US3724236A - Refrigerator evaporator - Google Patents
Refrigerator evaporator Download PDFInfo
- Publication number
- US3724236A US3724236A US00194341A US3724236DA US3724236A US 3724236 A US3724236 A US 3724236A US 00194341 A US00194341 A US 00194341A US 3724236D A US3724236D A US 3724236DA US 3724236 A US3724236 A US 3724236A
- Authority
- US
- United States
- Prior art keywords
- evaporator
- chamber
- coils
- walls
- tubular member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
Definitions
- Evaporators for refrigerators comprise a tubular member for the circulation of refrigerant and an extended heat transfer heat exchange surface for providing the desired heat exchange between the refrigerant and the air circulated over the evaporator.
- the evaporators comprise continuous lengths of refrigerant tubing having either plate-like fins or having one or more longitudinal flanges extending outwardly from the tubing wall, these flanges being slit to provide a plurality of individual finger-like fins which may be alternately bent laterally from the original plane of the flange or twisted to induce a better heat exchange contact between the heat exchange surfaces and the surrounding air.
- the fins form the exterior surfaces of the units and are substantially exposed to initial contact with the air stream being cooled in order to provide excellent heat exchange.
- the tubing in order to provide the desired length of refrigerant tubing in an evaporator sized to be contained within a given space, the tubing has been formed to serpentine shape requiring either sharp bends or preformed return bends.
- a refrigerator having an evaporator chamber containing a refrigerant evaporator unit comprising a helically coiled tubular member in which the coils thereof are spaced from one another.
- the space or volume within the helically coiled member is filled with resilient metal wool forming the extended heat transfer surface and the air to be cooled is circulated through the evaporator unit in a direction perpendicular to the axes of the coils.
- FIG. 1 is a vertical side elevational view through a portion of a refrigerator embodying the present invention.
- FIG. 2 is a horizontal sectional view taken generally along line 22 of FIG. ll.
- the illustrated refrigerator comprises an upper freezer compartment 1 and a lower fresh food storage compartment 2 separated by an insulated partition generally indicated by the numeral 3.
- the partition 3 includes upper and lower walls 4 and 5 and opposed side walls 7 (FIG. 2) defining an evaporator chamber 6.
- a fan 8 is provided for withdrawing air from the two storage compartments through passages 9 and 10 in the partition at the forward or inlet end of the evaporator chamber and returning cooled air to the compartments through passages 11 and 12 at the rear or outlet end of the evaporator chamber 6.
- an improved evaporator structure generally indicated by the numeral 14.
- This evaporator is positioned transversely of the evaporator chamber 6. It comprises a tubular member 15 of aluminum forming the refrigerant conduit coiled to have a substantially helical fonn with adjacent coils 16 spaced from one another to form an open helix.
- the extended heat transfer surface for transferring heat from a stream of air passed over the evaporator to the refrigerant flowing through the tubular member 15 comprises a mass of metal wool 17, preferably shredded aluminum, which is resilient and in heat exchange engagement with the tubing 15.
- the heat exchanger is preferably made from a continuous extruded aluminum tube stock formed or coiled into a helix after which the metal wool of suitable density is inserted into the hollow center of the coil.
- the coils may be partially flattened to an elliptical form as illustrated in FIG. 1.
- v evaporator 14 actually comprises two helically coiled portions extending parallel to one another and transversely of the chamber 6, one coiled section 19 of which is partially straightened and deformed to provide the connection between the two sections at one side of the evaporator.
- a particular advantage of the evaporator of the present invention as compared with prior art evaporators is that in its finished form all of the extended surface is within the volume occupied by the tubular fills the chamber 6 insofar as its lateral dimensions are concerned. In other words, the portions of the coil surfaces adjacent the walls 4 and 5 are in contact therewith, thus providing for the placement of a maximum length of the tubular member within the volume of the evaporator chamber and at the same time providing adequate extended surface area.
- the evaporator is supported directly on a metal drain pan on the bottom wall 5 of the evaporator chamber and a metal liner 21 is provided on the upper wall 4 in direct engagement with the upper surfaces of the tubing 15. Both of these components thereby function as additional extended heat transfer surfaces.
- the subject evaporator construction is not limited to a single heat exchanger size.
- the evaporator width, depth and thickness can be varied through a large range by changing the number of coils, size of the coils, the number of rows of coils and the amount of coil flattening.
- the evaporator is periodically defrosted by use of a radiant heater such as that described in Turner, US. Pat. No. 3,280,581.
- a radiant heater such as that described in Turner, US. Pat. No. 3,280,581.
- a refrigerator comprising an evaporator chamber having spaced inlet and outlet passages, opposed walls between said passages and an evaporator in said chamber;
- said evaporator comprising a tubular member formed into a plurality of spaced co-axial coils forming a helix;
- said coils substantially filling the space between said opposed walls.
- a refrigerator including an evaporator chamber and means for circulating a stream of air to be cooled through said chamber;
- an evaporator in said chamber comprising a tubular member coiled to form a plurality of substantially co-axial coils
- a refrigerator including an evaporator chamber comprising opposed walls and having an air inlet adjacent one end thereof and an air outlet adjacent the other end and an evaporator in said chamber;
- said evaporator comprising a tubular member bent to form at least two interconnected spaced helically coiled portions, the longitudinal axes of which are substantially parallel;
- said evaporator being positioned in said chamber between said walls with the axes of said coiled portions extending transversely of said chamber and the tubular member closely adjacent the adjacent walls of said chamber.
- a refrigerator according to claim 3 including metal liners on the inner surfaces of said walls in contact with said coils.
- a refrigerator including a horizontal evaporator chamber comprising top and bottom walls and having an air inlet adjacent one end thereof and an air outlet adjacent the other end and an evaporator in said chamber;
- said evaporator comprising a tubular member bent to form at least two interconnected spaced helically coiled portions, the longitudinal axes of which are substantially parallel;
- said evaporator being positioned in said chamber between said top and bottom walls with the axes of said coiled portions extending transversely of said chamber and the tubular member closely adjacent the adjacent walls of said chamber;
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A compact evaporator unit for refrigerators comprising a helically coiled tubular member having an extended heat exchange surface in the form of a mass of metal wool within and in contact with the coils.
Description
e Unified Siafies Paeem [191 [111 3,724,236 Gelbard [4 1 Apr. 3, 1973 54 REFRIGERATOR EVAPORATOR 2,978,884 4/1961 DAleandro ..62/419 Inventor: Robert B. Gelbard Louisville, 3,320,766 Kll'lg [73] Assignee: General Electric Company Primary Examiner Meyer Perlin [22] Filed: Nov. 1, 1971 Attorney-Walter E. Rule et al.
21 A 1.N .2 194 341 1 pp 0 57 ABSTRACT 52 11.8. CI ..62/419, 62/515 A Compact evaporator unit for refrigerators p 51 1m. Cl ..F25d 17/06 irrg helically coiled tubular member having an [58] Field of Search ..62/419, 515,524 tended heat xch nge surf ce in the form of a mass of metal wool within and in contact with the coils. [56] References Cited UNITED STATES PATENTS 1,883,759 10/1932 Brown ..62/5l8 5 Claims, 2 Drawing Figures PATENTEDAFR3 1975 3.724, 236
HQ. 2 BY l REFRIGERATOR EVAPORATOR BACKGROUND OF THE INVENTION Evaporators for refrigerators, including freezers, comprise a tubular member for the circulation of refrigerant and an extended heat transfer heat exchange surface for providing the desired heat exchange between the refrigerant and the air circulated over the evaporator.
In many modern refrigerators in which the evaporator is housed in a chamber separate from the refrigerator storage area, the evaporators comprise continuous lengths of refrigerant tubing having either plate-like fins or having one or more longitudinal flanges extending outwardly from the tubing wall, these flanges being slit to provide a plurality of individual finger-like fins which may be alternately bent laterally from the original plane of the flange or twisted to induce a better heat exchange contact between the heat exchange surfaces and the surrounding air.
In these known evaporator units, the fins form the exterior surfaces of the units and are substantially exposed to initial contact with the air stream being cooled in order to provide excellent heat exchange. However, in the manufacture of such evaporatois, in order to provide the desired length of refrigerant tubing in an evaporator sized to be contained within a given space, the tubing has been formed to serpentine shape requiring either sharp bends or preformed return bends.
SUMMARY OF THE INVENTION It is an object of the present invention to provide an evaporator structure free of sharp bends and characterized by the fact that all of the extending heat transfer surfaces are contained within the space defined by the shaped refrigerant tubing.
In accordance with the illustrated embodiment of the present invention, there is provided a refrigerator having an evaporator chamber containing a refrigerant evaporator unit comprising a helically coiled tubular member in which the coils thereof are spaced from one another. The space or volume within the helically coiled member is filled with resilient metal wool forming the extended heat transfer surface and the air to be cooled is circulated through the evaporator unit in a direction perpendicular to the axes of the coils.
BRIEF DESCRIPTION OF THE DRAWING In the accompanying drawing:
FIG. 1 is a vertical side elevational view through a portion of a refrigerator embodying the present invention; and
FIG. 2 is a horizontal sectional view taken generally along line 22 of FIG. ll.
DESCRIPTION OF THE PREFERRED EMBODIMENT While the present invention is applicable to any refrigerator (including freezers) having one or more refrigerator components other than the evaporator component forming the subject matter of the present invention.
With reference to FIG. 1, the illustrated refrigerator comprises an upper freezer compartment 1 and a lower fresh food storage compartment 2 separated by an insulated partition generally indicated by the numeral 3. The partition 3 includes upper and lower walls 4 and 5 and opposed side walls 7 (FIG. 2) defining an evaporator chamber 6.
I For the purpose of maintaining these two storage compartments at the desired operating temperatures by means of an evaporator contained within the evaporator chamber, a fan 8 is provided for withdrawing air from the two storage compartments through passages 9 and 10 in the partition at the forward or inlet end of the evaporator chamber and returning cooled air to the compartments through passages 11 and 12 at the rear or outlet end of the evaporator chamber 6.
In place of the plateon-tube evaporator disclosed in the aforementioned Gelbard patent, there is provided in accordance with the present invention an improved evaporator structure generally indicated by the numeral 14. This evaporator is positioned transversely of the evaporator chamber 6. It comprises a tubular member 15 of aluminum forming the refrigerant conduit coiled to have a substantially helical fonn with adjacent coils 16 spaced from one another to form an open helix. The extended heat transfer surface for transferring heat from a stream of air passed over the evaporator to the refrigerant flowing through the tubular member 15 comprises a mass of metal wool 17, preferably shredded aluminum, which is resilient and in heat exchange engagement with the tubing 15.
The heat exchanger is preferably made from a continuous extruded aluminum tube stock formed or coiled into a helix after which the metal wool of suitable density is inserted into the hollow center of the coil. The coils may be partially flattened to an elliptical form as illustrated in FIG. 1.
In the illustrated embodiment of the invention, the
With reference to FIG. 2 of the drawing, it will be seen that air drawn into the front or inlet end of the evaporator chamber 6 by operation of the fan 8 flows laterally or transversely between the evaporator coils, i.e., through the spaces 18 between the coils. Since the metal wool is all contained within the helix, the air initially contacts the tubular member 15 where any moisture begins to collect in the form of frost. The air passing through the passages 18 then passes through the mass of metal wool 17 and finally between the coil portions on the down stream side of the helix. By this construction frost is distributed on all of these surfaces, much of it collecting on the portions of tubing 15 initially contacted by the air stream.
A particular advantage of the evaporator of the present invention as compared with prior art evaporators is that in its finished form all of the extended surface is within the volume occupied by the tubular fills the chamber 6 insofar as its lateral dimensions are concerned. In other words, the portions of the coil surfaces adjacent the walls 4 and 5 are in contact therewith, thus providing for the placement of a maximum length of the tubular member within the volume of the evaporator chamber and at the same time providing adequate extended surface area.
For maximum heat transfer, the evaporator is supported directly on a metal drain pan on the bottom wall 5 of the evaporator chamber and a metal liner 21 is provided on the upper wall 4 in direct engagement with the upper surfaces of the tubing 15. Both of these components thereby function as additional extended heat transfer surfaces.
In addition, the subject evaporator construction is not limited to a single heat exchanger size. Without major expenditure, the evaporator width, depth and thickness can be varied through a large range by changing the number of coils, size of the coils, the number of rows of coils and the amount of coil flattening.
Preferably, the evaporator is periodically defrosted by use of a radiant heater such as that described in Turner, US. Pat. No. 3,280,581. Such a heater, in-
dicated generally by the numeral 22 in F I08. 1 and 2 ofthe drawing, is positioned to one side of a coil section or when more than one section is employed is positioned between and parallel to the adjacent sections as illustrated in the drawing. Both the pan 20 and the liner 21 act as radiation reflectors so that heat from the radiant heater so placed will rapidly warm all portions of the evaporator to defrosting temperatures.
While there has been shown and described a particular embodiment of the present invention, it will be understood that it is not limited thereto and it is intended by the appended claims to cover all such modifications as fall within the true spirit and scope of the invention.
1 claim:
1. A refrigerator comprising an evaporator chamber having spaced inlet and outlet passages, opposed walls between said passages and an evaporator in said chamber;
said evaporator comprising a tubular member formed into a plurality of spaced co-axial coils forming a helix;
a mass of metal wool within said helix and in engagement with said coils;
said coils substantially filling the space between said opposed walls.
2. A refrigerator including an evaporator chamber and means for circulating a stream of air to be cooled through said chamber;
an evaporator in said chamber comprising a tubular member coiled to form a plurality of substantially co-axial coils;
a mass of metal wool within and in heat exchange contact with said coils; said evaporator being positioned in said chamber with the axes of said coils substantially perpendicular to the path of said air stream.
3. A refrigerator including an evaporator chamber comprising opposed walls and having an air inlet adjacent one end thereof and an air outlet adjacent the other end and an evaporator in said chamber;
said evaporator comprising a tubular member bent to form at least two interconnected spaced helically coiled portions, the longitudinal axes of which are substantially parallel;
the coils of said portions being spaced from one another;
a mass of metal wool within and in heat exchange contact with said coils; I said evaporator being positioned in said chamber between said walls with the axes of said coiled portions extending transversely of said chamber and the tubular member closely adjacent the adjacent walls of said chamber.
4. A refrigerator according to claim 3 including metal liners on the inner surfaces of said walls in contact with said coils.
5. A refrigerator including a horizontal evaporator chamber comprising top and bottom walls and having an air inlet adjacent one end thereof and an air outlet adjacent the other end and an evaporator in said chamber;
said evaporator comprising a tubular member bent to form at least two interconnected spaced helically coiled portions, the longitudinal axes of which are substantially parallel;
the coils of said portions being spaced from one another;
a mass of metal wool within and in heat exchange contact with said coils;
said evaporator being positioned in said chamber between said top and bottom walls with the axes of said coiled portions extending transversely of said chamber and the tubular member closely adjacent the adjacent walls of said chamber; and
metal liners on the inner surfaces of said top and bottom walls in heat exchange contact with said coils.
Claims (5)
1. A refrigerator comprising an evaporator chamber having spaced inlet and outlet passages, opposed walls between said passages and an evaporator in said chamber; said evaporator comprising a tubular member formed into a plurality of spaced co-axial coils forming a helix; a mass of metal wool within said helix and in engagement with said coils; said coils substantially filling the space between said opposed walls.
2. A refrigerator including an evaporator chamber and means for circulating a stream of air to be cooled through said chamber; an evaporator in said chamber comprising a tubular member coiled to form a plurality of substantially co-axial coils; a mass of metal wool within and in heat exchange contact with said coils; said evaporator being positioned in said chamber with the axes of said coils substantially perpendicular to the path of said air stream.
3. A refrigerator including an evaporator chamber comprising opposed walls and having an air inlet adjacent one end thereof and an air outlet adjacent the other end and an evaporator in said chamber; said evaporator comprising a tubular member bent to form at least two interconnected spaced helically coiled portions, the longitudinal axes of which are substantially parallel; the coils of said portions being spaced from one another; a mass of metal wool within and in heat exchange contact with said coils; said evaporator being positioned in said chamber between said walls with the axes of said coiled portions extending transversely of said chamber and the tubular member closely adjacent the adjacent walls of said chamber.
4. A refrigerator according to claim 3 including metal liners on the inner surfaces of said walls in contact with said coils.
5. A refrigerator including a horizontal evaporator chamber comprising top and bottom walls and having an air inlet adjacent one end thereof and an air outlet adjacent the other end and an evaporator in said chamber; said evaporator comprising a tubular member bent to form at least two interconnected spaced helically coiled portions, the longitudinal axes of which are substantially parallel; the coils of said portions being spaced from one another; a mass of metal wool within and in heat exchange contact with said coils; said evaporator being positioned in said chamber between said top and bottom walls with the axes of said coiled portions extending transversely of said chamber and the tubular member closely adjacent the adjacent walls of said chamber; and metal liners on the inner surfaces of said top and bottom walls in heat exchange contact with said coils.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19434171A | 1971-11-01 | 1971-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3724236A true US3724236A (en) | 1973-04-03 |
Family
ID=22717215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00194341A Expired - Lifetime US3724236A (en) | 1971-11-01 | 1971-11-01 | Refrigerator evaporator |
Country Status (2)
Country | Link |
---|---|
US (1) | US3724236A (en) |
BR (1) | BR7207619D0 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0313074A2 (en) * | 1987-10-23 | 1989-04-26 | INDUSTRIE ZANUSSI S.p.A. | Ventilated evaporator for automatic defrost refrigerating appliances |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1883759A (en) * | 1929-09-18 | 1932-10-18 | Arthur E Brown | Refrigerator unit |
US2978884A (en) * | 1959-09-09 | 1961-04-11 | Philco Corp | Refrigeration apparatus |
US3320766A (en) * | 1965-09-27 | 1967-05-23 | Gen Electric | Household refrigerator including improved defrostable evaporator construction |
-
1971
- 1971-11-01 US US00194341A patent/US3724236A/en not_active Expired - Lifetime
-
1972
- 1972-10-30 BR BR7619/72A patent/BR7207619D0/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1883759A (en) * | 1929-09-18 | 1932-10-18 | Arthur E Brown | Refrigerator unit |
US2978884A (en) * | 1959-09-09 | 1961-04-11 | Philco Corp | Refrigeration apparatus |
US3320766A (en) * | 1965-09-27 | 1967-05-23 | Gen Electric | Household refrigerator including improved defrostable evaporator construction |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0313074A2 (en) * | 1987-10-23 | 1989-04-26 | INDUSTRIE ZANUSSI S.p.A. | Ventilated evaporator for automatic defrost refrigerating appliances |
EP0313074A3 (en) * | 1987-10-23 | 1989-06-07 | INDUSTRIE ZANUSSI S.p.A. | Ventilated evaporator for automatic defrost refrigerating appliances |
Also Published As
Publication number | Publication date |
---|---|
BR7207619D0 (en) | 1973-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4741175A (en) | Auto defrost refrigerator | |
US3766976A (en) | Integral fin evaporator | |
EP0637724B1 (en) | Refrigerator | |
US2268885A (en) | Shelf evaporator | |
CN110411070B (en) | Evaporation unit and refrigerator with same | |
US3638449A (en) | Refrigeration apparatus | |
US5067322A (en) | Refrigerator with spine fin evaporator | |
JP3318376B2 (en) | Refrigerator evaporator with improved spine fins | |
US4527624A (en) | Cooling device for refrigerator | |
US3724236A (en) | Refrigerator evaporator | |
US3678698A (en) | Side-by-side refrigerator including low cost evaporator means | |
CN214039086U (en) | Refrigerator capable of reducing heat loss of air return pipe | |
US2329139A (en) | Refrigerating apparatus | |
US2384313A (en) | Evaporator for absorption refrigerating apparatus | |
US3403529A (en) | Refrigeration condensate handling means | |
EP1541946B1 (en) | Evaporator Installation for a Heat Pump | |
CN214199290U (en) | Refrigerator with a door | |
JP3003820B2 (en) | Freezer refrigerator | |
US3683636A (en) | Refrigeration system defrosting means | |
JP6449032B2 (en) | COOLER, MANUFACTURING METHOD THEREOF, AND REFRIGERATOR HAVING THE COOLER | |
US3320766A (en) | Household refrigerator including improved defrostable evaporator construction | |
US3019619A (en) | Evaporator structure for household refrigerators | |
US3324678A (en) | Single evaporator combination refrigerator | |
US2663160A (en) | Evaporator | |
US2387860A (en) | Refrigerating apparatus |