable displacement pumps, driven by a single internal combustion engine for supplying fluid to motors for performing the functions. Each pump is normally capable of delivering the entire horsepower output of the engine to the motor or motors which it is arranged to supply. Thus, when several functions are being performed simultaneously be motors that are supplied by separate pumps, the horsepower demand of the load may exceed the horsepower capability of the engine and cause it to stall.
Numerous prior art devices have been proposed for controlling the horsepower output of a variable delivery pump. These devices, however, have proven to be unsatisfactory because they tend to be expensive, unduly complicated and unreliable. Such devices normally employ complicated arrangements of cam and linkages.
One proposed system for controlling horsepower is disclosed in U.S. Pat. No. 2,932,948. This system, however, employs a complex arrangement of interconnected cams, levers, and pistons. This type of complex mechanism is subject to substantial frictional losses and tends to be insensitive to pressure changes.
A more simplified system is disclosed in British Pat. specification No. 1,128,657 filed Sept. 30, 1965. This more simplified system has the disadvantage of being responsive only to pump output pressure. This results in a lack of sensitivity to engine speed and consequently a lack of sensitivity to engine horsepower.
Other proposed solutions to the problem of horsepower control are disclosed in US. Pat. Nos. 2,080,810, 2,009,608 and 2,179,071. These systems also suffer from undue complexity and lack of sensitivity to actual engine horsepower.
SUMMARY OF THE INVENTION It is, therefore, the primary object of the present invention to provide a simple and inexpensive control system for controlling the horsepower output of a plurality of pumps.
A further object of the present invention is to provide simple horsepower controlling means for a plurality of variable displacement pumps that eliminates the need for complicated arrangements of cams and link ages.
In accordance with the present invention, the output pressures from a plurality of variable displacements are summated and utilized to operate a valve to control fluid from a source for varying the displacement of said pumps.
BRIEF DESCRIPTION OF THE DRAWINGS The aforementioned and other objects and advantages of the present invention will become apparent from the following description when read in conjunction with the accompanying drawings wherein:
FIG. 1 is a schematic illustration, partially in section of a pump control circuit embodying a preferred embodiment of the present invention;
FIG. 2 is a view taken generally along lines Il-II of FIG. 1;
FIG. 3 is an elevational view in section of a modification of the summing valve of the present invention;
FIG. 4 is a schematic layout of an alternate embodiment of the present invention; and,
FIG. 5 is an end view, in section, of the summing valve of FIG. 4.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Referring now to the drawings, and in particular to FIG. 1, there is illustrated a horsepower controlling means comprising a pair of variable displacement pumps 10 and I2 driven by a common prime mover such as an internal combustion engine and each having a servo control motor and valve 14 and 16 interconnected by means of conduits 18 and 19. The servo motors 14 and 16 may be of conventional design.
The output from the pumps 10 and 12 is supplied by means of suitable conduits 20 and 22 for operation of the implements for a hydraulic machine such as an excavator or loader (not shown). It should be emphasized that this system is not limited to two pumps 10 and 12 but may include any number of variable displacement pumps. The pumps are arranged such that they are normally in the maximum flow position with the control means of the present invention operative to reduce the pump output in response to overload conditions in the operation control circuit.
A source of fluid pressure comprising in this embodiment a fixed displacement pump 24, preferably driven by the same prime mover or engine 25 which drives the variable displacement pumps, communicates by way of a conduit 26 and a summing valve 28 with the conduit 18 and 19 for supplying control fluid or pressure to the servo control systems 14 and 16 for varying the displacement of the pumps 10 and 12. The pump 24 is preferably driven by the same prime mover means as the variable displacement pumps 10 and 12, so that the source of control pressure will be related to the horsepower output of the prime mover.
The valve 28 comprises a housing 30 having a bore 32 communicating with inlet conduit 26 by means of an inlet passageway 33. The bore 32 is also in communication with conduits l8 and 19 by means of an annular passageway 68 and an outlet passageway 34. A spool 36 is slidably disposed in the bore 32 and biased by.
means of the spring 38 to a leftwardmost position to block communication between inlet passageway 33 and outlet passageway 34.
with the outputs of the variable displacement pumps and 12. In particular, the chambers 48 and 52 are in communication by means of conduit 56 with the output of pump 10. Likewise chambers 50 and 54 are in communication by way of conduit 58 with the output of variable displacement pump 12. The valve spool 36 is also provided with further pressure responsive means which comprises a piston 60 disposed in a bore 62 formed in the spool 36 and having a pressure chamber 64 in communication by way of the passageway 66 with an annular passageway 68 in communication with bore 32 and outlet passageway 34. A metering slot 70 is formed on spool 36 to meter the flow of fluid from the inlet 33 to the entering of passageway 68. Thus, it is seen that with this arrangement pressure exerted in chamber 64 will be substantially the pressure acting in the passageway 34 and conduit 18 whether in communication with the inlet 33 or not.
When the spool 36 is moved to the right as a result of pressure from the pumps 10 and 12, a flow path is established between the inlet 33 from pump 24 and the outlet 34. The fluid is then directed from passage 34 by way of conduits l8 and 19 to the servo valves 14 and 16 of the variable displacement pumps 10 and 12.
The summing valve arrangement operates to control the horsepower output of the variable displacement fluid pumps 10 and 12. When both of the pumps 10 and 12 are operating, fluid is delivered along lines 20 and 22 of the various control valves controlling the implements. Since these pumps are variable in displacement, the flow rate delivered by the pumps can vary according to the demand from the working implements of the machine. So long as the flow rate and pressure of the system plus pump losses does not exceed the maximum horsepower of the prime mover or engine 25, the summing valve assembly will remain inactive. However, when the pressure in the output lines 20 and 22 exceeds a predetermined value, the flow delivery rate of the two variable pumps must then be decreased in order to prevent the pumps from stalling the engine 25 of the machine. Such stalling will occur when the pump demands more horsepower than the machine prime mover is capable of producing.
A portion of the output from pump 10 passes through a pressure reducing valve 55 along conduit 56 and into chambers 48 and 52. The portion of the fluid from pump 12 passes through pressure reducing valve 57 along conduit 58 and into the chambers 50 and 54. The purpose of the reducing valves 55 and 57 is to reduce the pressure output from the pumps by a factor of approximately 10 to l. The pressure in the chambers 48, 50, 52 and 54 exert a force on pistons 40, 42, 44 and 46 and consequently on the valve 36. When the sum of these pressures exceeds a certain predetermined maximum pressure, the force of the pistons begin to move the spool 36 to the right against a force of spring 38. Communication is then established between annular inlet 33 and the outlet passage 34 by way of metering slot 70. This causes the output from pump 24 to be delivered along the conduits to servo valves 14 and 16 ofthe pumps 10 and 12. This pressurized fluid activates the servo valves and swivels the two pumps to a lower position of volumetric delivery.
The amount that the delivery rate of the two variable pumps is reduced is dependent on the distance that the spool 36 moves to the right which is dependent on the pressure in lines 56 and 58 working on the four pistons 40, 42, 44 and 46. Since the horsepower output of the pump is a function of the pressure and the volume, a reduction of the volume output permits the pressure to remain substantially the same or to even increase without an increase in horsepower requirement. When the pressure has dropped off sufficiently to permit the spool 36 to move back to the left and cut off communications between the inlet 33 and outlet 34, the pressure applied to the servo valves 14 and 16 will begin to relax due to a drain orifice 72 which permits the fluid from lines 18 and 19 to drain back to the sump. Thus, the stroke of the pumps begins to increase again until an equilibrium position is maintained.
Referring now to the embodiment of FIG. 3, the spool has been modified in a manner that it eliminates the drain orifice or restriction 72 and the spring 38 of the previous embodiment. In this embodiment, the spool is nearly identical to the spool 36 of the previous embodiment. However, it has been provided with a slot 82 which provides communication between the passage 34 and the bore at the right hand end of the spool and consequently the drain passage 74 back to drain. In this manner, the orifice 72, a restriction of the previous embodiment is eliminated and replaced by a plug 84. In this manner, the lines 18 and 19 are drained only when required, that is, only when the spool 80 is in such a position as to cut off communication between inlet 33 and outlet 34. Another modification of spool 80 over the previous embodiment was to increase the diameter of bore 61 and piston 63 in order to provide the required force balance to position the spool 80 without the use of a spring such as 38 in FIG. 1.
Turning now to FIG. 4, there is illustrated a modified arrangement of the control system. Identical components, as in the previous embodiment, are identified by the same numerals. In this embodiment, all the major pumps in the system, whether fixed or variable displacement, contribute in supplying fluid for actuation of the summing valve 28. Thus, a portion of the fluid for controlling the summing valve is from a pump whose output is in proportion to engine speed. In this embodiment, the output is supplied to pressure sensitive cylinder arrangements 81, 82, 85, 87 and 89 similar to those in the previous embodiment. The size and/or number of the pressure response chambers 81, 83, 85, 87 and 89 may vary in accordance with the ratio of the load from each pump to that of the total pump load. In other words, the actuating force contributed from each pump is in proportion to the total system. For example, a pump supplying only half the horsepower of a second pump in the system would also be arranged to have, for example, one sensing element as compared to two for the second pump, if the diameters of the sensing elements are the same.
The source of fluid for activating the servo control valves 14 and 16, in this embodiment, comes from the pumps being controlled rather than from a totally independent source, as in the previous embodiment. For example, the supply line 56 is tapped by a branch conduit 86 and supplies through a check valve 88 to the inlet conduit 90 of the control valve 28. The supply line 91 from pump 24 is tapped by branch conduit 92 having a check valve 94 and supplies to the inlet conduit 90. A
branch conduit 96 taps the supply from conduit 58 and supplies it by way of the check valve 98 to the inlet 90. With this arrangement, the supply into or across the control valve 28 from inlet 90 will be from the pump having the greatest outlet pressure. Again, it should be emphasized that the present control system is not to be limited to a specific number of variable displacement pumps but may be used in conjunction with any number of variable pumps either alone or in combination with a number of fixed displacement pumps.
While the present invention has been described with respect to particular embodiments, it is to be understood that many changes may be made in arrangement in parts without departing from the spirit and scope of the appended claims.
What is claimed is:
1. A horsepower controlling system, said system comprising in combination:
a plurality of variable displacement pumps driven by a common prime mover and including pressure responsive means for varying the displacement of said pump, 7
a source of actuating pressure comprising a fixed displacement pump driven by said common prime mover for actuating said pressure responsive means;
a valve having a bore in communication with said source of actuating pressure and with said pressure responsive means;
a spool disposed in said bore and operative to control said communication;
means comprising a plurality of individual pistons communicating with and responsive to the sum of the outputs of said variable displacement pumps to actuate said valve to thereby communicate said actuating pressure with said actuating means to alter the displacement of said pumps; and,
a piston selectively communicating with said source of actuating pressure and operatively connected to said valve to oppose said plurality of individual pistons.
2. The invention of claim 1 wherein said source of actuating pressure is a fixed displacement pump driven by said common prime mover.
3. The combination of claim 1 comprising a pressure reducing valve operatively connected between said valve actuating means and the output of said variable displacement pump.
4. The horsepower controlling system of claim 1 wherein said source is the one of said variable displacement pumps having the highest pressure output.
5. A horsepower controlling system for controlling the horsepower output of a plurality of variable displacement pumps driven by a single prime mover, said system comprising:
a source of control pressure comprising a fixed displacement pump driven by said prime mover for controlling the displacement of said pumps;
a valve having a pre-determined bias to a cut-off position for controlling the communication of said control pressure with said pump displacement means;
means responsive to the sum of the output pressure of said pumps for moving said valve to control said control pressure; pressure responsive means responsive to the output of said variable displacement pumps to bias said valve in a direction to provide open communication between said source of control pressure and said pump displacement controlling means, said pressure responsive means comprising a plurality of pistons disposed in cylinders,
said cylinders being in communication with the output of said pumps at one end of said piston; and, the other end of said piston in operative engagement with said valve means. 6. The system of claim 5 comprising: a piston disposed at the opposite end of said valve from said plurality of pistons; and,
said piston being responsive to communicate one end of said piston with said source of control pressure when said valve is positioned for open communication, whereby said piston urges said valve toward a non-communicating position.
7. The system of claim 6 wherein said spool includes means to provide communication between said pump displacement controlling means and a sump.

Claims (7)

1. A horsepower controlling system, said system comprising in combination: a plurality of variable displacement pumps driven by a common prime mover and including pressure responsive means for varying the displacement of said pump, a source of actuating pressure comprising a fixed displacement pump driven by said common prime mover for actuating said pressure responsive means; a valve having a bore in communication with said source of actuating pressure and with said pressure responsive means; a spool disposed in said bore and operative to control said communication; means comprising a plurality of individual pistons communicating with and responsive to the sum of the outputs of said variable displacement pumps to actuate said valve to thereby communicate said actuating pressure with said actuating means to alter the displacement of said pumps; and, a piston selectively communicating with said source of actuating pressure and operatively connected to said valve to oppose said plurality of individual pistons.
2. The invention of claim 1 wherein said source of actuating pressure is a fixed displacement pump driven by said common prime mover.
3. The combination of claim 1 comprising a pressure reducing valve operatively connected between said valve actuating means and the output of said variable displacement pump.
4. The horsepower Controlling system of claim 1 wherein said source is the one of said variable displacement pumps having the highest pressure output.
5. A horsepower controlling system for controlling the horsepower output of a plurality of variable displacement pumps driven by a single prime mover, said system comprising: a source of control pressure comprising a fixed displacement pump driven by said prime mover for controlling the displacement of said pumps; a valve having a pre-determined bias to a cut-off position for controlling the communication of said control pressure with said pump displacement means; means responsive to the sum of the output pressure of said pumps for moving said valve to control said control pressure; pressure responsive means responsive to the output of said variable displacement pumps to bias said valve in a direction to provide open communication between said source of control pressure and said pump displacement controlling means, said pressure responsive means comprising a plurality of pistons disposed in cylinders, said cylinders being in communication with the output of said pumps at one end of said piston; and, the other end of said piston in operative engagement with said valve means.
6. The system of claim 5 comprising: a piston disposed at the opposite end of said valve from said plurality of pistons; and, said piston being responsive to communicate one end of said piston with said source of control pressure when said valve is positioned for open communication, whereby said piston urges said valve toward a non-communicating position.
7. The system of claim 6 wherein said spool includes means to provide communication between said pump displacement controlling means and a sump.
US00127738A 1971-03-24 1971-03-24 Summing valve arrangement Expired - Lifetime US3732036A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12773871A 1971-03-24 1971-03-24

Publications (1)

Publication Number Publication Date
US3732036A true US3732036A (en) 1973-05-08

Family

ID=22431685

Family Applications (1)

Application Number Title Priority Date Filing Date
US00127738A Expired - Lifetime US3732036A (en) 1971-03-24 1971-03-24 Summing valve arrangement

Country Status (2)

Country Link
US (1) US3732036A (en)
BE (1) BE794115A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861832A (en) * 1972-08-04 1975-01-21 Poclain Sa Pump power governor
US3891354A (en) * 1973-06-22 1975-06-24 Bosch Gmbh Robert Regulating system for pumps
US3937597A (en) * 1973-10-03 1976-02-10 Poclain Pressurized fluid feed apparatus
US3941514A (en) * 1974-05-20 1976-03-02 Sundstrand Corporation Torque limiting control
US3963378A (en) * 1975-06-04 1976-06-15 Caterpillar Tractor Co. Part throttle control -- pump override
US3985472A (en) * 1975-04-23 1976-10-12 International Harvester Company Combined fixed and variable displacement pump system
US4008004A (en) * 1975-12-22 1977-02-15 Abex Corporation Control system for variable displacement pumps
US4017218A (en) * 1976-03-15 1977-04-12 Caterpillar Tractor Co. Dual-speed setting underspeed system
US4017219A (en) * 1975-12-22 1977-04-12 Abex Corporation Control system for variable displacement pumps
US4029439A (en) * 1975-12-22 1977-06-14 Abex Corporation Control system for variable displacement pumps
DE2603563A1 (en) * 1976-01-30 1977-08-04 Linde Ag CONTROL DEVICE FOR AN UNIT CONTAINING AT LEAST TWO PUMPS
FR2339757A1 (en) * 1976-02-02 1977-08-26 Caterpillar Tractor Co IMPROVEMENTS IN HYDRAULIC SYSTEMS WITH SEVERAL WORKING ORGANS OR RECEIVERS IN PARALLEL
US4065228A (en) * 1977-02-24 1977-12-27 Caterpillar Tractor Co. Hydraulic control for variable displacement pumps
US4080979A (en) * 1977-03-22 1978-03-28 Caterpillar Tractor Co. Combined summing and underspeed valve
FR2385916A1 (en) * 1977-03-31 1978-10-27 Komatsu Mfg Co Ltd PUMP CONTROL, SINGLE OR MULTIPLE, WITH VARIABLE DISPLACEMENT USING A FLOW MEASURING VALVE
JPS54144564A (en) * 1978-05-01 1979-11-10 Caterpillar Tractor Co Hydraulic valve and system incorporating same
FR2424784A1 (en) * 1978-05-02 1979-11-30 Avyac Sa Mandrel for precision locking of drill - has hollow spindle in body with removable cover including drill guide and gripping jaws
USRE30226E (en) * 1974-05-20 1980-03-11 Sundstrand Corporation Torque limiting control
US4248573A (en) * 1978-09-22 1981-02-03 Kabushiki Kaisha Komatsu Seisakusho Hydraulic control system for variable displacement pump
US4248574A (en) * 1978-09-22 1981-02-03 Kabushiki Kaisha Komatsu Seisakusho Hydraulic control system for variable displacement pumps
WO1982001046A1 (en) * 1980-09-12 1982-04-01 Liesener K Horsepower consumption control for variable displacement pumps
WO1982001048A1 (en) * 1980-09-12 1982-04-01 Ruseff W Multiple pump system with horsepower limiting control
US4349319A (en) * 1977-02-24 1982-09-14 Commercial Shearing, Inc. Pressure and flow compensated control system with constant torque and viscosity sensing over-ride
US4498847A (en) * 1982-06-29 1985-02-12 Kabushiki Kaisha Komatsu Seisakusho Control system for variable displacement hydraulic pumps
US4507057A (en) * 1980-01-07 1985-03-26 Kabushiki Kaisha Komatsu Seisakusho Control system for hydraulic pumps of a civil machine
US4531366A (en) * 1981-05-29 1985-07-30 Kabushiki Kaisha Komatsu Seisakusho Hydraulic circuit system for use in swivel type excavators
US4600364A (en) * 1983-06-20 1986-07-15 Kabushiki Kaisha Komatsu Seisakusho Fluid operated pump displacement control system
US4613286A (en) * 1984-12-31 1986-09-23 Kabushiki Kaisha Komatsu Seisakusho Constant torque control system for a variable displacement pump or pumps
US4627238A (en) * 1983-11-08 1986-12-09 Hydromatik Gmbh Output control apparatus for a hydrostatic drive with delivery adjustment
EP0234109A2 (en) * 1985-12-13 1987-09-02 Sauer, Inc. Summing pressure compensation control
US6109030A (en) * 1998-02-13 2000-08-29 Sauer Inc. Apparatus and method for ganging multiple open circuit pumps
US6216456B1 (en) 1999-11-15 2001-04-17 Caterpillar Inc. Load sensing hydraulic control system for variable displacement pump
US20050129528A1 (en) * 2000-12-12 2005-06-16 Borgwarner Inc. Variable displacement vane pump with variable target reguator
US20090028723A1 (en) * 2007-07-23 2009-01-29 Wallis Frank S Capacity modulation system for compressor and method
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
USRE44636E1 (en) 1997-09-29 2013-12-10 Emerson Climate Technologies, Inc. Compressor capacity modulation
CN103649557A (en) * 2011-05-06 2014-03-19 卡特彼勒公司 Method and apparatus for controlling multiple variable displacement hydraulic pumps
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2441779A (en) * 1945-12-21 1948-05-18 Bendix Aviat Corp Supercharger regulator and surge control
US2618222A (en) * 1947-05-12 1952-11-18 Rolls Royce Fuel system for gas-turbine engines
US2629982A (en) * 1947-01-23 1953-03-03 Rolls Royce Fuel system for gas-turbine engines
US2936588A (en) * 1958-01-20 1960-05-17 Deere & Co Hydraulic pump and motor apparatus with load responsive pump regulating means
US3093081A (en) * 1959-01-29 1963-06-11 New York Air Brake Co Pumping device
DE1528476A1 (en) * 1966-03-10 1969-08-07 Linde Ag Control device for several pumps
DE1922269A1 (en) * 1969-04-29 1970-11-12 Bellows Valvair Kaemper Gmbh Total power controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2441779A (en) * 1945-12-21 1948-05-18 Bendix Aviat Corp Supercharger regulator and surge control
US2629982A (en) * 1947-01-23 1953-03-03 Rolls Royce Fuel system for gas-turbine engines
US2618222A (en) * 1947-05-12 1952-11-18 Rolls Royce Fuel system for gas-turbine engines
US2936588A (en) * 1958-01-20 1960-05-17 Deere & Co Hydraulic pump and motor apparatus with load responsive pump regulating means
US3093081A (en) * 1959-01-29 1963-06-11 New York Air Brake Co Pumping device
DE1528476A1 (en) * 1966-03-10 1969-08-07 Linde Ag Control device for several pumps
DE1922269A1 (en) * 1969-04-29 1970-11-12 Bellows Valvair Kaemper Gmbh Total power controller

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861832A (en) * 1972-08-04 1975-01-21 Poclain Sa Pump power governor
US3891354A (en) * 1973-06-22 1975-06-24 Bosch Gmbh Robert Regulating system for pumps
US3937597A (en) * 1973-10-03 1976-02-10 Poclain Pressurized fluid feed apparatus
USRE30226E (en) * 1974-05-20 1980-03-11 Sundstrand Corporation Torque limiting control
US3941514A (en) * 1974-05-20 1976-03-02 Sundstrand Corporation Torque limiting control
US3985472A (en) * 1975-04-23 1976-10-12 International Harvester Company Combined fixed and variable displacement pump system
US3963378A (en) * 1975-06-04 1976-06-15 Caterpillar Tractor Co. Part throttle control -- pump override
US4008004A (en) * 1975-12-22 1977-02-15 Abex Corporation Control system for variable displacement pumps
US4017219A (en) * 1975-12-22 1977-04-12 Abex Corporation Control system for variable displacement pumps
US4029439A (en) * 1975-12-22 1977-06-14 Abex Corporation Control system for variable displacement pumps
DE2603563A1 (en) * 1976-01-30 1977-08-04 Linde Ag CONTROL DEVICE FOR AN UNIT CONTAINING AT LEAST TWO PUMPS
FR2339757A1 (en) * 1976-02-02 1977-08-26 Caterpillar Tractor Co IMPROVEMENTS IN HYDRAULIC SYSTEMS WITH SEVERAL WORKING ORGANS OR RECEIVERS IN PARALLEL
US4017218A (en) * 1976-03-15 1977-04-12 Caterpillar Tractor Co. Dual-speed setting underspeed system
US4065228A (en) * 1977-02-24 1977-12-27 Caterpillar Tractor Co. Hydraulic control for variable displacement pumps
US4349319A (en) * 1977-02-24 1982-09-14 Commercial Shearing, Inc. Pressure and flow compensated control system with constant torque and viscosity sensing over-ride
US4080979A (en) * 1977-03-22 1978-03-28 Caterpillar Tractor Co. Combined summing and underspeed valve
FR2385916A1 (en) * 1977-03-31 1978-10-27 Komatsu Mfg Co Ltd PUMP CONTROL, SINGLE OR MULTIPLE, WITH VARIABLE DISPLACEMENT USING A FLOW MEASURING VALVE
US4203712A (en) * 1977-03-31 1980-05-20 Kabushiki Kaisha Komatsu Seisakusho Single or plural variable displacement pump control with an improved flow metering valve
JPS54144564A (en) * 1978-05-01 1979-11-10 Caterpillar Tractor Co Hydraulic valve and system incorporating same
FR2424784A1 (en) * 1978-05-02 1979-11-30 Avyac Sa Mandrel for precision locking of drill - has hollow spindle in body with removable cover including drill guide and gripping jaws
US4248573A (en) * 1978-09-22 1981-02-03 Kabushiki Kaisha Komatsu Seisakusho Hydraulic control system for variable displacement pump
US4248574A (en) * 1978-09-22 1981-02-03 Kabushiki Kaisha Komatsu Seisakusho Hydraulic control system for variable displacement pumps
US4507057A (en) * 1980-01-07 1985-03-26 Kabushiki Kaisha Komatsu Seisakusho Control system for hydraulic pumps of a civil machine
WO1982001048A1 (en) * 1980-09-12 1982-04-01 Ruseff W Multiple pump system with horsepower limiting control
WO1982001046A1 (en) * 1980-09-12 1982-04-01 Liesener K Horsepower consumption control for variable displacement pumps
US4379389A (en) * 1980-09-12 1983-04-12 Caterpillar Tractor Co. Horsepower consumption control for variable displacement pumps
US4531366A (en) * 1981-05-29 1985-07-30 Kabushiki Kaisha Komatsu Seisakusho Hydraulic circuit system for use in swivel type excavators
US4498847A (en) * 1982-06-29 1985-02-12 Kabushiki Kaisha Komatsu Seisakusho Control system for variable displacement hydraulic pumps
US4600364A (en) * 1983-06-20 1986-07-15 Kabushiki Kaisha Komatsu Seisakusho Fluid operated pump displacement control system
US4627238A (en) * 1983-11-08 1986-12-09 Hydromatik Gmbh Output control apparatus for a hydrostatic drive with delivery adjustment
US4613286A (en) * 1984-12-31 1986-09-23 Kabushiki Kaisha Komatsu Seisakusho Constant torque control system for a variable displacement pump or pumps
EP0234109A2 (en) * 1985-12-13 1987-09-02 Sauer, Inc. Summing pressure compensation control
US4739616A (en) * 1985-12-13 1988-04-26 Sundstrand Corporation Summing pressure compensation control
EP0234109A3 (en) * 1985-12-13 1989-02-08 Sundstrand Sauer Summing pressure compensation control
USRE44636E1 (en) 1997-09-29 2013-12-10 Emerson Climate Technologies, Inc. Compressor capacity modulation
US6109030A (en) * 1998-02-13 2000-08-29 Sauer Inc. Apparatus and method for ganging multiple open circuit pumps
US6216456B1 (en) 1999-11-15 2001-04-17 Caterpillar Inc. Load sensing hydraulic control system for variable displacement pump
US20050129528A1 (en) * 2000-12-12 2005-06-16 Borgwarner Inc. Variable displacement vane pump with variable target reguator
US7674095B2 (en) * 2000-12-12 2010-03-09 Borgwarner Inc. Variable displacement vane pump with variable target regulator
US20090028723A1 (en) * 2007-07-23 2009-01-29 Wallis Frank S Capacity modulation system for compressor and method
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
US8807961B2 (en) 2007-07-23 2014-08-19 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
CN103649557A (en) * 2011-05-06 2014-03-19 卡特彼勒公司 Method and apparatus for controlling multiple variable displacement hydraulic pumps
CN103649557B (en) * 2011-05-06 2016-06-22 卡特彼勒公司 For the method and apparatus controlling multiple variable displacement hydraulic pump
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system

Also Published As

Publication number Publication date
BE794115A (en) 1973-05-16

Similar Documents

Publication Publication Date Title
US3732036A (en) Summing valve arrangement
US4600364A (en) Fluid operated pump displacement control system
US3635021A (en) Hydraulic system
US3834836A (en) Override control for a variable displacement pump
US4637781A (en) Torque regulating system for fluid operated pump displacement control systems
US4293284A (en) Power limiting control apparatus for pressure-flow compensated variable displacement pump assemblies
US3768928A (en) Pump control system
US4383412A (en) Multiple pump load sensing system
US3166891A (en) Hydrostatic transmission
EP0545925A1 (en) Load check and pressure compensating valve.
JPS6127592B2 (en)
US4067664A (en) Control system for a pump
EP1008754A2 (en) Positive displacement pump systems
US4197705A (en) Hydraulic control system
US4034564A (en) Piston pump assembly having load responsive controls
US3366064A (en) Control for hydraulic apparatus
US5222870A (en) Fluid system having dual output controls
US4072443A (en) Control valve arrangements for variable stroke pumps
US4907408A (en) Variable displacement hydraulic servomotor system
US4248573A (en) Hydraulic control system for variable displacement pump
US3587393A (en) Hydraulic circuit breaker
US4013380A (en) Control systems for variable capacity hydraulic machines
JPH0625561B2 (en) Hydraulic system
US3246471A (en) Hydraulic drive control
US3401521A (en) Hydraulic control valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., A CORP. OF DE.,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CATERPILLAR TRACTOR CO., A CORP. OF CALIF.;REEL/FRAME:004669/0905

Effective date: 19860515

Owner name: CATERPILLAR INC., 100 N.E. ADAMS STREET, PEORIA, I

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CATERPILLAR TRACTOR CO., A CORP. OF CALIF.;REEL/FRAME:004669/0905

Effective date: 19860515