US3727562A - Three-stage combustion - Google Patents
Three-stage combustion Download PDFInfo
- Publication number
- US3727562A US3727562A US00207353A US3727562DA US3727562A US 3727562 A US3727562 A US 3727562A US 00207353 A US00207353 A US 00207353A US 3727562D A US3727562D A US 3727562DA US 3727562 A US3727562 A US 3727562A
- Authority
- US
- United States
- Prior art keywords
- stage
- zone
- air
- flue gas
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 38
- 239000003546 flue gas Substances 0.000 claims abstract description 41
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000446 fuel Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 abstract description 14
- 239000001301 oxygen Substances 0.000 abstract description 14
- 239000007787 solid Substances 0.000 abstract description 6
- 230000007812 deficiency Effects 0.000 abstract description 5
- 239000003245 coal Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 210000000540 fraction c Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 101001057135 Homo sapiens Melanoma-associated antigen H1 Proteins 0.000 description 1
- 102100027256 Melanoma-associated antigen H1 Human genes 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- FMWMEQINULDRBI-UHFFFAOYSA-L copper;sulfite Chemical compound [Cu+2].[O-]S([O-])=O FMWMEQINULDRBI-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B2700/00—Combustion apparatus for solid fuel
- F23B2700/009—Combustion apparatus for solid fuel adapted for use in various steam boilers
Definitions
- ABSTRACT A three-stage combustion process is disclosed in which solid carbonaceous fuel is burned with a deficiency of air in a first zone leaving unburned fuel and producing a flue gas rich in CO.
- the unburned fuel is separated from the first zone flue gas and burned in a second zone with an excess of air to produce a flue gas containing excess oxygen.
- the flue gases from the first and second zones are then burned in a third zone to complete the combustion process with the total amount of air used in the first and second zones being approximately the stoichiometric amount required for complete combustion.
- the use of excess air has a number of disadvantages.
- the increased gas flow due to the quantity of excess air increases the heat loss by the discharge of the gases up the stack.
- the increased gas flow also increases the required dimensions of passages within the furnace and boiler and of gas ducts and the stack.
- a further disadvantage of the increased gas flow is that it increases the difficulty and expense of removing dust and pollutants from the flue gas.
- the excess oxygen which is present in the flue gas enters into corrosion producing reactions which damage the boiler tubes and other equipment.
- the normal procedure for burning pulverized coal is to introduce the coal and air together into one burning zone wherein the combustion process goes substantially to completion. This complete combustion within one zone (excess air actually drops temperature) creates significantly high flame temperatures. It has been shown that these high flame temperatures lead to the creation of nitrogen oxides which are air pollutants.
- the production of the nitrogen oxide is a temperature dependent reaction, i.e., nitrogen oxides are produced at higher temperatures. It is, therefore, desirable to keep flame temperatures lower in order to reduce the production of these pollutants.
- An object of the present invention is to burn solid carbonaceous fuels and in particular pulverized coal in such a manner that substantially all of the fuel is burned with little or no excess air.
- a further object is to burn these fuels in a manner which will limit maximum flame temperatures.
- the objects of the invention are accomplished by carrying out the combustion process in three stages with the first stage being carried out with a deficiency of air and the second step being carried out with an excess of air.
- the flue gas from the first stage containing a substantial quantity of CO and the flue gas from the second stage containing excess oxygen are then combined and burned in the third stage.
- the total quantity of air used for the process is substantially equal to the total amount of air required for complete combustion ofthe fuel.
- FIG. 1 is a graph illustrating the relationship between operating parameters.
- FIG. 2 illustrates the overall arrangement of the present invention.
- FIG. 3 is an elevation view in cross section of a cyclone reactor.
- FIG. 4 is an end view of the reactor of FIG. 3.
- the present invention is based on three-stage combustion of solid carbonaceous fuels and in particular pulverized coal which will be hereinafter used as the specific illustration of the fuel being burned.
- the first stage combustion is carried out with a deliberate deficiency of air and therefore a deficiency of oxygen so as to only partially burn the carbon in the fuel and to produce a flue gas rich in CO.
- the unburned pulverized coal from the first stage is separated from the first stage flue gas and then conducted to the second stage.
- the coal is burned with a deliberate excess of air so as to substantially completely. burn the carbon and produce a second stage flue gas containing CO and free oxygen as well as some ash.
- the hot flue gases from both the first and second stages are then combined in a third stage in which the CO in the first stage gas reacts with the free oxygen in the second stage gas.
- FIG. 1 shows the relationship of y and z with x as a parameter.
- FIG. 1 also includes a dashed curve relating the CO content of the first stage flue gas with y.
- the selection of the variables x, y and 2 will be dependent upon various technical and economical considerations, For example, increasing the value ofx has the effect of increasing the flame temperature in the first stage and decreasing the flame temperature in the second stage. It also decreases the solids flow from the first to the second stage, thus requiring a larger first stage and a smaller second stage. Increasing the value of x has the further effect of increasing the second stage excess air. Another factor to be considered in the selection of the design variables is that the temperatures in both the first and second stages must be kept below the ash fusion temperatures.
- the concentration of combustibles (CO) in the flue gas from the first stage should be maintained above a level of about volume percent to assure rapid combustion in the third stage. It can be seen in FIG. 1 that this minimum 10 percent CO content requires a value ofy in excess of 0.4. However, depending on the com bustibility of the fuel, its particle size, and its price, it is also desirable to maintain a sufficient excess of air in the second stage to assure good fuel utilization. For example, for the combustion of pulverized bituminous coal, 20 percent excess air in the second stage should assure virtually complete combustion. Selecting a slightly higher value for the excess air in the second stage, namely 23.3 percent, suitable values for the variables might be x 0.4 and y 0.7.
- the combustion of 40 percent of the carbon in the first stage generates a first stage flue gas containing CO and CO in the ratio of 7:3 with there being no remaining free oxygen.
- the volume percent of combustibles in the first stage flue gas is about 20 percent as indicated in FIG. 1.
- a suitable range for the value ofx is 0.3 to 0.8 while the range for the value ofy is 0.4 to 0.8.
- the flue gases from the first and second stages are then combined and the excess air-.in the second stage flue gas is ideally just sufficient to completely convert the CO in the first stage flue gas to CO producing a final or third stage flue gas containing no free oxygen and no CO.
- FIG. 2 illustrates a system in which the present invention may be carried out.
- the first stage combustion is preferably carried out in a cyclone reactor 10 which may be of any desired type.
- a typical cyclone reactor is illustrated in FIGS. 3 and 4.
- the combustion air for the process is supplied by means of the forced draft fan 12.
- the air is then heated in the air preheater l4 and carried by means of the duct 16 to the various points of use.
- a portion of this preheated air is supplied to the air swept pulverizer 18 in which the coal is prepared to the proper size.
- the pulverized coal along with the primary combustion air is then forced by means of the exhauster fan 20 and duct 22 tangentially into the primary coal burner 24 of the reactor 10 as shown more clearly in FIGS. 3,and 4.
- Another portion of preheated air is introduced tangentially into the main cyclone chamber 26 of the reactor 10 by means of the duct 28.
- the illustrated reactor 10 is lined with refractory having water tubes embedded therein for cooling.
- the pulverized coal and the combustion air move cyclonically through the reactor and the flue gas exits through throat 30 into the duct 32 while the unburned carbon exits through the stand pipe 34.
- the essential requirement for the first stage reactor is the unburned coal must be able to be separated from the flue gas.
- the unburned pulverized coal withdrawn from the reactor 10 into the stand pipe 34 is then conveyed by means of a high velocity flow of preheated air from duct 36 and blower 37 through the duct 38 into the 1 second stage reactor 40.
- This second stage reactor is also illustrated as being a cyclone reactor similar to the reactor 10 but this second stage reaction may be carried out in apparatus other than cyclone reactors as will be pointed out hereinafter.
- the second stage combustion air is introduced tangentially into the second stage reactor 40 through duct 42 and any remaining ash and whatever carbon might remain unburned are withdrawn through the cleanout pipe 44.
- the flue gas from the second stage reactor 40 containing the excess oxygen is withdrawn through the duct 46.
- the flue gases from the first and second stages are then conveyed by their respective ducts 32 and 46 into a suitable mixing device.
- This device may comprise a burner 48 such as conventional burners for the combustion of gaseous fuels.
- the burner 48 is attached to the furnace 50 such that the third stage combustion takes place within the furnace to generate steam.
- the flue gas from the third stage combustion after passage through the boiler is then passed through the air preheater l4 and to the stack or perhaps to intermediate treating equipment such as precipitators or pollution control apparatus.
- the second and third stage reactors have been illustrated as being separate units 40 and 50, the only essential requirements is that the second and third stage reactions be carried out in apparatus which provides two separate combustion zones.
- the unburned coal discharged from the reactor 10 into the stand pipe 34 may be blown directly into the lower portion. of a furnace such as the furnace 50 together with the second stage combustion air.
- the second stage combustion will then take place in this lower furnace portion.
- the flue gas from the first stage reactor 10 is then introduced at a higher elevation in the furnace 50 such that the third stage combustion also takes place in the furnace but in a separate zone.
- a method of burning a solid carbonaceous fuel comprising the steps of:
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
A three-stage combustion process is disclosed in which solid carbonaceous fuel is burned with a deficiency of air in a first zone leaving unburned fuel and producing a flue gas rich in CO. The unburned fuel is separated from the first zone flue gas and burned in a second zone with an excess of air to produce a flue gas containing excess oxygen. The flue gases from the first and second zones are then burned in a third zone to complete the combustion process with the total amount of air used in the first and second zones being approximately the stoichiometric amount required for complete combustion.
Description
United States Patent 1 Bauer 1 1 THREE-STAGE COMBUSTION [75] Inventor: William Valentine Bauer, New
York, NY.
[73] Assignee: The Lummus Company, Bloomfield,
NJQ
[221 Filed: Dec. 13, 1971 211 App]. No.: 207,353
[52] US. Cl. ..ll/l P, 110/28 F, 431/ [51] Int. Cl ..F23b 1/00 [58] FieldoiSearch ..l10/1 P, 22 R, 28 R,
[56] References Cited UNITED STATES PATENTS 3,228,451 1/1966 Fraser et a1... ..431/1O 3,358,624 12/1967 Way ..1 10/28 X III g IO 1 Apr. 17, 1973 3,421,824 H1969 Herbst ..1 10/28 X Primary Examinerl(enneth W. Sprague Attorney-Eldon H. Luther et al.
[57 ABSTRACT A three-stage combustion process is disclosed in which solid carbonaceous fuel is burned with a deficiency of air in a first zone leaving unburned fuel and producing a flue gas rich in CO. The unburned fuel is separated from the first zone flue gas and burned in a second zone with an excess of air to produce a flue gas containing excess oxygen. The flue gases from the first and second zones are then burned in a third zone to complete the combustion process with the total amount of air used in the first and second zones being approximately the stoichiometric amount required for complete combustion.
5 Claims, 4 Drawing Figures PATENTEDAPR 1 (I975 SHEET 1 OF 3 won; ncoumw E wmmuxw 320208.; n N
x Fraction C Reocfed In First Stage wow 31m 355 $u E 00 \o y Fraction C Reucfed In First Stage Generating CO FIG."
PATENTED APR1 71975- snmeur PATENTEB APR] 7 I975 SHEET 3 BF BACKGROUND OF THE INVENTION cent. The use of excess air, however, has a number of disadvantages. The increased gas flow due to the quantity of excess air increases the heat loss by the discharge of the gases up the stack. The increased gas flow also increases the required dimensions of passages within the furnace and boiler and of gas ducts and the stack. A further disadvantage of the increased gas flow is that it increases the difficulty and expense of removing dust and pollutants from the flue gas. The excess oxygen which is present in the flue gas enters into corrosion producing reactions which damage the boiler tubes and other equipment.
The normal procedure for burning pulverized coal is to introduce the coal and air together into one burning zone wherein the combustion process goes substantially to completion. This complete combustion within one zone (excess air actually drops temperature) creates significantly high flame temperatures. It has been shown that these high flame temperatures lead to the creation of nitrogen oxides which are air pollutants. The production of the nitrogen oxide is a temperature dependent reaction, i.e., nitrogen oxides are produced at higher temperatures. It is, therefore, desirable to keep flame temperatures lower in order to reduce the production of these pollutants.
Another problem which can occur when there is excess oxygen in the flue gas is that certain air pollution control techniques are more difficulLFor example, in the process of removing sulfur oxides from flue gas with copper oxide, the excess oxygen results in the conversion of copper sulfite to copper sulfate imposing a heavy penalty on the subsequent regeneration of the absorbent and undesirable additional water formation in the regeneration gas.
SUMMARY OF THE INVENTION An object of the present invention is to burn solid carbonaceous fuels and in particular pulverized coal in such a manner that substantially all of the fuel is burned with little or no excess air. A further object is to burn these fuels in a manner which will limit maximum flame temperatures. The objects of the invention are accomplished by carrying out the combustion process in three stages with the first stage being carried out with a deficiency of air and the second step being carried out with an excess of air. The flue gas from the first stage containing a substantial quantity of CO and the flue gas from the second stage containing excess oxygen are then combined and burned in the third stage. The total quantity of air used for the process is substantially equal to the total amount of air required for complete combustion ofthe fuel.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph illustrating the relationship between operating parameters.
FIG. 2 illustrates the overall arrangement of the present invention.
FIG. 3 is an elevation view in cross section of a cyclone reactor.
FIG. 4 is an end view of the reactor of FIG. 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is based on three-stage combustion of solid carbonaceous fuels and in particular pulverized coal which will be hereinafter used as the specific illustration of the fuel being burned. The first stage combustion is carried out with a deliberate deficiency of air and therefore a deficiency of oxygen so as to only partially burn the carbon in the fuel and to produce a flue gas rich in CO. The unburned pulverized coal from the first stage is separated from the first stage flue gas and then conducted to the second stage. In the second stage, the coal is burned with a deliberate excess of air so as to substantially completely. burn the carbon and produce a second stage flue gas containing CO and free oxygen as well as some ash. The hot flue gases from both the first and second stages are then combined in a third stage in which the CO in the first stage gas reacts with the free oxygen in the second stage gas.
The reactions in the three stages may be represented by the following equations:
x fraction of carbon reacted in the first stage y fraction of carbon reacted in the first stage which generates CO From the above equations an expression for the fractional excess 0 z, in the second stage is as follows:
FIG. 1 shows the relationship of y and z with x as a parameter. FIG. 1 also includes a dashed curve relating the CO content of the first stage flue gas with y. The selection of the variables x, y and 2 will be dependent upon various technical and economical considerations, For example, increasing the value ofx has the effect of increasing the flame temperature in the first stage and decreasing the flame temperature in the second stage. It also decreases the solids flow from the first to the second stage, thus requiring a larger first stage and a smaller second stage. Increasing the value of x has the further effect of increasing the second stage excess air. Another factor to be considered in the selection of the design variables is that the temperatures in both the first and second stages must be kept below the ash fusion temperatures.
The concentration of combustibles (CO) in the flue gas from the first stage should be maintained above a level of about volume percent to assure rapid combustion in the third stage. It can be seen in FIG. 1 that this minimum 10 percent CO content requires a value ofy in excess of 0.4. However, depending on the com bustibility of the fuel, its particle size, and its price, it is also desirable to maintain a sufficient excess of air in the second stage to assure good fuel utilization. For example, for the combustion of pulverized bituminous coal, 20 percent excess air in the second stage should assure virtually complete combustion. Selecting a slightly higher value for the excess air in the second stage, namely 23.3 percent, suitable values for the variables might be x 0.4 and y 0.7. The combustion of 40 percent of the carbon in the first stage generates a first stage flue gas containing CO and CO in the ratio of 7:3 with there being no remaining free oxygen. For these conditions, the volume percent of combustibles in the first stage flue gas is about 20 percent as indicated in FIG. 1. A suitable range for the value ofx is 0.3 to 0.8 while the range for the value ofy is 0.4 to 0.8.
The combustion in the second stage between the remaining fuel, which amounts to 60 percent of the carbon, and the second stage air substantially completely burns the carbon and produces a flue gas containing CO and essentially no CO along with the excess air. The flue gases from the first and second stages are then combined and the excess air-.in the second stage flue gas is ideally just sufficient to completely convert the CO in the first stage flue gas to CO producing a final or third stage flue gas containing no free oxygen and no CO. i
FIG. 2 illustrates a system in which the present invention may be carried out. The first stage combustion is preferably carried out in a cyclone reactor 10 which may be of any desired type. A typical cyclone reactor is illustrated in FIGS. 3 and 4. The combustion air for the process is supplied by means of the forced draft fan 12. The air is then heated in the air preheater l4 and carried by means of the duct 16 to the various points of use. A portion of this preheated air is supplied to the air swept pulverizer 18 in which the coal is prepared to the proper size. The pulverized coal along with the primary combustion air is then forced by means of the exhauster fan 20 and duct 22 tangentially into the primary coal burner 24 of the reactor 10 as shown more clearly in FIGS. 3,and 4. Another portion of preheated air is introduced tangentially into the main cyclone chamber 26 of the reactor 10 by means of the duct 28. The illustrated reactor 10 is lined with refractory having water tubes embedded therein for cooling. The pulverized coal and the combustion air move cyclonically through the reactor and the flue gas exits through throat 30 into the duct 32 while the unburned carbon exits through the stand pipe 34. The essential requirement for the first stage reactor is the unburned coal must be able to be separated from the flue gas.
, The unburned pulverized coal withdrawn from the reactor 10 into the stand pipe 34 is then conveyed by means of a high velocity flow of preheated air from duct 36 and blower 37 through the duct 38 into the 1 second stage reactor 40. This second stage reactor is also illustrated as being a cyclone reactor similar to the reactor 10 but this second stage reaction may be carried out in apparatus other than cyclone reactors as will be pointed out hereinafter. The second stage combustion air is introduced tangentially into the second stage reactor 40 through duct 42 and any remaining ash and whatever carbon might remain unburned are withdrawn through the cleanout pipe 44. The flue gas from the second stage reactor 40 containing the excess oxygen is withdrawn through the duct 46.
The flue gases from the first and second stages are then conveyed by their respective ducts 32 and 46 into a suitable mixing device. This device, for example, may comprise a burner 48 such as conventional burners for the combustion of gaseous fuels. The burner 48 is attached to the furnace 50 such that the third stage combustion takes place within the furnace to generate steam. The flue gas from the third stage combustion after passage through the boiler is then passed through the air preheater l4 and to the stack or perhaps to intermediate treating equipment such as precipitators or pollution control apparatus.
The following table is an example of the material flows for a firing system illustrating the invention:
Firing Rate: 108,970 lb/hr of Coal (9% Ash) Heat Release 1,470 MM BTU/hr Although the second and third stage reactors have been illustrated as being separate units 40 and 50, the only essential requirements is that the second and third stage reactions be carried out in apparatus which provides two separate combustion zones. For example, the unburned coal discharged from the reactor 10 into the stand pipe 34 may be blown directly into the lower portion. of a furnace such as the furnace 50 together with the second stage combustion air. The second stage combustion will then take place in this lower furnace portion. The flue gas from the first stage reactor 10 is then introduced at a higher elevation in the furnace 50 such that the third stage combustion also takes place in the furnace but in a separate zone.
While a preferred embodiment of the present invention has been illustrated and described, it will be understood that this is merely illustrative and that the invention may be carried out using apparatus and techniques other than that disclosed.
What is claimed is: i
1. A method of burning a solid carbonaceous fuel comprising the steps of:
a. burning said fuel in a first combustion zone at an air-fuel ratio less than that theoretically required for burning under conditions corresponding to stoichiometric conditions whereby a portion of said fuel remains unburned and whereby a first zone flue gas is obtained containing a substantial quantity of CO;
b. separating said unburned fuel from said first zone c. burning said unburned fuel from said first zone in a second zone at an air-fuel ratio greater than that theoretically required for burning under conditions corresponding to stoichiometric conditions whereby a second zone flue gas containing excess oxygen is obtained;
d. introducing said first zone flue gas and said second zone flue gas into a third zone wherein said CO in said first zone flue gas and said excess oxygen in said second zone flue gas react to produce C0 2. A method as recited in claim 1 wherein the total amount of air introduced into said first zone and said second zone is approximately equal to that theoretically required for burning under conditions corresponding to stoichiometric conditions.
3. A method as recited in claim 2 wherein the total amount of air introduced into said first and second zones is no greater than 1 percent in excess of that theoretically required for burning under conditions corresponding to stoichiometric conditions.
4. A method as recited in claim 1 wherein said portion of said fuel remaining unburned after said first combustion zone is between 20 percent and percent of the fuel and wherein the percentage of fuel reacted in said first combustion zone which produces CO is between 40 percent and percent.
5. A method as recited in claim 4 wherein said portion of said fuel remaining unburned after the first combustion zone is about 60 percent of the fuel and wherein the ratio C O/CO in'said first zone flue gas is about 7:3.
Claims (4)
- 2. A method as recited in claim 1 wherein the total amount of air introduced into said first zone and said second zone is approximately equal to that theoretically required for burning under conditions corresponding to stoichiometric conditions.
- 3. A method as recited in claim 2 wherein the total amount of air introduced into said first and second zones is no greater than 1 percent in excess of that theoretically required for burning under conditions corresponding to stoichiometric conditions.
- 4. A method as recited in claim 1 wherein said portion of said fuel remaining unburned after said first combustion zone is between 20 percent and 70 percent of the fuel and wherein the percentage of fuel reacted in said first combustion zone which produces CO is between 40 percent and 80 percent.
- 5. A method as recited in claim 4 wherein said portion of said fuel remaining unburned after the first combustion zone is about 60 percent of the fuel and wherein the ratio CO/CO2 in said first zone flue gas is about 7:3.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20735371A | 1971-12-13 | 1971-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3727562A true US3727562A (en) | 1973-04-17 |
Family
ID=22770188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00207353A Expired - Lifetime US3727562A (en) | 1971-12-13 | 1971-12-13 | Three-stage combustion |
Country Status (1)
Country | Link |
---|---|
US (1) | US3727562A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4052138A (en) * | 1976-03-08 | 1977-10-04 | Gieck Joseph F | Method of firing coal boiler to produce secondary fuel gas |
US4051791A (en) * | 1975-08-15 | 1977-10-04 | Wormser Engineering, Inc. | Coal burning arrangement |
US4060376A (en) * | 1974-12-11 | 1977-11-29 | Energiagazdalkodasi Intezet | Method of firing and furnace therefor |
US4060378A (en) * | 1974-12-11 | 1977-11-29 | Energiagazdalkodasi Intezet | Method of firing and furnace therefor |
US4129003A (en) * | 1976-03-29 | 1978-12-12 | Q Corporation | Engine operated by a non-polluting recyclable fuel |
DE2736493A1 (en) * | 1977-08-12 | 1979-02-22 | Wormser Eng | Powdered coal burning arrangement - uses pyrolyser bed with spout followed by fluidised char burner and cyclone separators connected to gas burner |
US4146359A (en) * | 1976-06-25 | 1979-03-27 | Occidental Petroleum Corporation | Method for reacting nongaseous material with a gaseous reactant |
US4153426A (en) * | 1977-07-18 | 1979-05-08 | Arthur G. Mckee & Company | Synthetic gas production |
US4231302A (en) * | 1979-05-14 | 1980-11-04 | Albert Neuhaus-Schwermann | Apparatus and process for burning of fuels of relatively young geological age and of any resulting gases |
US4248048A (en) * | 1978-09-01 | 1981-02-03 | Q Corporation | Engine operated by a non-polluting recyclable fuel |
US4285283A (en) * | 1979-12-07 | 1981-08-25 | Exxon Research & Engineering Co. | Coal combustion process |
US4329932A (en) * | 1979-06-07 | 1982-05-18 | Mitsubishi Jukogyo Kabushiki Kaisha | Method of burning fuel with lowered nitrogen-oxides emission |
US4381718A (en) * | 1980-11-17 | 1983-05-03 | Carver George P | Low emissions process and burner |
US4403941A (en) * | 1979-08-06 | 1983-09-13 | Babcock-Hitachi, Ltd. | Combustion process for reducing nitrogen oxides |
US4469032A (en) * | 1982-09-16 | 1984-09-04 | Mobil Oil Corporation | Zone combustion of high sulfur coal to reduce SOx emission |
US4496306A (en) * | 1978-06-09 | 1985-01-29 | Hitachi Shipbuilding & Engineering Co., Ltd. | Multi-stage combustion method for inhibiting formation of nitrogen oxides |
US4586443A (en) * | 1977-09-27 | 1986-05-06 | Trw Inc. | Method and apparatus for in-flight combustion of carbonaceous fuels |
US4615285A (en) * | 1984-09-21 | 1986-10-07 | Skf Steel Engineering, Ab | Method of destroying hazardous wastes |
US4670023A (en) * | 1984-02-28 | 1987-06-02 | Ruhrkohle Aktiengesellschaft | Gas generator installation |
US4674418A (en) * | 1984-02-28 | 1987-06-23 | Ruhrkohle Aktiengesellschaft | Cyclone cleaner for a fixed bed reactor |
US6085674A (en) * | 1999-02-03 | 2000-07-11 | Clearstack Combustion Corp. | Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation |
US6325002B1 (en) | 1999-02-03 | 2001-12-04 | Clearstack Combustion Corporation | Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation |
US6325003B1 (en) | 1999-02-03 | 2001-12-04 | Clearstack Combustion Corporation | Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation |
US6363869B1 (en) | 1999-02-03 | 2002-04-02 | Clearstack Combustion Corporation | Potassium hydroxide flue gas injection technique to reduce acid gas emissions and improve electrostatic precipitator performance |
US6652265B2 (en) | 2000-12-06 | 2003-11-25 | North American Manufacturing Company | Burner apparatus and method |
US20060057517A1 (en) * | 2004-09-10 | 2006-03-16 | Joshi Mahendra L | Oxidant injection method |
US20080286707A1 (en) * | 2007-05-15 | 2008-11-20 | Panesar Raghbir S | Combustion apparatus |
CN105972588A (en) * | 2016-07-14 | 2016-09-28 | 西安交通大学 | A pre-combustion type low NOx burner for extracting high-temperature flue gas |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3228451A (en) * | 1957-06-25 | 1966-01-11 | Urquhart S 1926 Ltd | Method of burning fuels |
US3358624A (en) * | 1965-10-07 | 1967-12-19 | Westinghouse Electric Corp | Coal burning arrangement for mhd generators |
US3421824A (en) * | 1967-06-01 | 1969-01-14 | Exxon Research Engineering Co | Method of burning industrial fuels |
-
1971
- 1971-12-13 US US00207353A patent/US3727562A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3228451A (en) * | 1957-06-25 | 1966-01-11 | Urquhart S 1926 Ltd | Method of burning fuels |
US3358624A (en) * | 1965-10-07 | 1967-12-19 | Westinghouse Electric Corp | Coal burning arrangement for mhd generators |
US3421824A (en) * | 1967-06-01 | 1969-01-14 | Exxon Research Engineering Co | Method of burning industrial fuels |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4060376A (en) * | 1974-12-11 | 1977-11-29 | Energiagazdalkodasi Intezet | Method of firing and furnace therefor |
US4060378A (en) * | 1974-12-11 | 1977-11-29 | Energiagazdalkodasi Intezet | Method of firing and furnace therefor |
US4051791A (en) * | 1975-08-15 | 1977-10-04 | Wormser Engineering, Inc. | Coal burning arrangement |
US4253409A (en) * | 1975-08-15 | 1981-03-03 | Wormser Engineering, Inc. | Coal burning arrangement |
US4052138A (en) * | 1976-03-08 | 1977-10-04 | Gieck Joseph F | Method of firing coal boiler to produce secondary fuel gas |
US4129003A (en) * | 1976-03-29 | 1978-12-12 | Q Corporation | Engine operated by a non-polluting recyclable fuel |
US4146359A (en) * | 1976-06-25 | 1979-03-27 | Occidental Petroleum Corporation | Method for reacting nongaseous material with a gaseous reactant |
US4153426A (en) * | 1977-07-18 | 1979-05-08 | Arthur G. Mckee & Company | Synthetic gas production |
DE2736493A1 (en) * | 1977-08-12 | 1979-02-22 | Wormser Eng | Powdered coal burning arrangement - uses pyrolyser bed with spout followed by fluidised char burner and cyclone separators connected to gas burner |
US4586443A (en) * | 1977-09-27 | 1986-05-06 | Trw Inc. | Method and apparatus for in-flight combustion of carbonaceous fuels |
US4496306A (en) * | 1978-06-09 | 1985-01-29 | Hitachi Shipbuilding & Engineering Co., Ltd. | Multi-stage combustion method for inhibiting formation of nitrogen oxides |
US4248048A (en) * | 1978-09-01 | 1981-02-03 | Q Corporation | Engine operated by a non-polluting recyclable fuel |
US4231302A (en) * | 1979-05-14 | 1980-11-04 | Albert Neuhaus-Schwermann | Apparatus and process for burning of fuels of relatively young geological age and of any resulting gases |
US4329932A (en) * | 1979-06-07 | 1982-05-18 | Mitsubishi Jukogyo Kabushiki Kaisha | Method of burning fuel with lowered nitrogen-oxides emission |
US4403941A (en) * | 1979-08-06 | 1983-09-13 | Babcock-Hitachi, Ltd. | Combustion process for reducing nitrogen oxides |
US4285283A (en) * | 1979-12-07 | 1981-08-25 | Exxon Research & Engineering Co. | Coal combustion process |
US4381718A (en) * | 1980-11-17 | 1983-05-03 | Carver George P | Low emissions process and burner |
US4469032A (en) * | 1982-09-16 | 1984-09-04 | Mobil Oil Corporation | Zone combustion of high sulfur coal to reduce SOx emission |
US4670023A (en) * | 1984-02-28 | 1987-06-02 | Ruhrkohle Aktiengesellschaft | Gas generator installation |
US4674418A (en) * | 1984-02-28 | 1987-06-23 | Ruhrkohle Aktiengesellschaft | Cyclone cleaner for a fixed bed reactor |
US4615285A (en) * | 1984-09-21 | 1986-10-07 | Skf Steel Engineering, Ab | Method of destroying hazardous wastes |
US6085674A (en) * | 1999-02-03 | 2000-07-11 | Clearstack Combustion Corp. | Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation |
US6325002B1 (en) | 1999-02-03 | 2001-12-04 | Clearstack Combustion Corporation | Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation |
US6325003B1 (en) | 1999-02-03 | 2001-12-04 | Clearstack Combustion Corporation | Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation |
US6363869B1 (en) | 1999-02-03 | 2002-04-02 | Clearstack Combustion Corporation | Potassium hydroxide flue gas injection technique to reduce acid gas emissions and improve electrostatic precipitator performance |
WO2001094843A1 (en) | 2000-06-08 | 2001-12-13 | Clearstack Combustion Corporation | Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation |
US6652265B2 (en) | 2000-12-06 | 2003-11-25 | North American Manufacturing Company | Burner apparatus and method |
US20060057517A1 (en) * | 2004-09-10 | 2006-03-16 | Joshi Mahendra L | Oxidant injection method |
US7833009B2 (en) * | 2004-09-10 | 2010-11-16 | Air Products And Chemicals, Inc. | Oxidant injection method |
US20080286707A1 (en) * | 2007-05-15 | 2008-11-20 | Panesar Raghbir S | Combustion apparatus |
US9651253B2 (en) * | 2007-05-15 | 2017-05-16 | Doosan Power Systems Americas, Llc | Combustion apparatus |
CN105972588A (en) * | 2016-07-14 | 2016-09-28 | 西安交通大学 | A pre-combustion type low NOx burner for extracting high-temperature flue gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3727562A (en) | Three-stage combustion | |
US4602573A (en) | Integrated process for gasifying and combusting a carbonaceous fuel | |
US4021186A (en) | Method and apparatus for reducing NOx from furnaces | |
US4739713A (en) | Method and apparatus for reducing the NOx content of flue gas in coal-dust-fired combustion systems | |
US5937772A (en) | Reburn process | |
US3508506A (en) | Process and apparatus for reduction of unburned combustible in fly ash | |
CN1441889A (en) | Reducing NOx Emissions Using Tertiary Fuel Oxidation and In-Situ Recirculation of Furnace Flue Gas | |
US4246853A (en) | Fuel firing method | |
JPS61217607A (en) | Method and device for reducing content of nox in large-scalecombustion apparatus using and burning fossil fuel | |
US6244200B1 (en) | Low NOx pulverized solid fuel combustion process and apparatus | |
KR890001113B1 (en) | Nitric oxide and sulfur oxide emission reduction method | |
US3699903A (en) | Method for improving fuel combustion in a furnace and for reducing pollutant emissions therefrom | |
CA1092897A (en) | Fuel firing method | |
JPS6362643B2 (en) | ||
US4986199A (en) | Method for recovering waste gases from coal partial combustor | |
JPH0629566B2 (en) | Coal burning boiler | |
JPS5885011A (en) | Modifying method and apparatus for fly ash | |
US4690074A (en) | Coal combustion system | |
RU2089270C1 (en) | Method and installation for complete dry desulfurization of effluent combustion gases containing sulfur dioxide | |
JPS6017611A (en) | Combustion of solid fuel and device therefor | |
CN205842694U (en) | A kind of low NOx incinerator processing nitrogenous waste gas, waste liquid | |
EP0301714A2 (en) | Sulfur removal by sorbent injection in secondary combustion zones | |
US20100071598A1 (en) | Cement clinker production with reduced emissions | |
US20070295250A1 (en) | Oxygen-enhanced combustion of unburned carbon in ash | |
EP0204059A1 (en) | Method to control a combustion progress |