[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3632970A - Method and apparatus for protecting electronic printheads - Google Patents

Method and apparatus for protecting electronic printheads Download PDF

Info

Publication number
US3632970A
US3632970A US823129A US3632970DA US3632970A US 3632970 A US3632970 A US 3632970A US 823129 A US823129 A US 823129A US 3632970D A US3632970D A US 3632970DA US 3632970 A US3632970 A US 3632970A
Authority
US
United States
Prior art keywords
thermal
display system
plastic material
sensitive layer
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US823129A
Inventor
Arnold M Walkow
Joseph R Canion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of US3632970A publication Critical patent/US3632970A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/325Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads by selective transfer of ink from ink carrier, e.g. from ink ribbon or sheet

Definitions

  • a thermal display system including a plurality of very small air-isolated semiconductor mesas or bodies, each of which contains a heater element so that when the heater element is energized a "hotspot is formed at the top surface of the mesa to provide a localized dot of heat.
  • a thin, flexible wear-resistant material such as, for example, a high-temperature plastic
  • a display medium such as, thermal sensitive paper
  • PATENTED m we SHEET 3 [IF 5 PATENTEUJ/m -1272 3632-870 sum u 0F 5 SENSITIVE THERMAL LAYER I ⁇ 1 94 K 94 W Y (0)86 l2 8 PATENTEDJAN 4:912
  • each of the mesas includes a diffused resistor in the collector circuit of a diffused transistor. Current through the collector resistor is controlled by a pulse applied to the base of the transistor, thus raising the mesa to an elevated temperature, thereby causing a hotspot to appear on the face of the mesas.
  • the mesas may be selectively energized by a charactergenerating logic circuit in a manner to reproduce the character which may be viewed by changing the color of thermochromic material or by changing the color of a thermally sensitive paper disposed adjacent to the mesas or printheads.
  • the typical type of heat-sensitive paper consists of a suitable paper, usually 0.002 to 0.003 inch thick, to which a heat-sensitive chemical is applied. Normally the chemically coated side of the paper is in contact with the printhead. With the mesas or bodies of the printhead in intimate contact with the chemically coated side of the thermal-sensitive paper, wear of the mesas as a result of the chemical coating abraiding the head as the thermal-sensitive paper is advanced is a problem.
  • Another object of the invention is to provide a means for reducing sticking of the display medium to the electronic printhead.
  • FIG. 1 is an enlarged view of an electronic printhead
  • FIG. 2 is a schematic circuit diagram of a heater element of the thermal printhead of FIG. 1;
  • FIG. 3 is an isometric view partially broken away of an electronic printhead and carriage assembly therefor usable in a thermal printer according to the present invention
  • FIG. 4 is an enlarged front view of the electronic assembly shown in FIG. 3;
  • FIG. 5 is an isometric view of an electronic thermal printer utilizing the electronic printhead and carriage assembly shown in FIG. 3;
  • FIG. 6 is a top view of the printhead, thin, flexible material and display medium
  • FIGS. 743 are additional embodiments and views according to the present invention illustrating various configurations of the thin, flexible material with respect to the printhead and display medium.
  • FIGS. l-4 a thermal printhead of the type, for example, described and claimed in various aspects in copending U.S. Pat. application, Ser. No. 671,821, now U.S. Pat. No. 3,501,615, filed Sept. 29, 1967, entitled “Integrated Heater Element Array and Drive Matrix and Methodof Making Same,” assigned to the assignee of the present appl cation,
  • the printhead 10 is composed of a 5X5 matrix of semiconductor mesas or bodies 12, which are thermally isolated from one another by airgaps, as best seen in FIG. I, and which are bonded to a ceramic chip or substrate 14 by a thermally insulating epoxy layer 16.
  • a transistor 18 and a resistor 20 are diffused into the interior of each mesa or body 12 adjacent the epoxy layer 16.
  • a buffer transistor 22 for each of the 25 mesas 12 are diffused into the face of semiconductor chop 24, generally within the area designated by the dotted outline 26 (see FIG.
  • the printhead circuits and the buffer circuits being interconnected by thin metallic film leads (not illustrated) on the surface of the semiconductor mesas l2 and the chip 24 adjacent the epoxy layer 16.
  • the ceramic chip 14 is then bonded to a metallic heat sink 28.
  • the leads from the bases of the buffer transistors 22 terminate around the periphery of the semiconductor chip 24, and are bonded to leads 30 on a printed circuit templet 32 mounted on the heat sink.
  • the leads 30 on the printed circuit templet are soldered to the leads of a multilead strap 34 which, in turn, are interconnected to character-generating logic circuits (not shown).
  • the printhead assembly as illustrated in FIG. 3 may be utilized in a thermal printer such as the one illustrated in FIG. 5.
  • FIG. 5 illustrates an electronic thermal printer utilizing the present invention and indicated by the reference numeral 40.
  • Two end plates 42 and 44 provide the support for feeding the display medium comprised of support material 46 and display coating 56 which may be, for example, 3M Co. thermal paper No. 504, from a large roll fed from spool 48.
  • the thermal-sensitive layer 56 on paper support 46 faces the thermal printhead.
  • a thin, wear-resistant material 54 which may be, for example, paper or high temperature, flexible plastic, is interposed between the carriage 28 and the display medium 46.
  • This material 54 may be polyester (Mylar) or fluorinated ethylene propylene (FEP Teflon), for example, and is moved as a ribbon past the carriage 28 by takeup reel 58 and feed reel 60 located on supports 51 and 52, respectively.
  • Another example of a film which has been tried successfully is a 0.00025-inch amber polyimide film made by DuPont under the trade name Kapton, which has a service temperature of 400 C.
  • the operating temperatures of a printhead will vary dependent upon the printout speed required and the thermal paper utilized. With the illustrative printhead used the film 54 should be capable of service temperatures of 250 C. or greater, since the operating temperature of printhead It) varies between to 225 C. However, the service temperature may be less if it is replaced after being used.
  • FIG. 6 illustrates the respective positions of the printhead 10 and mesas 12 with regard to the display medium 46 and the thin, flexible material 54.
  • the electronic carriage assembly 28 is successively stepped across the display medium 46 from left to right by a motor in mechanism 49.
  • selective mesas 12 are energized thereby producing hotspots at the surface of the mesas.
  • the heat generated by the selective mesas is coupled through the thin, flexible material 54 which, in turn,
  • thermal-sensitive display medium 46 causes an information representation to form on the thermally sensitive display medium 46. This printing cycle is repeated until the printout for the particular line is completed, at which time the carriage assembly 28 is returned to the left-hand margin position, the thermal-sensitive display medium 46 advanced one line by advance means (not shown) and fed by spool 48, and the takeup reel 58 is appropriately advanced by means (not shown) to allow additional unused portion of the material 54 to contact printhead 10.
  • Tests to date indicate that with the use of a thin, wear-resistant material 54 interposed between the printheads 12 and the thermal-sensitive display medium 46, wear on the printhead is minimized, the mesas 12 do not stick to the thermal-sensitive coating 56 on the display medium 46, and do not react with the heated hotspots, and further reduce the loose particle type of residue to an acceptable level.
  • FIGS. 7 and 8 illustrate another embodiment of printer 40 utilizing the present invention in which the display medium 70 is composed of a support material 72, a thermal-sensitive coating 74, and a thin, wear-resistant material 76 physically attached (either permanently or semipermanently) to said thermal-sensitive coating 74 and dispensed from feed reel 78.
  • the wear-resistant material 76 is paper and the width of the paper support material 72 is substantially the same as the paper wear-resistant material 76
  • the supply of paper 70 may be fed from spool 78 such as to allow either the paper surface 72 or 76 to be adjacent to printhead thereby eliminating any possible errors in loading the paper on spool 78.
  • the printer 40 utilizing the present invention operates in the same manner as described hereinabove with regard to the printer described in FIG. 5.
  • the thin, wear-resistant material 76 if pennanently attached to the thermalsensitive paper, may be transparent or provide an easily viewable contrast with the information representation formed on the thermal sensitive coating 74 when the mesas 12 are selectively energized.
  • the material 76 may be semipermanently attached to the thermal-sensitive coating 74 in such a manner that at a later time the material 76 may be removed from the coating and support material 74 and 72, respectively.
  • FIG. 9 shows still another embodiment of the printer 40, whereby the thin, wear-resistant material 76 is fed from spool 80 and the thermal-sensitive paper 72 and 74 is fed from a separate spool 82.
  • the wear-resistant material 76 is interposed between the printhead and the thermal-sensitive coating 74.
  • the relationship of the printhead l0, wear-resistant material 76, thermal-sensitive coating 74 and support material therefor 72 is identical to that illustrated in FIG. 8.
  • FIGS. 10 and 11 illustrate another embodiment of the present invention in which the wear-resistant material 84 is in the form of an endless loop encircling reels 86 and 88.
  • the reels 86 and 88 are integral with mechanism 49 and are rotated in the direction indicated by gear means (not shown in detail) located in mechanism 49.
  • the wear-resistant material 84 is located between the thermal printhead 10 and the display medium 90 and more particularly between the mesas l2 and the thermal-sensitive coating 92 on support material 94.
  • the mechanism 49 steps the carriage 28 across the display medium 90 from left to right, and at the same time, the reels 86 and 88 advance the wear-resistant material 84 across the printhead 10. Accordingly, the wear-resistant material 84 is placed against the display medium 90 as the heat 10 slides over that portion to print, and as the head passes over that portion the material 84 will then pass over and around reel 86. Accordingly, there is no relative motion at the time of printing between the printhead 10 and the display medium 90.
  • FIGS. 12 and 13 disclose a set of reels 86 and 88 on mechanism 49 between which is interconnected a wear-resistant material 84. Takeup reel 86 advances the wear-resistant material past the printhead 28 in a manner similar to that described with regard to the printer of FIG. 5.
  • the wear-resistant material may be comprised of the same material described with regard to FIG. 5.
  • a thermal display system comprising in combination a substrate, an array of semiconductor bodies upon one surface of said substrate, said array being so arranged that select ones of said bodies define a form of information representation, heater elements within each of said bodies, means for selectively energizing said heater elements thereby to heat said select ones of said bodies, a thermal-sensitive layer, a support material for said thermal-sensitive layer, and a thin, flexible wear-resistant material between said semiconductor bodies and said thermal-sensitive layer, which conducts heat therethrough to allow an information representation to form on said thermal-sensitive layer upon the select energization of said select ones of said bodies, said thin flexible wear-resistant material associated with said thermal-sensitive layer.
  • a thermal display system comprising in combination a thermal printhead having thermal elements therein, a display medium and a thin, high temperature plastic material between said thermal elements and said display medium said thin high temperature plastic material associated with said display medium.
  • a thermal display system comprising in combination a thermal printhead having thermal elements therein, a thermalsensitive layer and a thin, high temperature plastic material between said thermal elements and said thermal-sensitive layer said thin, high temperature plastic material associated with said thermal-sensitive layer.
  • a thermal display system according to claim 4 wherein said plastic material is attached to said thermally sensitive layer.
  • thermo display system 7.
  • said plastic material is transparent- 8.
  • thermal display system wherein said thermal-sensitive layer is on a paper support material.
  • thermo display system according to claim 4 wherein said plastic material is polyimide.
  • thermo display system according to claim 4 wherein said plastic is polyester.
  • a thermal display system according to claim 4 wherein said plastic material is fluorinated ethylene propylene.
  • a thermal display system according to claim 4 further including means for moving said printhead and said plastic material together over said thermal-sensitive layer.
  • a thermal display system according to claim 12 wherein said moving means includes rollers which said plastic material engages and said plastic material is an endless loop.
  • a thermal display system according to claim 12 wherein said moving means comprises takeup and feed reels and said plastic material is a ribbon interconnected between said reels.
  • a thermal display system comprising in combination a substrate, an array of semiconductor bodies upon one surface of said substrate, said array being so arranged that select ones of said bodies define a form of information representation, heater elements within each of said bodies, means for selectively energizing said heater elements thereby to heat said select ones of said bodies, a thermal-sensitive layer, and a thin, plastic material between said semiconductor bodies and said thermal-sensitive layer, which conducts heat therethrough to allow an information representation to form on said thermalsensitive layer upon the select energization of said select ones of said bodies said thin plastic material associated with said thermal-sensitive layer.
  • a thermal display system according to claim wherein said plastic material is polyimide. Said thermalesensitive layer is on P p pp material- 20. A thermal display system according to claim 15 wherein 17. A thermal display system according to claim 15 wherein said plastic material is replaceable.
  • a thermal display system according to claim 15 wherein 5 said plastic material is affixed to said thermally sensitive layer.
  • a thermal display system according to claim 15 wherein said plastic material is polyester 21.
  • a thermal display system according to claim 15 wherein said plastic material is fluorinated ethylene propylene.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electronic Switches (AREA)

Abstract

Disclosed herein is a thermal display system including a plurality of very small air-isolated semiconductor mesas or bodies, each of which contains a heater element so that when the heater element is energized a ''''hotspot'''' is formed at the top surface of the mesa to provide a localized dot of heat. By interposing a thin, flexible wear-resistant material, such as, for example, a high-temperature plastic, between the mesas and a display medium, such as, thermal sensitive paper, wear on the semiconductor mesas and residue buildup on and between the mesas may be substantially decreased.

Description

United States Patent [72] Inventors Arnold M. Walkow;
Joseph R. Canion, both of Houston, Tex. [21 Appl. No.
823,129 [22] Filed May 8, 1969 [45] Patented Jan. 4, 1972 [73] Assignee Texas Instruments Incorporated Dallas, Tex.
[54] METHOD AND APPARATUS FOR PROTECTING ELECTRONIC PRINTHEADS 21 Claims, 13 Drawing Figs.
[52] US. Cl 219/216, 346/76 R [51] Int. Cl 1105b 1/00 [50] FleldotSearch 219/216,
388,543; 346/74,76, 107, 165, 49; 178/36; 101/93 RC; 197/1s7,172;34o/174.1 F; 179/1002 [56] References Cited UNITED STATES PATENTS 2,917,996 12/1959 Epsteinetai. 101/93 3,453,648 7/1965 Stegenga 345/76 3,518,496 9.. .97Q !!8we-:1,
3,849,096 8/1958 Markes 197/151 2,905,767 9/1959 Eckert, Jr. et al... 340/ 1 74.1 UX 3,092,236 6/1963 Campbell et a1. 197/172 3,109,749 11/1963 DiRicco 179/ 100.2 3,162,290 12/ 1964 Knight 197/15 1 3,273,686 9/ l 966 Ploeger, .lr 197/172 3,478,191 11/1969 Johnson et a1. 219/216 3,496,333 2/1970 Alexander et a1 346/76 Primary ExaminerC. L. Albritton Attorneys-James 0. Dixon, Andrew M. l-lassell, Harold Levine, Rene E. Grossman and Melvin Sharp ABSTRACT: Disclosed herein is a thermal display system including a plurality of very small air-isolated semiconductor mesas or bodies, each of which contains a heater element so that when the heater element is energized a "hotspot is formed at the top surface of the mesa to provide a localized dot of heat. By interposing a thin, flexible wear-resistant material, such as, for example, a high-temperature plastic, between the mesas and a display medium, such as, thermal sensitive paper, wear on the semiconductor mesas and residue buildup on and between the mesas may be substantially decreased.
PATENTEUJAN m 31632970 Q 6&8
" IN TORS ARNOLDM. LKOW JOSEPH R. CANION ATTORNEY.
PATENTED m we SHEET 3 [IF 5 PATENTEUJ/m -1272 3632-870 sum u 0F 5 SENSITIVE THERMAL LAYER I} 1 94 K 94 W Y (0)86 l2 8 PATENTEDJAN 4:912
SHEET 5 OF 5 THERMAL 94 92 SENSITIVE LAYER METHOD AND APPARATUS FOR PROTECTING ELECTRONIC PRINTI'IEADS This invention relates generally to electronically controlled thermal display systems, and more particularly to a method and apparatus for decreasing wear and residue buildup in such display systems.
It is known in the art to fabricate an electronic display system comprised of a plurality of very small air-isolated semiconductor mesas or bodies mounted on a ceramic chip by a thermally insulating layer of epoxy. According to one form, each of the mesas includes a diffused resistor in the collector circuit of a diffused transistor. Current through the collector resistor is controlled by a pulse applied to the base of the transistor, thus raising the mesa to an elevated temperature, thereby causing a hotspot to appear on the face of the mesas. The mesas may be selectively energized by a charactergenerating logic circuit in a manner to reproduce the character which may be viewed by changing the color of thermochromic material or by changing the color of a thermally sensitive paper disposed adjacent to the mesas or printheads. The typical type of heat-sensitive paper consists of a suitable paper, usually 0.002 to 0.003 inch thick, to which a heat-sensitive chemical is applied. Normally the chemically coated side of the paper is in contact with the printhead. With the mesas or bodies of the printhead in intimate contact with the chemically coated side of the thermal-sensitive paper, wear of the mesas as a result of the chemical coating abraiding the head as the thermal-sensitive paper is advanced is a problem. Furthermore, adhering of the paper to the printhead due to the reaction between the chemical coating and the heated dots is another problem. This sticking necessitates an additional drive force requirement for advancing the thermal-sensitive paper and can further produce dislocation or flaking of chemical particles from the coating of the paper to the printhead which causes a residue buildup on the printhead. This residue acts as a thermal barrier and may cause erroneous printing or no printing at all over a long period of time. This residue buildup can also cause thermal bridging between the mesas and is anotI-ler source of erroneous printing.
Accordingly, it is an object of this invention to provide a method and apparatus for reducing wear and residue buildup on electronic printheads.
Another object of the invention is to provide a means for reducing sticking of the display medium to the electronic printhead.
Other objects, features and advantages of the invention may be best understood by reference to the following detailed description when read in conjunction with the accompanying drawings in which like reference numerals indicate like parts and in which:
FIG. 1 is an enlarged view of an electronic printhead;
FIG. 2 is a schematic circuit diagram of a heater element of the thermal printhead of FIG. 1;
FIG. 3 is an isometric view partially broken away of an electronic printhead and carriage assembly therefor usable in a thermal printer according to the present invention;
FIG. 4 is an enlarged front view of the electronic assembly shown in FIG. 3;
FIG. 5 is an isometric view of an electronic thermal printer utilizing the electronic printhead and carriage assembly shown in FIG. 3;
FIG. 6 is a top view of the printhead, thin, flexible material and display medium;
FIGS. 743 are additional embodiments and views according to the present invention illustrating various configurations of the thin, flexible material with respect to the printhead and display medium.
Referring now to FIGS. l-4, a thermal printhead of the type, for example, described and claimed in various aspects in copending U.S. Pat. application, Ser. No. 671,821, now U.S. Pat. No. 3,501,615, filed Sept. 29, 1967, entitled "Integrated Heater Element Array and Drive Matrix and Methodof Making Same," assigned to the assignee of the present appl cation,
is indicated generally by the reference numeral I0. The printhead 10 is composed of a 5X5 matrix of semiconductor mesas or bodies 12, which are thermally isolated from one another by airgaps, as best seen in FIG. I, and which are bonded to a ceramic chip or substrate 14 by a thermally insulating epoxy layer 16. A transistor 18 and a resistor 20 (see FIG. 2) are diffused into the interior of each mesa or body 12 adjacent the epoxy layer 16. A buffer transistor 22 (see FIG. 2) for each of the 25 mesas 12 are diffused into the face of semiconductor chop 24, generally within the area designated by the dotted outline 26 (see FIG. 4), the printhead circuits and the buffer circuits being interconnected by thin metallic film leads (not illustrated) on the surface of the semiconductor mesas l2 and the chip 24 adjacent the epoxy layer 16. The ceramic chip 14 is then bonded to a metallic heat sink 28. The leads from the bases of the buffer transistors 22 terminate around the periphery of the semiconductor chip 24, and are bonded to leads 30 on a printed circuit templet 32 mounted on the heat sink. The leads 30 on the printed circuit templet are soldered to the leads of a multilead strap 34 which, in turn, are interconnected to character-generating logic circuits (not shown). The printhead assembly as illustrated in FIG. 3 may be utilized in a thermal printer such as the one illustrated in FIG. 5.
FIG. 5 illustrates an electronic thermal printer utilizing the present invention and indicated by the reference numeral 40. Two end plates 42 and 44 provide the support for feeding the display medium comprised of support material 46 and display coating 56 which may be, for example, 3M Co. thermal paper No. 504, from a large roll fed from spool 48. The thermal-sensitive layer 56 on paper support 46 faces the thermal printhead. The electronic printhead and carriage therefor, indicated generally by the reference numeral 28 (and shown in detail in FIG. 3), is secured to driving mechanism .49 which is slidably mounted on cylindrical rods 50 and a conventional stepping motor in mechanism 49 (not shown in detail) steps the carriage from left to right after the character print portion of the print cycle, and upon completing the printout of a line drives the printhead carriage back to the left-hand margin position. Supports 51 and 52 are connected to end plates 42 and 44, respectively. A thin, wear-resistant material 54, which may be, for example, paper or high temperature, flexible plastic, is interposed between the carriage 28 and the display medium 46. This material 54 may be polyester (Mylar) or fluorinated ethylene propylene (FEP Teflon), for example, and is moved as a ribbon past the carriage 28 by takeup reel 58 and feed reel 60 located on supports 51 and 52, respectively. Another example of a film which has been tried successfully is a 0.00025-inch amber polyimide film made by DuPont under the trade name Kapton, which has a service temperature of 400 C. The operating temperatures of a printhead will vary dependent upon the printout speed required and the thermal paper utilized. With the illustrative printhead used the film 54 should be capable of service temperatures of 250 C. or greater, since the operating temperature of printhead It) varies between to 225 C. However, the service temperature may be less if it is replaced after being used. For some purposes, it may be desirable for the film or material 54 to be transparent or partially translucent. FIG. 6 illustrates the respective positions of the printhead 10 and mesas 12 with regard to the display medium 46 and the thin, flexible material 54.
In the operation of the electronic printer illustrated in FIG. 5, the electronic carriage assembly 28 is successively stepped across the display medium 46 from left to right by a motor in mechanism 49. At each successive position, selective mesas 12 are energized thereby producing hotspots at the surface of the mesas. The heat generated by the selective mesas is coupled through the thin, flexible material 54 which, in turn,
causes an information representation to form on the thermally sensitive display medium 46. This printing cycle is repeated until the printout for the particular line is completed, at which time the carriage assembly 28 is returned to the left-hand margin position, the thermal-sensitive display medium 46 advanced one line by advance means (not shown) and fed by spool 48, and the takeup reel 58 is appropriately advanced by means (not shown) to allow additional unused portion of the material 54 to contact printhead 10. Tests to date indicate that with the use of a thin, wear-resistant material 54 interposed between the printheads 12 and the thermal-sensitive display medium 46, wear on the printhead is minimized, the mesas 12 do not stick to the thermal-sensitive coating 56 on the display medium 46, and do not react with the heated hotspots, and further reduce the loose particle type of residue to an acceptable level.
FIGS. 7 and 8 illustrate another embodiment of printer 40 utilizing the present invention in which the display medium 70 is composed of a support material 72, a thermal-sensitive coating 74, and a thin, wear-resistant material 76 physically attached (either permanently or semipermanently) to said thermal-sensitive coating 74 and dispensed from feed reel 78. It will be noted that when the wear-resistant material 76 is paper and the width of the paper support material 72 is substantially the same as the paper wear-resistant material 76, the supply of paper 70 may be fed from spool 78 such as to allow either the paper surface 72 or 76 to be adjacent to printhead thereby eliminating any possible errors in loading the paper on spool 78.
In operation the printer 40 utilizing the present invention operates in the same manner as described hereinabove with regard to the printer described in FIG. 5. The thin, wear-resistant material 76, if pennanently attached to the thermalsensitive paper, may be transparent or provide an easily viewable contrast with the information representation formed on the thermal sensitive coating 74 when the mesas 12 are selectively energized. The material 76 may be semipermanently attached to the thermal-sensitive coating 74 in such a manner that at a later time the material 76 may be removed from the coating and support material 74 and 72, respectively.
FIG. 9 shows still another embodiment of the printer 40, whereby the thin, wear-resistant material 76 is fed from spool 80 and the thermal- sensitive paper 72 and 74 is fed from a separate spool 82. The wear-resistant material 76 is interposed between the printhead and the thermal-sensitive coating 74. In cross section, the relationship of the printhead l0, wear-resistant material 76, thermal-sensitive coating 74 and support material therefor 72 is identical to that illustrated in FIG. 8.
FIGS. 10 and 11 illustrate another embodiment of the present invention in which the wear-resistant material 84 is in the form of an endless loop encircling reels 86 and 88. The reels 86 and 88 are integral with mechanism 49 and are rotated in the direction indicated by gear means (not shown in detail) located in mechanism 49. The wear-resistant material 84 is located between the thermal printhead 10 and the display medium 90 and more particularly between the mesas l2 and the thermal-sensitive coating 92 on support material 94.
In operation, the mechanism 49 steps the carriage 28 across the display medium 90 from left to right, and at the same time, the reels 86 and 88 advance the wear-resistant material 84 across the printhead 10. Accordingly, the wear-resistant material 84 is placed against the display medium 90 as the heat 10 slides over that portion to print, and as the head passes over that portion the material 84 will then pass over and around reel 86. Accordingly, there is no relative motion at the time of printing between the printhead 10 and the display medium 90.
FIGS. 12 and 13 disclose a set of reels 86 and 88 on mechanism 49 between which is interconnected a wear-resistant material 84. Takeup reel 86 advances the wear-resistant material past the printhead 28 in a manner similar to that described with regard to the printer of FIG. 5.
In the embodiments illustrated in FIGS. 7-13, the wear-resistant material may be comprised of the same material described with regard to FIG. 5.
It is to be understood that the above-described embodiments and methods are merely illustrative of the in ention.
For example, the 5X5 array of mesas given herein as illustrative only since any number and shape of the array may be chosen depending upon the character of the information desired to be displayed on the display medium. Numerous other arrangements may be derived by those skilled in the art without departing from the spirit and scope of the invention as defined by the appended claims.
What is claimed is:
1. A thermal display system comprising in combination a substrate, an array of semiconductor bodies upon one surface of said substrate, said array being so arranged that select ones of said bodies define a form of information representation, heater elements within each of said bodies, means for selectively energizing said heater elements thereby to heat said select ones of said bodies, a thermal-sensitive layer, a support material for said thermal-sensitive layer, and a thin, flexible wear-resistant material between said semiconductor bodies and said thermal-sensitive layer, which conducts heat therethrough to allow an information representation to form on said thermal-sensitive layer upon the select energization of said select ones of said bodies, said thin flexible wear-resistant material associated with said thermal-sensitive layer.
2. A thermal display system comprising in combination a thermal printhead having thermal elements therein, a display medium and a thin, high temperature plastic material between said thermal elements and said display medium said thin high temperature plastic material associated with said display medium.
3. A thermal display system according to claim 2 wherein said plastic is flexible.
4. A thermal display system comprising in combination a thermal printhead having thermal elements therein, a thermalsensitive layer and a thin, high temperature plastic material between said thermal elements and said thermal-sensitive layer said thin, high temperature plastic material associated with said thermal-sensitive layer.
5. A thermal display system according to claim 4 wherein said plastic material is attached to said thermally sensitive layer.
6. A thermal display system according to claim 4 wherein said plastic material is replaceable.
7. A thermal display system according to claim 4 wherein said plastic material is transparent- 8. A thermal display system according to claim 4 wherein said thermal-sensitive layer is on a paper support material.
9. A thermal display system according to claim 4 wherein said plastic material is polyimide.
10. A thermal display system according to claim 4 wherein said plastic is polyester.
11. A thermal display system according to claim 4 wherein said plastic material is fluorinated ethylene propylene.
12. A thermal display system according to claim 4 further including means for moving said printhead and said plastic material together over said thermal-sensitive layer.
13. A thermal display system according to claim 12 wherein said moving means includes rollers which said plastic material engages and said plastic material is an endless loop.
14. A thermal display system according to claim 12 wherein said moving means comprises takeup and feed reels and said plastic material is a ribbon interconnected between said reels.
15. A thermal display system comprising in combination a substrate, an array of semiconductor bodies upon one surface of said substrate, said array being so arranged that select ones of said bodies define a form of information representation, heater elements within each of said bodies, means for selectively energizing said heater elements thereby to heat said select ones of said bodies, a thermal-sensitive layer, and a thin, plastic material between said semiconductor bodies and said thermal-sensitive layer, which conducts heat therethrough to allow an information representation to form on said thermalsensitive layer upon the select energization of said select ones of said bodies said thin plastic material associated with said thermal-sensitive layer.
6 16. A thermal display system according to claim wherein said plastic material is polyimide. Said thermalesensitive layer is on P p pp material- 20. A thermal display system according to claim 15 wherein 17. A thermal display system according to claim 15 wherein said plastic material is replaceable.
18. A thermal display system according to claim 15 wherein 5 said plastic material is affixed to said thermally sensitive layer.
19. A thermal display system according to claim 15 wherein said plastic material is polyester 21. A thermal display system according to claim 15 wherein said plastic material is fluorinated ethylene propylene.

Claims (21)

1. A thermal display system comprising in combination a substrate, an array of semiconductor bodies upon one surface of said substrate, said array being so arranged that select ones of said bodies define a form of information representation, heater elements within each of said bodies, means for selectively energizing said heater elements thereby to heat said select ones of said bodies, a thermal-sensitive layer, a support material for said thermal-sensitive layer, and a thin, flexible wear-resistant material between said semiconductor bodies and said thermalsensitive layer, which conducts heat therethrough to allow an information representation to form on said thermal-sensitive layer upon the select energization of said select ones of said bodies, said thin flexible wear-resistant material associated with said thermal-sensitive layer.
2. A thermal display system comprising in combination a thermal printhead having thermal elements therein, a display medium and a thin, high temperature plastic material between said thermal elements and said display medium said thin high temperature plastic material associated with said display medium.
3. A thermal display system according to claim 2 wherein said plastic is flexible.
4. A thermal display system comprising in combinatiOn a thermal printhead having thermal elements therein, a thermal-sensitive layer and a thin, high temperature plastic material between said thermal elements and said thermal-sensitive layer said thin, high temperature plastic material associated with said thermal-sensitive layer.
5. A thermal display system according to claim 4 wherein said plastic material is attached to said thermally sensitive layer.
6. A thermal display system according to claim 4 wherein said plastic material is replaceable.
7. A thermal display system according to claim 4 wherein said plastic material is transparent.
8. A thermal display system according to claim 4 wherein said thermal-sensitive layer is on a paper support material.
9. A thermal display system according to claim 4 wherein said plastic material is polyimide.
10. A thermal display system according to claim 4 wherein said plastic is polyester.
11. A thermal display system according to claim 4 wherein said plastic material is fluorinated ethylene propylene.
12. A thermal display system according to claim 4 further including means for moving said printhead and said plastic material together over said thermal-sensitive layer.
13. A thermal display system according to claim 12 wherein said moving means includes rollers which said plastic material engages and said plastic material is an endless loop.
14. A thermal display system according to claim 12 wherein said moving means comprises takeup and feed reels and said plastic material is a ribbon interconnected between said reels.
15. A thermal display system comprising in combination a substrate, an array of semiconductor bodies upon one surface of said substrate, said array being so arranged that select ones of said bodies define a form of information representation, heater elements within each of said bodies, means for selectively energizing said heater elements thereby to heat said select ones of said bodies, a thermal-sensitive layer, and a thin, plastic material between said semiconductor bodies and said thermal-sensitive layer, which conducts heat therethrough to allow an information representation to form on said thermal-sensitive layer upon the select energization of said select ones of said bodies said thin plastic material associated with said thermal-sensitive layer.
16. A thermal display system according to claim 15 wherein said thermal-sensitive layer is on paper support material.
17. A thermal display system according to claim 15 wherein said plastic material is replaceable.
18. A thermal display system according to claim 15 wherein said plastic material is affixed to said thermally sensitive layer.
19. A thermal display system according to claim 15 wherein said plastic material is polyimide.
20. A thermal display system according to claim 15 wherein said plastic material is polyester.
21. A thermal display system according to claim 15 wherein said plastic material is fluorinated ethylene propylene.
US823129A 1969-05-08 1969-05-08 Method and apparatus for protecting electronic printheads Expired - Lifetime US3632970A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82312969A 1969-05-08 1969-05-08

Publications (1)

Publication Number Publication Date
US3632970A true US3632970A (en) 1972-01-04

Family

ID=25237876

Family Applications (1)

Application Number Title Priority Date Filing Date
US823129A Expired - Lifetime US3632970A (en) 1969-05-08 1969-05-08 Method and apparatus for protecting electronic printheads

Country Status (6)

Country Link
US (1) US3632970A (en)
AU (1) AU1438570A (en)
FR (1) FR2100581A1 (en)
GB (1) GB1278849A (en)
NL (1) NL7006310A (en)
SE (1) SE359949B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905462A (en) * 1973-02-27 1975-09-16 Olympia Werke Ag Multielectrode electrographic printing device
US3953264A (en) * 1974-08-29 1976-04-27 International Business Machines Corporation Integrated heater element array and fabrication method
US3955663A (en) * 1974-12-23 1976-05-11 International Business Machines Corporation Incremental advance mechanism
US4035607A (en) * 1974-08-29 1977-07-12 Ibm Corporation Integrated heater element array
US4046472A (en) * 1975-04-18 1977-09-06 Xerox Corporation Electrostatic imaging apparatus
US4103995A (en) * 1975-04-18 1978-08-01 Xerox Corporation Imaging apparatus
US4134696A (en) * 1975-12-05 1979-01-16 Canon Kabushiki Kaisha Printing apparatus
US4236834A (en) * 1978-09-28 1980-12-02 International Business Machines Corporation Electrothermal printing apparatus
US4252991A (en) * 1977-03-17 1981-02-24 Oki Electric Industry Co., Ltd. Multi-layer printed circuit
US4557616A (en) * 1983-12-12 1985-12-10 International Business Machines Corporation Resistive ribbon thermal transfer printing system and process
US4568817A (en) * 1983-06-29 1986-02-04 Fuji Xerox Co. Ltd. Thermal printing method and apparatus
FR2672242A1 (en) * 1991-01-31 1992-08-07 Samsung Electronics Co Ltd Printer using heat transfer
US20030116552A1 (en) * 2001-12-20 2003-06-26 Stmicroelectronics Inc. Heating element for microfluidic and micromechanical applications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835154B2 (en) * 1972-06-19 1983-08-01 キヤノン株式会社 injisouchi

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905767A (en) * 1952-12-18 1959-09-22 Sperry Rand Corp Protective apparatus for magnetic recording and sensing head
US2917996A (en) * 1955-04-25 1959-12-22 Burroughs Corp Thermal printer
US3092236A (en) * 1960-05-25 1963-06-04 Dynamic Process Co Inc Ink transfer impression-making ribbons
US3109749A (en) * 1961-12-11 1963-11-05 Ibm Wear resistant magnetic recording media
US3162290A (en) * 1961-06-29 1964-12-22 John P Knight Ink transfer
US3273686A (en) * 1964-08-10 1966-09-20 Impression ribbon and method op making same
US3453648A (en) * 1967-08-29 1969-07-01 Milgo Electronic Corp Thermal printing device
US3478191A (en) * 1967-01-23 1969-11-11 Sprague Electric Co Thermal print head
US3496333A (en) * 1968-09-26 1970-02-17 Texas Instruments Inc Thermal printer
US3518406A (en) * 1967-06-19 1970-06-30 Ncr Co Thermal half-select printing matrix
US3849096A (en) * 1969-07-07 1974-11-19 Lummus Co Fractionating lng utilized as refrigerant under varying loads

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905767A (en) * 1952-12-18 1959-09-22 Sperry Rand Corp Protective apparatus for magnetic recording and sensing head
US2917996A (en) * 1955-04-25 1959-12-22 Burroughs Corp Thermal printer
US3092236A (en) * 1960-05-25 1963-06-04 Dynamic Process Co Inc Ink transfer impression-making ribbons
US3162290A (en) * 1961-06-29 1964-12-22 John P Knight Ink transfer
US3109749A (en) * 1961-12-11 1963-11-05 Ibm Wear resistant magnetic recording media
US3273686A (en) * 1964-08-10 1966-09-20 Impression ribbon and method op making same
US3478191A (en) * 1967-01-23 1969-11-11 Sprague Electric Co Thermal print head
US3518406A (en) * 1967-06-19 1970-06-30 Ncr Co Thermal half-select printing matrix
US3453648A (en) * 1967-08-29 1969-07-01 Milgo Electronic Corp Thermal printing device
US3496333A (en) * 1968-09-26 1970-02-17 Texas Instruments Inc Thermal printer
US3849096A (en) * 1969-07-07 1974-11-19 Lummus Co Fractionating lng utilized as refrigerant under varying loads

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905462A (en) * 1973-02-27 1975-09-16 Olympia Werke Ag Multielectrode electrographic printing device
US3953264A (en) * 1974-08-29 1976-04-27 International Business Machines Corporation Integrated heater element array and fabrication method
US4035607A (en) * 1974-08-29 1977-07-12 Ibm Corporation Integrated heater element array
US3955663A (en) * 1974-12-23 1976-05-11 International Business Machines Corporation Incremental advance mechanism
US4046472A (en) * 1975-04-18 1977-09-06 Xerox Corporation Electrostatic imaging apparatus
US4103995A (en) * 1975-04-18 1978-08-01 Xerox Corporation Imaging apparatus
US4134696A (en) * 1975-12-05 1979-01-16 Canon Kabushiki Kaisha Printing apparatus
US4252991A (en) * 1977-03-17 1981-02-24 Oki Electric Industry Co., Ltd. Multi-layer printed circuit
US4236834A (en) * 1978-09-28 1980-12-02 International Business Machines Corporation Electrothermal printing apparatus
US4568817A (en) * 1983-06-29 1986-02-04 Fuji Xerox Co. Ltd. Thermal printing method and apparatus
US4557616A (en) * 1983-12-12 1985-12-10 International Business Machines Corporation Resistive ribbon thermal transfer printing system and process
FR2672242A1 (en) * 1991-01-31 1992-08-07 Samsung Electronics Co Ltd Printer using heat transfer
US20030116552A1 (en) * 2001-12-20 2003-06-26 Stmicroelectronics Inc. Heating element for microfluidic and micromechanical applications
US20070284360A1 (en) * 2001-12-20 2007-12-13 Stmicroelectronics Inc. Heating element for microfluidic and micromechanical applications
US9012810B2 (en) 2001-12-20 2015-04-21 Stmicroelectronics, Inc. Heating element for microfluidic and micromechanical applications

Also Published As

Publication number Publication date
GB1278849A (en) 1972-06-21
SE359949B (en) 1973-09-10
NL7006310A (en) 1970-11-10
FR2100581A1 (en) 1972-03-24
AU1438570A (en) 1971-10-28

Similar Documents

Publication Publication Date Title
US3632969A (en) Electronic printhead protection
US3596055A (en) Method and apparatus for producing displays utilizing an electronic display system
US3632970A (en) Method and apparatus for protecting electronic printheads
US3855448A (en) Recording apparatus
US4550324A (en) Ink transfer thermal printer
US4897668A (en) Apparatus for transferring ink from ink ribbon to a recording medium by applying heat to the medium, thereby recording data on the medium
US5357270A (en) Thermal transfer printing
US8269808B2 (en) Printer
US4786195A (en) Erasing means for thermal transfer printer
US4456915A (en) Print head for high resolution electrothermal printing apparatus
US4746933A (en) Thermal record-erase head
US5005993A (en) Electrothermal printer with a resistive ink ribbon and differing resistance current return paths
US4746930A (en) Thermal printing head
JPS61246081A (en) Thermal transfer printer
US4557616A (en) Resistive ribbon thermal transfer printing system and process
US4232325A (en) Thermal printing device with spring support tines
EP0289115A1 (en) Electrothermal transfer-printing apparatus
CA1181987A (en) Print head for high resolution electrothermal printing apparatus
JP3524654B2 (en) Printer for rewritable thermal recording sheet, thermal head used therefor, and image forming method for rewritable thermal recording sheet
JPS646955B2 (en)
JPS581574A (en) Current supply transfer recording method
JP3358865B2 (en) Recording device for rewritable thermosensitive recording sheet
US4433902A (en) Projection printer
JPS63145072A (en) Thermal transfer printer
JPH02273254A (en) Thermally sensitive recording device