US3755203A - Detergent slurry compositions - Google Patents
Detergent slurry compositions Download PDFInfo
- Publication number
- US3755203A US3755203A US00138606A US3755203DA US3755203A US 3755203 A US3755203 A US 3755203A US 00138606 A US00138606 A US 00138606A US 3755203D A US3755203D A US 3755203DA US 3755203 A US3755203 A US 3755203A
- Authority
- US
- United States
- Prior art keywords
- slurry
- sodium
- sulfonated
- olefins
- alpha
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/143—Sulfonic acid esters
Definitions
- This invention relates to a method for reducing the viscosity of detergent slurries containing alpha-olefin sulfonates by means of using sulfonated vinylideneolefins.
- This invention further relates to compositions of detergent slurries containing sulfonated alphaolefins and sulfonated vinylidene olefins.
- the detergent slurry composition also known as a crutcher slurry, contains in addition to wash-active components detergent builders or other additives which are typically employed as detergent aids.
- detergent builders or other additives which are typically employed as detergent aids.
- the use of additives and the like to improve the overall performance or aesthetic appeal of the formulations is widely employed.
- spray drying is, of course, an old art and is typically disclosed in U. S. Pat. No. l,652,900.
- crutcher slurry it is advantageous from a productivity standpoint to have as high a solids content in the crutcher slurry as can be feasibly handled. A few percent increase in the solids level of the slurry adds up toa significant monetary savings in the overall process of producing spray dried detergents.
- the crutcher slurry at the very least must be a pumpable mixture. It is generally preferred by the industry that crutcher slurries prepared for spray drying have a viscosity of about 40,000 cps. or below.
- alpha-olefin sulfonates comprising from about eight to 24 carbon atoms per molecule, especially those comprising from about 12 to 22 carbon atoms per molecule, are enjoying wide acceptance as detergent ingredients because of their biodegradability and detergent effectiveness.
- FIGURE is a graphic illustration representative of the synergistic effects obtained according to our invention as explained in Example I which follows.
- the detergent slurry composition consists of about 50 to about wt. solids, the remainder being 7 water, the solids portion of the slurry contains about 5 to 45 wt. preferablylO to 25 wt. of active ingredient, i.e., wash'active materials and 95 to 55 wt. preferably 90 to wt. detergent builders or other additives.
- the active ingredient portion in accordance with this invention, comprises about 25 to 75 wt. preferably about 30 to 70 wt. sulfonated alpha-olefins and about 75 to 25 wt. preferably 70 to 30 wt. sulfonated vinylidene-olefins. In the most preferred embodiment, the active ingredient portion comprises greater than 50 wt.
- the active ingredient portion of the built detergent slurry can include additional wash-active materials if desired such as anionic or nonionic surface-active wash-active materials in addition to the sulfonated 'alpha-olefins and the sulfonated vinylidene-olefins.
- crutcher slurries formulated according to this invention are particularly suitable for the incorporation of other wash-active materials and additives customarily employed in making washing and cleansing agents.
- compositions of this invention thus comprise a crutcher slurry containing about 50 to 70 percent by weight solids, preferably 60 to 65 percent by weight, the remainder water.
- the stated solids portion comprises about 5 to 45,'preferably about 10 to 25 wt. wash-active material wherein the wash-active material comprises about 25 to 75 wt. sulfonated alphaolefins and about 75 to 25 wt. sulfonated vinylideneolefins. Accordingly, the stated solids portion comprises about 95 to 55 wt. preferably about to 75 wt. detergent builders and other additives as herein discussed.
- the sulfonated vinylidene-olefins, and admixtures thereof, which serve to reduce the viscosity of crutcher slurries containing alpha-olefin sulfonates are employed in the form of salts.
- the cation or salt portion is preferably sodium, potassium, ammonium, or an organic base such as mono-, di-, or triethanolamine. Mixtures of the stated salts can, of course, be employed.
- the sulfonated vinylidene-olefins are obtained by conventional sulfonation of vinylidene-olefins which can be characterized by the following representative formula: 4
- R, and R taken individually, represent a C, to C alkyl and wherein the total carbon atoms per molecule are about 12 to 20.
- Vinylidene-olefins can be prepared,- for example, by dimerizing C, to C alpha-olefins, or admixtures thereof, such as in the presence of aluminum alkyl, such as triethylaluminum as described in U. 8. Pat. No.
- the resultant alpha-olefin mixture like the vinylidene-olefins,
- the sulfonation process for the vinylidene and alphaolefins is by conventional methods such as described in U. S. Pat No. 3,l69,l42.
- the vinylidene and a'phaolefins can be cosulfonated if desired, as a mixture, or admixed following'individual sulfonation.
- alphaand vinylidene-olefin sulfonates employed according to this invention need not be entirely pure. They can, accordingly, be prepared from olefin feeds that contain small amounts, e.g., not more than wt. of internal olefins, paraffins, diolefins, olefins containing carbon atoms per molecule greater than C or less than C mixtures thereof, and the like. Sulfonation with sulfur trioxide is the preferred method. The use of other sulfonating agents can be employed if desired.
- sulfonation is accomplished by using vaporizedor gaseous SO which has been diluted to about 2 to 5 percent by volume concentration with inert gas at a temperature of about C. to 80C., preferably from about C. to 75C., using a mol ratio of sulfur trioxide to olefin from about l.0:l.0 to l.6:l.0, preferably 1.10:1.0 to l.4:l.0, at either atmospheric or superatmospheric pressures.
- the conventional sulfonation step can be followed by an aging step of from about 0 to 24 hours at a temperature of about 25 to 50C.
- the acidic slurry from the cosulfonation reaction is then neutralized with a strong base and diluted with water to the desired solids level.
- a strong base is added in an amount equivalent to the sulfonic acid, sultones, plus free sulfur trioxide in the reactor effluent, generally using about a 2 to 5 percent excess.
- the slurry is saponified by heating to temperatures from about 100 to 200C., preferably about 125 to 160C., for about 1% to 4 hours either at atmospheric pressure or superatmospheric pressure.
- the preparation of the crutcher slurry is by conventional methods.
- the sulfonated vinylideneolefin can be added to the sulfonated alpha-olefin as the slurry as directly produced from the sulfonation reaction. If the components were cosulfonated, the builders or other additives and active ingredients can be merely incorporated therewith, and the solids content of the resultant slurry adjusted by the addition of water. If desired, of course, the sulfonates can be further refined prior to preparation of the crutcher slurry.
- the builders or other additives can be incorporated such as by their introduction during neutralization or after saponification if desired. In order to prevent precipitates from forming, such as insoluble silicates, it is preferred that the additives and other builders be incorporated subsequent to neutralization.
- the built detergent slurry, after it is well blended, is passed to a conventional spray tower and spray dried according to conventional techniques in batch or continuous processes.
- the crutcher slurry if prepared according to our invention is characterized by a high solids level and a reduced viscosity enabling easy handling and high pro-. ductivity in producing detergents. 1
- detergent builders or other additives usefully employed in practicing this invention are representatively disclosed herein. They include inorganic detergent builders, organic builders and/or chelate formers, foam stabilizers, anti-redeposition agents, hydrotropes, buffering agents, and the like.
- detergent builders comprising sodium tripolyphosphate, sodium citrate, sodium carbonate, disodium oxydiacetate, or admixtures thereof, are employed in amounts sufficient to comprise about 15 to 65 wt. of the total weight of the stated solids portion.
- Inorganic compounds can be included in the built detergent composition to augment the detersive portion of the composition and representatively include.
- such compounds as the alkali metal carbonates, such as potassium carbonate; borates, such as potassium tetraborate; silicates, such as sodium silicate.
- Phosphates, such as pyro, poly-, meta-, or orthophosphates are suitable.
- Sodium pyrophosphate, and the like, is exemplary.
- Organic builders and/or chelate formers can also be used with the aforestated inorganic alkaline builders and include such materials as the alkali metal salts of phytic acid; alkali metal, ammonium or substituted ammonium aminopolycarboxylate, such as sodium and potassium N-(2-hydroxyethyl)ethylenediamine triacetates, sodium and potassium nitrilotriacetates and sodium potassium and triethanolammonium-N-(Z- hydroxyethyl)nitrilodiacetates.
- Mixed salts of these polycarboxylates are also suitable.
- Other valuable polycarboxylate builder compounds are the sodium and potassium salts of polymaleate, polyacrylate and polymethacrylate.
- organic builders such as the polyphosphonates such as sodium and potassium salts of ethane-l-l,l-diphosphonate, sodium and potassium salts of methylene diphosphonate, sodium and potassium salts of ethylene diphosphonate, and sodium and potassium salts of ethane-l,l,2-triphosphonate are exemplary.
- Alkali metal salts of ethane-2-carboxy-l,ldiphosphonic acid, hydroxymethanediphosphonic acid, carbonyl diphosphonic acid, ethane-l-hydroxy, 1,1,2- triphosphonic acid, and the like, arev also representative.
- Foam stabilizers can also be employed as additives such as the alkanol amides of fatty acids such as the isopropanol amide of lauric acid and the ethanol amide of lauric acid, water-soluble alkaline salts of N- alkylimino-diacetic acid, and the like. 7
- Anti-redeposition agents and organic high-molecular colloidal substances such as water-soluble derivatives of cellulose and starch exemplified by sodium carboxymethyl cellulose are also suitable.
- Hydrotropes can be added if desired to improve the compatibility of the various ingredients employed.
- Hydrotropes such as benzene sulfonate, xylene sulfonate, toluene sulfonate or their salts such as ethanolammonium, diethanolammonium, and triethanolammonium and especially as the alkali metal potassium or sodium salts are suitable.
- miscellaneous agents such as buffering agents, anticorrosion agents, water softeners, wetting agents, optical brighteners, chemical bleaching agents, resin stabilizers, dyes and pigments, germicides and antibacterial agents, and the like, as is customary, can be suitably employed.
- Exemplary wash-active materials include anionic, nonionic, ampholytic and Zwitterionic detergent components.
- the alkali soaps of fatty acids can be suitably employed as well as the synthetic nonsoap detergent materials.
- Exemplary wash-active materials are disclosed in U. S. Pat. Nos. 3,159,581 and 3,213,030.
- the ingredients were well blended with water to form a 65 wt. solids slurry and the viscosity of each slurry at 60C. was measured on the Brookfield viscometer.
- composition andconcentration of active ingredient as well as the results are reported in Table 1 and (1)41 wt.% C,.,.33 wt. l; C 26 W1. C sodium salt. (2) 22.5 wt. k C 57.5 wt. C 19.4 wt. 5 C sodium salt.
- Example II The identified formulation employed in Example I was used. The viscosity results are reported in Table 2.
- Formu1a I Active in edient (sodium sulionates Sodium carbonate Sodium tripolyphospha Sodium citrate."
- the alpha-olefin sulfonate had the following composition: 36 wt. percent C 25 wt. percent C 22 wt. percent'Cz 14 wt. percent Cz-z; when employed, the vinylidene-olefin sulionate had the following composition: 13.3 wt. percent C 1. 20.7 wt. percent C14. 31 wt. percent Cu, 23.4 wt. percent C15. 8.5 wt. percent C TABLE 4 Viscosity. cps. at 60 C. (Brooktield viscometer) Wt. Formula Formula Formula Formula Formula Formula Run No. Active ingredient percent I II III IV 1 Alpha-olefin sullonate 100.
- wash-active material is wash-active material and wherein the stated wash-active material is from about 25% to by weight sulfonated alpha-olefin containing about 12 to 24 carbon atoms per molecule comprising incorporating a viscosity reducing agent consisting of sulfonated vinylidene-olefins containing about 12 to 20 carbon atoms per molecule into said slurry to reduce the viscosity thereof in an amount to provide about 75% to 25% by weight sulfonated vinylidene-olefins based on the total weight of the stated wash-active material.
- a viscosity reducing agent consisting of sulfonated vinylidene-olefins containing about 12 to 20 carbon atoms per molecule into said slurry to reduce the viscosity thereof in an amount to provide about 75% to 25% by weight sulfonated vinylidene-olefins based on the total weight of the stated wash-active material.
- wash-active material comprises more than 50 percent by weight sulfonated vinylidene-olefins and less than 50 wt. sulfonated alpha-olefins.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
A novel detergent slurry composition, also known as a crutcher slurry, comprising alpha-olefin sulfonates is provided by incorporating significant amounts of sulfonated vinylideneolefins whereby the resulting composition is characterized by reduced viscosity.
Description
States Patent 1 1 Bentley et a1.
1451 Aug. 28, 1973 DETERGENT SLURRY COMPOSITIONS 3,415,753 12/1968 Stein et a1 252/121 3,506,580 4/ 1970 Rubinfeld 260/513 X [751 Fwd Bailey; 3,492,239 1/1970 Baumann et a1 252/551 Widdill, of Austm' 3,691,108 9/1972 lchiki et a1 252/555 [73] Assignee: Jefferson Chemical Company, Inc., FOREIGN PATENTS 0R APPLICA-HONS Houston, Tex. 1,522,118 3/1968 France [22] Filed: Apr. 29, 1971 [21] Appl. No.: 138,606 Primary Examiner-Leon D. Rosdol Assistant Examiner-P. E. Willis 3 5? Attorney-John R. Kirk, 11., 11. 0. Jackson and Ter- [63] ContmuatIon-m-part of Ser. No. 99,081, Dec. 17, rence Dean Dreyer 1970, abandoned.
[52] US. Cl. 252/536, 252/555 [57] ABSTRACT [51] Int. Cl. Clld 1/14, C1 1d 3/065 58 Field of Search 252/536, 555, 537, A a 252/556. 260/513 R crutcher slurry, comprising alpha-olefin sulfonates is provided by incorporating significant amounts of sulfo- [56] References Cited nated vinylidene-olefins whereby the resulting compo- UNITED STATES PATENTS s1t1on 1s charactenzed by reduced viscosity. 3,544,475 12 1970 Tomiyama et a1. 252/555 4 Claims, 1 Drawin Figure BROOK FIELD VISCOSITY CPS 60C., 65 WT. SOLIDS 6 5 i 1 6 O e 4 s 1 1 1 l '1" 4o 1 Q 5 s 1 X 1 W 50 i 1 1 O. i Q 2 5 1 1 1 5 W* -.L M L 5 1 1 o 1 1 1 1 1 1 1' i 1 m 12 2 22 9 0 so so 7 0 F07) A O S 1 w T R AT 10 c s x lo memwmcza ms BROOKFIELD VISCOSITY, CPS 60C., 65 WT. lo SOLIDS A08 WT.RATIO INVENTORS. FLOYD E. BENTLEY, HAROLD G.WADOILL,
fi m ATTORNEY.
DETERGENT SLURRY COMPOSITIONS This is a continuation-in-part of U. S. Pat. application Ser. No. 99,081; filed- Dec. 17, 1970, now abandoned; Floyd Edward Bentley and Harold George Waddill, inventors; entitled Detergent Slurry Compositions."
This invention relates to a method for reducing the viscosity of detergent slurries containing alpha-olefin sulfonates by means of using sulfonated vinylideneolefins. This invention further relates to compositions of detergent slurries containing sulfonated alphaolefins and sulfonated vinylidene olefins.
Built detergent compositions are well known and have traditionally been prepared by forming a finished deter-gent slurry containing wash-active ingredients and various additives and by spray-drying the slurry to form powdered detergents.
The detergent slurry composition, also known as a crutcher slurry, contains in addition to wash-active components detergent builders or other additives which are typically employed as detergent aids. The use of additives and the like to improve the overall performance or aesthetic appeal of the formulations is widely employed. Thus, in a typical process, after the built detergent slurry is well blended, the slurry is dried in a conventional spray dryer via conventional techniques. Spray drying is, of course, an old art and is typically disclosed in U. S. Pat. No. l,652,900.
ln spray drying a built detergent slurry it is advantageous from a productivity standpoint to have as high a solids content in the crutcher slurry as can be feasibly handled. A few percent increase in the solids level of the slurry adds up toa significant monetary savings in the overall process of producing spray dried detergents. The crutcher slurry, however, at the very least must be a pumpable mixture. It is generally preferred by the industry that crutcher slurries prepared for spray drying have a viscosity of about 40,000 cps. or below.
it is also well known that the use of alpha-olefin sulfonates comprising from about eight to 24 carbon atoms per molecule, especially those comprising from about 12 to 22 carbon atoms per molecule, are enjoying wide acceptance as detergent ingredients because of their biodegradability and detergent effectiveness.
Unfortunately, however, it has been found that built crutcher slurries formed from the stated alpha-olefin sulfo-nates are very.viscous which makes their industrial utilization difficult and at a 65 percent by weight solids level they are actually often impossible to handle.
Accordingly, it is an objective of the present invention to provide an improved detergent crutcher slurry containing alpha-olefin sulfonates characterized by a high solids level and a reduced viscosity.
it has now been discovered that the viscosity of a crutcher slurry comprising sulfonated alpha-olefins can be surprisingly reduced by incorporating into the slurry significant quantities of sulfonated vinylidene-olefins. The incorporation of the vinylidene-olefin sulfonates provides a slurry that is high in solids level and easily handled thereby enabling more efficient preparation of spray-dried detergents.
The FIGURE is a graphic illustration representative of the synergistic effects obtained according to our invention as explained in Example I which follows.
The incorporation of sulfonated vinylidene-olefins not only provides a vastly improved slurry, its use enables preparation of very effective detergents.
We'have found'that the incorporation of sulfonated vinylidene-olefins orQa replacement of significant amounts of sulfonated alpha-olefins by sulfonated vinylidene-olefins gave a surprising drop in the viscosity of aqueous built detergent slu-rries which was not predictable from the viscosities of the crutcher slurries containing the statedindividual components. The viscosity-reducing effect obtained according to this invention is therefore synergistic.
Thus, the detergent slurry composition consists of about 50 to about wt. solids, the remainder being 7 water, the solids portion of the slurry contains about 5 to 45 wt. preferablylO to 25 wt. of active ingredient, i.e., wash'active materials and 95 to 55 wt. preferably 90 to wt. detergent builders or other additives. The active ingredient portion, in accordance with this invention, comprises about 25 to 75 wt. preferably about 30 to 70 wt. sulfonated alpha-olefins and about 75 to 25 wt. preferably 70 to 30 wt. sulfonated vinylidene-olefins. In the most preferred embodiment, the active ingredient portion comprises greater than 50 wt. sulfonated vinylidene-olefins and less than 50 wt. sulfonated alpha-olefins. The active ingredient portion of the built detergent slurry can include additional wash-active materials if desired such as anionic or nonionic surface-active wash-active materials in addition to the sulfonated 'alpha-olefins and the sulfonated vinylidene-olefins.
Due to their reduced viscosity the crutcher slurries formulated according to this invention are particularly suitable for the incorporation of other wash-active materials and additives customarily employed in making washing and cleansing agents.
The compositions of this invention thus comprise a crutcher slurry containing about 50 to 70 percent by weight solids, preferably 60 to 65 percent by weight, the remainder water. The stated solids portion comprises about 5 to 45,'preferably about 10 to 25 wt. wash-active material wherein the wash-active material comprises about 25 to 75 wt. sulfonated alphaolefins and about 75 to 25 wt. sulfonated vinylideneolefins. Accordingly, the stated solids portion comprises about 95 to 55 wt. preferably about to 75 wt. detergent builders and other additives as herein discussed.
The sulfonated vinylidene-olefins, and admixtures thereof, which serve to reduce the viscosity of crutcher slurries containing alpha-olefin sulfonates are employed in the form of salts. The cation or salt portion is preferably sodium, potassium, ammonium, or an organic base such as mono-, di-, or triethanolamine. Mixtures of the stated salts can, of course, be employed.
The sulfonated vinylidene-olefins are obtained by conventional sulfonation of vinylidene-olefins which can be characterized by the following representative formula: 4
wherein R, and R,, taken individually, represent a C, to C alkyl and wherein the total carbon atoms per molecule are about 12 to 20.
Vinylidene-olefins can be prepared,- for example, by dimerizing C, to C alpha-olefins, or admixtures thereof, such as in the presence of aluminum alkyl, such as triethylaluminum as described in U. 8. Pat. No.
ethylene via a combined growth-displacement reaction using the Ziegler-type polymerization catalyst. The resultant alpha-olefin mixture, like the vinylidene-olefins,
can be fractionated and the olefin fraction desired,
ranging from about C to C recovered and subsequently sulfonated.
The sulfonation process for the vinylidene and alphaolefins is by conventional methods such as described in U. S. Pat No. 3,l69,l42. The vinylidene and a'phaolefins can be cosulfonated if desired, as a mixture, or admixed following'individual sulfonation.
The alphaand vinylidene-olefin sulfonates employed according to this invention need not be entirely pure. They can, accordingly, be prepared from olefin feeds that contain small amounts, e.g., not more than wt. of internal olefins, paraffins, diolefins, olefins containing carbon atoms per molecule greater than C or less than C mixtures thereof, and the like. Sulfonation with sulfur trioxide is the preferred method. The use of other sulfonating agents can be employed if desired. It is generally preferred when cosulfonating to employ a falling film reactor wherein sulfonation is accomplished by using vaporizedor gaseous SO which has been diluted to about 2 to 5 percent by volume concentration with inert gas at a temperature of about C. to 80C., preferably from about C. to 75C., using a mol ratio of sulfur trioxide to olefin from about l.0:l.0 to l.6:l.0, preferably 1.10:1.0 to l.4:l.0, at either atmospheric or superatmospheric pressures. The conventional sulfonation step can be followed by an aging step of from about 0 to 24 hours at a temperature of about 25 to 50C. The acidic slurry from the cosulfonation reaction is then neutralized with a strong base and diluted with water to the desired solids level. A strong base is added in an amount equivalent to the sulfonic acid, sultones, plus free sulfur trioxide in the reactor effluent, generally using about a 2 to 5 percent excess. Following neutralization, the slurry is saponified by heating to temperatures from about 100 to 200C., preferably about 125 to 160C., for about 1% to 4 hours either at atmospheric pressure or superatmospheric pressure.
The preparation of the crutcher slurry is by conventional methods. The sulfonated vinylideneolefin can be added to the sulfonated alpha-olefin as the slurry as directly produced from the sulfonation reaction. If the components were cosulfonated, the builders or other additives and active ingredients can be merely incorporated therewith, and the solids content of the resultant slurry adjusted by the addition of water. If desired, of course, the sulfonates can be further refined prior to preparation of the crutcher slurry.
The builders or other additives can be incorporated such as by their introduction during neutralization or after saponification if desired. In order to prevent precipitates from forming, such as insoluble silicates, it is preferred that the additives and other builders be incorporated subsequent to neutralization. The built detergent slurry, after it is well blended, is passed to a conventional spray tower and spray dried according to conventional techniques in batch or continuous processes. The crutcher slurry if prepared according to our invention is characterized by a high solids level and a reduced viscosity enabling easy handling and high pro-. ductivity in producing detergents. 1
Some typical detergent builders or other additives usefully employed in practicing this invention are representatively disclosed herein. They include inorganic detergent builders, organic builders and/or chelate formers, foam stabilizers, anti-redeposition agents, hydrotropes, buffering agents, and the like. Preferably, detergent builders comprising sodium tripolyphosphate, sodium citrate, sodium carbonate, disodium oxydiacetate, or admixtures thereof, are employed in amounts sufficient to comprise about 15 to 65 wt. of the total weight of the stated solids portion.
Inorganic compounds can be included in the built detergent composition to augment the detersive portion of the composition and representatively include. such compounds as the alkali metal carbonates, such as potassium carbonate; borates, such as potassium tetraborate; silicates, such as sodium silicate. Phosphates, such as pyro, poly-, meta-, or orthophosphates are suitable. Sodium pyrophosphate, and the like, is exemplary.
Organic builders and/or chelate formers can also be used with the aforestated inorganic alkaline builders and include such materials as the alkali metal salts of phytic acid; alkali metal, ammonium or substituted ammonium aminopolycarboxylate, such as sodium and potassium N-(2-hydroxyethyl)ethylenediamine triacetates, sodium and potassium nitrilotriacetates and sodium potassium and triethanolammonium-N-(Z- hydroxyethyl)nitrilodiacetates. Mixed salts of these polycarboxylates are also suitable. Other valuable polycarboxylate builder compounds are the sodium and potassium salts of polymaleate, polyacrylate and polymethacrylate. Other organic builders such as the polyphosphonates such as sodium and potassium salts of ethane-l-l,l-diphosphonate, sodium and potassium salts of methylene diphosphonate, sodium and potassium salts of ethylene diphosphonate, and sodium and potassium salts of ethane-l,l,2-triphosphonate are exemplary. Alkali metal salts of ethane-2-carboxy-l,ldiphosphonic acid, hydroxymethanediphosphonic acid, carbonyl diphosphonic acid, ethane-l-hydroxy, 1,1,2- triphosphonic acid, and the like, arev also representative.
Foam stabilizers can also be employed as additives such as the alkanol amides of fatty acids such as the isopropanol amide of lauric acid and the ethanol amide of lauric acid, water-soluble alkaline salts of N- alkylimino-diacetic acid, and the like. 7
Anti-redeposition agents and organic high-molecular colloidal substances such as water-soluble derivatives of cellulose and starch exemplified by sodium carboxymethyl cellulose are also suitable.
Various hydrotropes can be added if desired to improve the compatibility of the various ingredients employed. Hydrotropes such as benzene sulfonate, xylene sulfonate, toluene sulfonate or their salts such as ethanolammonium, diethanolammonium, and triethanolammonium and especially as the alkali metal potassium or sodium salts are suitable.
Various miscellaneous agents such as buffering agents, anticorrosion agents, water softeners, wetting agents, optical brighteners, chemical bleaching agents, resin stabilizers, dyes and pigments, germicides and antibacterial agents, and the like, as is customary, can be suitably employed.
In addition to the aforestated additives and builders that are suitable for incorporation with the sulfonated alphaolefin and sulfonated vinylidene-olefin components of this invention; various other wash-active cleaning agents can be suitably incorporated in the crutcher slurry.
Exemplary wash-active materials include anionic, nonionic, ampholytic and Zwitterionic detergent components. The alkali soaps of fatty acids can be suitably employed as well as the synthetic nonsoap detergent materials. Exemplary wash-active materials are disclosed in U. S. Pat. Nos. 3,159,581 and 3,213,030.
All of the aforementioned U. S. patents are hereby incorporated by reference thereto.
Illustrative of the foregoing discussion and description and not to be interpreted as a limitation on the scope thereof or on the materials herein employed, the following examples are presented to illustrate the vis cosity-reducing effect of the vinylidene-olefin sulfonates in typical built detergent slurries, commonly known as crutcher slurries.
EXAMPLE I Crutcher slurries were formulated using the following typical detergent formulation:
Wt. Active ingredient -12.00 Sodium tripolyphosphate 48.20 Sodium sihcate 8.42 Sodium carboxymethyl celulose 1.20 Sodium sulfate 28.90 Sodium xylene sulfonate 1.28
The ingredients were well blended with water to form a 65 wt. solids slurry and the viscosity of each slurry at 60C. was measured on the Brookfield viscometer.
The composition andconcentration of active ingredient as well as the results are reported in Table 1 and (1)41 wt.% C,.,.33 wt. l; C 26 W1. C sodium salt. (2) 22.5 wt. k C 57.5 wt. C 19.4 wt. 5 C sodium salt.
EXAMPLE n The above example was similarly repeated except that viscosities were determined on crutcher slurries at various solids levels.
The identified formulation employed in Example I was used. The viscosity results are reported in Table 2.
TABLE 2 Viscosity Data, cps. at 60C. Wt.
k Solids of Crutcher Slurry 50% 60% 65% Active Ingredient, Wt.
Alpha-olefin sulfonate vinylidene-olefin sulfonate mixture2) (1) Same as reported in Table 1.
(2) 44.3 wt. k alpha-olefin sulfonate (sodium sa1t)-l8 wt. Cm 14.4
wt. 1: C 11.8 wt. C 55.7 wt. vinylidene-olefin sulfonate (sodium 5811.) 17-1 Wt. 29.2 Wl. C15. 9.4 W1. C
EXAMPLE III A crutcher slurry was formulated to yield the following dry powder composition:
Wt. it Active ingredient 15.0 Sodium tripolyphosphate 40.0 Sodium silicate 7.0 Sodium carboxylmethyl cellulose 0.5 Sodium sulfate 30.0 Water 7.5
The ingredients were blended with water to form slurries as reported in Table 3. The viscosity of each slurry at 60C. was measured as in previous examples and is reported in Table 3.
TABLE 3 Viscosity Data, cps. at 60C. Wt.
% Solids of Crutcher Slurry Active Ingredient, Wt. 50% 60% 65% Alpha-olefin sulfonate vinylidene-olefin sulfonate mixturel 2,000 3,600 8,640 Alpha-olefin sulfonateZ) 3,800 82,000 l,000,000
(1)1310 WI. C ,14.00 W1. C 23.80 wt. C and 7.65 wt. C vinyIidene-olefin sulfonates; 14.73 Wt. C 1 1.82 wt. C 9.48
wt. C and 5.54 wt. C alpha-olefin sulfonates. (2) 13.10 wt. Cu. 28.7 wt. C". 35.6 wt. C 17.1 wt. C and 5.5 wt. C alpha-olefin sulfonates.
The foregoing examples effectively demonstrate that the addition of sulfonated vinylidene-olefins or the replacement of alpha-olefin sulfonates with sulfonated vinylideneolefins produces a surprising and significant drop in the viscosity of the aqueous crutcher slurries and demonstrates a synergistic effect of these two components to provide a viscosityreducing effect.
EXAMPLE IV Crutcher slurries were formulated using the following dry powder compositions:
Formu1a I Active in edient (sodium sulionates Sodium carbonate Sodium tripolyphospha Sodium citrate..."
When employed. the alpha-olefin sulfonate had the following composition: 36 wt. percent C 25 wt. percent C 22 wt. percent'Cz 14 wt. percent Cz-z; when employed, the vinylidene-olefin sulionate had the following composition: 13.3 wt. percent C 1. 20.7 wt. percent C14. 31 wt. percent Cu, 23.4 wt. percent C15. 8.5 wt. percent C TABLE 4 Viscosity. cps. at 60 C. (Brooktield viscometer) Wt. Formula Formula Formula Formula Formula Run No. Active ingredient percent I II III IV 1 Alpha-olefin sullonate 100. 6, 800 3, 640 16,000 3,320 4, 500 2. Yinylidene-olefin sulfonate 100. 0 l O) 240 -800 3 Alpha/vinylidene-olefin sull'onatc 2 40/60 5-10 1, 030 -2, 000 930 l, 000
l The solids coagulated in each instance to form little balls and was not an acceptable slurry. Viscosity determination meaningless. 2 Approximu ttely40 wt. percent alpha-olefin sulionate. 60 wt. percent vinylideneolefin sulfonate.
EXAMPLE v Formula I of the above example was employed and the example similarly repeated except that viscosities were determined on crutcher slurrics at various solids levels. The viscosity results are reported in Table 5.
TABLE 5 Viscosityl) Wt. solids of crutcher slurry Active Ingredient 60% 65% 70% Alpha-olefin sulfonatel b.800 25.000 37.500 Vinylidene-olefin sulfonate" (2) (2) (2) Alpha/vinylidene-olefin sulfonate" 540 360 1,200
(1) Same as reported in Table 4. (2) Solids coagulated into balls. (3) Spindle not wet properly, viscosity value not exact.
The preceding examples can be repeated with similar l. A process for reducing the viscosity of a crutcher slurry containing from about 50 percent to about percent by weight solids, wherein said solids comprise a wash-active material and detergent builders and the remainder water, wherein about 5 to 45 wt. of the stated solids is wash-active material and wherein the stated wash-active material is from about 25% to by weight sulfonated alpha-olefin containing about 12 to 24 carbon atoms per molecule comprising incorporating a viscosity reducing agent consisting of sulfonated vinylidene-olefins containing about 12 to 20 carbon atoms per molecule into said slurry to reduce the viscosity thereof in an amount to provide about 75% to 25% by weight sulfonated vinylidene-olefins based on the total weight of the stated wash-active material.
2. The process according to claim 1 wherein said wash-active material comprises more than 50 percent by weight sulfonated vinylidene-olefins and less than 50 wt. sulfonated alpha-olefins.
3. The process according to claim 2 wherein about 15 to 65 percent by weight of the stated solids comprise a detergent builder selected from sodium tripolyphosphate, sodium citrate, sodium carbonate, sodium oxydiacetate, or admixtures thereof.
4. The process according to claim 3 wherein the stated solids level is from about 60 to 65 wt. and wherein the stated crutcher slurry has a viscosity of 40,000 cps. or below.
Claims (3)
- 2. The process according to claim 1 wherein said wash-active material comprises more than 50 percent by weight sulfonated vinylidene-olefins and less than 50 wt. % sulfonated alpha-olefins.
- 3. The process according to claim 2 wherein about 15 to 65 percent by weight of the stated solids comprise a detergent builder selected from sodium tripolyphosphate, sodium citrate, sodium carbonate, sodium oxydiacetate, or admixtures thereof.
- 4. The process according to claim 3 wHerein the stated solids level is from about 60 to 65 wt. % and wherein the stated crutcher slurry has a viscosity of 40,000 cps. or below.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9908170A | 1970-12-17 | 1970-12-17 | |
US13860671A | 1971-04-29 | 1971-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3755203A true US3755203A (en) | 1973-08-28 |
Family
ID=26795523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00138606A Expired - Lifetime US3755203A (en) | 1970-12-17 | 1971-04-29 | Detergent slurry compositions |
Country Status (4)
Country | Link |
---|---|
US (1) | US3755203A (en) |
JP (1) | JPS5036846B1 (en) |
DE (1) | DE2161821B2 (en) |
GB (1) | GB1351977A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3896057A (en) * | 1968-09-19 | 1975-07-22 | Ethyl Corp | Composite olefin sulfonate |
US3979340A (en) * | 1973-04-09 | 1976-09-07 | Colgate-Palmolive Company | Olefin sulfonate detergent compositions |
US4013577A (en) * | 1972-04-14 | 1977-03-22 | Colgate-Palmolive Company | Heavy duty dry biodegradable detergent composition |
US4107095A (en) * | 1973-04-11 | 1978-08-15 | Colgate-Palmolive Company | Liquid olefin sulfonate detergent compositions containing anti-gelling agents |
US4129526A (en) * | 1977-07-14 | 1978-12-12 | The Lion Fat & Oil Co., Ltd. | Granular detergent compositions and a process for producing same |
US4139498A (en) * | 1975-12-26 | 1979-02-13 | The Lion Fat & Oil Co., Ltd. | Process of manufacturing high-concentration olefin sulfonate solution |
US4155882A (en) * | 1973-08-01 | 1979-05-22 | Lever Brothers Company | Process for preparing particulate detergent compositions containing nonionic surfactants |
DE2950382A1 (en) * | 1978-12-26 | 1980-07-17 | Lion Fat Oil Co Ltd | HOMOGENEOUS AQUEOUS ALPHA -OLEFINE SULPHONATE MASS AND METHOD FOR THE PRODUCTION THEREOF |
EP0186896A2 (en) * | 1984-12-31 | 1986-07-09 | Henkel Kommanditgesellschaft auf Aktien | Use of alkane sulphates as viscosity regulators for high viscous concentrates of anionic surfactants |
US4715991A (en) * | 1985-04-26 | 1987-12-29 | Lion Corporation | Aqueous high concentration surfactant slurry containing an olefin sulfonate |
WO2001079404A2 (en) * | 2000-04-17 | 2001-10-25 | Colgate-Palmolive Company | Light duty liquid composition containing an acid |
EP2658946A2 (en) * | 2010-12-29 | 2013-11-06 | Shell Oil Company | Method and composition for enhanced hydrocarbons recovery from a formation containing a crude oil |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711723A (en) * | 1980-06-25 | 1982-01-21 | Tachikawa Spring Co Ltd | Pipe |
US8871699B2 (en) | 2012-09-13 | 2014-10-28 | Ecolab Usa Inc. | Detergent composition comprising phosphinosuccinic acid adducts and methods of use |
US20140308162A1 (en) | 2013-04-15 | 2014-10-16 | Ecolab Usa Inc. | Peroxycarboxylic acid based sanitizing rinse additives for use in ware washing |
US9023784B2 (en) | 2012-09-13 | 2015-05-05 | Ecolab Usa Inc. | Method of reducing soil redeposition on a hard surface using phosphinosuccinic acid adducts |
US9994799B2 (en) | 2012-09-13 | 2018-06-12 | Ecolab Usa Inc. | Hard surface cleaning compositions comprising phosphinosuccinic acid adducts and methods of use |
US9752105B2 (en) | 2012-09-13 | 2017-09-05 | Ecolab Usa Inc. | Two step method of cleaning, sanitizing, and rinsing a surface |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1522118A (en) * | 1966-05-11 | 1968-04-19 | Henkel & Cie Gmbh | Light colored olefin sulfonate manufacturing process |
US3415753A (en) * | 1964-06-26 | 1968-12-10 | Henkel & Cie Gmbh | Liquid and paste detergent concentrates |
US3492239A (en) * | 1966-07-01 | 1970-01-27 | Henkel & Cie Gmbh | Light-colored sulfonation products |
US3506580A (en) * | 1966-05-10 | 1970-04-14 | Colgate Palmolive Co | Heat-treatment of sulfonated olefin products |
US3544475A (en) * | 1967-09-29 | 1970-12-01 | Lion Fat Oil Co Ltd | Detergent compositions based on mixtures of alpha-olefin sulfonates and dimer olefin sulfonates |
US3691108A (en) * | 1969-08-29 | 1972-09-12 | Sumitomo Chemical Co | Olefin sulfonate detergent composition |
-
1971
- 1971-04-29 US US00138606A patent/US3755203A/en not_active Expired - Lifetime
- 1971-11-26 GB GB5498371A patent/GB1351977A/en not_active Expired
- 1971-12-13 DE DE2161821A patent/DE2161821B2/en not_active Ceased
- 1971-12-13 JP JP46100941A patent/JPS5036846B1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415753A (en) * | 1964-06-26 | 1968-12-10 | Henkel & Cie Gmbh | Liquid and paste detergent concentrates |
US3506580A (en) * | 1966-05-10 | 1970-04-14 | Colgate Palmolive Co | Heat-treatment of sulfonated olefin products |
FR1522118A (en) * | 1966-05-11 | 1968-04-19 | Henkel & Cie Gmbh | Light colored olefin sulfonate manufacturing process |
US3492239A (en) * | 1966-07-01 | 1970-01-27 | Henkel & Cie Gmbh | Light-colored sulfonation products |
US3544475A (en) * | 1967-09-29 | 1970-12-01 | Lion Fat Oil Co Ltd | Detergent compositions based on mixtures of alpha-olefin sulfonates and dimer olefin sulfonates |
US3691108A (en) * | 1969-08-29 | 1972-09-12 | Sumitomo Chemical Co | Olefin sulfonate detergent composition |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3896057A (en) * | 1968-09-19 | 1975-07-22 | Ethyl Corp | Composite olefin sulfonate |
US4013577A (en) * | 1972-04-14 | 1977-03-22 | Colgate-Palmolive Company | Heavy duty dry biodegradable detergent composition |
US3979340A (en) * | 1973-04-09 | 1976-09-07 | Colgate-Palmolive Company | Olefin sulfonate detergent compositions |
US4107095A (en) * | 1973-04-11 | 1978-08-15 | Colgate-Palmolive Company | Liquid olefin sulfonate detergent compositions containing anti-gelling agents |
US4155882A (en) * | 1973-08-01 | 1979-05-22 | Lever Brothers Company | Process for preparing particulate detergent compositions containing nonionic surfactants |
US4139498A (en) * | 1975-12-26 | 1979-02-13 | The Lion Fat & Oil Co., Ltd. | Process of manufacturing high-concentration olefin sulfonate solution |
US4129526A (en) * | 1977-07-14 | 1978-12-12 | The Lion Fat & Oil Co., Ltd. | Granular detergent compositions and a process for producing same |
DE2950382A1 (en) * | 1978-12-26 | 1980-07-17 | Lion Fat Oil Co Ltd | HOMOGENEOUS AQUEOUS ALPHA -OLEFINE SULPHONATE MASS AND METHOD FOR THE PRODUCTION THEREOF |
EP0186896A2 (en) * | 1984-12-31 | 1986-07-09 | Henkel Kommanditgesellschaft auf Aktien | Use of alkane sulphates as viscosity regulators for high viscous concentrates of anionic surfactants |
EP0186896A3 (en) * | 1984-12-31 | 1989-07-05 | Henkel Kommanditgesellschaft Auf Aktien | Use of alkane sulphates as viscosity regulators for highuse of alkane sulphates as viscosity regulators for high viscous concentrates of anionic surfactants viscous concentrates of anionic surfactants |
US4715991A (en) * | 1985-04-26 | 1987-12-29 | Lion Corporation | Aqueous high concentration surfactant slurry containing an olefin sulfonate |
WO2001079404A2 (en) * | 2000-04-17 | 2001-10-25 | Colgate-Palmolive Company | Light duty liquid composition containing an acid |
WO2001079404A3 (en) * | 2000-04-17 | 2002-07-25 | Colgate Palmolive Co | Light duty liquid composition containing an acid |
EP2658946A2 (en) * | 2010-12-29 | 2013-11-06 | Shell Oil Company | Method and composition for enhanced hydrocarbons recovery from a formation containing a crude oil |
CN103429696A (en) * | 2010-12-29 | 2013-12-04 | 国际壳牌研究有限公司 | Method and composition for enhanced hydrocarbons recovery from a formation containing a crude oil |
EP2658946A4 (en) * | 2010-12-29 | 2014-05-14 | Shell Oil Co | Method and composition for enhanced hydrocarbons recovery from a formation containing a crude oil |
Also Published As
Publication number | Publication date |
---|---|
DE2161821B2 (en) | 1973-10-25 |
JPS5036846B1 (en) | 1975-11-28 |
GB1351977A (en) | 1974-05-15 |
DE2161821A1 (en) | 1972-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3755203A (en) | Detergent slurry compositions | |
US4125370A (en) | Laundry method imparting soil release properties to laundered fabrics | |
AU596244B2 (en) | Aqueous detergent compositions containing diethyleneglycol monohexyl ether solvent | |
US3755206A (en) | Detergent compositions | |
EP0380406B1 (en) | Fine fabric laundry detergent with sugar esters as softening and whitening agents | |
EP0054325A1 (en) | Detergent composition with reduced soil-redeposition effect | |
WO1998027189A1 (en) | Mildly acidic laundry detergent composition | |
CA1122094A (en) | Built liquid detergent composition | |
US3708437A (en) | 2-olefin sulfonate for liquid detergents | |
US3336233A (en) | Built detergent compositions containing 3-hydroxyalkyl alkyl sulfoxides | |
JPH0639593B2 (en) | Detergent composition containing alkylbenzene sulphonate and alcohol ethoxy sulphate surfactant system | |
US5229028A (en) | Liquid detergent compositions | |
US3441508A (en) | Detergent containing alkoxy hydroxypropylamine oxide | |
NO144797B (en) | SOLUTION MIXING. | |
US3892680A (en) | Built detergent composition containing calcium-insensitive detergent and a carbonate-silicate builder | |
US3356613A (en) | Built detergent compositions containing a synergistic mixture of stp, nta, and sodium silicate | |
JPH0357958B2 (en) | ||
US3836484A (en) | Phosphate-free detergent concentrates containing sulfated and sulfonated linear alkylphenols | |
EP0266931B1 (en) | Granular detergents which contain high levels of anionic surfactant | |
US3759834A (en) | Detergent composition | |
US3485761A (en) | Production of detergent compositions containing finely dispersed optical brighteners | |
EP0042188B2 (en) | Detergent composition containing low levels of amine oxides | |
US3691108A (en) | Olefin sulfonate detergent composition | |
US3853779A (en) | Low foaming detergent compositions | |
US2697695A (en) | Detergent composition |