[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3754990A - Cleaning of ferrous metal surfaces - Google Patents

Cleaning of ferrous metal surfaces Download PDF

Info

Publication number
US3754990A
US3754990A US00117806A US3754990DA US3754990A US 3754990 A US3754990 A US 3754990A US 00117806 A US00117806 A US 00117806A US 3754990D A US3754990D A US 3754990DA US 3754990 A US3754990 A US 3754990A
Authority
US
United States
Prior art keywords
solution
copper
cleaning
ferrous metal
cleaning solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00117806A
Inventor
F Teumac
J Scruggs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Application granted granted Critical
Publication of US3754990A publication Critical patent/US3754990A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3209Amines or imines with one to four nitrogen atoms; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3245Aminoacids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/16Metals

Definitions

  • ABSTRACT Richman Attorney-Griswold & Burdick [5 7] ABSTRACT
  • the invention is based on the discovery that upon adding a polyamine having intralinear amino groups to an aqueous alkaline solution of an ammoniated or aminated polycarboxylic acid chelating agent, a new and improved metal cleaning solution is provided. Upon bringing such cleaning solution into contact with a ferrous metal surface having hardness and/or iron oxide scale, and copper, thereon and the solution being maintained at a temperature above about 155C. for a time sufficient to dissolve all the hardness and iron oxides, the copper is dissolved and neither precipitates from solution nor deposits on the ferrous metal surface.
  • the invention relates to an improvement in the method of cleaning ferrous metal surfaces, such as steam boilers having copper components in the system, with an aqueous alkaline solution of polycarboxylic acid chelating agent and to the aqueous cleaning composition employed in the improved process.
  • the cleaning solutions consist of an ammoniated or aminated polycarboxylic acid chelating agent and cleaning is carried out under alkaline conditions.
  • This method is effective for the removal of mill-scale and hardness deposits, but is not very effective for the removal of mill-scale having copper deposits thereon.
  • aqueous cleaning solutions containing a polycarboxylic acid chelating agent may be modified in an attempt to make the solutions suitable for working with copper deposits.
  • a reagent may be added to the cleaning solution which will form a precipitate with the copper removed in cleaning and prevent its deposition on freshly cleaned ferrous metal surfaces.
  • Such a process suffers from the disadvantage that care must be taken to dislodge and remove all of the copper precipitate, usually by a rinse involving a considerable volume of water.
  • a principal object of the present invention is to provide an improvement in the method of cleaning a ferrous metal surface, having iron oxides and copper deposited thereon, using an ammoniated or aminated polycarboxylic acid chelating agent, the improvement providing for removal of iron oxides and copper in one operation while avoiding deposition of copper on the freshly cleaned metal substrate.
  • the invention is based on the discovery that upon adding a polyamine having intralinear amino groups to an aqueous alkaline solution of an ammoniated or aminated polycarboxylic acid chelating agent, a new and improved metal cleaning solution is provided. Upon bringing such cleaning solution into contact with a ferrous metal surface having hardness and/or iron oxide scale, and copper, thereon and the solution being maintained at a temperature above about C. for a time sufficient to dissolve all the hardness and iron oxides, the copper is dissolved and neither precipitates from solution nor deposits on the ferrous metal surface.
  • ferrous metal surfaces may be cleaned using the solution and method of the invention.
  • ferrous metals are cast iron, mild steel, and austenitic stainless steel.
  • Suitable polycarboxylic acid chelating agents include the alkylene polyamine polyacetic acids of the formula (HOOCCH,) N[(CH,),,N(CI-I COOH)],,,CI-I COOH wherein n is 1,2,3 or 4 and m is 0,l,2,3, or 4, up to two of the carboxymethyl groups may be replaced with a B-hydroxyethyl group and one or more of the carboxymethyl groups may be replaced by carboxyethyl groups.
  • polyacetic acids which are particularly suitable are ethylenediaminetetraacetic acid (EDTA), N-hydroxyethyl ethylenediaminetriacetic acid, nitrilotriacetic acid, N-2-hydroxyethyliminodiacetic acid, diethylenetriamine-pentaacetic acid, and mixtures thereof.
  • EDTA ethylenediaminetetraacetic acid
  • N-hydroxyethyl ethylenediaminetriacetic acid N-hydroxyethyl ethylenediaminetriacetic acid
  • nitrilotriacetic acid nitrilotriacetic acid
  • N-2-hydroxyethyliminodiacetic acid diethylenetriamine-pentaacetic acid
  • Such polycarboxylic acid chelating agents must be combined with ammonia or a suitable amine in order to obtain a solution with a basic pH. Solution pH can be further adjusted by the use of additional ammonia or amine.
  • Amine Pol carboxylic Acid ammonia EDTA ethanolamine EDTA ethylamine EDTA ethylenediamine EDTA diethylenetriamine EDTA pentaethylenehexamine EDTA dirnethylamine EDTA trimethylamine EDTA ethylenimine EDTA ethanolamine ethylenediaminetetrapropionic acid ethylenediamine N,N-di (fl-hydroxyethyl) glycine ammonia tetramethylenediamine- N,N,N',N'-tetraacetic acid ammonia (2-hydroxyethylimino) diacetic acid Any of the combinations of polycarboxylic acids and ammonia or amines considered together may be used in a concentration in the range of about 1 to 10 per cent by weight.
  • the polyamines which may be used are principally the polyalkylene polyamines having intralinear amino groups having a ratio of nitrogen atoms to carbon atoms in the chain of at least about 0.2 and preferably at least about 0.5.
  • suitable polyamines must be readily soluble in the aqueous cleaning solution at an alkaline pH in the range of pH 7 to 10.
  • Specific examples of suitable polyamines are polyethylenimine having molecular weights in the range of about 600 to 500,000, the reaction product of ethylenediamine and ethylenedichloride having an average molecular weight above about 230, preferably about 600 to 500,000, copolymerized N-phenyl ethylenimine and ethylenimine,
  • the copolymer having an n-phenyl group on about 10 per cent of the ethylene units in the molecule, and pentaethylenehexamine.
  • the polyamines are employed in a concentration range of about 0.2 to per cent by weight. In any event, a sufficient amount of the polyamine must be used to provide two nitrogen atoms for each copper ion which is to be complexed. The amount of polyethylenimine to meet this requirement is about 2.8 parts per part by weight of copper.
  • the corrosive attack of the polycarboxylic acid chelating agent upon the metal substrate is inhibited by an inhibitor compound or composition that does not interfere with the action of the present polyamines in keeping copper from plating out on the substrate.
  • suitable inhibitors include, e.g.
  • the system in carrying out the improved process as on a boiler system, the system is drained and then refilled with an aqueous alkaline solution of the polycarboxylic acid chelating agent having the polyamine dissolved therein.
  • the aqueous solution is heated up in order to dissolve iron oxide or hardness deposits at practical rates.
  • the solution is also heated in order to activate the polyamine.
  • temperatures above about 155C are employed. Suitable temperatures are in the range of 155 to 190C.
  • the cleaning solution builds up some autogenous pressure due to the water and the ammonia or other volatile amine present. Pressure of the order of 20 to 200 pounds per square inch gauge are typical, but have no particular effect on the present method.
  • the temperature of the cleaning solution is maintained for at least 30 to 60 minutes, or until the iron oxides and other deposits are removed. The process seldom takes more than 4 hours. At the end of this time the cleaning solution is drained and rinsed leaving a clean ferrous metal surface free of copper deposits.
  • the polyamine is activated by heating an aqueous solution thereof prior to adding the polyamine to the aqueous alkaline cleaing solution containing the polycarboxylic acid chelating agent. Heating about 10 per cent by weight aqueous solution of the polyamine to a temperature of at least 155C. and preferably 160 to 190C. for 30 minutes provides sufficient pyrolytic activation of the polyamine. With such prior activation outside the system to be cleaned, the cleaning of the ferrous metal surface may proceed at a much lower temperature, usually in the range of 110 to 150C. The advantage of using such lower temperature is decreased corrosion of the ferrous metal surface by the cleaning solution, without in any way interfering with the removal of copper deposits.
  • EXAMPLE I An aqueous solution was prepared containing 3.8 per cent by weight of triammonium (ethylenedinitrilo) tetraacetate (ammoniated EDTA), 0.3 per cent by weight of polyethylenimine having a molecular weight of about 40,000 to 60,000, 0.05 per cent by weight of sodium mercaptobenzothiazole and 0.1 per cent by weight of a commercial inhibitor of the class described in U.S. Pat. No. 3,077,454 and consisting of the product of reaction of Rosin Amine D, tall oil fatty acids, acetophenone, and paraformaldehyde at a temperature of about C. for about 8 hours in ethylene glycol medium and in the presence of H 80 After the reaction, an adduct of nonylphenol and ethylene oxide was added to the reaction product all as more fully described in said U.S. patent.
  • a 200 milliliter quantity of this solution was placed in a glass beaker along with two 1010 (AISI) steel coupons having a natural mill-scale surface thereon.
  • AISI 1010
  • 0.3 grams of copper powder admixed with 0.7 grams of ferric oxide powder were also placed in the same glass beaker.
  • the beaker and contents were placed in a pressure vessel. The vessel was closed and heated to 187C. The autogenous pressure in the vessel rose to pounds per square inch gauge. After 4 hours at the stated temperature the reactor was quenched with water and opened. The beaker and contents were removed.
  • the coupons were found to be bright and clear and free of copper deposits.
  • EXAMPLE 2 On carrying out a run in the same manner as Example 1 except that a polyethylenimine having 10 per cent phenyl substitution in the molecule was substituted weight-by-weight for the polyethylenimine of example 1, the mill-scale coated coupons were cleaned and copper did not deposit on the cleaned surfaces.
  • COMPARlSON TEST In a run made by way of comparison, all conditions and reactants were the same as in example 1 except that the pressure vessel and contents were heated only to 119C. The coupons were cleaned of mill-scale but carried heavy copper deposit.
  • EXAMPLE 4 A solution containing 3.8 per cent by weight of triammonium (ethylenedinitrilo)tetraacetate, and 0.25 per cent by weight of a polyethylenimine having a molecular weight of approximately 50,000 was prepared and 200 milliliters of this solution was placed in a glass beaker along with two 1010(AIS1) steel coupons which had been cleaned in nitric acid, dried and weighed. The beaker and contents were placed in a pressure vessel and heated to 150C. The temperature was maintained for 4 hours after which the pressure vessel was quenched and opened. The coupons were dried and weighed and corrosion of the metal was found to have taken place at the rate of 0.0605 pounds per square foot per day (lb/ftF/day).
  • EXAMPLE 6 A run was carried out in the same manner as example 5 except that sodium mercaptobenzothiazole and the commercial inhibitor described in example 1 were added to the last solution in the same proportions as in Example 1. The coupons subject to test corroded at a rate of 0.0043 lb/ftF/day.
  • EXAMPLE 7 A solution containing 3.8 per cent by weight of triammonium (ethylenedinitrilo)tetraacetate and 0.3 per cent by weight polyethylenimine and 0.15 per cent by weight copper oxide was prepared and 200 milliliters of this solution was placed in a glass beaker. The beaker was placed in a pressure vessel and the vessel and contents were heated to 160C for about 30 minutes. The pressure vessel was then cooled and opened and two 1010(AIS1) steel coupons having a surface covered with mill-scale were placed in the beaker. The pressure vessel was then closed and heated to l C. The temperature was maintained for 4 hours, after which the pressure vessel was cooled and opened and the coupons examined. The coupons were found to be free of copper plating and they showed corrosion had taken place at the rate of 0.0173 lb/ftlday.
  • the polyalkylenepolyamine having an average molecular weight in the range of about 40,000 to 60,000 and being selected from the group consisting of polymerized ethylenimine, the reaction product of ethylenediamine and ethylenedichloride, and copolymerized N-phenyl ethylenimine and ethylenimine having an N-phenyl group on about 10 per cent of the ethylene units in the molecule.
  • aqueous cleaning solution is initially heated to a temperature in the range of above about 155 and up to 190C, and then the temperature is reduced to about 1 10 to C for the balance of the cleaning period.
  • the cleaning solution contains from 0.1 to 5 per cent by weight of polyalkylenepolyamine
  • the cleaning solution is activated by heating to a temperature in the range of above about and up to C and thereafter the cleaning solution is maintained in contact with the ferrous metal surface at a temperature in the range of 1 10 to 150C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Detergent Compositions (AREA)

Abstract

The invention is based on the discovery that upon adding a polyamine having intralinear amino groups to an aqueous alkaline solution of an ammoniated or aminated polycarboxylic acid chelating agent, a new and improved metal cleaning solution is provided. Upon bringing such cleaning solution into contact with a ferrous metal surface having hardness and/or iron oxide scale, and copper, thereon and the solution being maintained at a temperature above about 155*C. for a time sufficient to dissolve all the hardness and iron oxides, the copper is dissolved and neither precipitates from solution nor deposits on the ferrous metal surface.

Description

United States Patent [1 1 Teumac et a1.
[451 Aug. 23, 1973 1 CLEANING OF FERROUS METAL SURFACES [75] inventors: Fred Norman Teumac, Charlotte,
N.C.; James Scott Scruggs, Lake Jackson, Tex.
Related 1.1.8. Application Data [62] Division of Ser. No. 704,265, Feb. 9, 1968, Pat. No.
[52] US. Cl 134/2, 134/3, 134/22 R, 252/82, 252/156, 252/546, 252/DIG. ll
[51] Int. Cl C23g l/18, C23g l/26, 1308b 9/08 [58] Field of Search 252/D1G. 11, 546, 252/156, 82; 134/2, 3, 22 R, 41
3,251,778 5/1966 Dickson et a1 252/82 3,262,791 7/1966 Dickson et al 252/390 X 3,308,065 3/1967 Lesinski 252/546 X 3,438,901 4/1969 Vassileff.... 252/82 UX 3,440,170 4/1969 de Hek 134/3 X 3,447,965 6/1969 Teumac 134/3 X 3,490,741 l/l970 Teumac et a1. 134/3 X FOREIGN PATENTS OR APPLlCATlONS 821,094 9/1959 Great Britain 134/22 R Primary Examiner-Barry S. Richman Attorney-Griswold & Burdick [5 7] ABSTRACT The invention is based on the discovery that upon adding a polyamine having intralinear amino groups to an aqueous alkaline solution of an ammoniated or aminated polycarboxylic acid chelating agent, a new and improved metal cleaning solution is provided. Upon bringing such cleaning solution into contact with a ferrous metal surface having hardness and/or iron oxide scale, and copper, thereon and the solution being maintained at a temperature above about 155C. for a time sufficient to dissolve all the hardness and iron oxides, the copper is dissolved and neither precipitates from solution nor deposits on the ferrous metal surface.
4 Claims, No Drawings CLEANING OF FERROUS METAL SURFACES CROSS-REFERENCE TO RELATED APPLICATION This is a division of application Ser. No. 704,265, filed Feb. 9, 1968 and now US. Pat. No. 3,627,687.
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to an improvement in the method of cleaning ferrous metal surfaces, such as steam boilers having copper components in the system, with an aqueous alkaline solution of polycarboxylic acid chelating agent and to the aqueous cleaning composition employed in the improved process.
2. Description of the Prior Art A process for cleaning ferrous metal surfaces has been used in which iron oxides are first removed in an initial cleaning step using an aqueous acidic solution of a polycarboxylic acid, after which the solution is made alkaline and a copper removal step is effectedv However, it is generally considered better practice to avoid using acidic solutions for the cleaning of boiler systems. Further, two-step methods are not as economical, generally, as one-step methods.
In another process disclosed in U.S. Pat. No. 3,308,065, the cleaning solutions consist of an ammoniated or aminated polycarboxylic acid chelating agent and cleaning is carried out under alkaline conditions. This method is effective for the removal of mill-scale and hardness deposits, but is not very effective for the removal of mill-scale having copper deposits thereon.
Several methods may be used to modify aqueous cleaning solutions containing a polycarboxylic acid chelating agent in an attempt to make the solutions suitable for working with copper deposits. For example, a reagent may be added to the cleaning solution which will form a precipitate with the copper removed in cleaning and prevent its deposition on freshly cleaned ferrous metal surfaces. Such a process suffers from the disadvantage that care must be taken to dislodge and remove all of the copper precipitate, usually by a rinse involving a considerable volume of water.
It has also been suggested to add an oxidizing agent to the cleaning solution subsequent to removal of the mill-scale in order to dissolve the copper plated on the clean substrate. This method also suffers from the disadvantage that it is a two-step process.
OBJECTS OF THE INVENTION A principal object of the present invention is to provide an improvement in the method of cleaning a ferrous metal surface, having iron oxides and copper deposited thereon, using an ammoniated or aminated polycarboxylic acid chelating agent, the improvement providing for removal of iron oxides and copper in one operation while avoiding deposition of copper on the freshly cleaned metal substrate.
Other objects of the present invention will be more fully understood by those skilled in the art upon becoming familiar with the following description and the illustrative examples.
SUMMARY OF THE INVENTION The invention is based on the discovery that upon adding a polyamine having intralinear amino groups to an aqueous alkaline solution of an ammoniated or aminated polycarboxylic acid chelating agent, a new and improved metal cleaning solution is provided. Upon bringing such cleaning solution into contact with a ferrous metal surface having hardness and/or iron oxide scale, and copper, thereon and the solution being maintained at a temperature above about C. for a time sufficient to dissolve all the hardness and iron oxides, the copper is dissolved and neither precipitates from solution nor deposits on the ferrous metal surface.
BRIEF DESCRIPTION OF THE METHOD AND COMPOSITION OF THE INVENTION Any ferrous metal surfaces may be cleaned using the solution and method of the invention. Examples of such ferrous metals are cast iron, mild steel, and austenitic stainless steel.
Suitable polycarboxylic acid chelating agents include the alkylene polyamine polyacetic acids of the formula (HOOCCH,) N[(CH,),,N(CI-I COOH)],,,CI-I COOH wherein n is 1,2,3 or 4 and m is 0,l,2,3, or 4, up to two of the carboxymethyl groups may be replaced with a B-hydroxyethyl group and one or more of the carboxymethyl groups may be replaced by carboxyethyl groups. Specific examples of such polyacetic acids which are particularly suitable are ethylenediaminetetraacetic acid (EDTA), N-hydroxyethyl ethylenediaminetriacetic acid, nitrilotriacetic acid, N-2-hydroxyethyliminodiacetic acid, diethylenetriamine-pentaacetic acid, and mixtures thereof.
Such polycarboxylic acid chelating agents must be combined with ammonia or a suitable amine in order to obtain a solution with a basic pH. Solution pH can be further adjusted by the use of additional ammonia or amine.
Examples of suitable paired combinations of ammonia, amines, and alkanolamines with such polycarboxylic acids are listed in the following table.
Amine Pol carboxylic Acid ammonia EDTA ethanolamine EDTA ethylamine EDTA ethylenediamine EDTA diethylenetriamine EDTA pentaethylenehexamine EDTA dirnethylamine EDTA trimethylamine EDTA ethylenimine EDTA ethanolamine ethylenediaminetetrapropionic acid ethylenediamine N,N-di (fl-hydroxyethyl) glycine ammonia tetramethylenediamine- N,N,N',N'-tetraacetic acid ammonia (2-hydroxyethylimino) diacetic acid Any of the combinations of polycarboxylic acids and ammonia or amines considered together may be used in a concentration in the range of about 1 to 10 per cent by weight.
The polyamines which may be used are principally the polyalkylene polyamines having intralinear amino groups having a ratio of nitrogen atoms to carbon atoms in the chain of at least about 0.2 and preferably at least about 0.5. In addition, suitable polyamines must be readily soluble in the aqueous cleaning solution at an alkaline pH in the range of pH 7 to 10. Specific examples of suitable polyamines are polyethylenimine having molecular weights in the range of about 600 to 500,000, the reaction product of ethylenediamine and ethylenedichloride having an average molecular weight above about 230, preferably about 600 to 500,000, copolymerized N-phenyl ethylenimine and ethylenimine,
the copolymer having an n-phenyl group on about 10 per cent of the ethylene units in the molecule, and pentaethylenehexamine. The polyamines are employed in a concentration range of about 0.2 to per cent by weight. In any event, a sufficient amount of the polyamine must be used to provide two nitrogen atoms for each copper ion which is to be complexed. The amount of polyethylenimine to meet this requirement is about 2.8 parts per part by weight of copper.
Preferably, the corrosive attack of the polycarboxylic acid chelating agent upon the metal substrate is inhibited by an inhibitor compound or composition that does not interfere with the action of the present polyamines in keeping copper from plating out on the substrate. Examples of suitable inhibitors include, e.g. sodium mercaptobenzothiazole, di-aminoethylsulfide, or the product of the reaction of (1) one mole of an ammonia derivative having at least one hydrogen attached to nitrogen and having no groups reactive under the conditions of reaction other than hydrogen, (2) from 1.5 to moles of a ketone having at least one hydrogen atom on the carbon atom adjacent to the carbonyl group, (3) from 2 to 10 moles of an aldehyde selected from the group consisting of aliphatic aldehydes having from 1 to 16 carbon atoms and aromatic aldehydes of the benzene series and having no functional groups other than aldehyde groups, and (4) from 0.6 to 24 parts by weight based on (1), (2), and (3) of a fatty acid having from one to 20 carbon atoms at a temperature of from 150F. to about 250F for from 1 to 16 hours, such reaction product being more fully described in U.S. Pat. No. 3,077,454, which is expressly incorporated herein by reference, or mixtures thereof.
in carrying out the improved process as on a boiler system, the system is drained and then refilled with an aqueous alkaline solution of the polycarboxylic acid chelating agent having the polyamine dissolved therein. The aqueous solution is heated up in order to dissolve iron oxide or hardness deposits at practical rates. The solution is also heated in order to activate the polyamine. For the latter purpose, temperatures above about 155C are employed. Suitable temperatures are in the range of 155 to 190C. Normally the system is closed and the cleaning solution builds up some autogenous pressure due to the water and the ammonia or other volatile amine present. Pressure of the order of 20 to 200 pounds per square inch gauge are typical, but have no particular effect on the present method. The temperature of the cleaning solution is maintained for at least 30 to 60 minutes, or until the iron oxides and other deposits are removed. The process seldom takes more than 4 hours. At the end of this time the cleaning solution is drained and rinsed leaving a clean ferrous metal surface free of copper deposits.
In another embodiment of the present method the polyamine is activated by heating an aqueous solution thereof prior to adding the polyamine to the aqueous alkaline cleaing solution containing the polycarboxylic acid chelating agent. Heating about 10 per cent by weight aqueous solution of the polyamine to a temperature of at least 155C. and preferably 160 to 190C. for 30 minutes provides sufficient pyrolytic activation of the polyamine. With such prior activation outside the system to be cleaned, the cleaning of the ferrous metal surface may proceed at a much lower temperature, usually in the range of 110 to 150C. The advantage of using such lower temperature is decreased corrosion of the ferrous metal surface by the cleaning solution, without in any way interfering with the removal of copper deposits.
The following examples serve to illustrate the invention and not to limit the scope thereof.
EXAMPLE I An aqueous solution was prepared containing 3.8 per cent by weight of triammonium (ethylenedinitrilo) tetraacetate (ammoniated EDTA), 0.3 per cent by weight of polyethylenimine having a molecular weight of about 40,000 to 60,000, 0.05 per cent by weight of sodium mercaptobenzothiazole and 0.1 per cent by weight of a commercial inhibitor of the class described in U.S. Pat. No. 3,077,454 and consisting of the product of reaction of Rosin Amine D, tall oil fatty acids, acetophenone, and paraformaldehyde at a temperature of about C. for about 8 hours in ethylene glycol medium and in the presence of H 80 After the reaction, an adduct of nonylphenol and ethylene oxide was added to the reaction product all as more fully described in said U.S. patent.
A 200 milliliter quantity of this solution was placed in a glass beaker along with two 1010 (AISI) steel coupons having a natural mill-scale surface thereon. 0.3 grams of copper powder admixed with 0.7 grams of ferric oxide powder were also placed in the same glass beaker. The beaker and contents were placed in a pressure vessel. The vessel was closed and heated to 187C. The autogenous pressure in the vessel rose to pounds per square inch gauge. After 4 hours at the stated temperature the reactor was quenched with water and opened. The beaker and contents were removed. The coupons were found to be bright and clear and free of copper deposits.
COMPARISON TEST In an experiment made by way of comparison, a run was carried out as described in Example 1 except that the polyethylenimine was omitted from the aqueous cleaning solution. When the coupons were removed from the pressure vessel they were found to be free of mill-scale but heavily coated with copper.
EXAMPLE 2 On carrying out a run in the same manner as Example 1 except that a polyethylenimine having 10 per cent phenyl substitution in the molecule was substituted weight-by-weight for the polyethylenimine of example 1, the mill-scale coated coupons were cleaned and copper did not deposit on the cleaned surfaces.
EXAMPLE 3 On carrying out a run in the same manner as Example 1 except for the substitution of a linear polyalkylene polyamine for polyethylenimine the mill-scale coupons came out bright and clean and free of copper deposits.
COMPARlSON TEST In a run made by way of comparison, all conditions and reactants were the same as in example 1 except that the pressure vessel and contents were heated only to 119C. The coupons were cleaned of mill-scale but carried heavy copper deposit.
COMPARISON TEST In a run made by way of comparison, all conditions and reactants were the same as in example 1 except that the pressure vessel and contents were heated only to 140C. The coupons were cleaned of mill-scale but carried a heavy copper deposit.
EXAMPLE 4 A solution containing 3.8 per cent by weight of triammonium (ethylenedinitrilo)tetraacetate, and 0.25 per cent by weight of a polyethylenimine having a molecular weight of approximately 50,000 was prepared and 200 milliliters of this solution was placed in a glass beaker along with two 1010(AIS1) steel coupons which had been cleaned in nitric acid, dried and weighed. The beaker and contents were placed in a pressure vessel and heated to 150C. The temperature was maintained for 4 hours after which the pressure vessel was quenched and opened. The coupons were dried and weighed and corrosion of the metal was found to have taken place at the rate of 0.0605 pounds per square foot per day (lb/ftF/day).
EXAMPLE 5 When the test as in Example 4 was conducted using magnetite-coated coupons instead of acid cleaning coupons, the corrosion rate was found to be 0.0326 lb/ftF/day.
EXAMPLE 6 A run was carried out in the same manner as example 5 except that sodium mercaptobenzothiazole and the commercial inhibitor described in example 1 were added to the last solution in the same proportions as in Example 1. The coupons subject to test corroded at a rate of 0.0043 lb/ftF/day.
EXAMPLE 7 A solution containing 3.8 per cent by weight of triammonium (ethylenedinitrilo)tetraacetate and 0.3 per cent by weight polyethylenimine and 0.15 per cent by weight copper oxide was prepared and 200 milliliters of this solution was placed in a glass beaker. The beaker was placed in a pressure vessel and the vessel and contents were heated to 160C for about 30 minutes. The pressure vessel was then cooled and opened and two 1010(AIS1) steel coupons having a surface covered with mill-scale were placed in the beaker. The pressure vessel was then closed and heated to l C. The temperature was maintained for 4 hours, after which the pressure vessel was cooled and opened and the coupons examined. The coupons were found to be free of copper plating and they showed corrosion had taken place at the rate of 0.0173 lb/ftlday.
COMPARISON TEST On carrying out a run in about the same manner as Example 7 except that the inhibitors of Example 1 were added to the cleaning solution, initial heating was carried out at 165C. and the preheated cleaning solution was transferred anaerobically to another pressure vessel containing the two mill-scaled coupons, and the second pressure vessel was heated only to 97C. during the 4 hour period. The coupons under test were cleaned of millscale and showed that corrosion had taken place at a rate of 0.0091 1b./ft /day, but copper had plated out on the coupons.
The method and composition of the invention having been thus fully described various modifications thereof will at once be apparent to those skilled in the art and scope of the invention is to be considered limited only by the breadth of the claims hereafter appended.
We claim:
1. 1n the method of cleaning a ferrous metal surface, in the presence of metallic copper or dissolved copper by contacting the surface with an aqueous solution of an alkylene polyamine polyacetic acid chelating agent containing sufficient ammonia or amine to bring the solution pH in the range of about 7 to 10, the improvement which comprises:
adding a polyalkylenepolyamine to the aqueous cleaning solution prior to contacting the ferrous metal surface and maintaining the resulting aqueous cleaning solution at a temperature above about 155C. during at least the initial stage of the cleaning process, thereby preventing copper from depositing on the ferrous metal surface,
the polyalkylenepolyamine having an average molecular weight in the range of about 40,000 to 60,000 and being selected from the group consisting of polymerized ethylenimine, the reaction product of ethylenediamine and ethylenedichloride, and copolymerized N-phenyl ethylenimine and ethylenimine having an N-phenyl group on about 10 per cent of the ethylene units in the molecule.
2. The improvement as in claim 1 in which the aqueous cleaning solution is initially heated to a temperature in the range of above about 155 and up to 190C, and then the temperature is reduced to about 1 10 to C for the balance of the cleaning period.
3. The improvement as in claim 1 in which the cleaning solution contains from 0.1 to 5 per cent by weight of polyalkylenepolyamine, the cleaning solution is activated by heating to a temperature in the range of above about and up to C and thereafter the cleaning solution is maintained in contact with the ferrous metal surface at a temperature in the range of 1 10 to 150C.
4. The improvement as in claim 1 in which the total amount of polyalkylenepolyamine added to the aqueous solution is about 2.8 parts by weight per part of copper impurity present in the system being cleaned.
2 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTIQN Patent No. "3,754,990 Dated August 28, 1973 I Fred N. Teumac & James S. Scruggs It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
f Page 1, under References Cited, United States Patents, add
the following reference:
3,637, 508 1/72 Willsey et al. 134/41 xr Signed and sealed this 29th day of January 1974.
(SEAL) A ttest: EDWARD M.FLETCHER,JR. RENE D. TEG TMEYER Attesting Officer Acting Commissioner of Patents

Claims (3)

  1. 2. The improvement as in claim 1 in which the aqueous cleaning solution is initially heated to a temperature in the range of above about 155* and up to 190*C, and then the temperature is reduced to about 110* to 150*C for the balance of the cleaning period.
  2. 3. The improvement as in claim 1 in which the cleaning solution contains from 0.1 to 5 per cent by weight of polyalkylenepolyamine, the cleaning solution is activated by heating to a temperature in the range of above about 155* and up to 190*C and thereafter the cleaning solution is maintained in contact with the ferrous metal surface at a temperature in the range of 110* to 150*C.
  3. 4. The improvement as in claim 1 in which the total amount of polyalkylenepolyamine added to the aqueous solution is about 2.8 parts by weight per part of copper impurity present in the system being cleaned.
US00117806A 1968-02-09 1971-02-22 Cleaning of ferrous metal surfaces Expired - Lifetime US3754990A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70426568A 1968-02-09 1968-02-09
US11780671A 1971-02-22 1971-02-22

Publications (1)

Publication Number Publication Date
US3754990A true US3754990A (en) 1973-08-28

Family

ID=26815669

Family Applications (2)

Application Number Title Priority Date Filing Date
US704265A Expired - Lifetime US3627687A (en) 1968-02-09 1968-02-09 Cleaning of ferrous metal surfaces
US00117806A Expired - Lifetime US3754990A (en) 1968-02-09 1971-02-22 Cleaning of ferrous metal surfaces

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US704265A Expired - Lifetime US3627687A (en) 1968-02-09 1968-02-09 Cleaning of ferrous metal surfaces

Country Status (1)

Country Link
US (2) US3627687A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020016A (en) * 1975-02-28 1977-04-26 The Drackett Company Cleaning compositions effective in dissolving soap curd
GB2157322A (en) * 1984-03-29 1985-10-23 Diversey Limited Removal of iron oxide deposits
US4720306A (en) * 1985-04-16 1988-01-19 Kraftwerk Union Aktiengesellschaft Cleaning method
US4721532A (en) * 1985-08-05 1988-01-26 W. R. Grace & Co. Removal of iron fouling in cooling water systems
US4778655A (en) * 1985-10-29 1988-10-18 W. R. Grace & Co. Treatment of aqueous systems
US4793865A (en) * 1987-08-19 1988-12-27 Aqua Process, Inc. Method and composition for the removal of ammonium salt and metal compound deposits
US4880568A (en) * 1987-08-19 1989-11-14 Aqua Process, Inc. Method and composition for the removal of ammonium salt and metal compound deposits
WO1993015177A1 (en) * 1992-01-30 1993-08-05 Casco Nobel Ab Cleaning of equipment with respect to amino resins
US5779814A (en) * 1994-03-17 1998-07-14 Fellers, Sr.; Billy Dean Method for controlling and removing solid deposits from a surface of a component of a steam generating system
US6695927B1 (en) * 1998-05-22 2004-02-24 Siemens Aktiengesellschaft Method and cleaning solution for cleaning a container
US20060112972A1 (en) * 2004-11-30 2006-06-01 Ecolab Inc. Methods and compositions for removing metal oxides
US20070187646A1 (en) * 2006-02-16 2007-08-16 Fellers Billy D Surface-active amines and methods of using same to impede corrosion
US20130072418A1 (en) * 2010-05-28 2013-03-21 Mitsubishi Heavy Industries, Ltd. Method for treating scales

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE367018B (en) * 1972-03-27 1974-05-13 Mo Och Domsjoe Ab
US4470920A (en) * 1981-05-11 1984-09-11 Custom Research And Development Metal oxide remover for stainless steels
US5264041A (en) * 1986-12-01 1993-11-23 Siemens Aktiengesellschaft Method for cleaning a vessel
ES2023397B3 (en) * 1986-12-01 1992-01-16 Siemens Ag PROCEDURE FOR CLEANING A CONTAINER.
GB8914462D0 (en) * 1989-06-23 1989-08-09 Unilever Plc Cleaning composition
US5478604A (en) * 1994-06-07 1995-12-26 Actinic, Inc. Composition and method for preventing lead intoxication
US5972868A (en) * 1995-12-13 1999-10-26 The Dow Chemical Company Method for controlling alkaline earth and transition metal scaling with 2-hydroxyethyl iminodiacetic acid
US5904735A (en) * 1997-08-04 1999-05-18 Lever Brothers Company Detergent compositions containing polyethyleneimines for enhanced stain removal
US5955415A (en) * 1997-08-04 1999-09-21 Lever Brothers Company, Division Of Conopco, Inc. Detergent compositions containing polyethyleneimines for enhanced peroxygen bleach stability
US6559116B1 (en) 1999-09-27 2003-05-06 The Procter & Gamble Company Antimicrobial compositions for hard surfaces
US6627546B2 (en) * 2001-06-29 2003-09-30 Ashland Inc. Process for removing contaminant from a surface and composition useful therefor
DE102004054471B3 (en) * 2004-11-11 2006-04-27 Framatome Anp Gmbh Cleaning process for removal of magnetite-containing deposits from a pressure vessel of a power plant
DE102004057623A1 (en) * 2004-11-29 2006-06-01 Henkel Kgaa Aqueous cleaning agent concentrate, useful for cleaning oil- and/or fat- polluted metallic surfaces, comprises water, glycol ether and/or non-ionic surfactant, polyethylenimine and cationic surfactant
US8080110B2 (en) * 2005-03-22 2011-12-20 Clemson University Research Foundation Method and system to stabilize and preserve iron artifacts
US7393461B2 (en) * 2005-08-23 2008-07-01 Kesheng Feng Microetching solution
US8278258B2 (en) * 2007-02-01 2012-10-02 Henkel Ag & Co. Kgaa Acid inhibitor compositions for metal cleaning and/or pickling
DE102007023247B3 (en) * 2007-03-07 2008-08-07 Areva Np Gmbh Two-stage process to remove magnetite and copper deposits from an atomic power station steam generator using complexing agents
EP2569406A4 (en) 2010-05-14 2013-11-13 Sun Products Corp Polymer-containing cleaning compositions and methods of production and use thereof
CA3057217A1 (en) * 2019-10-02 2021-04-02 Fluid Energy Group Ltd. Composition useful in metal sulfide scale removal

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2396938A (en) * 1944-01-22 1946-03-19 Martin Dennis Company Method of treating boilers
GB821094A (en) * 1954-09-14 1959-09-30 Dow Chemical Co Improved method for descaling surfaces
US2959555A (en) * 1956-09-28 1960-11-08 Dow Chemical Co Copper and iron containing scale removal from ferrous metal
US3003970A (en) * 1960-05-23 1961-10-10 Dow Chemical Co Cleaning composition and a method of its use
US3067070A (en) * 1961-02-01 1962-12-04 Charles M Loucks Cleaning method for industrial systems
US3251778A (en) * 1960-08-04 1966-05-17 Petrolite Corp Process of preventing scale
US3262791A (en) * 1960-08-04 1966-07-26 Petrolite Corp Corrosion preventing method and composition
US3308065A (en) * 1963-07-22 1967-03-07 Dow Chemical Co Scale removal, ferrous metal passivation and compositions therefor
US3438901A (en) * 1965-10-22 1969-04-15 Neiko I Vassileff Metal treating bath and chelating agent for metal reactive acid baths
US3440170A (en) * 1964-06-09 1969-04-22 Ver Kunstmestf Mekog Albatros Process for the cleaning of equipment
US3447965A (en) * 1966-10-31 1969-06-03 Dow Chemical Co Removal of copper containing scale from ferrous surfaces
US3490741A (en) * 1966-09-15 1970-01-20 Dow Chemical Co Method of cleaning metal surfaces with polycarboxylic acid complexing agents inhibited by ethyleneimines or polyethylenepolyamines containing divalent sulfur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419501A (en) * 1965-05-10 1968-12-31 Chrysler Corp Metal cleaning composition
US3346489A (en) * 1966-03-04 1967-10-10 Petrolite Corp Drilling fluids

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2396938A (en) * 1944-01-22 1946-03-19 Martin Dennis Company Method of treating boilers
GB821094A (en) * 1954-09-14 1959-09-30 Dow Chemical Co Improved method for descaling surfaces
US2959555A (en) * 1956-09-28 1960-11-08 Dow Chemical Co Copper and iron containing scale removal from ferrous metal
US3003970A (en) * 1960-05-23 1961-10-10 Dow Chemical Co Cleaning composition and a method of its use
US3251778A (en) * 1960-08-04 1966-05-17 Petrolite Corp Process of preventing scale
US3262791A (en) * 1960-08-04 1966-07-26 Petrolite Corp Corrosion preventing method and composition
US3067070A (en) * 1961-02-01 1962-12-04 Charles M Loucks Cleaning method for industrial systems
US3308065A (en) * 1963-07-22 1967-03-07 Dow Chemical Co Scale removal, ferrous metal passivation and compositions therefor
US3440170A (en) * 1964-06-09 1969-04-22 Ver Kunstmestf Mekog Albatros Process for the cleaning of equipment
US3438901A (en) * 1965-10-22 1969-04-15 Neiko I Vassileff Metal treating bath and chelating agent for metal reactive acid baths
US3490741A (en) * 1966-09-15 1970-01-20 Dow Chemical Co Method of cleaning metal surfaces with polycarboxylic acid complexing agents inhibited by ethyleneimines or polyethylenepolyamines containing divalent sulfur
US3447965A (en) * 1966-10-31 1969-06-03 Dow Chemical Co Removal of copper containing scale from ferrous surfaces

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020016A (en) * 1975-02-28 1977-04-26 The Drackett Company Cleaning compositions effective in dissolving soap curd
GB2157322A (en) * 1984-03-29 1985-10-23 Diversey Limited Removal of iron oxide deposits
US4720306A (en) * 1985-04-16 1988-01-19 Kraftwerk Union Aktiengesellschaft Cleaning method
US4721532A (en) * 1985-08-05 1988-01-26 W. R. Grace & Co. Removal of iron fouling in cooling water systems
US4778655A (en) * 1985-10-29 1988-10-18 W. R. Grace & Co. Treatment of aqueous systems
US4880568A (en) * 1987-08-19 1989-11-14 Aqua Process, Inc. Method and composition for the removal of ammonium salt and metal compound deposits
US4793865A (en) * 1987-08-19 1988-12-27 Aqua Process, Inc. Method and composition for the removal of ammonium salt and metal compound deposits
WO1993015177A1 (en) * 1992-01-30 1993-08-05 Casco Nobel Ab Cleaning of equipment with respect to amino resins
US5779814A (en) * 1994-03-17 1998-07-14 Fellers, Sr.; Billy Dean Method for controlling and removing solid deposits from a surface of a component of a steam generating system
US6017399A (en) * 1994-03-17 2000-01-25 Calgon Corporation Method for controlling and removing solid deposits from a surface of a component of a steam generating system
US6695927B1 (en) * 1998-05-22 2004-02-24 Siemens Aktiengesellschaft Method and cleaning solution for cleaning a container
US20060112972A1 (en) * 2004-11-30 2006-06-01 Ecolab Inc. Methods and compositions for removing metal oxides
US7611588B2 (en) 2004-11-30 2009-11-03 Ecolab Inc. Methods and compositions for removing metal oxides
US20070187646A1 (en) * 2006-02-16 2007-08-16 Fellers Billy D Surface-active amines and methods of using same to impede corrosion
US20130072418A1 (en) * 2010-05-28 2013-03-21 Mitsubishi Heavy Industries, Ltd. Method for treating scales

Also Published As

Publication number Publication date
US3627687A (en) 1971-12-14

Similar Documents

Publication Publication Date Title
US3754990A (en) Cleaning of ferrous metal surfaces
US3308065A (en) Scale removal, ferrous metal passivation and compositions therefor
US3447965A (en) Removal of copper containing scale from ferrous surfaces
US4430128A (en) Aqueous acid composition and method of use
USRE30796E (en) Scale removal, ferrous metal passivation and compositions therefor
US4666528A (en) Method of removing iron and copper-containing scale from a metal surface
US4066398A (en) Corrosion inhibition
US2496595A (en) Formaldehyde corrosion inhibitor compositions
US4452643A (en) Method of removing copper and copper oxide from a ferrous metal surface
CA2271292C (en) Liquid metal cleaner for an aqueous system
US2959555A (en) Copper and iron containing scale removal from ferrous metal
US4104303A (en) Acid inhibitor composition and process in hydrofluoric acid chemical cleaning
US3506576A (en) Metal cleaning solution of chelating agent and water-soluble sulfide
CA1210302A (en) Boiler scale prevention employing an organic chelant
US4351673A (en) Method for removing iron sulfide scale from metal surfaces
US3854996A (en) Method for removing magnetite scale
EP0698072B1 (en) Process for metal cleaning
US4636327A (en) Aqueous acid composition and method of use
CA2642715A1 (en) Acid inhibitor compositions for metal cleaning and/or pickling
US3074825A (en) Method of removing copper-containing iron oxide incrustations from ferriferous surfaces
EP2455514A1 (en) Method for treating iron-based metal surface which is exposed to superheated steam
US3095380A (en) Composition for removal of heat scale and carbon deposits
US3490741A (en) Method of cleaning metal surfaces with polycarboxylic acid complexing agents inhibited by ethyleneimines or polyethylenepolyamines containing divalent sulfur
US3907699A (en) Composition and process for the removal of copper during acid cleaning of ferrous alloys
US3415692A (en) Method of passivating metal surfaces