US3741374A - Material handling device - Google Patents
Material handling device Download PDFInfo
- Publication number
- US3741374A US3741374A US00185052A US3741374DA US3741374A US 3741374 A US3741374 A US 3741374A US 00185052 A US00185052 A US 00185052A US 3741374D A US3741374D A US 3741374DA US 3741374 A US3741374 A US 3741374A
- Authority
- US
- United States
- Prior art keywords
- chain
- carriage
- yoke
- pusher
- slot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims abstract description 55
- 230000007246 mechanism Effects 0.000 claims abstract description 24
- 238000003780 insertion Methods 0.000 claims abstract description 5
- 230000037431 insertion Effects 0.000 claims abstract description 5
- 241000282472 Canis lupus familiaris Species 0.000 claims description 122
- 230000006872 improvement Effects 0.000 claims description 28
- 239000002184 metal Substances 0.000 abstract description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q7/00—Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
- B23Q7/06—Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of pushers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D43/00—Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
- B21D43/02—Advancing work in relation to the stroke of the die or tool
- B21D43/04—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
- B21D43/12—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by chains or belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q7/00—Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
- B23Q7/10—Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of magazines
- B23Q7/106—Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of magazines with means to deliver a certain quantity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/18—Mechanical movements
- Y10T74/18056—Rotary to or from reciprocating or oscillating
- Y10T74/18152—Belt or chain carried member
Definitions
- the drive mechanism for a sheet metal loader having a reciprocating carriage adapted to receive blanks and parts and feed them into a press includes a pusher mechanism mounted on a continuous sprocket driven chain moving forward and backward along an upper and lower path in a vertical plane.
- First and second rollers project from each side of the chain for engagement in a pair of spaced yokes having elongated vertical slots for receipt of the roller.
- One of the yokes and slots extends the full vertical spacing of the chain for continuous confinement of the first roller to move the carrier continuously and reciprocally.
- the other yoke and slot terminate above the sprocket axle with the lower end open to accommodate insertion and removal of the second roller for driving engagement during the forward drive movement of the carriage.
- the carriage and guide are adjustable to accommodate various size parts or material.
- This invention relates to material handling devices and, more particularly, to loaders and unloaders for feeding stockinto presses and receiving and transferring the work piece after its'formation.
- press rooms have long needed a low-cost, high performance material handling device which can load or unload blanks and parts to and from presses.
- Such a machine must combine speed and dependability of operation with fast set-up and knock-down time. It must be adjustable to cooperate with a variety of different size presses and must also have the flexibility to adapt to a wide variety of part sizes and shapes.
- One of the major limitations on press production has been the time taken to load blanks into a press, extract them from the press, and transfer them to other presses or stations.
- This invention provides an improved material handling device which can be utilized as both a loader and unloader for presses which greatly overcomes many of the disadvantages present in the state of art today.
- One important aspect provided by this invention and overcoming these disadvantages is the utilization of a singlechain drive means (rather than a two-chain drive) for reciprocally moving a carriage back and forth in the guide track in such a way as to alleviate many of the unbalanced stresses heretofore imparted on a single chain.
- a singlechain drive means for reciprocally moving a carriage back and forth in the guide track in such a way as to alleviate many of the unbalanced stresses heretofore imparted on a single chain.
- Additional important aspects provided by this invention is the flexibility in adjustment of the loader for adaptation to wide variety of part sizes, shapes, and uses. Also, a unique pusher mounting assembly distributes the forces applied to the chain more
- a carriage is mounted within a guide on a frame for reciprocal movement to advance materials from one end to the other of the guide.
- the carriage is driven back and forth by a drive means comprising a singleendless chain mounted beneath the guide track about a drive and idler sprocket in a generally vertical plane.
- a pusher means including a first and second pusher dog extending from each side of the chain is mounted thereto-for continuous reciprocal movement therewith along an upper and lower path.
- a yoke connected to the carriage includes a vertically oriented elongated slot for receipt of the first pusher dog, the slot extending beyond the diameter of the sprockets so that the first pusher dog is operative the yoke and carriage back and forth along the guide track.
- a half yoke is also provided for connection to the carriage and is spaced from the other yoke on the opposite side of the chain and likewise includes a vertically elongated slot for receipt of the second pusher dog.
- the half yoke terminates above the drive axle sprocket with the slot open at its lower end to receive and release the second pusher dog such that the second pusher dog is confined in driving engagement with the half yoke slot during the upper movement only of the second pusher dog along the upper path of the chain.
- the chain is centered beneath the carriage and advances the work piece during the upper movement of the pusher dogs so that the load concentration on the chain is centered with respect thereto as a result of both pusher dogs engaging the yokes uniformly on each side.
- the guide track is adjustable to accommodate parts of various sizes and widths
- the carriage includes a pair of pusher arms which are adjustable longitudinally to adapt to various size and types of presses.
- the drive train assembly is powered electrically or pneumatically and is harmonic for smooth and continuous movement in either direction free of sudden stops and back-and-forth jerks regardless of the speed selected.
- the loader is compact and light-weight and operable by a single switch in connection with the press.
- the carriage includes means for advancing the work piece from the die onto the unloader for transfer by the carriage to the opposite end of the guide track.
- a gear driven chain with a unique mounting plate adapted to be connected to the chain at more than one point to distribute the loading on the chain over more than one chain length.
- an axle or stem means is mounted to the plate and spaced from the chain with the pusher dogs being mounted on each end of the axle and rotatable with respect thereto so that the pusher dogs are in effect rollers engaged in the yoke slots to reduce the effects of friction.
- this invention provides several unique advantages and objectives which are not always compatible in the prior art and in so doing overcomes many of the disadvantages present today.
- this invention provides a light-weight, compact relatively low cost loader which is extremely flexible to adapt to different work criteria and yet dependable through the complete range of its operation.
- FIG. 1 is a perspective view of the material handling device provided by this invention
- FIG. 2 is a perspective view of the unique drive means provided by this invention showing only one pusher member in driving position;
- FIG. 3 is a perspective view similar to FIG. 2 taken from a different angle and showing two pusher members in driving position;
- FIG. 4 is a plan view of the pusher means proposed by this invention with a sprocket shown in cross section, this view being of enlarged proportions with respect to the other drawings;
- FIG. 5 is a side elevation view of the connector plate provided by this invention.
- FIG. 6 is a perspective view similar to FIG. 3 of an alternative embodiment provided by this invention.
- FIG. 7 is a side elevationview of the half yoke assembly provided by this invention.
- FIG. 8 is an elevation view of a puller mechanism utilizing my invention as an unloader.
- loader 10 includes a frame 12 having an upper bed 14 for receiving and supporting the work pieces or blanks (not shown). Adjustable side wall 16 and 18 define a guide 20 for the loader which guides the work piece from one end 22 to and off the other end 24.
- the work is propelled by a carriage 26 having a pair of pusher arms 28, 28, carriage 26 moving reciprocally back and forth along the guide.
- Carriage 26 is driven by a drive mechanism 30 having a single gear chain 32 mounted vertically for over-under back-and-forth movement.
- a pair of pusher dogs 34 and 36 operatively engage a pair of slotted yokes 38 and 40 connected to carriage 26 to provide continuous and smooth movement of carriage 26 backand-forth.
- the force generated on chain 32 is centered with respect thereto thus alleviating side loading. While the following description pertains specifically to a sheet metal loader and unloader, the concepts are envisioned as having much broader utilization.
- the loader frame 12 is shown to be comprised of a generally U-shaped central support 50 which extends longitudinally the length of the loader with the side opposite the web portion 52 facing upward to facilitate the mounting and guiding of carriage 26.
- Central support element 50 is comprised of framing which is conventionally welded or fastened together to form a generally U-shaped frame.
- a pair of cross supports 54 and 56 extend laterally outwards from the upper corners of each end of frame 50 to act as supports for the guide and track means to be described hereinafter.
- Cross supports 54 and 56 are anchored at one end to frame 50 and preferably braced by welding one end of an angle support 58 to each cross support, the opposite end being welded to frame 50.
- Cross supports 54 and 56 are generally C-shaped tubular members positioned with the opening 60 facing up to permit easy attachment of the guide means 20.
- Side walls 16 and 18 are mounted on cross supports 54 and 56 and are adjustable laterally to facilitate sheet metal blanks or other part materials of varying widths.
- Side walls 16 and 18 extend vertically upwards and include an L- shaped flange 62 mounted at each lower end to the side walls. The opposite leg can then be positioned over cross supports 54 and 56 and fastened within opening 60 of the cross supports. Sliding adjustment is provided by simply loosening the fasteners 64 such as a bolt and nut, sliding the side wall to a desired position and then tightening it down to anchor it at that point to the cross bar.
- each side wall 16 and 18 includes a part guide 66 the lower portion 68 of which is vertical while the upper portion 70 is inclined to act as a guide for the material as it is pushed or placed onto the top of the loader.
- the vertical portion 68 also positions the blank longitudinally on the loader and prevent backward movement of the blank as the carriage reciprocates underneath it.
- a pair of longitudinally extending slots 72 and'74 are provided through each side wall 16 and 18 to facilitate mounting guide 66 thereto as well as providing a means for its longitudinal adjustment.
- Side walls 16 and 18 in effect form the lateral limits of a guide track 20 for the blanks to be loaded on the press.
- the support bed 14 for the blanks is defined by a pair of laterally adjustable longitudinally extending rails 76 and 78.
- the rails extend the length of the loader and are affixed to cross supports 54 and 56 in similar fashion to side walls 16 and 18. That is, an L-shaped bracket 62a and fastener 64a such as a bolt and nut anchor rails 76 and 78 at each end to cross supports 54 and 56.
- the simple loosening of the fastener permits lateral adjustment of the rail depending on the spacing of the side walls and the configuration of the part member, It will be appreciated, that in accordance with the preferred embodiment, the minimum width of the guide means 20 which includes bed 14 is limited by the inner end of cross sup ports 54 and 56.
- the outer limits of the width of guide track 20 is defined by the length of cross bars 54 and 56. It has been found that the optimum range of adjustment for a sheet metal loader which as shown in the drawings is one which can accommodate parts varying in width from 12 inches to 8 feet.
- Central support frame 50 includes a pair of longitudinally extending supports 80 and 82 welded or fastened to the inner upper ends of frame '50.
- supports 80 and 82 are generally U-shaped with the web portion 84 (FIG. 3) vertically aligned with and in abutment with the upper portions of frame 50 so that the opened portion opposite web 84 faces inwardly.
- supports 80 and 82 define a pair of guide tracks 86 for carriage 26.
- carriage 26 is comprised of a generally flat plate 90 which rests on the upper surfaces of guide tracks 86.
- pair of downwardly depending flanges 92 and 94 extend from plate 90 and are spaced inwardly to clear the leg portions of tracks 86.
- a plurality of rollers 96 are secured to flanges 92 and 94 and extend outwardly therefrom for disposition intermediate the two leg portions of each guide track 86.
- the carriage is locked between guide tracks-86 since the upper and lower legs of each guide track prevents vertical displacement of the carriage while the web portion of each track prevents horizontal displacement.
- horizontal rollers (not shown) are utilized for engagement against the outer edges of each leg portion.
- the legs prevent horizontal displacement.
- Affixed to the upper surface 96 of plate 90 are a pair of finger-like pushers 28 extending longitudinally in the direction of advancement.
- Each pusher 28 is mounted to plate 90 by a special mounting bracket 98 (FIG. 1) which positions the pusher along the outer periphery of plate 90 in spaced relationship to each other.
- Bracket 98 includes fasteners 100 which extend through a longitidinally extending slot 99 through bracket 98 so that the longitudinal extension of pushers 28 in the direction of advancement of the loader is adjustable within limits to provide variable pusher extensions as the loader is operated. Under certain conditions, loader might be spaced somewhat from the press so that the extension of pushers 28 is necessary to positively push the sheet metal blank onto the'die. For this very same reason, side walls 16 and 18 can be extended by a supplemental portion 102 (shown in FIG. 1) which is removable in the event it is not required.
- a sliding bolt mechanism 104 is shown for mounting supplemental side wall 102 to side wall 16 or 18.
- the upper surface 106 of pushers 28 are formed and shaped to act as cams to insure the lifting of the work piece up over the pushers so that they can be positioned behind the work piece to-advance it onto the press.
- the upper surfaces 106 are sloped abruptly from the upper surface of plate 90 at the rear end of pushers to a point intermediate the pusher ends wherein the slope is significantly decreased but still upwards toward a maximum position at the forward end 108 of the pushers.
- the forward ends 108 include an upper projecting portion 1 10 which extends slightly beyond the vertical front surface 112 of the forward end so that when a work piece is dropped down in front of the forward end 108, projections 110 prevent their accidental or unintentional vertical displacement.
- projection 110 acts as a keeper for the work piece when it is positioned in front of the pushers.
- Cam surfaces 106 on pushers 28 prevent interference from work pieces being supplied to the loader when the carriage is in an advanced position. That is, regardless of the longitudinal position of carriage 26, a successive work piece is prevented from being positioned in front of pushers 28 except when the carriage is in its rearwardmost position so that the next plank will drop down in front of the pushers. If a work piece is being advanced when a second piece is dropped down over the carriage, the pushers will simply slide under the second work piece until the pushers have advanced the first work piece off the loader and are returned to the initial start position which permits the second piece to drop in front of pushers.
- guide 66 is positioned longitudinally with respect to the loader so that any work piece pushed into position cannot be moved toward a rearward position exceeding the starting position of carriage 26.
- carriage 26 and pushers 28 are centered laterally with respect to the loader frame 50 intermediate the legs of central support frame 50.
- a drive mechanism 30 which imparts reciprocal and continuous movement of the carriage forward and backwards in order to transfer work pieces positioned thereon onto a press or other material handling apparatus.
- a single continuous gear chain 32 is mounted in a generally vertical plane for movement about a horizontal axis between a pair of sprockets. Only one of the sprockets, driven sprocket 114 is shown. Driven sprocket 114 is connected by an axle 116 in a conventional fashion to a mounting bracket 118 for operative-association with a conventional power source which is well known.
- the chain is centered beneath carriage 26 with socket 114 rotating in the direction of arrow A. In this fashion, chain 32 makes an upper and lower path moving forwardly in the direction of arrow B when in the upper path while moving rearwardly in the direction of arrow C when moving in the lower path.
- the entire drive mechanism is enclosed in a cage 121 (FIG. 1) to protect the operator.
- Carriage 26 is reciprocally driven through the cooperation of a pusher dog 34 mounted to chain 32 and a vertically extending yoke 38 attached to the carriage.
- Pusher dog 34 projects to one side of chain 32 and is confined within an elongated slot 120 of yoke 38 having a front and rear wall 122 and 124.
- yoke 38 extends slightly off center from carriage 26 so that it is immediately adjacent the chain and sprockets on the same side that pusher dog 34 projects.
- pusher dog 34 is comprised of a roller 126 in the form of a spool mounted for rotation on pin 128 which is anchored to chain 32 in a manner to be described in more detail hereinafter. Briefly, the carriage is motivated as follows. With pusher dog 34 mounted within slot 120, movement of pusher dog 34 along chain 32 in the forward direction indicated by arrow B provides driving engagement between pusher dog 34 and front wall 122 of slot 120 toward its upper end causing carriage 26 to move in a forward material advancing direction.
- pusher dog 34 continues to move vertically downwards through slot but is transferred from driving engagement with front wall 122 to rearward driving engagement with rear wall 124 precipitating the reciprocal movement of carriage 26 in a direction indicated by arrow C.
- Yoke 38 is shown clearly in FIG. 2 and has a slightly wedge-shape in addition to a plurality of openings 130.
- the preferred configuration is designed from the standpoint of economy with the openings 130 reducing the overall material weight of the yoke, the same consideration being provided by its wedge shape.
- the maximum stresses on the yoke occur during the forward, driving advancement of the yoke and carriage which calls for the engagement of pusher dog 34 and front wall 122 at the upper extremity of yoke 38.
- the wedge shape provides greater strength on the upper portion of yoke 38 as opposed to the lower portion which is simply concerned with forces necessary to return the carriage without handling any material.
- a second half-yoke 40 is positioned on the opposite side of chain 32 from yoke 38 for engagement with a second pusher dog 36 projecting on the opposite side of chain 32 from pusher dog 34.
- This second yoke 40 shown in FIGS. 2, 3 and 7 likewise includes a slot 132 having a front inner wall 134 and a rear inner wall 136 arranged for engagement by pusher dog 36.
- Yoke 40 is distinguished from yoke 38 however in that slot 132 is opened at its lower end.
- the vertical extension of yoke 40 is significantly less than yoke 38 so that it is capable of continuous movement with carriage 26 without interfering with the sprocket axles such as axle 116 shown in FIG. 3.
- Yoke 40 is provided for driving engagement by pusher dog 36 essentially during the upper path only of the pusher dog. Its primary function is to center the loading transmitted to the chain and pusher assembly so that the only force exerted on chain 32 is the tensile force exerted by the load. Hence, it prevents a lateral twisting of chain 32 during advancement.
- yoke 40 is attached to yoke 36 by a lateral extending flange 134. Preferably, these elements are welded together for strength.
- Pusher dog 36 is identical to pusher dog 34 and is comprised of a roller 136 in the form of a spool mounted to pin 128 which projects from both sides of chain 32.
- Half yoke 40 likewise includes a plurality of openings 130 to reduce the overall weight of the yoke and is slightly wedge-shaped for the same reasons described previously with respect to yoke 38.
- Slot 132 however has a slightly different cross sectional configuration in that it is wedge-shaped so that its lower opening 138 is somewhat wider than its upper end 140. This is to facilitate the entry and removal of pusher dog 36 as it is driven by chain 32. Referring to FIG. 3, pusher dog 36 is shown engaged with half yoke 40.
- pusher dog 36 As pusher dog 36 is moved to the transitional phase around sprocket 110, it becomes disengaged from halfyoke 40 and remains disengaged through its entire movement along the lower path of chain 32 in the direction of arrow C (FIG. 2) until it engages the rear sprocket (not shown) for movement through the transitional phase into upper path B.
- pusher dog 36 will reenter slot 132 for engagement with front wall 134.
- pusher dog 36 As pusher dog 36 moves vertically upwards to the upper portion of this transitional phase, it will become positively secured within slot 132 during the material advancing phaseof the loader during the movement of the pusher mechanism along the upper path B.
- both pusher dogs 34 and 36 are positively engaged with yokes 38 and 40 respectively.
- the loading is thus centered to eliminate lateral stress on the chain with the resultant loading being entirely tensile.
- Chain 32 is preferably a gear-driven type chain comprising a plurality of pairs of spaced inner plates 142 and outer plates 144 linked together by a pin 146.
- a cylindrical roller element 14 (FIG. 4) is held between each pair of plates by pin 146 with the teeth 149 of sprocket 114 fitting intermediate eachroller 148 in a conventional fashion.
- Pusher dogs 34 and 36 are mounted to chain 32 by a novel pair of spaced mounting plates and 152.
- the plates are identical to each other and preferably comprise a generally triangular configuration as shown in FIG. 5.
- Each plate includes four accurately spaced openings 154 dimensioned to permit the insertion of chain pin 146 so that each plate is mounted and connected to three separate links of the chain.
- the radius of the arcuate spacing preferably corresponds to the radius of sprocket 114 so that as the mounting plates and pusher dogs mounted thereto move about the sprocket 114, the extending teeth portion 149 in addition to engaging chain32 become positioned intermediate plates 150 and 152 to reduce the amount of lat eral movement of the pusher dogs during their engagement with sprocket 114.
- each plate is oriented so that the apex 156 of each plate is directed inwardly toward the center of the sprockets, or in the alternative the axis of rotation. In this fashion, a major portion of the mass of each plate is positioned radially out from chain 32, this latter portion holding the pusher dogs and thereby providing the greatest strength at the locus of highest force concentration.
- Each plate includes an opening 158 positioned radially outward from openings 154 and centered with respect to the plate for receipt of pin 128.
- Pusher dogs 34 and 36 are mounted on each end respectively of pin 128 and as indicated earlier, preferably comprise a pair of rollers 126 and 136.
- Each roller 126 and 136 includes a pair of spaced side walls 160 and 162 with a roller bearing 164 intermediate each side wall. The diameter of side walls 160 and 162-substantially exceeds that of bearing 164 so that when the rollers are positioned within the yoke, the side walls prevent their lateral removal.
- each end of pin 128 includes threads so that the pusher dogs 34 and 36 can be mounted thereon and anchored thereto by a pair of bolts 166 (one of which is shown in FIG. 3).
- a pair of tubular spacers 168 are provided between each pusher dog and mounting plate to avoid excessive lateral movement of the pusher dogs.
- side walls 16 and 18 are each spaced from carriage 26in accordance with the overall width of the work piece.
- each side wall can be laterally adjusted along cross bars 54 and 56.
- rails 76 and 78 are also adjusted in the same fashion as side walls 16 and 18 are adjusted for support of the work piece.
- guide 66 is adjusted longitudinally on each'side wall 16 and 18 so that as a particular work piece is advanced onto the loader, it is positioned by guide 66 so that its rearwardmost end will be in front of pushers arms 28 when the carriage is in its rearwardmost position so that pusher arms 28 will pick the work piece up for advancement onto the press.
- the overall length of pusher arms 28' can be adjusted within limits by adjusting the pusher arms 28 relative to carriage plate 90.
- the loader is then connected to or positioned adjacent to the particular press or other apparatus to which the work piece is to be advanced. Loader can be conventionally supported by a base structure (not shown) or some other type .of mounting arrangement.
- carriage 26 The reciprocal operation of carriage 26 is provided by the confinement of pusher dog 34 in slot 120 of yoke 38 so that as the portion of chain 32 which includes pusher dog 34 is advanced forwardly, pusher dog 34 engages front surface 122 of slot 120 to drive the carriage forward.
- the pusher dog moves vertically as well as horizontally depending on its position with respect to the sprocket. This circumferential movement of the pusher dogs provides for smooth acceleration and deacceleration of the carriage as it reciprocates.
- driving engagement between pusher dog 34 is provided 'on rear surface 124 of slot 120 to move the carriage back in order to pickup the next work piece.
- a half yoke 40 is mounted from yoke 38 on the opposite side of chain 32 for intermittent cooperation with slot 132 in half yoke 40. This engagement occurs when that portion of chain 32 which includes pusher dog 36 is traveling along the upper path in the direction of arrow B to advance the work piece from the loader onto the press or other apparatus. During this engagement, the loading is centered over chain 32 so that only longitudinal force is exerted on the chain.
- FIG. 6 an alternative arrangement is shown wherein a second half yoke similar to half yoke 40 is mounted conversely below half yoke 40 from the lower portion of yoke 38. As shown in FIG. 6, this can be done simply by welding a second lateral flange portion 162 to the lower end of yoke 38 from which yoke 160 is then mounted vertically upward.
- This particular alternative arrangement permits central loading on the chain during both the upper and lower paths of pusher dogs 34 and 36.
- the spacing between half yokes 40 and 160 is necessitated in order to'provide clearance for axle 116 which drives sprocket 110.
- pusher dog 36 will be disengaged from either half yoke during a portion of transitional phases on each end of its path when it is at the forward or rearward outer extremity of the sprockets.
- the carriage is motivated only by the engagement between pusher dog 34 and yoke 38.
- the carriage is at a reduced speed either deaccelerating or slightly accelerating and the stresses are minimal.
- a material handling transfer device for presses having a frame, guide means on said frame for guiding said material, carriage means mounted said said frame for reciprocal movement to advance materials from one end to the other of said guide means, and drive means for driving said carriage means back and forth along said guide means
- said drive means having a single endless chain mounted beneath said guide track for movement about a drive and idler sprocket in a generally vertical plane, pusher means secured to said chain for continuous reciprocal movement therewith along an upper and lower path, said pusher means being cooperatively associated with said carriage to move said carriage back and forth long said guide means, saie pusher means including first and second pusher dogs extending from each side of said chain; a yoke connected to said carriage and having a vertically oriented elongated slot receiving said first pusher dog, said slot extending vertically downwards at least beyond the diameter of said sprockets so that said first pusher dog is movably confined within said slot to drive said yoke and carriage back and forth along
- said half yoke terminating above the axis of said sprockets with said slot being open at its lower free end to receive and release said second pusher dog such that said second pusher dog is in confined driving engagement with said half yoke slot during the upper movement of said second pusher dog along the upper path of said chain, said chain being centered beneath said carriage such that when said second pusher dog is in driving engagement with said half yoke slot, the force vector on said chain and carriage is centered thereby preventing any lateral moment on said chain.
- said drive means includes a second half yoke aligned beneath said first half yoke and terminating below the axle of said sprockets, said second yoke having a vertical slot opening upwards for intermittent confined driving engagement by said second pusher dog during the lower movement of said second pusher dog along the lower path of said chain.
- said pusher means includes a pair of spaced mounting plates anchored to opposite sides of said chain and a stem projecting transverse to the chain from each side, said pusher dogs comprising rollers rotatably mounted on said stem for rotating engagement with said slots.
- said chain is characterized as a gear-type chain having a plurality of pins mounted to pairs of spaced side plates for fitting over the teeth of said sprockets, said mounting plates being operatively supported by more than two adjacent pins of said chain to distribute the forces generated by said device.
- width of said slots is generally equal to the diameter of said rollers to facilitate positive movement of said carriage during transitional movement of said carriage between said upper and lower path movement of said pusher means.
- said guide means includes a pair of spaced generally upstanding side walls to guide said material along a preselected path, said walls being adjustable transverse to said path to adapt to various size materials, said guide means further including a trackway for guiding and supporting said carriage along said path, said carriage comprising a generally flat bed positioned on said trackway, said yoke being connected to the underside of said bed, and a pair of spaced pusher arms connected to the upper side of said bed and extending above said trackway intermediate said side walls for engaging said materials for advancement thereof; said drive means having a single endless chain mounted beneath said guide track for movement about a drive and idler sprocket in a generally vertical plane, pusher means secured to said chain for continuous reciprocal movement therewith along an upper
- said arms extend forwardly and include upper edges defining a means for camming said material above said arm until said arms reach their rearward position, whereupon said material falls downwardly by its weight in front of said arms for advancement by said arms on the forward stroke of said device.
- said walls include stops which prevent rearward movement of said material by the frictional engagement between said arms and material during its backward stroke so that said arms are positioned behind said material in its rearward position.
- said stop includes sloped guides for directing material onto said frame when supplied thereto.
- said arms further include means for sequentially advancing said'material off said device.
- a reciprocating drive mechanism for sequentially moving a carriage back and forth in a defined path comprising: a carriage; first and second spaced yokes connected to and extending from said carriage; each of said yokes having an elongated slot extending in a direction toward and away from said carriage; an endless chain; means for driving said chain about a pair of spaced sprockets mounted for rotation in a plane extending along the direction of movement of said carriage, said chain being centered beneath said carriage intermediate said spaced yokes; pusher means connected to said chain for movement back and forth along spaced paths defined by said chain and including first and second pusher dogs extending transversely from each side of said chain, said first yoke slot extend ing at least beyond the diameters of said sprockets and by said chain, so that the force acting on said pusher means, carriage and chain is centered with respect thereto during said movement along said one path.
- said drive mechanism further includes a third yoke spaced from said first yoke and extending toward and aligned with said second yoke on the opposite side of said axles, said third yoke being identical to said second yoke and terminating short of the axle of said sprocket with said third yoke slot being open at its free end opposite the free end of said second yoke slot to intermittently receive and release said second pusher dog such that said second pusher dog is in confined driving engagement with said third yoke slot only during the movement of said pusher dog along the other of said spaced paths defined by said chain, the force acting on said pusher means, carriage and chain being centered with respect thereto during movement along said paths.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reciprocating Conveyors (AREA)
- Transmission Devices (AREA)
- Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18505271A | 1971-09-30 | 1971-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3741374A true US3741374A (en) | 1973-06-26 |
Family
ID=22679363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00185052A Expired - Lifetime US3741374A (en) | 1971-09-30 | 1971-09-30 | Material handling device |
Country Status (5)
Country | Link |
---|---|
US (1) | US3741374A (de) |
JP (1) | JPS4842477A (de) |
CA (2) | CA979038A (de) |
DE (1) | DE2247218A1 (de) |
GB (2) | GB1400818A (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3865228A (en) * | 1971-09-30 | 1975-02-11 | Hufford Industries | Material handling device |
FR2444539A1 (fr) * | 1978-12-22 | 1980-07-18 | Berkel Patent Nv | Dispositif d'entrainement pour un chariot a mouvement de va-et-vient dans une machine a trancher |
US4443007A (en) * | 1980-09-11 | 1984-04-17 | Pitney Bowes Inc. | Inserter with improved ram mechanism |
US4526505A (en) * | 1983-02-03 | 1985-07-02 | Oscar Mayer Foods Corporation | Fast retract feed |
US4569625A (en) * | 1983-02-28 | 1986-02-11 | Methods, Inc. | Load/unload apparatus for disc-like workpieces |
CN104057352A (zh) * | 2014-06-30 | 2014-09-24 | 滁州开关电器科技有限公司 | 一种组合型自动进料机床 |
CN104057353A (zh) * | 2014-06-30 | 2014-09-24 | 滁州开关电器科技有限公司 | 一种电力金具专用自动进料机床 |
CN104057351A (zh) * | 2014-06-30 | 2014-09-24 | 滁州开关电器科技有限公司 | 自动进料机床 |
CN114632857A (zh) * | 2022-03-24 | 2022-06-17 | 江阴市富仁机件有限公司 | 钣金冲压成型自动化生产线 |
CN115780646A (zh) * | 2023-02-06 | 2023-03-14 | 新乡市万新电气有限公司 | 一种电容器底盖的加工装置及其加工方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2842116A1 (de) * | 1977-10-24 | 1979-04-26 | Ferag Ag | Vorrichtung zum verschieben von dreidimensionalen gegenstaenden, insbesondere von stapeln von druckprodukten |
DE2925610C2 (de) * | 1979-06-25 | 1984-04-26 | Mannesmann AG, 4000 Düsseldorf | Verschiebantrieb für einen ins Regalfach einfahrbaren Träger eines Regalförderzeuges |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US915181A (en) * | 1908-03-17 | 1909-03-16 | George M Sparks | Mechanical movement. |
FR522564A (fr) * | 1920-08-05 | 1921-08-02 | Ernest Ceschini | Dispositif pour convertir un mouvement rotatif continu en un mouvement rectiligne, alternatif de va et vient |
US1462511A (en) * | 1922-08-18 | 1923-07-24 | Charles H Lister | Reciprocating conveyer system |
US2435768A (en) * | 1946-01-19 | 1948-02-10 | Biggs John Leo | Pusher conveyor unit |
US3029957A (en) * | 1958-01-10 | 1962-04-17 | Freeman | Handling device for presses |
-
1971
- 1971-09-30 US US00185052A patent/US3741374A/en not_active Expired - Lifetime
-
1972
- 1972-09-15 CA CA151,852A patent/CA979038A/en not_active Expired
- 1972-09-27 DE DE19722247218 patent/DE2247218A1/de active Pending
- 1972-09-29 JP JP47097270A patent/JPS4842477A/ja active Pending
- 1972-10-02 GB GB4528872A patent/GB1400818A/en not_active Expired
- 1972-10-02 GB GB4045474A patent/GB1400819A/en not_active Expired
-
1975
- 1975-05-13 CA CA226,774A patent/CA992112A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US915181A (en) * | 1908-03-17 | 1909-03-16 | George M Sparks | Mechanical movement. |
FR522564A (fr) * | 1920-08-05 | 1921-08-02 | Ernest Ceschini | Dispositif pour convertir un mouvement rotatif continu en un mouvement rectiligne, alternatif de va et vient |
US1462511A (en) * | 1922-08-18 | 1923-07-24 | Charles H Lister | Reciprocating conveyer system |
US2435768A (en) * | 1946-01-19 | 1948-02-10 | Biggs John Leo | Pusher conveyor unit |
US3029957A (en) * | 1958-01-10 | 1962-04-17 | Freeman | Handling device for presses |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3865228A (en) * | 1971-09-30 | 1975-02-11 | Hufford Industries | Material handling device |
FR2444539A1 (fr) * | 1978-12-22 | 1980-07-18 | Berkel Patent Nv | Dispositif d'entrainement pour un chariot a mouvement de va-et-vient dans une machine a trancher |
US4266456A (en) * | 1978-12-22 | 1981-05-12 | Maatschappij Van Berkel's Patent N.V. | Drive mechanism for the reciprocating meat supporting carriage of a meat slicing machine |
US4443007A (en) * | 1980-09-11 | 1984-04-17 | Pitney Bowes Inc. | Inserter with improved ram mechanism |
US4526505A (en) * | 1983-02-03 | 1985-07-02 | Oscar Mayer Foods Corporation | Fast retract feed |
US4569625A (en) * | 1983-02-28 | 1986-02-11 | Methods, Inc. | Load/unload apparatus for disc-like workpieces |
CN104057352A (zh) * | 2014-06-30 | 2014-09-24 | 滁州开关电器科技有限公司 | 一种组合型自动进料机床 |
CN104057353A (zh) * | 2014-06-30 | 2014-09-24 | 滁州开关电器科技有限公司 | 一种电力金具专用自动进料机床 |
CN104057351A (zh) * | 2014-06-30 | 2014-09-24 | 滁州开关电器科技有限公司 | 自动进料机床 |
CN114632857A (zh) * | 2022-03-24 | 2022-06-17 | 江阴市富仁机件有限公司 | 钣金冲压成型自动化生产线 |
CN114632857B (zh) * | 2022-03-24 | 2024-04-12 | 江阴市富仁机件有限公司 | 钣金冲压成型自动化生产线 |
CN115780646A (zh) * | 2023-02-06 | 2023-03-14 | 新乡市万新电气有限公司 | 一种电容器底盖的加工装置及其加工方法 |
CN115780646B (zh) * | 2023-02-06 | 2023-04-28 | 新乡市万新电气有限公司 | 一种电容器底盖的加工装置及其加工方法 |
Also Published As
Publication number | Publication date |
---|---|
JPS4842477A (de) | 1973-06-20 |
CA992112A (en) | 1976-06-29 |
GB1400819A (en) | 1975-07-23 |
DE2247218A1 (de) | 1973-04-05 |
CA979038A (en) | 1975-12-02 |
GB1400818A (en) | 1975-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3741374A (en) | Material handling device | |
US3934701A (en) | Linear indexing machine | |
DE69516894T2 (de) | Vorrichtung zum zuführen von flachmaterialstücken | |
DE2330669C3 (de) | Antriebseinrichtung für eine Förderanlage mit einer endlosen Fahrspur | |
DE69210922T2 (de) | Vorrichtung zum Fördern von Gegenständen, insbesondere verpackte Esswaren, von einer Ladestation zu einer Entladestation | |
DE4293174C2 (de) | Laserstrahlbearbeitungsanlage mit einem Palettenspeicher | |
CN112209089A (zh) | 料盘输送装置 | |
US3865228A (en) | Material handling device | |
DE3733510A1 (de) | Vorrichtung zum transport von textilspulen | |
DE2708762A1 (de) | Vorrichtung zur beschickung von automatischen bearbeitungsmaschinen, insbesondere verpackungs- oder einwickelmaschinen | |
EP0161412A1 (de) | Transportvorrichtung zum Fördern von Werkstückträgern | |
CN112429517A (zh) | 一种自动上磁铁设备 | |
CN213651128U (zh) | 料盘输送装置 | |
DE2003785A1 (de) | Sammelfoerdervorrichtung | |
DE2452366A1 (de) | Foerderer | |
US3625184A (en) | Straight line overhead cattle feeder | |
CN215709554U (zh) | 铁制轴类工件输送机构 | |
EP0015415B1 (de) | Werkstücktransporteinrichtung | |
CN111547580A (zh) | 一种运用于垂直置式的经轴装卸装置 | |
CN113772409B (zh) | 一种气门座圈上料装置 | |
US3851771A (en) | Material handling device | |
CN218745302U (zh) | 高效率锚板倒角设备 | |
CN210735253U (zh) | 一种借动力驱动清回程料刮板输送装置 | |
CN110304435A (zh) | 换料暂存装置 | |
DE102004006719B3 (de) | Vertikale Staufördervorrichtung |