[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3796525A - Energy translation devices - Google Patents

Energy translation devices Download PDF

Info

Publication number
US3796525A
US3796525A US00166672A US3796525DA US3796525A US 3796525 A US3796525 A US 3796525A US 00166672 A US00166672 A US 00166672A US 3796525D A US3796525D A US 3796525DA US 3796525 A US3796525 A US 3796525A
Authority
US
United States
Prior art keywords
fluid
elements
relative
mechanical
orbital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00166672A
Inventor
J Kilmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3796525A publication Critical patent/US3796525A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F01C1/104Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/32Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members
    • F01C1/332Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the inner member
    • F01C1/336Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the inner member and hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/02Arrangements for drive of co-operating members, e.g. for rotary piston and casing of toothed-gearing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/10Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary

Definitions

  • the element upon which the member is thus mounted may be either a rotor or a stator element and may be either the inner or the outer of the elements in various embodiments of devices incorporating the inventionn
  • the eccentric means which are essentially cranks or shafts with offset axes, significantly are alone sufficient to accomplish the positive, shiftable mounting of the member and the restriction of same to relative orbital motion and to do so quite independently of any other fluid and mechanical couplings that may exist between the member and the elements in various particular forms of devices.
  • the preferred embodiment also provides a further improvement in devices of this type employing vanes to define fluid displacement chambers by arranging the parts to maintain the pair of vanes bound ing each chamber parallel to each other throughout the operating cycle, thereby maintaining the chordal transverse cross-sectional area of each chamber substantially constant throughout such cycle.
  • the devices embodying the invention are characterized by increased efficiency and reliability, reduced wear on I certain primary parts, and greater. economy of manufacture by virtue of reduced strength and looser tolerance requirements in connection with certain primary parts.
  • This invention relates to energy translation devices and, more particularly, to that class of devices employed for translating energy in the fonn of fluid pressure into energy in the form of mechanical rotation or vice versa, which commonly include devices employable as fluid pressure driven motors or conversely as pumps, as well as certain devices employable as actuators, meters, couplers and the like. Still more specifi cally, the invention is concerned with improvements in such devices of the type having a pair of spaced-apart,
  • Another important object of the invention is to provide such improved devices in which the orbital move ment of the orbital member may be employed to accomplish directly the valving employed to control the supplying and exhausting'of fluid from an annular series of displacement chambers on a progressively cy' cled basis.
  • Another important object of this invention is to provide such improved devices in which operating efficiency is improved by the employment of pairs of shiftable, displacement chamber bounding vanes extending between the orbital member and one of the machine elements and which remain parallel to each other throughout the operating cycle to maintain the chordal transverse cross-sectional area of each chamber substantially constant throughout such cycle, so that the rate of fluid fiow into and out of individual displacement chambers may be kept in phase with the areas of opening of input and exhaust valves which are controlled in sinusoidal fashion by the movement of the orbital member, as contrasted with conventional constructions in which the effective cross-sectional area of the chamber or piston is a function of the stroke position so that fluid flow is not precisely phased with valve operation.
  • Another important object of this invention is to provide such improvements for a wide variety of the class of devices mentioned, and particularly, to provide for positive mounting and confinement of the orbiting member to an orbital path by eccentric means operable independently of any other mechanical or fluid couplings in device constructions as diverse as vane defined fluid chamber devices, radial ball piston devices, hollow cylinder virtual piston devices, and gerotor devices.
  • FIG. 1 is a perspective view of a currently preferred energy translation device embodying the invention
  • FIG. 2 is a central cross-sectional view of FIG. 1 taken through the axis thereof;
  • FIG. 3 is a cross-sectional view taken on line 33 of FIG. 2;
  • FIG. 4 is a cross-sectional view taken on line 4-4 of FIG. 2;
  • FIG. 5 is a fragmentary, enlarged, cross-sectional view taken on line 5-5 of FIG. 3;
  • FIG. 6 is a fragmentary, enlarged, cross-sectional view taken on line 6-6 of FIG. 3;
  • FIG. 7 is a perspective view of one preferred embodiment of eccentric shaft employed in the device of FIG. 1;
  • FIG. 8 is a perspective view of one of the vanes employed in the device of FIG. 1;
  • FIG. 9 is a central cross-sectional view of another embodiment of energy translation device incorporating the invention taken on the axis of such device;
  • FIG. 10 is a cross-sectional view taken on line 1010 of FIG. 9;
  • FIG. 11 is a fragmentary, cross-sectional view taken on line 11-11 of FIG. 10;
  • FIG. 12 is a transverse cross-sectional view of another embodiment of energy translation device incorporating the invention.
  • FIG. 13 is a central cross-sectional view of still another embodiment of energy translation device incorporating the invention taken through the axis thereof;
  • FIG. 14 is a cross-sectional view taken on line 14-14 of FIG. 13;
  • FIG. 15 is a fragmentary, cross-sectional view taken on line 15-l5 of FIG. 13.
  • the device broadly includes a manifold 22, a valve and bearing block 24, an outer hub element 26, an inner element 28, an orbiting ring member 30, an end plate 32 and a main shaft 34.
  • the manifold 22, the block 24, the inner element 28', and the end plate 32 are all secured together as a unit by the main shaft 34 and by bolt means as at 36, with a spacer 38 being provided between the block 24 and the plate 32 around each bolt 36.
  • the group of parts just mentioned are all also keyed to the main shaft 34 by a key as at 40.
  • the axial dimension of spacers 38 and inner element 28 is slightly gerater than the axial dimension of orbiting member 30 to provide running clearance for the member 30 in fluid sealed relationship between block 24 and plate 32.
  • the manifold 22, block 24, inner element 28, plate 32 and main shaft 34 may all be stationary and can be mounted on a base frame 42 of other equipment by means of bolts as at 44.
  • the outer hub element 26 is rotatably mounted upon an end portion 46 of main shaft 34 by suitable ball bearing means as at 48, and a sleeve bearing support surface 50 is also provided between the hub element 26 and the block 24, a seal being effected between the hub 26 and block 24 by an O-ring as at 52.
  • the extremity of hub 26 adjacent end portion 46 of the shaft 34 is preferably sealed by a removable cap 54 held in place by bolts as at 56, with an O-ring seal as at 58.
  • the outer hub element 26 is rotatable relative to the inner element 28, as well as the manifold 22, the block 24'and the plate 32, about the axis of the main shaft 34. Accordingly, the hub element 26 is provided with a plurality of threaded studs 60 extending therefrom to facilitate mechanical coupling of the hub element 26 with an external rotatable assembly.-
  • the device 20 When the device 20 is powered from a source of fluid under pressure, as hereinafter more fully described, the device 20 functions as a fluid-driven motor which is particularly adapted to low-speed, hightorque application, and it will be understood that the outer, rotatable hub element 26 is then rotationally driven by the action of device 20 so that the studs 60 would be employed to couple the hub to an external assembly to which such rotational power of the hub 26 is to be imparted.
  • the device 20 may alternatively be employed as a fluid pump, in which case the studs 60 will be used to couple the rotatable outer hub element 26 to a rotating, powered external assembly for rotationally driving the outer hub element 26 of the device 20.
  • the studs 60 will be used to couple the rotatable outer hub element 26 to a rotating, powered external assembly for rotationally driving the outer hub element 26 of the device 20.
  • reference will initially be made to certain aspects of the construction and operation of the device 20 in the context of its application as a fluid driven motor.
  • the outer hub element 26 is provided on its innercircumference with a set of inwardly facing gear teeth 62 aligned with a set of outwardly facing gear teeth 64 on the outer surface of the generally ring-shaped orbiting member 30.
  • the teeth 62 and 64 together present what is normally referred-to as an epicyclic gear transmission or coupling between the orbiting member 30 and the outer rotatable hub element 26, it being understood that there will be a lesser number of teeth 64 on the member 30 than there are teeth 62 on the element 26, but that the sets of teeth 62 and 64 are appropriately shaped for proper meshing as the member 30, which is of lesser outer diameter than the corresponding inner diameter of hub element 26, orbits within the latter.
  • the teeth 64 will walk" with respect to the teeth 62 on hub element 26, thereby driving and imparting rotational movement to the latter.
  • the inner diameter of the orbiting member 30 is somewhat larger than the outer diameter of the inner element 28, presenting a space 66 therebetween.
  • a plurality of fluid displacement chambers 68 are formed within the space 66 by pairs of vanes 70 and 72.
  • each of the vanes 70 or 72 includes a pair of cylindrical end portions 74 and 76 interconnected by a web portion 78.
  • the cylindrical portion 74 of each vane 70 or 72 is pivotally but captively received within a cylindrical slot 80 in the inner circumferential face of the orbiting member 30 while the opposite cylindrical end portion 76 is pivotally and slidably received within a corresponding elongated slot 82 formed in the outer circumferential surface of the inner member 28.
  • Any number of three or more of the fluid displacement chambers 68 may be used, depending upon the size and intended application of the device 20, the
  • each displacement chamber 68 the vanes 70 and 72 bounding the sides of each displacement chamber 68 are adapted to pivot within the slots 80 and to pivot and slide within the slots 82 as required to accommodate the orbital movement of the member 3i).
  • the slots 80 and d2 are so juxtaposed that each pair of vanes 70 and 72 will be and always remain substantially parallel to each other regardless of the direction or degree in which both are pivoted to accommodate the orbital movement of the member 30.
  • each vane 7i) with its associated vane 72 assures that the l chordal transverse cross-sectional area of the chamber 68 therebetween will remain substantially constant. This is in sharp contrast with the conventional practice of disposing all of the chamber defining vanes in this class of device essentially radially of the central axis of the device, which results in a nonlinear rate of change in the volume of the enclosed chamber with respect to the stroke or instantaneous positioning of the orbiting member at different times during the operating cycle.
  • chordal trans verse cross-sectional area of the chambers 68 substantially increases efficiency by maintaining fluid flow rates to and from the chambers 68 precisely in phase with the sinusoidal variance in valve opening areas conveniently provided by using the orbiting motion of the member 30 to open and close valve apertures, in the manner now to be described.
  • the device 20 is provided with a pair of fluid ports 88 and 90 which may be an inlet port and an outlet port respectively. Ports 2% and 90 are adapted to be coupled with the pressure and return sides of an external source of hydraulic system oil or other suitable fluid pressure, when the device 2th is being used as a motor.
  • the device 2b is reversible and that the directions of orbiting of the member B ll and rotation of the element as may be reversed merely by reversing the flow of fluid to and from the ports dad and dd.
  • the port 88 communicates with 'an'irregular passage 92 within the manifold 22, which in turn communicates with a plurality of openings 93 each terminating in an elongated slot-like opening W? in the face of block 2d adjacent the member Ell, there being such an opening 94 for each of the chambersbh.
  • the port 9d communicates with an irregular passage 5% formed in the manifold 22, which in turn communicates with a plurality of openings 97, each terminating in an elongated slot-like opening 9% in the face of bloclr 2d adjacent the member 3i), it being noted that there is an opening 98 for each opening W and that they are arranged in parallel pairs corresponding to each of the chambers 68.
  • each chamber 68 adjacent each chamber 68 the opposing faces of the orbiting member 30 are relieved or cutaway as at w ll and M2 to provide a fluid flow passage will-1102 communicating with the corresponding chamber ss and to provide hydraulic balancing of member Bill between bloclt 2d and plate 32.
  • the pair of passage portions w ll for each chamber 68 communicate with each other through a relatively large circular opening 1104 through the orbiting member 30, which is also adapted to provide clearance for the bolts 36 and spacers 38 without engagement between the spacers 3b and the orbiting member 30.
  • fluid may flow freely to or from each chamber 6b through the opposed neck passages M12 and the generally rectangular passages lllll that are intercommunicated by the corresponding opening MM. Since the fluid forces acting between member 3d and block 24 and between member 3% and plate 32 are balanced, member 3t) axially floats between block 24 and plate 32, although it is otherwise positively mounted for guidance in an orbital path as hereinafter described.
  • the openings 9d and 9d are indicated by dotted lines in FIG. 3 and wili be seen, with reference to the topmost chamber :68 of FIG. 3, to be spaced apart just sufficiently that the relieved passages lllltl may be positioned therebetween and in communication with neither when the orbiting member Ell is in a position at which the fluid connection to such chamber 68 is just being changed from a pressure to an exhaustion phase of the fluid cycling of such chambered.
  • the fluid inlet opening 94 is fully aligned and communicating with the corresponding relieved passages lllll, while the associated exhaust opening 98 is completely out of communication with the passage Mill.
  • the relieved passages 100 associated with the other chambers 68 are in differing progressive relationships with their associated inlet opening 4 and exhaust opening 98, so that as the member 30 moves orbitally with respect to the axis of shaft 34 the chambers as will each be successively subjected to first an input of fluid under pressure of flow rate increasing to maximum then waning to minimum, then reversing direction for exhausting fluid at a rate also increasing to maximum then waning to minimum before the commencement of the next input or pressure phase.
  • the openings 94 and 9d are so disposed within the block 2d, with respect to the location of the passages ldll in the member Bill, that the mentioned progressive cycling of each chamber 6% through its fluid input and fluid exhaust phase will be controlled automatically by the orbiting of the member 30 with the areas of valve opening communication between the openings 94 and 98 and the passages MM), as well as the rates of flow of fluid therethrough, varying sinusoidally. It will also be noted that while the chambers 68 on one side of the member 30 are being subjected to pressure, those on the other side will be in their exhaust phase to enhance and maintain the orbital movement of the member 30.
  • the teeth 62 and 64 would have to be formed to close tolerances to properly guide the member 30 and would also have to be of particularly sturdy construction in order to bear the substantial forces that would be imposed thereon, and that, even with such a construction, the friction and wear upon the teeth 62 and 64 wuld inevitably be substantial as is common in conventional devices; actually, since the bolts 36 and spacers 38 do not and are not intended to engage the inner surfaces of clearance openings 104, it will also be clear that the member 30 would tend to rotate as well as orbit with respect to the inner element 28 to an extent further complicating the problem or perhaps even rendering the apparatus inoperable.
  • Each eccentric assembly 106 may include a central cylindrical portion 108 journaled by needle bearings M within the orbiting member 30, and a pair of oppositely extending cylindrical portions 112 and 114 of smaller diameter than the portion 108 and having a central axis offset from the central axis of the portion 108.
  • the eccentric end portions 112 and 114 are respectively journaled in the valving block 24 and the end plate 32 by needle bearings 116 and 118.
  • five of the assemblies 106 are utilized for convenience in spacing the same between the valving means associated with each of the five'chambers 68 employed in such device. It should be .noted, however, that any number greater than two of such assemblies 106 may be employed, although it is preferable to use a number of assemblies 106 that may be equally spaced around the member 30 without interference with the valving means associated with the particular number of equally spaced chambers 68 that are to be employed.
  • the offset between the axis of the portions 1 l2 and 114 with respect to the axis of the portion 108 is so chosen as to permit exactly the range of orbital movement of the member 30 needed to bring the teeth 64 into proper walking mesh with the teeth 62 as the member 30 is orbited.
  • the assemblies 306 are found to add very little friction to the device and considerably less than that encountered where meshing gears must be relied upon to provide orbital guidance for the member 30.
  • the assemblies 106 are operably sufficient, independently of any other structures or relationships in the device 26,
  • assemblies 106 increase efficiency, decrease wear and lower manufacturing costs by decreasing the material strengths and tolerances necessary in constructing various parts including particularly the epicyclic gear teeth 62 and 64.
  • the other constructional details of the device 20 are substantially conventional and may vary to a considerable extent as those skilled in the art will appreciate.
  • the-embodiment of device 20 chosen for illustration is provided with a cavity 39 (see FIG. 6) for collecting fluid that may normally be expected to leak around the vanes and through the running clearances between the parts, which fluid may then be drained through a passage 1261 in the valving block for removal through a communicating drain port 122 provided in the manifold.
  • redundant fluid displacement chambers are formed as at 124 between the functional fluid displacement chambers 68, and provision for venting such redundant chambers 124 is made by passages 126 extending therefrom through the end plate into communication with the collection cavity 39, which avoids trapping or cavitation of fluid in the redundant chambers l24.
  • the teeth 64 upon the outer circumference of the member 36 walk around the teeth 62; on the inner circumferential surface of the hub 26 causing the latter to rotate with respect to the orbital member 30, the inner member 2.8 and the shaft 34.
  • Rotational power is then derived from the device 20, operating as a motor, by suitable mechanical coupling with the rotating hub element 26.
  • the device 20 lends itself well to applications requiring a reversible motor, in that, all that is required for reversing the direction of rotation of the hub 26 is to reverse the flow of fluid with resepct to the fluid ports 88 and 90.
  • the operation is essentially the same, except that mechanical rotative power is applied to the hub element 26 to turn the latter, which causes the member 30 to orbit under constraint of the eccentric assemblies 106, by virtue of the walking relationship between the epicyclic gear teeth 62 and 64.
  • the individual chambers 68 are progressively placed in a fluid suction or fluid exhausting condition such that fluid may be pumped from an external line through the inlet port 88, thence through the fluid paths already traced but in the opposite direction, for delivery to an output line coupled with the port 90, the pumping action of the device 20 again being reversible, if desired, merely by reversing the direction of rotation in which the hub 26 is driven.
  • the device is generally designated 220 and will be recognized as involving the application of the invention towhat is essentially a radial ball piston type energy translation device.
  • the device 220 is also chosen, in contrast with the preferred embodiment of FIGS. 1-8, to illustrate employment of the invention in an energy translation machine in which the outer machine element comprises the stator, while the inner machine element serves as the rotor, and in which the intermediate orbiting member is supported and mounted upon the rotatable inner element. 1 i
  • an outer, stationary, cylindrical housing is presented by a pair of cylindrical frame members 222 and 22 i, spacer rings 226 and 228 and an outer ring gear element 230 all secured together as by bolt means 232.
  • a rotatable shaft 234 is supported within the frame members 222 and 224 by roller bearings 236 and 238, along with a thrust washer 240 and a snap ring axial retainer 242.
  • An inner machine element, rotatable with the shaft 234' is presented by and includes a pair of cylindrical side plates 244 and 246 respectively keyed to the shaft 234 as at 248 and 250.
  • the intermediate orbiting member 252 is generally annular and is disposed in the space between the shaft 234 and the outer, stationary gear element 230.
  • the intermediate orbiting member 252 is mounted upon the inner rotatable machine element and confined to an orbital path of travel with respect to the latter by a plurality of eccentric crank or shaft assemblies 254 each having a central portion 256 journaled in the member by roller bearings 258 and a pair of offset cylindrical end portions 260 and 262 of greater diameter and eccen tricly journaled respectively in plates 24-4 and 246 by roller bearings 264- and 266.
  • the number of eccentric assemblies 254 to be employed may be any number larger than two.
  • the eccentric assemblies 254 may assume various configurations with respect to constructional detail as long as the necessary crank action and positive mounting relationship required to achieve the purposes of the invention are maintained;
  • the assembly 254 might employ separate eccentric crank shafts interfacing between the member 252 and the plates 244 and 246 respectively, or a set of single-ended crank shafts mounting the member 252 upon only one of the plates 244 and 246 could be used, etc.
  • the orbiting member 252 is provided with a plurality equal to three or more of radially extending cylinder bores 268, each of which is open at its inner end and is closed at its outer end by a circumferential portion of the member 252 preferably constructed as an initial separate annular band 270 which may conveniently be fitted and secured upon the remainder of the member 252 after machining of the bores 268.
  • the outer band portion 270 of member 252 also carries thereon an inner set of outwardly facing gear teeth 272 adapted to mesh with an outer, interfacing set of gear teeth 274 on the inner surface of the outer element 230, and which together present an epicyclic gear transmission coupling between the outer element 230 and the orbiting member 252.
  • the band 270 serves both as a cylinder head to the cylinder bores 268 and as the inner portion of the epicyclic gear transmission 272-274.
  • a free floating ball piston 267 is provided within each of the cylinder bores 268 and adapted to roll axially of the latter as the member 252 orbits in a manner hereinafter described.
  • a ball race 278 having an annular groove 280 therein is secured to the shaft 234 for rotation therewith, which provides a support for the balls 276.
  • a fluid displacement chamber 282 is thus presented within each cylinder bore 268 between the cylinder head band 270 and the ball piston 276.
  • Fluid flow ports 284 and 286 are provided in the end plates 222 and 224 respectively.
  • Port 284 is communicated with an annular ring passage 288 formed in the plate 222, which in turn communicates with a set of slots 290 formed through the plate 226.
  • port 286 communicates with an annular passage 282, in turn communicating with a plurality of slots 294 in the plate 228, it being understood that there is a slot 290 and a slot 294 for each of the displacement chambers 282, that the slots 290 may serve as fluid inlet apertures while the slots 294 serve as fluid exhaust apertures, or vice versa depending 'upon the external couplings that are made to the fluid ports 284 and 286.
  • Each chamber 282 is provided with a pair of opposed valving openings 296 and 298 extending from the cylinder bore 268 in opposite directions through the orbiting member 252 and disposed for valving communication with the fluid apertures 290 and 294 as the member 252 is orbited.
  • the orientation of both the apertures 299 and 294 are indicated in dotted lines in FIG. 10, merely to show positional relationships to the valving openings 296 or 298, as the case may be, during orbiting of the member 252, it being understood that the automatic valving action is substantially the same as described in detail in connection with the embodiment of FIGS. 1-3.
  • the chambers 282 are progressively subjected to fluid pressure and exhaust cycling in successive progression, so that the forces in the various individual chambers 282 will cause the member 282 to orbit upon the eccentric assemblies 254 with respect to the inner machine element 244-246 and the axis of shaft 234 upon which the element 244-246 is mounted and keyed.
  • the teeth 272 will walk around the teeth 274 of outer machine element 230, which is stationary, so that the member 252 will rotate as well as orbit with respect to the outer machine element 230 and, in turn,
  • the device 220 may also be employed as a pump by applying rotative power to the shaft 234, which will rotate the inner. element 244-246 and the member 252, whereupon the member 252 will be orbited as well as rotated by virtue of the eccentric assemblies 254 as the teeth 272 walk around the teeth 274.
  • the device 220 will efficiently perform a fluid pumping operation drawing fluid into the port 284 and discharging the same from port 286, or vice versa depending upon the direction in which the shaft 234 is driven.
  • HG. 12 is similar in all essential respects to the embodiment of FIGS. 9-11, and particuarly so with respect to the eccentric mounting of the intermediate orbital member, the automatic valving arrangement, the provision of fluid passages and other miscellaneous details of construction, except that the embodiment of FIG. 12 will illustrate for those skilled in the art the application of the invention to a device 320 in which the radial ball pistons 276 of the embodiment of FIGS. 9-11 are replaced by hollow cylindrical virtual pistons 376, and the inner ball race 278 is replaced by a polygonal support block 378.
  • the rotatable shaft 334 carries thereon the polygonal block 378, which is provided with a flat surface 302 for each of the hollow cylindrical pistons 376.
  • the pistons 376 are slidably mounted within cylindrical cylinder bores 368 formed in the orbiting member 352.
  • the orbiting member 352 is again mounted for rotational movement with and orbital movement with respect to an inner machine element 344 by eccentric assembly 354 similar to those previously described.
  • Each piston 376 is normally urged toward the corresponding surface 302 of the block 373 by a spring 304. It will be understood that an epicyclic gear coupling is provided in the manner previously described between the outer circumference of the-orbiting member 352 and an outer machine element 330.
  • the device 320 functions in all respects similarly to the operation described for the embodiment of FIGS. 9-11., except that, as the member 352 orbits relative to the inner machine element 344 and the block 378, which are both secured to the shaft 334, the hollow pistons 376 merely provided a seal between the cylinder bores 368 and the surfaces 302 of block 378, so that the chambers 382 presented by the bores 368 and hollow pistons 376 progressively change in volume due to the virtual piston effect as the member 352 is orbited.
  • the device 320 may be operated in either direction or in either a motor or a pumping application, without-departing from the principles of the invention, the vital improvement of the device 320 as compared with prior art concepts stemming from the provision of the eccentric assemblies 354 for positively mounting and confining the orbital member 352 to orbital motion with respect to the machine element 344, along with the precise valving thus permitted and the advantages thereby attained in accordance with the objects of the invention.
  • the embodiment of device 430 illustrated in FIGS. 13 l is intended to illustrate the application of the invention to an energy transmission device of the type generally known to those skilled in the art as a gerotor.
  • the device 430 employes as its outer machine element, which for illustration may be assumed to be the stationary element thereof, a pair of side plates for 432 and 434 separated by an annular spacer 436, together with a manifold plate 438 facing the end plate 434, and all suitably secured together by bolts 440.
  • a rotatable main shaft 442 is carried by bearings 444 and 446 in the end plates 432 and 434 respectively.
  • the inner machine element which is rotatable with the shaft 442 and keyed thereto as at 448 is provided with an inner gerotor gear element 450 having external teeth 453 thereon.
  • An orbiting stator member 452 is mounted upon and confined to orbital movement with respect to the end plates 432 and 434 by a plurality of eccentric crank or shaft assemblies 454, each of which includes a central cylindrical portion 456 journaled in the member 452 by bearings 458 and a pair of cylindrical end portions 460 and 462 respectively journaled in end plates 432 and 434 by bearings 464 and 466.
  • the orbital member 452 is provided with alternate teeth portions 468 and concavities 47 0 configured to slidingly mate with the teeth 453 of the inner gerotor element 450.
  • the relationship between the teeth 453 and the teeth468 and concavities 470 also is capable of imparting orbital movement to the member 452 when the latter is freely floating, but only with considerable wear upon the teeth 453 and 468 and stringent constructional strength requirements when the member 452 is guided in its ori bital movement only by the relationships mentioned.
  • the provision of the eccentric assemblies 454 positively and orbitally mounting the member 452 on the outer element 432 434 greatly relieves the forces and strains upon the teeth 453 and 468 and permits the latter to be constructed and employed with only those strengths and tolerances required for the epicyclic gear relationship and the progressive displacement chamber creating function characterizing the gerotor design.
  • the manifold plate 438 is provided with fluid pressure and exhaust ports 474 and 476 which communicate respectively with annular ring passages 478 and- 486 formed in the end plate 434.
  • the passage 480 communicates with a plurality of radial passages 482 in the end plate 434, each of which then communicates with an axial passage 464 through the plate 434 terminated in a fluid aperture 436 in the face of end plate 434 adjacent the member 452.
  • the annular passage 478 is similarly communicated through the plate 434 with a plurality of fluid apertures 488 in the face of the plate 434 adjacent the member 452, there being a pair of fluid apertures 436 and 438 provided for each of the concavities 474 in the member 452.
  • a valving groove 4% is relieved or cut away in the member 472 for each of the concavities 470 to provide fluid communication with the displacement chambers 472 successively presented within the concavities 470 as the member 452 is orbited.
  • the valving grooves 490 automatically and progressively alternate being in communication with the fluid apertures 486 and 488 as the member 452 is orbited, thereby providing for sinusoidal variance between maximum pressure and maximum exhaust aperture phases of the valving cycle for each of the displacement chambers 472 successively and in synchronization with the orbiting of the member 452.
  • the progressive, phased valving of fluid pressure and exhaust to the displacement chambers 472 causes the teeth 453 of inner rotary element 450 to walk around the teeth and concavities 468 and 474) of the member 452, simultaneously imparting rotational movement to the inner element 456 and shaft 442 and orbital movement to the member 452. Since such orbital movement of member 452 is essential to the operation of a gerotor device, as well as to the precision control of valving, the eccentric assemblies 454 improve the efficiencies of the basic gerotor design by relieving a substantial amountof the stresses and friction that would otherwise exist between the element 450 and the member 452 in order for the former to guide the latter in an orbital path.
  • a' device of the class including fluid motors, pumps and certain activators, meters, couplers and the like, in which energy is translated from fluid to mechanical or from mechanical to fluid manifestations thereof, the combination of:
  • said further means providing said support for the member and said limitation of relative movements between the member and the respective elements without reliance upon mechanical forces transmitted through said tooth means and comprising a plurality greater than two of spaced eccentric crank means intercoupling said member and said one element.
  • crank means are parallel to and spaced away from the axis of relative rotation of said elements.
  • said fluid displacement means includes a plurality of shiftable vanes extending between said member and said one element to present a plurality of fluid chambers.
  • said fluid displacement means includes a plurality of radial ball pistons shiftably disposed in corresponding chambers in said member.
  • said fluid displacement means includes a plurality of hollow virtual pistons shiftably disposed in corresponding chambers relative to said one element and thereby relatively rotate said elements.
  • a low speed, high torque, internal transmission, fluid motor comprising:
  • an inner, machine element having a central axis and a generally annular, outwardly facing surface
  • an outer, machine element having a generally annular, inwardly facing surface of substantially greater diameter than said outwardly facing surface of said inner element
  • fluid displacement means operably coupling said member with said inner element at a plurality greater than two of zones spaced about the inner circumference of said member; means for successively actuating said fluid displacement means to shift said member relative to said inner element; a plurality of eccentric crank means in intercoupling said member with said inner element to prevent relative rotation therebetween and to limit said shifting movement of said member relative to said inner element to orbital motion; and epicyclic gear means, including a number of teeth on said inner surface of said outer element and a lesser number of cooperating teeth on the outer surface of said member, operably coupling said member with'said outer element for causing driven relative rotation between said inner and outer elements as said member is moved in said orbital path thereof.
  • said inner element is a non-rotating stator
  • said outer element is a rotatable rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)

Abstract

Improved fluid-mechanical and mechanical-fluid energy translation devices, such as fluid motors, pumps and certain actuators, meters, couplers and the like of the type having an orbital member disposed between a rotor element and a stator element and coupled with one of the elements by fluid displacement means and with the other element by gear means, are provided by employing therein a plurality of eccentric means for positively but shiftably mounting the member upon the element to which it is coupled by fluid displacement means in manner restricting relative motion between the member and the lastmentioned element to relative orbital motion. The element upon which the member is thus mounted may be either a rotor or a stator element and may be either the inner or the outer of the elements in various embodiments of devices incorporating the invention. The eccentric means, which are essentially cranks or shafts with offset axes, significantly are alone sufficient to accomplish the positive, shiftable mounting of the member and the restriction of same to relative orbital motion and to do so quite independently of any other fluid and mechanical couplings that may exist between the member and the elements in various particular forms of devices. The preferred embodiment also provides a further improvement in devices of this type employing vanes to define fluid displacement chambers by arranging the parts to maintain the pair of vanes bounding each chamber parallel to each other throughout the operating cycle, thereby maintaining the chordal transverse cross-sectional area of each chamber substantially constant throughout such cycle. The devices embodying the invention are characterized by increased efficiency and reliability, reduced wear on certain primary parts, and greater economy of manufacture by virtue of reduced strength and looser tolerance requirements in connection with certain primary parts.

Description

United States Patent 11 1 Kilmer Mar. 12, 1974 ENERGY TRANSLATION DEVICES [76] Inventor: John B. Kilmer, 900 S. 8th St.,
Lamar, Colo. 81052 [22] Filed: July 28, 1971 [21] Appl.'No.: 166,672
[52] U.S. Cl. 418/61 R, 418/61 B, 418/64, 418/67,91/491 [51] Int. Cl. F0lc l/02, F030 3/00, F040 1/02 [58] Field of Search 418/59, 61, 64, 67; 91/481, 491
[56] References Cited UNITED STATES PATENTS 448,607 3/1891 Gollings 418/61 3,613,510 10/1971 Chambers 91/481 I 2,989,951 6/1961 Charlson 418/61 3,443,378 5/1969 Monroe et a1. 418/61 2,423,507 7/1947 Lawton 418/64 FOREIGN PATENTS OR APPLICATIONS 980,766 l/l951 France 418/61 202,323 4/1939 Switzerland... 418/64 392,327 3/1924 Germany 418/61 Primary Examiner-Carlton R. Croyle Assistant Examiner-John .l. Vrablik Attorney, Agent, or Firm-Schmidt, Johnson, Hovey & Williams 57 ABSTRACT Improved fluid-mechanical and mechanical-fluid energy translation devices, such as fluid motors, pumps and certain actuators, meters, couplers and the like of the type having an orbital member disposed between a l, y I V rotor element and a stator element and coupled with one of the elements by fluid displacement means and with the other element by gear means, are provided by employing therein a plurality of eccentric means for positively but shiftably mounting the member upon the element to which it is coupled by fluid displacement means in manner restricting relative motion between the member and the last-mentioned element to relative orbital motion. The element upon which the member is thus mounted may be either a rotor or a stator element and may be either the inner or the outer of the elements in various embodiments of devices incorporating the inventionn The eccentric means, which are essentially cranks or shafts with offset axes, significantly are alone sufficient to accomplish the positive, shiftable mounting of the member and the restriction of same to relative orbital motion and to do so quite independently of any other fluid and mechanical couplings that may exist between the member and the elements in various particular forms of devices. The preferred embodiment also provides a further improvement in devices of this type employing vanes to define fluid displacement chambers by arranging the parts to maintain the pair of vanes bound ing each chamber parallel to each other throughout the operating cycle, thereby maintaining the chordal transverse cross-sectional area of each chamber substantially constant throughout such cycle. The devices embodying the invention are characterized by increased efficiency and reliability, reduced wear on I certain primary parts, and greater. economy of manufacture by virtue of reduced strength and looser tolerance requirements in connection with certain primary parts.
15 Claims, 15 Drawing Figures PAIENIEBHAR 12 1974 3.796" 525 sum 1 m 5 WW c mj gg- TORNE VS m n mum 12 m4 3, 796 525 sum 2 UPS NEYS.
m "EN 1 m John B. K 11/778! Pmmmnuma m4 3.796525 SHEET 1 [IF 5 INMEAWUR John B. Kllmer ,0 RNE YS.
r r 1 ENERGY TRANSLATION DEVICES This invention relates to energy translation devices and, more particularly, to that class of devices employed for translating energy in the fonn of fluid pressure into energy in the form of mechanical rotation or vice versa, which commonly include devices employable as fluid pressure driven motors or conversely as pumps, as well as certain devices employable as actuators, meters, couplers and the like. Still more specifi cally, the invention is concerned with improvements in such devices of the type having a pair of spaced-apart,
concentric, relatively rotatable machine elements and an orbital machine member disposed therebetween and operably coupled with one of the machine elements by fluid displacement means and with the other of the machine elements by mechanical coupling means typically in the form of what is commonly called epicyclic gearing.
Devices of the general class to which the invention pertains and which employ a pair of relatively rotatable machine elements in combination with an intermediate orbital machine member therebetween assume a variety of forms, suitable examples of which may be found in the following patents:
U.S, Pat. No. Title Patentee Granted 3,2l5,043 Hydraulic Torque M. J. Huber Nov. 2, 1965 Motors 3,391,608 Hydraulic Torque M. J. Huber July 9, [968 Motor 3,490,383 Hydraulic Pump Or J. T. Parrett Jan. 20, i970 Motor 3,5 16,765 Fluid Actuated Boyadjieff et June 23, 1970 Actuator al.
Although prior devices of the general class perform satisfactorily in many applications, they are typically subject to various limitations and disadvantages peculiar to the particular construction thereof, many of which appear to be attributableto the fact that the orbiting member is normally floated" between the inner and outer machine elements so that the device must depend upon the interfacing of epicyclic gear faces on one element and the orbital member to confine the latter to an orbital path of motion, as well as to produce the desired relative rotation between such element and the member. The mentioned conventional relationship between the orbiting member and the machine elements between which it is interposed, result in a necessity for constructing the epicyclic gear faces with substantially greater strengths and tighter tolerances than would be required if the epicyclic gear mechanism was not required to confine the orbiting member to its orbital path, as well as to produce relative rotation. Moreover, when the epicyclic gearing itself is employed to confine the orbiting member to its orbital path, the increased friction and strains, which can be very substantial in this class of device, result in undue wear and sometimes breakage to the epicyclic gearing structure.
The same factors have also been found to seriously limit the efficiency of operation that may be achieve ciency and reliability are increased, and in which wear upon the epicyclic gear structure is decreased.
It is another important object of the invention to provide such an improved device which can be manufactured more economically than conventional devices for comparable purposes by virtue of the lower strength factors and looser tolerances that may be employed particularly in connection with the epicyclic gear structure.
it is another important object of the invention to provide such improved devices in which the orbital machine member is positively but shiftably mounted upon one of the machine elements by means of a plurality of freely rotatable eccentric crank or shaft mechanisms which are operable, independently of any other fluid or mechanical coupling that may exist between the orbiting member and the machine elements, to support and confine the motion of the orbital member relative to the machine element upon which it is thus mounted to free orbital movement.
it is another important object of the invention to provide such improved devices in which any requirement for a 1:1 gear mesh between the orbiting member and a frame element, as required in many conventional devices in which the orbital member floats, is eliminated, and in which the epicyclic gear surface associated with the orbital member may be provided on the i outer circumference of the latter with resultant reduction of loads and stresses upon the teeth thereof.
Another important object of the invention is to provide such improved devices in which the orbital move ment of the orbital member may be employed to accomplish directly the valving employed to control the supplying and exhausting'of fluid from an annular series of displacement chambers on a progressively cy' cled basis.
Another important object of this invention is to provide such improved devices in which operating efficiency is improved by the employment of pairs of shiftable, displacement chamber bounding vanes extending between the orbital member and one of the machine elements and which remain parallel to each other throughout the operating cycle to maintain the chordal transverse cross-sectional area of each chamber substantially constant throughout such cycle, so that the rate of fluid fiow into and out of individual displacement chambers may be kept in phase with the areas of opening of input and exhaust valves which are controlled in sinusoidal fashion by the movement of the orbital member, as contrasted with conventional constructions in which the effective cross-sectional area of the chamber or piston is a function of the stroke position so that fluid flow is not precisely phased with valve operation.
Another important object of this invention is to provide such improvements for a wide variety of the class of devices mentioned, and particularly, to provide for positive mounting and confinement of the orbiting member to an orbital path by eccentric means operable independently of any other mechanical or fluid couplings in device constructions as diverse as vane defined fluid chamber devices, radial ball piston devices, hollow cylinder virtual piston devices, and gerotor devices.
Still other objects of the invention, including certain significant details of construction, will be made clear or become apparent to those skilled in the art from the accompanying drawings and the description of illustrative embodiments of the invention that follows:
In the accompanying drawings:
FIG. 1 is a perspective view of a currently preferred energy translation device embodying the invention;
FIG. 2 is a central cross-sectional view of FIG. 1 taken through the axis thereof;
FIG. 3 is a cross-sectional view taken on line 33 of FIG. 2;
FIG. 4 is a cross-sectional view taken on line 4-4 of FIG. 2;
FIG. 5 is a fragmentary, enlarged, cross-sectional view taken on line 5-5 of FIG. 3;
FIG. 6 is a fragmentary, enlarged, cross-sectional view taken on line 6-6 of FIG. 3;
FIG. 7 is a perspective view of one preferred embodiment of eccentric shaft employed in the device of FIG. 1;
FIG. 8 is a perspective view of one of the vanes employed in the device of FIG. 1;
FIG. 9 is a central cross-sectional view of another embodiment of energy translation device incorporating the invention taken on the axis of such device;
FIG. 10 is a cross-sectional view taken on line 1010 of FIG. 9;
FIG. 11 is a fragmentary, cross-sectional view taken on line 11-11 of FIG. 10;
FIG. 12 is a transverse cross-sectional view of another embodiment of energy translation device incorporating the invention; I
FIG. 13 is a central cross-sectional view of still another embodiment of energy translation device incorporating the invention taken through the axis thereof;
FIG. 14 is a cross-sectional view taken on line 14-14 of FIG. 13; and
FIG. 15 is a fragmentary, cross-sectional view taken on line 15-l5 of FIG. 13.
Referring first to FIGS. 1-8 inclusive, the preferred embodiment of the invention will be illustrated and described in connection with the device generally designated 20. The device broadly includes a manifold 22, a valve and bearing block 24, an outer hub element 26, an inner element 28, an orbiting ring member 30, an end plate 32 and a main shaft 34. The manifold 22, the block 24, the inner element 28', and the end plate 32 are all secured together as a unit by the main shaft 34 and by bolt means as at 36, with a spacer 38 being provided between the block 24 and the plate 32 around each bolt 36. The group of parts just mentioned are all also keyed to the main shaft 34 by a key as at 40. The axial dimension of spacers 38 and inner element 28 is slightly gerater than the axial dimension of orbiting member 30 to provide running clearance for the member 30 in fluid sealed relationship between block 24 and plate 32. For illustrative purposes, in a typical application of the device 20, the manifold 22, block 24, inner element 28, plate 32 and main shaft 34 may all be stationary and can be mounted on a base frame 42 of other equipment by means of bolts as at 44. The outer hub element 26 is rotatably mounted upon an end portion 46 of main shaft 34 by suitable ball bearing means as at 48, and a sleeve bearing support surface 50 is also provided between the hub element 26 and the block 24, a seal being effected between the hub 26 and block 24 by an O-ring as at 52. The extremity of hub 26 adjacent end portion 46 of the shaft 34 is preferably sealed by a removable cap 54 held in place by bolts as at 56, with an O-ring seal as at 58.
In the embodiment of device 20 chosen for illustration, it will be perceived that the outer hub element 26 is rotatable relative to the inner element 28, as well as the manifold 22, the block 24'and the plate 32, about the axis of the main shaft 34. Accordingly, the hub element 26 is provided with a plurality of threaded studs 60 extending therefrom to facilitate mechanical coupling of the hub element 26 with an external rotatable assembly.- When the device 20 is powered from a source of fluid under pressure, as hereinafter more fully described, the device 20 functions as a fluid-driven motor which is particularly adapted to low-speed, hightorque application, and it will be understood that the outer, rotatable hub element 26 is then rotationally driven by the action of device 20 so that the studs 60 would be employed to couple the hub to an external assembly to which such rotational power of the hub 26 is to be imparted. On the other hand, those skilled in the art will appreciate that the device 20 may alternatively be employed as a fluid pump, in which case the studs 60 will be used to couple the rotatable outer hub element 26 to a rotating, powered external assembly for rotationally driving the outer hub element 26 of the device 20. For convenience in describing the device 20, reference will initially be made to certain aspects of the construction and operation of the device 20 in the context of its application as a fluid driven motor.
Referring now particularly to FIG. 3, in conjunction with FIG- 2, it will be seen that the outer hub element 26 is provided on its innercircumference with a set of inwardly facing gear teeth 62 aligned with a set of outwardly facing gear teeth 64 on the outer surface of the generally ring-shaped orbiting member 30. The teeth 62 and 64 together present what is normally referred-to as an epicyclic gear transmission or coupling between the orbiting member 30 and the outer rotatable hub element 26, it being understood that there will be a lesser number of teeth 64 on the member 30 than there are teeth 62 on the element 26, but that the sets of teeth 62 and 64 are appropriately shaped for proper meshing as the member 30, which is of lesser outer diameter than the corresponding inner diameter of hub element 26, orbits within the latter. Thus, it will be perceived that, assuming the provision of some means for orbiting the member 30 while constraining the same against rotation, the teeth 64 will walk" with respect to the teeth 62 on hub element 26, thereby driving and imparting rotational movement to the latter.
The inner diameter of the orbiting member 30 is somewhat larger than the outer diameter of the inner element 28, presenting a space 66 therebetween. A plurality of fluid displacement chambers 68 are formed within the space 66 by pairs of vanes 70 and 72. As best shown in FIG. 8, each of the vanes 70 or 72 includes a pair of cylindrical end portions 74 and 76 interconnected by a web portion 78. The cylindrical portion 74 of each vane 70 or 72 is pivotally but captively received within a cylindrical slot 80 in the inner circumferential face of the orbiting member 30 while the opposite cylindrical end portion 76 is pivotally and slidably received within a corresponding elongated slot 82 formed in the outer circumferential surface of the inner member 28. Any number of three or more of the fluid displacement chambers 68 may be used, depending upon the size and intended application of the device 20, the
illustrated embodiment utilizing five of such chambers 68. it will be understood that, when fluid under pres sure is introduced into, a particular'chamber ss as hereinafter more fully described and as occurs during utilization of the device as a motor, the vanes '76 and 72 defining the lateral extent of such chamber will be urged apart to effect a sealing contact between the vane portions 74 and 76 and the corresponding surfaces of slots 8% and 82. With the chamber as thus sealed, as further fluid is introduced therein, the fluid pressure within such chamber 68 will force the adjacent portion of the orbiting member 39 away from the opposing surface of stationary inner element 28. While one chamber 68 is being supplied with fluid under pressure, the chamber or chambers 68 on the opposite side of the orbiting member 30 will be having fluid ex- I hausted therefrom, and such relationship is caused to progress circularly from each chamber 68 to an adjacent chamber 68 by the valving and control means hereinafter described. Accordingly, the fluid being continuously introduced into certain chambers 6h while being exhausted from other chambers 68 and the rotary progression of such relationships during the operating cycle exert forces upon the member Ell tending to make the latter move in an orbital path with respect to the axis of shaft 34 and the outer and inner elements 26 and 28 respectively. i
As will benoted from FIG, 3, the vanes 70 and 72 bounding the sides of each displacement chamber 68 are adapted to pivot within the slots 80 and to pivot and slide within the slots 82 as required to accommodate the orbital movement of the member 3i). As will be further significantly noted, however, the slots 80 and d2 are so juxtaposed that each pair of vanes 70 and 72 will be and always remain substantially parallel to each other regardless of the direction or degree in which both are pivoted to accommodate the orbital movement of the member 30. Since the other lateral faces of each chamber 68 are closed by the parallel surfaces 84 and 86 of bloclt 24 and plate 32, the parallelism of each vane 7i) with its associated vane 72 assures that the l chordal transverse cross-sectional area of the chamber 68 therebetween will remain substantially constant. This is in sharp contrast with the conventional practice of disposing all of the chamber defining vanes in this class of device essentially radially of the central axis of the device, which results in a nonlinear rate of change in the volume of the enclosed chamber with respect to the stroke or instantaneous positioning of the orbiting member at different times during the operating cycle. It has been found that maintaining the chordal trans verse cross-sectional area of the chambers 68 constant throughout the operating cycle substantially increases efficiency by maintaining fluid flow rates to and from the chambers 68 precisely in phase with the sinusoidal variance in valve opening areas conveniently provided by using the orbiting motion of the member 30 to open and close valve apertures, in the manner now to be described.
Referring now also to FIG. 4, the device 20 is provided with a pair of fluid ports 88 and 90 which may be an inlet port and an outlet port respectively. Ports 2% and 90 are adapted to be coupled with the pressure and return sides of an external source of hydraulic system oil or other suitable fluid pressure, when the device 2th is being used as a motor. In passing, it should be noted that the device 2b is reversible and that the directions of orbiting of the member B ll and rotation of the element as may be reversed merely by reversing the flow of fluid to and from the ports dad and dd. The port 88 communicates with 'an'irregular passage 92 within the manifold 22, which in turn communicates with a plurality of openings 93 each terminating in an elongated slot-like opening W? in the face of block 2d adjacent the member Ell, there being such an opening 94 for each of the chambersbh. Similarly, the port 9d communicates with an irregular passage 5% formed in the manifold 22, which in turn communicates with a plurality of openings 97, each terminating in an elongated slot-like opening 9% in the face of bloclr 2d adjacent the member 3i), it being noted that there is an opening 98 for each opening W and that they are arranged in parallel pairs corresponding to each of the chambers 68.
Referring now back to H68. 2 and 3, in conjunction with MG. 4, it will be seen that adjacent each chamber 68 the opposing faces of the orbiting member 30 are relieved or cutaway as at w ll and M2 to provide a fluid flow passage will-1102 communicating with the corresponding chamber ss and to provide hydraulic balancing of member Bill between bloclt 2d and plate 32. The pair of passage portions w ll for each chamber 68 communicate with each other through a relatively large circular opening 1104 through the orbiting member 30, which is also adapted to provide clearance for the bolts 36 and spacers 38 without engagement between the spacers 3b and the orbiting member 30. Thus, it will be seen that fluid may flow freely to or from each chamber 6b through the opposed neck passages M12 and the generally rectangular passages lllll that are intercommunicated by the corresponding opening MM. Since the fluid forces acting between member 3d and block 24 and between member 3% and plate 32 are balanced, member 3t) axially floats between block 24 and plate 32, although it is otherwise positively mounted for guidance in an orbital path as hereinafter described.
The openings 9d and 9d are indicated by dotted lines in FIG. 3 and wili be seen, with reference to the topmost chamber :68 of FIG. 3, to be spaced apart just sufficiently that the relieved passages lllltl may be positioned therebetween and in communication with neither when the orbiting member Ell is in a position at which the fluid connection to such chamber 68 is just being changed from a pressure to an exhaustion phase of the fluid cycling of such chambered. Referring to the chamber 68 located at approximately 2 ocloclr in FIG. 3, however, it will be seen that the fluid inlet opening 94 is fully aligned and communicating with the corresponding relieved passages lllll, while the associated exhaust opening 98 is completely out of communication with the passage Mill. The relieved passages 100 associated with the other chambers 68 are in differing progressive relationships with their associated inlet opening 4 and exhaust opening 98, so that as the member 30 moves orbitally with respect to the axis of shaft 34 the chambers as will each be successively subjected to first an input of fluid under pressure of flow rate increasing to maximum then waning to minimum, then reversing direction for exhausting fluid at a rate also increasing to maximum then waning to minimum before the commencement of the next input or pressure phase. The openings 94 and 9d are so disposed within the block 2d, with respect to the location of the passages ldll in the member Bill, that the mentioned progressive cycling of each chamber 6% through its fluid input and fluid exhaust phase will be controlled automatically by the orbiting of the member 30 with the areas of valve opening communication between the openings 94 and 98 and the passages MM), as well as the rates of flow of fluid therethrough, varying sinusoidally. It will also be noted that while the chambers 68 on one side of the member 30 are being subjected to pressure, those on the other side will be in their exhaust phase to enhance and maintain the orbital movement of the member 30.
With the structure thus far described, those skilled in the art will appreciate that, without the provision of further means for guiding and confining the member B ll to an orbital path, the teeth 62 and 64 would have to be formed to close tolerances to properly guide the member 30 and would also have to be of particularly sturdy construction in order to bear the substantial forces that would be imposed thereon, and that, even with such a construction, the friction and wear upon the teeth 62 and 64 wuld inevitably be substantial as is common in conventional devices; actually, since the bolts 36 and spacers 38 do not and are not intended to engage the inner surfaces of clearance openings 104, it will also be clear that the member 30 would tend to rotate as well as orbit with respect to the inner element 28 to an extent further complicating the problem or perhaps even rendering the apparatus inoperable. The objects of the invention are, therefore, attained in the device 20 by the provision of a plurality of three or more eccentric crank or shaft assemblies generally designated 106 (see particularly FIGS. 2, 3 and 7). Each eccentric assembly 106 may include a central cylindrical portion 108 journaled by needle bearings M within the orbiting member 30, and a pair of oppositely extending cylindrical portions 112 and 114 of smaller diameter than the portion 108 and having a central axis offset from the central axis of the portion 108. The eccentric end portions 112 and 114 are respectively journaled in the valving block 24 and the end plate 32 by needle bearings 116 and 118. In the preferred illustrative device 20, five of the assemblies 106 are utilized for convenience in spacing the same between the valving means associated with each of the five'chambers 68 employed in such device. It should be .noted, however, that any number greater than two of such assemblies 106 may be employed, although it is preferable to use a number of assemblies 106 that may be equally spaced around the member 30 without interference with the valving means associated with the particular number of equally spaced chambers 68 that are to be employed. The offset between the axis of the portions 1 l2 and 114 with respect to the axis of the portion 108 is so chosen as to permit exactly the range of orbital movement of the member 30 needed to bring the teeth 64 into proper walking mesh with the teeth 62 as the member 30 is orbited.
The assemblies 306 are found to add very little friction to the device and considerably less than that encountered where meshing gears must be relied upon to provide orbital guidance for the member 30. The assemblies 106 are operably sufficient, independently of any other structures or relationships in the device 26,
' to positively but freely and shiftably mount the member 30 upon the stationary portions of the device including the inner element 28 and to guide and confine the movement of the member 30 to a perfect orbital path with respect to the axis of the shaft 34. In so doing, it
will be apparent that the assemblies 106 increase efficiency, decrease wear and lower manufacturing costs by decreasing the material strengths and tolerances necessary in constructing various parts including particularly the epicyclic gear teeth 62 and 64.
The other constructional details of the device 20 are substantially conventional and may vary to a considerable extent as those skilled in the art will appreciate. For the sake of completeness, however, it is noted that the-embodiment of device 20 chosen for illustration is provided with a cavity 39 (see FIG. 6) for collecting fluid that may normally be expected to leak around the vanes and through the running clearances between the parts, which fluid may then be drained through a passage 1261 in the valving block for removal through a communicating drain port 122 provided in the manifold. it will also be noted that redundant fluid displacement chambers are formed as at 124 between the functional fluid displacement chambers 68, and provision for venting such redundant chambers 124 is made by passages 126 extending therefrom through the end plate into communication with the collection cavity 39, which avoids trapping or cavitation of fluid in the redundant chambers l24.
Although it is believed that the operation of the device 20 will be largely self-evident to those skilled in the art from the preceding description of the construction and relationship of the parts, it may be briefly summarized that, in operating the device as a fluid motor, fluid under pressure is supplied to the inlet port 88 for flow through the passage 92 and the openings 3 and 94 in the valving block 24 into whichever of the relieved passages ltlll in the member 30 are then in communication therewith, and thence through the corresponding neck passage 1102 into the corresponding fluid displacement chamber 68, the pressure within such chamber 68 exerting a force to move the member 30 radially outwardly from such chamber. Simultaneously fluid is being exhausted from the chambers 68 remote from those receiving a pressure input, with such fluid exhausting through the corresponding neck passages 102 and relieved passages through corresponding openings 955 and 97 in the valving block 24, thence into the passage 96 within the manifold 22 and to the external fluid return line coupled with exhaust port 90. As the chambers 68 are progressively filled and exhausted under the control of the valving communication alignment of the passages MM) with the openings 94 and 98 that occurs automatically upon orbital movement of the member 30, the latter is urged to orbit continually while being supported and confined to an orbital path by the eccentric assemblies M26. As the member 30 orbits, the teeth 64 upon the outer circumference of the member 36 walk around the teeth 62; on the inner circumferential surface of the hub 26 causing the latter to rotate with respect to the orbital member 30, the inner member 2.8 and the shaft 34. Rotational power is then derived from the device 20, operating as a motor, by suitable mechanical coupling with the rotating hub element 26. As previously noted, the device 20 lends itself well to applications requiring a reversible motor, in that, all that is required for reversing the direction of rotation of the hub 26 is to reverse the flow of fluid with resepct to the fluid ports 88 and 90.
if it is desired to utilize the device 20 as a pump, the operation is essentially the same, except that mechanical rotative power is applied to the hub element 26 to turn the latter, which causes the member 30 to orbit under constraint of the eccentric assemblies 106, by virtue of the walking relationship between the epicyclic gear teeth 62 and 64. As the member 36 is thus moved in an orbital path, the individual chambers 68 are progressively placed in a fluid suction or fluid exhausting condition such that fluid may be pumped from an external line through the inlet port 88, thence through the fluid paths already traced but in the opposite direction, for delivery to an output line coupled with the port 90, the pumping action of the device 20 again being reversible, if desired, merely by reversing the direction of rotation in which the hub 26 is driven. Although the device 20 illustrated in FIGS. 1-8 and described in connection therewith is the currently preferred embodiment of the invention, it should be appreciated that the improvements incorporated by the invention into the illustrated device 20 would be equally applicable and effective with devices employing various modifications of construction or operation as, for example, utilization of the device 20 in a manner in whichthe hub element 26 is held stationary and motor power derived from or pumping power applied to the shaft 34 having parts 22, 24, 28 and 32 keyed thereto for rotation therewith, or a modified construction of the device 20 in which the chambers 68 are provided between the hub element 26 and the orbital member 30 with the epicyclic gear coupling being between the inner circumference of the member 30 and the outer circumference of element 28 and/or especially modifications of the device 20 employing differing numbers of chambers 68 and/or eccentric assemblies 106 than illustrated in the preferred embodiment, (it being noted also that the number of chambers 68 and the number of eccentric assemblies 106 need not be equal, although the illustrated construction is found to be convenient).
' Turning attention now to the remaining embodiments illustrated in the drawings, it should first be observed that such additional embodiments are shown and described for two reasons. Firstly, such additional embodiments indicate the wide applicability of the improvements contemplated by the invention, and particularly the employment of eccentric crank or shaft mechanisms for mounting the orbiting member upon one of the other machine elements with respect to which it is to be supported and guided in an orbital path of travel, in connection with the great variety of basic constructions that are common to devices in this field.
Actually, such additional embodiments are intended to either the stator or the rotor machine elements, and to devices in which the intermediate orbiting member is coupled by fluid displacement means to either the inner or the outer machine elements or to both. Secondly, the remaining embodiments are intended to illustrate constructions in which the principles of the invention may be applied to present what essentially constitute principles, structures and relationships of the invention.
into the overall combinations of elements produces devices of a new order of improved efficiency, economy and reliability. However, since the principles and constructions of the remaining embodiments are essentially similar to those of the preferred embodiment of FIGS. l-% with respect to the constructions involved in introducing the positive eccentric mounting means for confining the-intermediate member to an orbital path and with respect to such features as the automatic control of valving, the provision of suitable fluid passages within the device structure, etc., and since the implementation of such principles and features should be now largely self evident to those skilled in the art from the preceding description of the preferred embodi ment, the remaining embodiments have been shown and will be described only in such detail as would appear necessary to indicate to those skilled in the art the differences between such additional embodiments and the preferred embodiment already described in detail.
Thus, referring next to the embodiment of FIGS. 9-11, the device is generally designated 220 and will be recognized as involving the application of the invention towhat is essentially a radial ball piston type energy translation device. The device 220 is also chosen, in contrast with the preferred embodiment of FIGS. 1-8, to illustrate employment of the invention in an energy translation machine in which the outer machine element comprises the stator, while the inner machine element serves as the rotor, and in which the intermediate orbiting member is supported and mounted upon the rotatable inner element. 1 i
In the device 220, an outer, stationary, cylindrical housing is presented by a pair of cylindrical frame members 222 and 22 i, spacer rings 226 and 228 and an outer ring gear element 230 all secured together as by bolt means 232. A rotatable shaft 234 is supported within the frame members 222 and 224 by roller bearings 236 and 238, along with a thrust washer 240 and a snap ring axial retainer 242. An inner machine element, rotatable with the shaft 234' is presented by and includes a pair of cylindrical side plates 244 and 246 respectively keyed to the shaft 234 as at 248 and 250. The intermediate orbiting member 252 is generally annular and is disposed in the space between the shaft 234 and the outer, stationary gear element 230. The intermediate orbiting member 252 is mounted upon the inner rotatable machine element and confined to an orbital path of travel with respect to the latter by a plurality of eccentric crank or shaft assemblies 254 each having a central portion 256 journaled in the member by roller bearings 258 and a pair of offset cylindrical end portions 260 and 262 of greater diameter and eccen tricly journaled respectively in plates 24-4 and 246 by roller bearings 264- and 266. Although, again, the employment of five eccentric assemblies 254 is shown for convenience of illustration, the number of eccentric assemblies 254 to be employed may be any number larger than two. Also, and as is equally applicable to the ec centric assembly l06illustrated in connection with the embodiment of FIGS. 1-8, the eccentric assemblies 254 may assume various configurations with respect to constructional detail as long as the necessary crank action and positive mounting relationship required to achieve the purposes of the invention are maintained;
thus, the assembly 254 might employ separate eccentric crank shafts interfacing between the member 252 and the plates 244 and 246 respectively, or a set of single-ended crank shafts mounting the member 252 upon only one of the plates 244 and 246 could be used, etc.
The orbiting member 252 is provided with a plurality equal to three or more of radially extending cylinder bores 268, each of which is open at its inner end and is closed at its outer end by a circumferential portion of the member 252 preferably constructed as an initial separate annular band 270 which may conveniently be fitted and secured upon the remainder of the member 252 after machining of the bores 268. The outer band portion 270 of member 252 also carries thereon an inner set of outwardly facing gear teeth 272 adapted to mesh with an outer, interfacing set of gear teeth 274 on the inner surface of the outer element 230, and which together present an epicyclic gear transmission coupling between the outer element 230 and the orbiting member 252. Thus, the band 270 serves both as a cylinder head to the cylinder bores 268 and as the inner portion of the epicyclic gear transmission 272-274.
A free floating ball piston 267 is provided within each of the cylinder bores 268 and adapted to roll axially of the latter as the member 252 orbits in a manner hereinafter described. A ball race 278 having an annular groove 280 therein is secured to the shaft 234 for rotation therewith, which provides a support for the balls 276. A fluid displacement chamber 282 is thus presented within each cylinder bore 268 between the cylinder head band 270 and the ball piston 276.
. Fluid flow ports 284 and 286 are provided in the end plates 222 and 224 respectively. Port 284 is communicated with an annular ring passage 288 formed in the plate 222, which in turn communicates with a set of slots 290 formed through the plate 226. Similarly port 286 communicates with an annular passage 282, in turn communicating with a plurality of slots 294 in the plate 228, it being understood that there is a slot 290 and a slot 294 for each of the displacement chambers 282, that the slots 290 may serve as fluid inlet apertures while the slots 294 serve as fluid exhaust apertures, or vice versa depending 'upon the external couplings that are made to the fluid ports 284 and 286. Each chamber 282 is provided with a pair of opposed valving openings 296 and 298 extending from the cylinder bore 268 in opposite directions through the orbiting member 252 and disposed for valving communication with the fluid apertures 290 and 294 as the member 252 is orbited. The orientation of both the apertures 299 and 294 are indicated in dotted lines in FIG. 10, merely to show positional relationships to the valving openings 296 or 298, as the case may be, during orbiting of the member 252, it being understood that the automatic valving action is substantially the same as described in detail in connection with the embodiment of FIGS. 1-3. From this, it will be understood that the chambers 282 are progressively subjected to fluid pressure and exhaust cycling in successive progression, so that the forces in the various individual chambers 282 will cause the member 282 to orbit upon the eccentric assemblies 254 with respect to the inner machine element 244-246 and the axis of shaft 234 upon which the element 244-246 is mounted and keyed. As the member 252 thus orbits, the teeth 272 will walk around the teeth 274 of outer machine element 230, which is stationary, so that the member 252 will rotate as well as orbit with respect to the outer machine element 230 and, in turn,
will impart rotational movement and energy to the inner machine element 244-246 and the shaft 234, when the device 220 is being employed as a motor, as is for the moment assumed. The direction of rotation of the orbiting member 252, the inner machine element 244-246 and the shaft 234 may be reversed merely by reversing the pressure and exhaust couplings to ports 284 and 286. Those skilled in the art will further appreciate that the device 220 may also be employed as a pump by applying rotative power to the shaft 234, which will rotate the inner. element 244-246 and the member 252, whereupon the member 252 will be orbited as well as rotated by virtue of the eccentric assemblies 254 as the teeth 272 walk around the teeth 274. Since the ball pistons 276 are effectively sealing the inner extremities of the bores 268, and since the volumes of chambers 282 are progressively changing as the member 252 orbits, and since the apertures 290 and 294 are automatically being progressively and alternately aligned with the valving openings296 and 298, the device 220 will efficiently perform a fluid pumping operation drawing fluid into the port 284 and discharging the same from port 286, or vice versa depending upon the direction in which the shaft 234 is driven.
The embodiment of HG. 12 is similar in all essential respects to the embodiment of FIGS. 9-11, and particuarly so with respect to the eccentric mounting of the intermediate orbital member, the automatic valving arrangement, the provision of fluid passages and other miscellaneous details of construction, except that the embodiment of FIG. 12 will illustrate for those skilled in the art the application of the invention to a device 320 in which the radial ball pistons 276 of the embodiment of FIGS. 9-11 are replaced by hollow cylindrical virtual pistons 376, and the inner ball race 278 is replaced by a polygonal support block 378. Thus, it will be understood that in the device 320, the rotatable shaft 334 carries thereon the polygonal block 378, which is provided with a flat surface 302 for each of the hollow cylindrical pistons 376. The pistons 376 are slidably mounted within cylindrical cylinder bores 368 formed in the orbiting member 352. The orbiting member 352 is again mounted for rotational movement with and orbital movement with respect to an inner machine element 344 by eccentric assembly 354 similar to those previously described. Each piston 376 is normally urged toward the corresponding surface 302 of the block 373 by a spring 304. It will be understood that an epicyclic gear coupling is provided in the manner previously described between the outer circumference of the-orbiting member 352 and an outer machine element 330.
In operation, the device 320 functions in all respects similarly to the operation described for the embodiment of FIGS. 9-11., except that, as the member 352 orbits relative to the inner machine element 344 and the block 378, which are both secured to the shaft 334, the hollow pistons 376 merely provided a seal between the cylinder bores 368 and the surfaces 302 of block 378, so that the chambers 382 presented by the bores 368 and hollow pistons 376 progressively change in volume due to the virtual piston effect as the member 352 is orbited. Those skilled in the art will understand that various modifications could be made in the device 320, such as providing cylinder chambers 368 and pistons 376 of other than cylindrical cross section and that the device 320 may be operated in either direction or in either a motor or a pumping application, without-departing from the principles of the invention, the vital improvement of the device 320 as compared with prior art concepts stemming from the provision of the eccentric assemblies 354 for positively mounting and confining the orbital member 352 to orbital motion with respect to the machine element 344, along with the precise valving thus permitted and the advantages thereby attained in accordance with the objects of the invention. I
The embodiment of device 430 illustrated in FIGS. 13 l is intended to illustrate the application of the invention to an energy transmission device of the type generally known to those skilled in the art as a gerotor. The device 430 employes as its outer machine element, which for illustration may be assumed to be the stationary element thereof, a pair of side plates for 432 and 434 separated by an annular spacer 436, together with a manifold plate 438 facing the end plate 434, and all suitably secured together by bolts 440. A rotatable main shaft 442 is carried by bearings 444 and 446 in the end plates 432 and 434 respectively. The inner machine element, which is rotatable with the shaft 442 and keyed thereto as at 448 is provided with an inner gerotor gear element 450 having external teeth 453 thereon.
An orbiting stator member 452 is mounted upon and confined to orbital movement with respect to the end plates 432 and 434 by a plurality of eccentric crank or shaft assemblies 454, each of which includes a central cylindrical portion 456 journaled in the member 452 by bearings 458 and a pair of cylindrical end portions 460 and 462 respectively journaled in end plates 432 and 434 by bearings 464 and 466.
As best seen in FIG. 14, the orbital member 452 is provided with alternate teeth portions 468 and concavities 47 0 configured to slidingly mate with the teeth 453 of the inner gerotor element 450. As those skilled in the art will recognize there are one more outer teeth 468 and concavities 470 than there are inner teeth 453, presenting the conventional gerotor relationship in which the teeth 453 walk around" the teeth 468 and concavities 470 to provide not only an epicyclic trans mission arrangement but also a relationship presenting a successive series of fluid displacement chambers 472 between the element 450 and the member 452 at each successive stage of the walking movement between the teeth 453 and 468. It will also be understood that the relationship between the teeth 453 and the teeth468 and concavities 470 also is capable of imparting orbital movement to the member 452 when the latter is freely floating, but only with considerable wear upon the teeth 453 and 468 and stringent constructional strength requirements when the member 452 is guided in its ori bital movement only by the relationships mentioned.
In the device 430 contemplated by this invention however, the provision of the eccentric assemblies 454 positively and orbitally mounting the member 452 on the outer element 432 434 greatly relieves the forces and strains upon the teeth 453 and 468 and permits the latter to be constructed and employed with only those strengths and tolerances required for the epicyclic gear relationship and the progressive displacement chamber creating function characterizing the gerotor design.
The manifold plate 438 is provided with fluid pressure and exhaust ports 474 and 476 which communicate respectively with annular ring passages 478 and- 486 formed in the end plate 434. The passage 480 communicates with a plurality of radial passages 482 in the end plate 434, each of which then communicates with an axial passage 464 through the plate 434 terminated in a fluid aperture 436 in the face of end plate 434 adjacent the member 452. The annular passage 478 is similarly communicated through the plate 434 with a plurality of fluid apertures 488 in the face of the plate 434 adjacent the member 452, there being a pair of fluid apertures 436 and 438 provided for each of the concavities 474 in the member 452.
A valving groove 4% is relieved or cut away in the member 472 for each of the concavities 470 to provide fluid communication with the displacement chambers 472 successively presented within the concavities 470 as the member 452 is orbited. As will be clear from FIG. 14, the valving grooves 490 automatically and progressively alternate being in communication with the fluid apertures 486 and 488 as the member 452 is orbited, thereby providing for sinusoidal variance between maximum pressure and maximum exhaust aperture phases of the valving cycle for each of the displacement chambers 472 successively and in synchronization with the orbiting of the member 452.
in the operation of the device 430 as a motor, the progressive, phased valving of fluid pressure and exhaust to the displacement chambers 472 causes the teeth 453 of inner rotary element 450 to walk around the teeth and concavities 468 and 474) of the member 452, simultaneously imparting rotational movement to the inner element 456 and shaft 442 and orbital movement to the member 452. Since such orbital movement of member 452 is essential to the operation of a gerotor device, as well as to the precision control of valving, the eccentric assemblies 454 improve the efficiencies of the basic gerotor design by relieving a substantial amountof the stresses and friction that would otherwise exist between the element 450 and the member 452 in order for the former to guide the latter in an orbital path. it will be understood, of course, that the direction of rotation of the shaft 442 may be reversed by reversing the pressure and exhaust couplings to the ports 474 and 476; that the device 430 may be employed as a pump by applying rotational power to the shaft 442 rather than fluid pressure differentials to the ports 474 and 476; and that various other consturctional and operational modfications could be employed without sacrificing the advantages accruing from incorporation of the invention, including the eccentric assemblies 454, into a device of a gerotor type.
From the illustrative embodiments of energy translation devices embodying the principles of the inventions that have been hereinbefore shown and described, it should be apparent, first, that the invention is well suited to accomplishing the objects and advantages mentioned above, secondly, that the invention is advantageously applicable in a wide variety of fluid motors, pumps, and the like, and, thirdly, that various minor modifications and changes could be made from the embodiments chosen for illustrative purposes without departing from the true spirit or substance of the invention. Accordingly, it should be understood that the invention is intended to be limited only by the fair scope of the claims that follow.
I claim:
1. In a' device of the class including fluid motors, pumps and certain activators, meters, couplers and the like, in which energy is translated from fluid to mechanical or from mechanical to fluid manifestations thereof, the combination of:
a pair of elements, said elements being relatively movable with respect to each other; means for supporting said elements for relative rotational movement therebetween; a member, said member being relatively movable with respect to each of said elements respectively; fluid displacement means operably coupling said member with one of said elements at a plurality greater than two of zones of said member; mechanical means operably coupling said member with the other of said elements, said mechanical means providing an internal transmission within the device between said member and said other element and comprising interengaging epicyclic gear means having cooperating tooth means on said member and said other element respectively, said tooth means on said member having a lesser number of teeth than said tooth means on said other element to provide a mechanical gear reduction ratio between said member and said other element; and v further means, separate from and'operably sufficient independently of said displacement means and said mechanical means, for supporting said member for predetermined relative movements between said member and each of said elements respectively and for limiting said predetermined movements to relative orbital movement between said member and said one element and to relative orbital and rotational movements between said member and said other element,
said further means providing said support for the member and said limitation of relative movements between the member and the respective elements without reliance upon mechanical forces transmitted through said tooth means and comprising a plurality greater than two of spaced eccentric crank means intercoupling said member and said one element.
2. The invention of claim 1, wherein the rotational axes of said crank means are parallel to and spaced away from the axis of relative rotation of said elements.
3. The invention of claim 1, wherein said one element is a non-rotating stator, and said other element is a rotatable rotor.
4. The invention of claim 1, wherein said one element is a rotatable rotor, and said other element is a nonrotating stator.
5. The invention of claim 1, wherein said fluid displacement means includes a plurality of shiftable vanes extending between said member and said one element to present a plurality of fluid chambers.
- 6. The invention of claim 1, wherein said fluid displacement means includes a plurality of radial ball pistons shiftably disposed in corresponding chambers in said member.
7. The invention of claim 1, wherein said fluid displacement means includes a plurality of hollow virtual pistons shiftably disposed in corresponding chambers relative to said one element and thereby relatively rotate said elements.
9. The invention of claim 1, wherein said elements are concentric about their axis of relative rotation and are spaced apart radially of said axis; and said member is generally annular and disposed in the space between said elements. I
10. The invention of claim 9, wherein said one element is the inner of said elements, and said other element is the outer of said elements and in spaced circumscribing relationship to said one element.
11. The invention of claim 10, wherein said one element is a non-rotating stator, and said other element is a rotatable rotor.
12. The invention of claim 10, wherein said one element is a rotatable rotor, and said other element is a non-rotating stator.
13. A low speed, high torque, internal transmission, fluid motor comprising:
an inner, machine element having a central axis and a generally annular, outwardly facing surface;
an outer, machine element having a generally annular, inwardly facing surface of substantially greater diameter than said outwardly facing surface of said inner element;
means for supporting said elements for relative rotation about said axis with said inwardly facing surface of said outer element concentric to said axis of said inner element and in spaced apart, circumscribing relationship to said outwardly facing surface of said inner element to present a generally annular space between said elements;
an intermediate, generally annular, machine member shiftably disposed in said space between said surfaces of said inner and outer elements;
fluid displacement means operably coupling said member with said inner element at a plurality greater than two of zones spaced about the inner circumference of said member; means for successively actuating said fluid displacement means to shift said member relative to said inner element; a plurality of eccentric crank means in intercoupling said member with said inner element to prevent relative rotation therebetween and to limit said shifting movement of said member relative to said inner element to orbital motion; and epicyclic gear means, including a number of teeth on said inner surface of said outer element and a lesser number of cooperating teeth on the outer surface of said member, operably coupling said member with'said outer element for causing driven relative rotation between said inner and outer elements as said member is moved in said orbital path thereof. 14. The invention of claim 13, wherein said inner element is a non-rotating stator, and said outer element is a rotatable rotor.
15. The invention of claim 13, wherein said inner element is a rotatable rotor, and said outer element is a non-rotating stator.

Claims (15)

1. In a device of the class including fluid motors, pumps and certain activators, meters, couplers and the like, in which energy is translated from fluid to mechanical or from mechanical to fluid manifestations thereof, the combination of: a pair of elements, said elements being relatively movable with respect to each other; means for supporting said elements for relative rotational movement therebetween; a member, said member being relatively movable with respect to each of said elements respectively; fluid displacement means operably coupling said member with one of said elements aT a plurality greater than two of zones of said member; mechanical means operably coupling said member with the other of said elements, said mechanical means providing an internal transmission within the device between said member and said other element and comprising interengaging epicyclic gear means having cooperating tooth means on said member and said other element respectively, said tooth means on said member having a lesser number of teeth than said tooth means on said other element to provide a mechanical gear reduction ratio between said member and said other element; and further means, separate from and operably sufficient independently of said displacement means and said mechanical means, for supporting said member for predetermined relative movements between said member and each of said elements respectively and for limiting said predetermined movements to relative orbital movement between said member and said one element and to relative orbital and rotational movements between said member and said other element, said further means providing said support for the member and said limitation of relative movements between the member and the respective elements without reliance upon mechanical forces transmitted through said tooth means and comprising a plurality greater than two of spaced eccentric crank means intercoupling said member and said one element.
2. The invention of claim 1, wherein the rotational axes of said crank means are parallel to and spaced away from the axis of relative rotation of said elements.
3. The invention of claim 1, wherein said one element is a non-rotating stator, and said other element is a rotatable rotor.
4. The invention of claim 1, wherein said one element is a rotatable rotor, and said other element is a non-rotating stator.
5. The invention of claim 1, wherein said fluid displacement means includes a plurality of shiftable vanes extending between said member and said one element to present a plurality of fluid chambers.
6. The invention of claim 1, wherein said fluid displacement means includes a plurality of radial ball pistons shiftably disposed in corresponding chambers in said member.
7. The invention of claim 1, wherein said fluid displacement means includes a plurality of hollow virtual pistons shiftably disposed in corresponding chambers in said member.
8. The invention of claim 1, wherein is provided means for successively activating said fluid displacement means with pressurized fluid to shift said member relative to said one element and thereby relatively rotate said elements.
9. The invention of claim 1, wherein said elements are concentric about their axis of relative rotation and are spaced apart radially of said axis; and said member is generally annular and disposed in the space between said elements.
10. The invention of claim 9, wherein said one element is the inner of said elements, and said other element is the outer of said elements and in spaced circumscribing relationship to said one element.
11. The invention of claim 10, wherein said one element is a non-rotating stator, and said other element is a rotatable rotor.
12. The invention of claim 10, wherein said one element is a rotatable rotor, and said other element is a non-rotating stator.
13. A low speed, high torque, internal transmission, fluid motor comprising: an inner, machine element having a central axis and a generally annular, outwardly facing surface; an outer, machine element having a generally annular, inwardly facing surface of substantially greater diameter than said outwardly facing surface of said inner element; means for supporting said elements for relative rotation about said axis with said inwardly facing surface of said outer element concentric to said axis of said inner element and in spaced apart, circumscribing relationship to said outwardly facing surface of said inner element to present a generally annular space between said elements; an intermediate, genErally annular, machine member shiftably disposed in said space between said surfaces of said inner and outer elements; fluid displacement means operably coupling said member with said inner element at a plurality greater than two of zones spaced about the inner circumference of said member; means for successively actuating said fluid displacement means to shift said member relative to said inner element; a plurality of eccentric crank means in intercoupling said member with said inner element to prevent relative rotation therebetween and to limit said shifting movement of said member relative to said inner element to orbital motion; and epicyclic gear means, including a number of teeth on said inner surface of said outer element and a lesser number of cooperating teeth on the outer surface of said member, operably coupling said member with said outer element for causing driven relative rotation between said inner and outer elements as said member is moved in said orbital path thereof.
14. The invention of claim 13, wherein said inner element is a non-rotating stator, and said outer element is a rotatable rotor.
15. The invention of claim 13, wherein said inner element is a rotatable rotor, and said outer element is a non-rotating stator.
US00166672A 1971-07-28 1971-07-28 Energy translation devices Expired - Lifetime US3796525A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16667271A 1971-07-28 1971-07-28

Publications (1)

Publication Number Publication Date
US3796525A true US3796525A (en) 1974-03-12

Family

ID=22604249

Family Applications (1)

Application Number Title Priority Date Filing Date
US00166672A Expired - Lifetime US3796525A (en) 1971-07-28 1971-07-28 Energy translation devices

Country Status (1)

Country Link
US (1) US3796525A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068560A (en) * 1975-08-30 1978-01-17 Lucas Industries Limited Fluid-powered stepping motor
US4411606A (en) * 1980-12-15 1983-10-25 Trw, Inc. Gerotor gear set device with integral rotor and commutator
US4411190A (en) * 1981-05-07 1983-10-25 Kilmer John B Energy translation device having individually compensated sliding valves and counterbalancing mechanism
US4498032A (en) * 1982-07-12 1985-02-05 The Boeing Company High torque digital stepping motor and control
US4503751A (en) * 1982-07-12 1985-03-12 The Boeing Company Digital fluid stepping motor
US6575719B2 (en) 2000-07-27 2003-06-10 David B. Manner Planetary rotary machine using apertures, volutes and continuous carbon fiber reinforced peek seals
US20040211615A1 (en) * 2001-10-17 2004-10-28 Oxley Lonnie R. Variable flow control devices, related applications, and related methods
US20060191360A1 (en) * 2003-11-08 2006-08-31 Gunther Beez Oscillating slide machine
US20090301436A1 (en) * 2006-04-29 2009-12-10 Autoairdrives Ltd. Engines

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US448607A (en) * 1891-03-17 Rotary engine
DE392327C (en) * 1921-07-21 1924-03-22 David James Piston drive device for capsule pumps or compressors
CH202323A (en) * 1937-03-06 1939-01-15 A G Tuda Rotary piston engine.
US2423507A (en) * 1941-10-11 1947-07-08 S N Van Wert Planetary piston pump
FR980766A (en) * 1943-02-26 1951-05-17 Oscillating Allergies Pump
US2989951A (en) * 1959-04-29 1961-06-27 Germane Corp Rotary fluid pressure device
US3443378A (en) * 1967-04-04 1969-05-13 Trw Inc Hydrostatic single unit steering system
US3613510A (en) * 1970-04-17 1971-10-19 Hydranautics Fluid pressure apparatus with orbiting oscillator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US448607A (en) * 1891-03-17 Rotary engine
DE392327C (en) * 1921-07-21 1924-03-22 David James Piston drive device for capsule pumps or compressors
CH202323A (en) * 1937-03-06 1939-01-15 A G Tuda Rotary piston engine.
US2423507A (en) * 1941-10-11 1947-07-08 S N Van Wert Planetary piston pump
FR980766A (en) * 1943-02-26 1951-05-17 Oscillating Allergies Pump
US2989951A (en) * 1959-04-29 1961-06-27 Germane Corp Rotary fluid pressure device
US3443378A (en) * 1967-04-04 1969-05-13 Trw Inc Hydrostatic single unit steering system
US3613510A (en) * 1970-04-17 1971-10-19 Hydranautics Fluid pressure apparatus with orbiting oscillator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068560A (en) * 1975-08-30 1978-01-17 Lucas Industries Limited Fluid-powered stepping motor
US4411606A (en) * 1980-12-15 1983-10-25 Trw, Inc. Gerotor gear set device with integral rotor and commutator
US4411190A (en) * 1981-05-07 1983-10-25 Kilmer John B Energy translation device having individually compensated sliding valves and counterbalancing mechanism
US4498032A (en) * 1982-07-12 1985-02-05 The Boeing Company High torque digital stepping motor and control
US4503751A (en) * 1982-07-12 1985-03-12 The Boeing Company Digital fluid stepping motor
US6575719B2 (en) 2000-07-27 2003-06-10 David B. Manner Planetary rotary machine using apertures, volutes and continuous carbon fiber reinforced peek seals
US20040211615A1 (en) * 2001-10-17 2004-10-28 Oxley Lonnie R. Variable flow control devices, related applications, and related methods
US7216579B2 (en) * 2001-10-17 2007-05-15 Lonmore, L.C. Variable flow control devices, related applications, and related methods
US20060191360A1 (en) * 2003-11-08 2006-08-31 Gunther Beez Oscillating slide machine
US7438543B2 (en) * 2003-11-08 2008-10-21 Beez Guenther Oscillating slide machine
US20090301436A1 (en) * 2006-04-29 2009-12-10 Autoairdrives Ltd. Engines

Similar Documents

Publication Publication Date Title
US3905727A (en) Gerotor type fluid motor, pump or the like
EP0213154B1 (en) Rotary motion fluid apparatus
US3557661A (en) Fluid motor
US3289542A (en) Hydraulic motor or pump
US3490383A (en) Hydraulic pump or motor
US3687578A (en) Hydraulic pump motor
US3833317A (en) Rotary gear motor/pump having hydrostatic bearing means
US3175510A (en) Variable displacement pump
US3216362A (en) Flexible ring pump drive device
US3654761A (en) Fluid handling device with radially variable working chambers
US3435774A (en) Hydraulic pump or motor
US3270681A (en) Rotary fluid pressure device
US3796525A (en) Energy translation devices
US3547565A (en) Rotary device
US3597128A (en) Hydraulic device having hydraulically balanced commutation
US3892503A (en) Apparatus and method for multiple mode motor
US3910732A (en) Gerotor pump or motor
US3901630A (en) Fluid motor, pump or the like having inner and outer fluid displacement means
US2694978A (en) Rotary power device of the rotary abutment type
US2492688A (en) Hydraulic power unit
US3626981A (en) Rotary slide valve
US4484870A (en) Planetary hydraulic motor with irregularly arranged valving parts
US4917585A (en) Gerotor motor or pump having sealing rings in commutator members
US3456559A (en) Rotary device
US3211107A (en) Hydraulic pump or motor