[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3653117A - Clip tool and method of clinching - Google Patents

Clip tool and method of clinching Download PDF

Info

Publication number
US3653117A
US3653117A US68725A US3653117DA US3653117A US 3653117 A US3653117 A US 3653117A US 68725 A US68725 A US 68725A US 3653117D A US3653117D A US 3653117DA US 3653117 A US3653117 A US 3653117A
Authority
US
United States
Prior art keywords
clip
clinching
tool
assembly
preforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US68725A
Inventor
Robert L Wolfberg
Paul W Bojan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signode Corp
Original Assignee
Signode Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Signode Corp filed Critical Signode Corp
Application granted granted Critical
Publication of US3653117A publication Critical patent/US3653117A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B13/00Bundling articles
    • B65B13/18Details of, or auxiliary devices used in, bundling machines or bundling tools
    • B65B13/24Securing ends of binding material
    • B65B13/34Securing ends of binding material by applying separate securing members, e.g. deformable clips
    • B65B13/345Hand tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49828Progressively advancing of work assembly station or assembled portion of work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53478Means to assemble or disassemble with magazine supply
    • Y10T29/53487Assembling means comprising hand-manipulatable implement
    • Y10T29/53513Means to fasten by deforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53709Overedge assembling means
    • Y10T29/53783Clip applier

Definitions

  • a clip is automatically fed to the I B23q 7H0 l 2 clip tool and the clip tool preforms the clip into a non-nestable i 29/512 D 243 5 condition, after which the preformed clip is driven into the 6 1 anvil jaw to be clinched about ligatures or wires.
  • the method provides for stripping a clip from a closely nested stack.
  • an improved tool of the stationary anvil type which can efficiently and effectively utilize nestable clips for clinching two or more wires of a spring assembly such as one used in an automobile seat.
  • the improved tool of this invention is relatively lighter in weight than presently available tools adapted to utilize nested clips.
  • the shock load in the tool of this invention is minimized.
  • the tool is more universally adapted to clinch different sizes and numbers of wire combinations, while providing the very substantial and hitherto unavailable advantage of being operable with closely nested clips that increase the capacity of a given tool magazine by a factor of about three.
  • the tool of this invention is preferably pneumatically operable upon nested clips each having a pair of diverging leg sections. It includes a clip magazine and means for stripping a clip from the magazine and for injecting the clip into the main body of the clip tool. A driver assembly is provided to drive the clip into a stationary clinching jaw to clinch the clip about two or more wires.
  • a preformer which reduces the divergence of the leg sections.
  • the driver assembly drives the clip past the preformer and cooperates with the preformer to bias it against the clip.
  • a ball transfer system is used which includes a ball, a cam slot in the driver assembly and a ball notch in the preformer, the ball being transferred between the cam slot and ball notch.
  • the driver assembly may be a one-stage or two-stage assembly.
  • the clip In the one-stage assembly the clip is preformed and is then moved directly into the clinching jaw.
  • the preformed clip is retained at a position remote from the clinching jaw and on the next actuation of the tool is driven into the clinching jaw.
  • the driver assembly includes a pair of driving blades and operates on two clips on each stroke of the tool.
  • the method of this invention for clinching at least a pair of wires preferably includes the steps of stripping a clip having a pair of diverging leg sections from a closely nested stack of clips, decreasing the divergence of said leg sections and then clinching the clip about the wires to form a clinched assembly.
  • FIG. 1 is a vertical view, partially in cross section, of a clip tool of this invention taken substantially along the line 1-1 of FIG.
  • FIG. 2 is a fragmentary view taken substantially along the line 22 of FIG. lofa portion of FIG. 1;
  • FIG. 3 is a fragmentary view taken substantially along the line 3-3 ofFIG. 2;
  • FIG. 4 is a perspective view of a closely nestable clip adapted for use with the clip tool ofFIG. l;
  • FIG. 5 is a fragmentary view taken substantially along the line 55 ofFIG. 1;
  • FIG. 6 is a fragmentary view of FIG. 1 in a second position
  • FIG. 7 is a general organizational view of FIG. 1;
  • FIG. 8 is an enlarged view of the clinching operational aspect of the tool of FIG. 1;
  • FIG. 9 is an enlarged view like FIG. 8 at a later clinching stage
  • FIG. 10 is an enlarged view like claim 9 showing a clinched assembly
  • FIG. 11 is a view similar to FIG. I ofa further embodiment of this invention.
  • FIG. 12 is a view of the tool of FIG. II similar to the view of FIG. 6.
  • a clip tool 10 of this invention comprises a housing 12 defining a cylinder bore 14 and an integral handle 15.
  • Handle 15 is connected to a source of high pressure air by a fitting 16 and a hose l8.
  • Handle l5 defines an air conduit 20 which communicates with a suitable valve assembly 22 which is operated by a trigger 24 which acts against a valve actuating pin 26.
  • Suitable valve assemblies adapted to supply and port high pressure air to the cylinder bore 14 are well known in the art.
  • Valve assembly 22 is adapted alternately to supply air to and to vent air from opposite sides of a piston 28.
  • air is admitted by valve assembly 22 to passage 30 which communicates with the upper side of the piston.
  • valve assembly 22 is admitted by valve assembly 22 to passage 32 which communicates with the lower side of the piston 28.
  • Valve assembly 22 also acts to vent high pressure air from the opposite side of the piston to which high pressure air is supplied during the driving and return strokes of the piston in a known manner.
  • Piston 28 centrally mounts a piston rod 34 which extends downwardly through the base of housing 12.
  • Cylinder bore 14 is closed at its base by a cylinder head 36.
  • Cylinder head 36 defines a section 38 which nests within bore 14 and which sealingly engages the wall of the cylinder bore by a sealing ring 40 and which sealingly engages the piston rod 34 by a sealing ring 42.
  • Cylinder head 36 also provides a pair of spaced mounting ears 44 which supportingly mount a frame assembly including a pair of spaced side plates 46 via bolts 45. Side plates 46 in turn mount and guide operating members of clip tool 10.
  • Each of the side plates 46 defines a vertical guide slot 50 which slidably receives a slide pin 52.
  • Slide pin 52 extends between plates 46 and is fixedly mounted to the forked end 54 of piston rod 34.
  • crank 56 is disposed between the fork arms of forked end 54 .
  • Crank 56 defines a cam slot 58 which receives slide pin 52 for articulation with respect thereto.
  • Crank S6 is pivotally mounted on side plates 46 on a pivot pin 60 which may comprise a bolt secured by a nut to the side plates 46.
  • Pivot pin 60 is remote from cam slot 58.
  • An elongate driver link 62 is pivotally connected by an axle 64 to crank 56 at a point remote from bod: pivot pin 60 and cam slot 58.
  • the other end of driver link 62 is pivotally connected to a driver assembly 66 by a further pivot pin 68.
  • Driver assembly 66 in the embodiment of FIGS. 1 to 7 includes a driver blade 70 and a clincher blade 72.
  • the driver blade cooperates to preform a clip C to the condition of preformed clip C and to drive it into a position from which the clinching blade drives it into the jaw of a stationary clinching anvil 74 in the manner to be described.
  • Blades 70 and 72 are reciprocable between the positions il lustrated in FIGS. 1 and 6.
  • FIG. 1 illustrates the uppermost position of the blades
  • FIG. 6 illustrates the lowermost position of the blades. The movement between these positions is effected by alternately supplying air to and venting air from opposite sides of piston 28 through passages 30 and 32 in response to the actuation of valve assembly 22.
  • driver blade 70 is slidably positioned against a guide surface 76 provided by a frame assembly member 78 which is secured to plates 46 by bolts 80.
  • Clincher blade 72 is slidably disposed against an upper integral extension of clinching anvil 74.
  • Anvil 74 is secured to side plates 46 by a pair of bolts 82.
  • link 62 pivots, and pivot pin 68 moves downwardly a distance substantially equal to the distance between the axes of pivot pins 60 and 64 less the vertical distance between those pivot pins in the position of rest (FIG. 1).
  • This movement of the link 62 causes the blades 70, 72 to slidably move downwardly against the opposed guide surfaces to perform their respective functions.
  • driver blade 70 defines a cam slot 84 in which a cam ball 86 is disposed.
  • Cam ball 86 is captured between blade 70 and a confronting preformer member 90.
  • Preformer member 90 is oscillatably mounted on a pin 92 on frame assembly member 78 to oscillate between the positions of FIGS. 1 and 6, and defines a ball notch 94 confronting the driver blade 70.
  • the upper end of the ball notch 94 is sufliciently close to a keeping surface 95 of a member 78 to keep the ball 86 as the driver blade 70 moves between the positions of FIGS. land 6.
  • an open nestable clip is preformed on a first downward stroke of piston 28 to preform clip C to the form of clip C and preformed clip C is clinched on a second stroke of piston 28 to form clinched assembly A.
  • one clip C is preformed and a second clip C is clinched.
  • Ejecting and feeding mechanism I21 includes a pneumatic double acting cylinder assembly which is supplied by air through a pair of air tubes I22, 124. Air tube 124 is in flow communication with passage 32 below piston 28 via an air passage 126, whereas air tube I22 is in flow communication with passage 30 via an air passage I28.
  • Cylinder block 130 defines a pair of air ports I34 and 136 which are in flow communication with tubes 122 and 124, respectively. Cylinder block 130 is mounted to one of the side plates 46 by a pair of screws 133. Port I36 (FIG. 2) is positioned substantially at the end of block 130 opposite port 134. An extension passage I38 provides communication between tube I24 and port 136.
  • a double acting piston 140 is disposed within ejector cylinder 132 (FIG. 2). It is exposed at opposite faces to ports I34 and 136. Its movement outwardly (FIG. 2) is limited by a stop surface I42 integral with a threaded cylinder closing nut 144. At its outer end, piston 140 mounts an elongate link I46 held thereagainst by a nut I48 threadedly secured to a threaded reduced diameter section 150 of piston 140.
  • link I46 (FIG. 5) is secured to an ejector rod 152 which is slidably mounted in slide section 156 of clip guide I54.
  • Clip guide 154 is open-topped adjacent slide section and beneath the magazine to receive clips C (FIG. 5).
  • Clips C are biased by a spring-loaded follower I58 against ejector rod I52 and towards the surfaces 153 of clip guide 154 in the opentopped slide section.
  • the pusher end 159 of ejector rod 152 is moved out of the path of the clips C and the clips are then biased downwardly into engagement with the surfaces 153.
  • the pusher end 159 contacts a side surface of the lowermost clip C and ejects it from the magazine and dirusts it to the right along slide surfaces 153 and into the position of the clip C shown in dotted line in FIG. 5, again positioning the rod under the next clip C for the next feeding operation.
  • the ejector rod moves the clip C in a direction normal to the direction of movement of the driver assembly 66.
  • the clip tool 10 of FIGS. I to 7 operates as follows.
  • a closely nested stack of clips C (FIG. 4) or clips such as those illustrated and described in Kuster US. Pat. No. 3,032,184 or Childress US. Pat. No. 2,871,536, is loaded into magazine 120 and is biased downwardly by follower 158.
  • clips C are so closely nested, the leg sections I62 diverge so far that they cannot readily be clinched in a clinching anvil 74 without first preforrning the legs to a lesser divergence.
  • Trigger 24 is squeezed admitting air to the top of piston 28 and to port I34 causing the piston 28 to move down and causing the ejector rod 152 to be retracted to allow a clip C to be biased into engagement with guide surfaces 153.
  • the trigger is released and high pressure air is vented from above the piston 28 and from port 134 while high pressure air is admitted below the piston and to port 136 to retract the driver assembly and to thrust ejector rod inwardly to strip a clip from the nested stack and to thrust it into the position in the tool illustrated in FIG. 5.
  • each stroke both preforms one clip C and clinches one clip C simultaneously.
  • FIGS. 11 and 12 is quire similar to that of FIGS. 1 to 7, both in mode of operation and in terms of the structural organization, with but two principal exceptions. Those are that there is no driver blade, but only a clinching blade, and that the preforming and clinching steps take place sequentially on one stroke of the piston 28, rather than on succeeding strokes of the piston.
  • a driver link 62 of clip tool is pivotally secured to a driver assembly 66 by a pivot pin 68.
  • Driver assembly 66' includes a clincher blade 72' defining a cam slot 84' in which a ball 86' is disposed.
  • Clincher blade 72' is slidably positioned between surface 76 of frame assembly member 78 and an upper integral extension of anvil 74'.
  • Anvil 74' is secured to side plates 46' by bolts 82'.
  • anvil 74' is magnetic or provides a magnetic insert 75 for a purpose to be described.
  • ejector rod 152 thrusts a clip C into position against the anvil 74' where it is held below the end of clinching blade 72 by a magnetic insert 75.
  • the trigger 24 is moved to actuate valve assembly 22 the ejector rod I52 is retracted and the clinching blade 72 moves downwardly.
  • the clinching blade 72 contacts clip C and moves it downwardly while preformer member 90 is oscillated (biased oppositely by spring 96') about pin 92 from the position of FIG. 11 to that of FIG. 12.
  • Preformer member 90 and clincher blade 72' cooperate via notch 94, ball 86', cam slot 84' and the side of clinching blade 72' to preform a clip C intermediate the length of the stroke to the configuration of clip C (shown in dotted line in FIG. I1). Following preforming, continued downward driving moves the clip C through the stages of FIGS. 7, 8 and 9 until a clinched assembly A (FIG. I2) is formed.
  • a nestable clip C requiring preforming is ejected from a magazine to a first position in the tool, is preformed to the shape of a clip C, and is thereafter driven into a stationary clinching anvil to clinch it about two or more wires.
  • the preforming and clinching is a two-step operation. This permits the use of a longer anvil extension below the cylinder block than in the embodiment of FIG. I]. That feature permits use of a clip tool of this character in more difficult to reach locations within an assembly to be clinched, for example in remote interior locations in a spring assembly such as for an automobile seat, than with the embodiment of FIG. 11.
  • a method of forming a clinched assembly ofa clip and at least a pair of wires comprising providing a stack of closely nested clips having a central web and a pair of leg sections divergingly projecting from said central web, stripping a clip from said nested stack and moving it to a first position, moving it from said first position to a second adjacent position while decreasing the divergence of said leg sections, then moving it from said second position to a third closely adjacent position while wrapping said leg sections about said wires to form a clinched assembly.
  • a power-operated clip tool for preforming closely nested clips each having a pair of diverging leg sections prior to clinching the clips about at least a pair of wires, means for stripping and feeding a nested clip into said clip tool, preforming means for reducing the divergence of said pair of leg sections by ushing the ends of said leg sections towards each other, a c inching anvil having a statlonary aw, driving means for driving a clip past said preformer toward and into said jaw, and means for moving said driving means between a first position remote from, and a second position in said jaw.
  • said driving means comprises a driver assembly defining a cam slot in which a cam ball is positioned, said driver assembly being movable between said first and second positions.
  • said preforming means defines a ball notch to which said cam ball is transferred by said driver assembly when said driver assembly is moved from said first position toward said second position and from which said cam ball is transferred as driver assembly returns to said first position.
  • said driving means comprises a driver assembly having a clinching blade for clinching a clip in said anvil.
  • said driver assembly further comprises a driver blade for moving a clip from said first position past said preforming means to an intermediate position remote from said second position, said clinching blade being adapted to move a preformed clip from said intermediate position to said second position.
  • said preforming means is oscillatably mounted and said driver assembly defines a cam slot seating a cam ball, and said preforming means defines a ball transfer notch, whereby said cam ball is transferred from cam slot to said transfer notch as said driver assembly is moved from first position to said second position.
  • a clip tool comprising in combination a housing and frame assembly, a stationary clinching anvil having a jaw secured to said housing, a clip magazine, a power-actuated clinching blade for driving a clip into said anvil to clinch said clip around a pair of members to be clinched, means for ejecting clips from a nested stack of clips from said magazine into said housing and frame assembly, and means in said housing and frame assembly for preforming a clip into a substantially non-nestable condition at a position remote from the jaw of said clinching anvil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

A magazine fed clip tool of the stationary anvil type, and which utilizes closely nested clips or seal blanks for clinching ligatures or wires in the anvil. A clip is automatically fed to the clip tool and the clip tool preforms the clip into a nonnestable condition, after which the preformed clip is driven into the anvil jaw to be clinched about ligatures or wires. The method provides for stripping a clip from a closely nested stack, preforming the clip to a non-nestable condition and then clinching it about at least a pair of wires to form a clinched assembly.

Description

United States Patent 1151 3,6
Wolfberg et al. 1 Apr. 4, 1972 s41 CLIP TOOL AND METHOD OF 3,068,485 12/1962 Lingle et al. 29/243.56 x
CLINCl-[ING 3,l33,288 5/1964 Ohgren ..29/243 56 3.526944 9/1970 Cherup ..29/2l2 D [72] Inventors: Robert L. Wollberg, Skokie; Paul W.
1"- bmh of Pn'mary Examiner-Thomas H. Eager [73] Assign": Slam,e Corponflon Attorney-Dressler, Goldsmith, Clement and Gordon 22 Filed: Sept. 1, 1970 57] ABSTRACT [Zl] Appl. No.: 68,725 A magazine fed clip tool of the stationary anvil type. and which utilizes closely nested clips or seal blanks for clinching [52' U 5 Cl 29/429 29/2 D 29/243 56 ligatures or wires in the anvil. A clip is automatically fed to the I B23q 7H0 l 2 clip tool and the clip tool preforms the clip into a non-nestable i 29/512 D 243 5 condition, after which the preformed clip is driven into the 6 1 anvil jaw to be clinched about ligatures or wires. The method provides for stripping a clip from a closely nested stack.
[56] defences cued preforming the clip to a non-nestable condition and then clinching it about at least a pair of wires to form a clinched as- UNITED STATES PATENTS y- 2,574,811 ll/l95l Blumensaadt ..l40/l11 X 13Clnlms, 12 Drawing Figures Q :21 Q llll PATENTEDAPR 4 I972 SHEET 3 OF 3 INVENTORS J?o&/r/l 7/ ATTORNEYS CLIP TOOL AND METHOD OF CLlNCI-IING This invention relates to a clinching method and to an improved clip tool, and particularly to an improved pneumatically operable clip tool in which at least a pair of wires are clinched with a clip in a stationary anvil.
One such tool generally related to the clip tool of this invention is illustrated by Blumensaadt U.S. Pat. No. 2,574,811. A principal disadvantage of known tools such as that is that they can use only preformed, non-nestable clips. Non-nestable clips occupy a great deal of space and severely limit the load which a given length of magazine may carry.
Other clipping tools exist which are adapted to utilize nested stacks of clips. However, those are of the movable crimping jaw type, are not adapted to withstand the crimping load that a stationary anvil type of tool can withstand, and are otherwise less desirable in some uses and operations than tools of the general character illustrated in the Blumensaadt patent. Such other tools are illustrated, for example, in Lingle et al. U.S. Pat. No. 3,068,485 and Ohgren U.S. Pat. No. 3,l33,288.
In accordance with this invention an improved tool of the stationary anvil type is provided which can efficiently and effectively utilize nestable clips for clinching two or more wires of a spring assembly such as one used in an automobile seat. The improved tool of this invention is relatively lighter in weight than presently available tools adapted to utilize nested clips. By virtue of the use of a lever mechanism for driving and clinching clips rather than a direct impact mechanism, the shock load in the tool of this invention is minimized. Also the tool is more universally adapted to clinch different sizes and numbers of wire combinations, while providing the very substantial and hitherto unavailable advantage of being operable with closely nested clips that increase the capacity of a given tool magazine by a factor of about three.
The tool of this invention is preferably pneumatically operable upon nested clips each having a pair of diverging leg sections. It includes a clip magazine and means for stripping a clip from the magazine and for injecting the clip into the main body of the clip tool. A driver assembly is provided to drive the clip into a stationary clinching jaw to clinch the clip about two or more wires.
After the clip is injected into the tool body it is acted upon by a preformer which reduces the divergence of the leg sections. The driver assembly drives the clip past the preformer and cooperates with the preformer to bias it against the clip. Desirably a ball transfer system is used which includes a ball, a cam slot in the driver assembly and a ball notch in the preformer, the ball being transferred between the cam slot and ball notch.
The driver assembly may be a one-stage or two-stage assembly. In the one-stage assembly the clip is preformed and is then moved directly into the clinching jaw. In the two-stage assembly the preformed clip is retained at a position remote from the clinching jaw and on the next actuation of the tool is driven into the clinching jaw. In that case the driver assembly includes a pair of driving blades and operates on two clips on each stroke of the tool.
The method of this invention for clinching at least a pair of wires preferably includes the steps of stripping a clip having a pair of diverging leg sections from a closely nested stack of clips, decreasing the divergence of said leg sections and then clinching the clip about the wires to form a clinched assembly.
Further objects and advantages of this invention will become apparent from the following description and drawings of which:
FIG. 1 is a vertical view, partially in cross section, of a clip tool of this invention taken substantially along the line 1-1 of FIG.
FIG. 2 is a fragmentary view taken substantially along the line 22 of FIG. lofa portion of FIG. 1;
FIG. 3 is a fragmentary view taken substantially along the line 3-3 ofFIG. 2;
FIG. 4 is a perspective view of a closely nestable clip adapted for use with the clip tool ofFIG. l;
FIG. 5 is a fragmentary view taken substantially along the line 55 ofFIG. 1;
FIG. 6 is a fragmentary view of FIG. 1 in a second position;
FIG. 7 is a general organizational view of FIG. 1;
FIG. 8 is an enlarged view of the clinching operational aspect of the tool of FIG. 1;
FIG. 9 is an enlarged view like FIG. 8 at a later clinching stage;
FIG. 10 is an enlarged view like claim 9 showing a clinched assembly;
FIG. 11 is a view similar to FIG. I ofa further embodiment of this invention; and
FIG. 12 is a view of the tool of FIG. II similar to the view of FIG. 6.
Referring first to FIGS. I to 7, a clip tool 10 of this invention comprises a housing 12 defining a cylinder bore 14 and an integral handle 15. Handle 15 is connected to a source of high pressure air by a fitting 16 and a hose l8. Handle l5 defines an air conduit 20 which communicates with a suitable valve assembly 22 which is operated by a trigger 24 which acts against a valve actuating pin 26. Suitable valve assemblies adapted to supply and port high pressure air to the cylinder bore 14 are well known in the art.
Valve assembly 22 is adapted alternately to supply air to and to vent air from opposite sides of a piston 28. When the piston is to be driven downwardly air is admitted by valve assembly 22 to passage 30 which communicates with the upper side of the piston. When the piston 28 is to be raised for its next stroke, air is admitted by valve assembly 22 to passage 32 which communicates with the lower side of the piston 28. Valve assembly 22 also acts to vent high pressure air from the opposite side of the piston to which high pressure air is supplied during the driving and return strokes of the piston in a known manner.
Piston 28 centrally mounts a piston rod 34 which extends downwardly through the base of housing 12. Cylinder bore 14 is closed at its base by a cylinder head 36. Cylinder head 36 defines a section 38 which nests within bore 14 and which sealingly engages the wall of the cylinder bore by a sealing ring 40 and which sealingly engages the piston rod 34 by a sealing ring 42. Cylinder head 36 also provides a pair of spaced mounting ears 44 which supportingly mount a frame assembly including a pair of spaced side plates 46 via bolts 45. Side plates 46 in turn mount and guide operating members of clip tool 10.
Each of the side plates 46 defines a vertical guide slot 50 which slidably receives a slide pin 52. Slide pin 52 extends between plates 46 and is fixedly mounted to the forked end 54 of piston rod 34. Between the fork arms of forked end 54 a crank 56 is disposed. Crank 56 defines a cam slot 58 which receives slide pin 52 for articulation with respect thereto.
Crank S6 is pivotally mounted on side plates 46 on a pivot pin 60 which may comprise a bolt secured by a nut to the side plates 46. Pivot pin 60 is remote from cam slot 58. An elongate driver link 62 is pivotally connected by an axle 64 to crank 56 at a point remote from bod: pivot pin 60 and cam slot 58. The other end of driver link 62 is pivotally connected to a driver assembly 66 by a further pivot pin 68.
Driver assembly 66 in the embodiment of FIGS. 1 to 7 includes a driver blade 70 and a clincher blade 72. The driver blade cooperates to preform a clip C to the condition of preformed clip C and to drive it into a position from which the clinching blade drives it into the jaw of a stationary clinching anvil 74 in the manner to be described.
Blades 70 and 72 are reciprocable between the positions il lustrated in FIGS. 1 and 6. FIG. 1 illustrates the uppermost position of the blades and FIG. 6 illustrates the lowermost position of the blades. The movement between these positions is effected by alternately supplying air to and venting air from opposite sides of piston 28 through passages 30 and 32 in response to the actuation of valve assembly 22. When in the position of FIG. I driver blade 70 is slidably positioned against a guide surface 76 provided by a frame assembly member 78 which is secured to plates 46 by bolts 80. Clincher blade 72 is slidably disposed against an upper integral extension of clinching anvil 74. Anvil 74 is secured to side plates 46 by a pair of bolts 82. As crank 56 moves from the position of FIG. 1 to the position of FIG. 6, link 62 pivots, and pivot pin 68 moves downwardly a distance substantially equal to the distance between the axes of pivot pins 60 and 64 less the vertical distance between those pivot pins in the position of rest (FIG. 1). This movement of the link 62 causes the blades 70, 72 to slidably move downwardly against the opposed guide surfaces to perform their respective functions.
It will be seen that driver blade 70 defines a cam slot 84 in which a cam ball 86 is disposed. Cam ball 86 is captured between blade 70 and a confronting preformer member 90. Preformer member 90 is oscillatably mounted on a pin 92 on frame assembly member 78 to oscillate between the positions of FIGS. 1 and 6, and defines a ball notch 94 confronting the driver blade 70. The upper end of the ball notch 94 is sufliciently close to a keeping surface 95 of a member 78 to keep the ball 86 as the driver blade 70 moves between the positions of FIGS. land 6.
As cam slot 84 is carried from the position of FIG. 1 by blade 70, the ball 86 is cammed outwardly against preformer member 90 and is transferred into notch 94 causing the preformer member to oscillate in a counterclockwise direction (FIG. I) about pin 92. Preformer member spring 96 resiliently opposes that motion to retain a tight fit between the ball and the surfaces acting against it. As the upper end of the preformer member rotates so does the lower preforming end I00. As that occurs the ends of the leg sections of a clip C are gradually pushed or squeezed together to the preformed condition of clip C as it is being driven downwardly by the lower end of driver blade 70 to the position of clip C (see FIG. 6). It is held in that lower position against the reactive surface of clinching blade 72 by an extension of spring 96. When the driver assembly is moved from the position of FIG. 6 to that of FIG. 1, spring 96 biases clip C into the position of FIG. 1 directly underlying the clinching blade 72. On the next stroke clip C is driven by clinching blade 72 into the jaw of anvil 74 to form the crimped assembly A.
Thus, it is seen that an open nestable clip is preformed on a first downward stroke of piston 28 to preform clip C to the form of clip C and preformed clip C is clinched on a second stroke of piston 28 to form clinched assembly A. During each stroke of piston 28 one clip C is preformed and a second clip C is clinched.
Simultaneously with each return stroke of piston 28 a clip C is fed into the position occupied by clip C in FIG. 1. The feeding of such clips is from a clip magazine 120 (FIG. which is suitably secured to side plates 46 and in association with an air-operated clip ejecting and feeding mechanism 121. Ejecting and feeding mechanism I21 includes a pneumatic double acting cylinder assembly which is supplied by air through a pair of air tubes I22, 124. Air tube 124 is in flow communication with passage 32 below piston 28 via an air passage 126, whereas air tube I22 is in flow communication with passage 30 via an air passage I28. The lower ends of tubes I22 and 124 feed into a manifold I29 secured by screws 131 to a cylinder block 130 defining an ejector cylinder 132. Cylinder block 130 defines a pair of air ports I34 and 136 which are in flow communication with tubes 122 and 124, respectively. Cylinder block 130 is mounted to one of the side plates 46 by a pair of screws 133. Port I36 (FIG. 2) is positioned substantially at the end of block 130 opposite port 134. An extension passage I38 provides communication between tube I24 and port 136.
A double acting piston 140 is disposed within ejector cylinder 132 (FIG. 2). It is exposed at opposite faces to ports I34 and 136. Its movement outwardly (FIG. 2) is limited by a stop surface I42 integral with a threaded cylinder closing nut 144. At its outer end, piston 140 mounts an elongate link I46 held thereagainst by a nut I48 threadedly secured to a threaded reduced diameter section 150 of piston 140. The
other end of link I46 (FIG. 5), is secured to an ejector rod 152 which is slidably mounted in slide section 156 of clip guide I54. Clip guide 154 is open-topped adjacent slide section and beneath the magazine to receive clips C (FIG. 5). Clips C are biased by a spring-loaded follower I58 against ejector rod I52 and towards the surfaces 153 of clip guide 154 in the opentopped slide section. When the ejector rod is in the position of FIG. 5, the central web 160 of clip C lies against the rod and the outwardly diverging leg sections I62 straddle rod 152 and straddle surfaces 153. When the ejector rod is retracted (moved to the left in FIG. 5) by supplying high pressure air to port 134 to drive it outwardly, the pusher end 159 of ejector rod 152 is moved out of the path of the clips C and the clips are then biased downwardly into engagement with the surfaces 153. When the ejector rod is then moved to the right the pusher end 159 contacts a side surface of the lowermost clip C and ejects it from the magazine and dirusts it to the right along slide surfaces 153 and into the position of the clip C shown in dotted line in FIG. 5, again positioning the rod under the next clip C for the next feeding operation. The ejector rod moves the clip C in a direction normal to the direction of movement of the driver assembly 66.
The clip tool 10 of FIGS. I to 7 operates as follows. A closely nested stack of clips C (FIG. 4) or clips such as those illustrated and described in Kuster US. Pat. No. 3,032,184 or Childress US. Pat. No. 2,871,536, is loaded into magazine 120 and is biased downwardly by follower 158. When clips C are so closely nested, the leg sections I62 diverge so far that they cannot readily be clinched in a clinching anvil 74 without first preforrning the legs to a lesser divergence.
The lowermost clip C of the stack rests against ejector rod 152. Trigger 24 is squeezed admitting air to the top of piston 28 and to port I34 causing the piston 28 to move down and causing the ejector rod 152 to be retracted to allow a clip C to be biased into engagement with guide surfaces 153. The trigger is released and high pressure air is vented from above the piston 28 and from port 134 while high pressure air is admitted below the piston and to port 136 to retract the driver assembly and to thrust ejector rod inwardly to strip a clip from the nested stack and to thrust it into the position in the tool illustrated in FIG. 5.
Upon the next actuation of the trigger, rod I52 moves outwardly, the leg sections of clip C (FIG. I) are gradually decreased in divergence (preformed) by preformer member and as the clip is moved vertically from that first position by driver blade 70 to the vertical elevation of clip C (FIG. 6), remote from the jaw of clinching anvil 74. When the trigger is next released, spring 96 biases clip C horizontally into the position of FIG. I directly beneath the clinching blade. At the same time the ejector rod 152 moves inwardly again to position a new clip C.
Upon the next operation of the trigger the two foregoing steps are repeated in sequence but clip C is now moved down from the position of clip C in FIG. I by clinching blade 72 along and into the jaw of anvil 74. Immediately prior to this operation two or more wires have been positioned generally in the space between the legs of the jaw of the clinching anvil 74 (FIG. 8). As the clip C' descends it reaches under and around the wires (FIG. 9) and is finally formed and wrapped about wires to crimpingly hold them together to form a clinched assembly A (FIGS. 6 and I0). Thereafter, the piston 28 returns to the position of FIG. I (the trigger having been released) and a new clip C is injected by ejector rod 152.
Further operation and release of the trigger repeats these steps until the clips in the magazine are exhausted and a new supply needs to be added. It is to be noted that each stroke (after the initial two actuations) both preforms one clip C and clinches one clip C simultaneously.
The embodiment of FIGS. 11 and 12 is quire similar to that of FIGS. 1 to 7, both in mode of operation and in terms of the structural organization, with but two principal exceptions. Those are that there is no driver blade, but only a clinching blade, and that the preforming and clinching steps take place sequentially on one stroke of the piston 28, rather than on succeeding strokes of the piston.
Accordingly the same part numbers will be used for common components and only those components which are different will be described.
In the embodiment of FIGS. 11 and 12, a driver link 62 of clip tool is pivotally secured to a driver assembly 66 by a pivot pin 68. Driver assembly 66' includes a clincher blade 72' defining a cam slot 84' in which a ball 86' is disposed. Clincher blade 72' is slidably positioned between surface 76 of frame assembly member 78 and an upper integral extension of anvil 74'. Anvil 74' is secured to side plates 46' by bolts 82'. Preferably anvil 74' is magnetic or provides a magnetic insert 75 for a purpose to be described.
When the piston 28 is moved to the upper position (FIG. 11) ejector rod 152 thrusts a clip C into position against the anvil 74' where it is held below the end of clinching blade 72 by a magnetic insert 75. When the trigger 24 is moved to actuate valve assembly 22 the ejector rod I52 is retracted and the clinching blade 72 moves downwardly. The clinching blade 72 contacts clip C and moves it downwardly while preformer member 90 is oscillated (biased oppositely by spring 96') about pin 92 from the position of FIG. 11 to that of FIG. 12. Preformer member 90 and clincher blade 72' cooperate via notch 94, ball 86', cam slot 84' and the side of clinching blade 72' to preform a clip C intermediate the length of the stroke to the configuration of clip C (shown in dotted line in FIG. I1). Following preforming, continued downward driving moves the clip C through the stages of FIGS. 7, 8 and 9 until a clinched assembly A (FIG. I2) is formed.
To operate the clip tool 10' of FIGS. II and [2, the same series of operations indicated with respect to FIGS. 1 to 7 are practiced. However, only two actuations of the trigger are necessary to transfer a clip C from the magazine and to clinch it, rather than three.
In each embodiment, however, a nestable clip C requiring preforming is ejected from a magazine to a first position in the tool, is preformed to the shape of a clip C, and is thereafter driven into a stationary clinching anvil to clinch it about two or more wires.
In the embodiment of FIG. I, the preforming and clinching is a two-step operation. This permits the use of a longer anvil extension below the cylinder block than in the embodiment of FIG. I]. That feature permits use of a clip tool of this character in more difficult to reach locations within an assembly to be clinched, for example in remote interior locations in a spring assembly such as for an automobile seat, than with the embodiment of FIG. 11.
What is claimed is:
I. A method of forming a clinched assembly ofa clip and at least a pair of wires, the steps comprising providing a stack of closely nested clips having a central web and a pair of leg sections divergingly projecting from said central web, stripping a clip from said nested stack and moving it to a first position, moving it from said first position to a second adjacent position while decreasing the divergence of said leg sections, then moving it from said second position to a third closely adjacent position while wrapping said leg sections about said wires to form a clinched assembly.
2. In the method of claim 1 in which the steps of moving from said first to said third positions are continuous.
3. In the method of claim 1 in which said movement to said first position is in a direction normal to the direction of movement from said first and second positions.
4. In the method of claim 1 in which one clip is moved from said first to said second position and another clip is moved from said second to said third positions simultaneously.
5. ln a power-operated clip tool for preforming closely nested clips each having a pair of diverging leg sections prior to clinching the clips about at least a pair of wires, means for stripping and feeding a nested clip into said clip tool, preforming means for reducing the divergence of said pair of leg sections by ushing the ends of said leg sections towards each other, a c inching anvil having a statlonary aw, driving means for driving a clip past said preformer toward and into said jaw, and means for moving said driving means between a first position remote from, and a second position in said jaw.
6. In the clip tool ofclaim 5 in which said preformer is oscillatably mounted to gradually push said leg section ends towards each other.
7. In the clip tool of claim 6 in which said driving means comprises a driver assembly defining a cam slot in which a cam ball is positioned, said driver assembly being movable between said first and second positions.
8. In the clip tool of claim 7 in which said preforming means confronts said cam ball and said cam ball oscillates said preforming means.
9. In the clip tool of claim 8 in which said preforming means defines a ball notch to which said cam ball is transferred by said driver assembly when said driver assembly is moved from said first position toward said second position and from which said cam ball is transferred as driver assembly returns to said first position.
10. In the clip tool of claim 5 in which said driving means comprises a driver assembly having a clinching blade for clinching a clip in said anvil.
11. In the clip tool of claim 10 in which said driver assembly further comprises a driver blade for moving a clip from said first position past said preforming means to an intermediate position remote from said second position, said clinching blade being adapted to move a preformed clip from said intermediate position to said second position.
12. In the clip tool of claim 10 in which said preforming means is oscillatably mounted and said driver assembly defines a cam slot seating a cam ball, and said preforming means defines a ball transfer notch, whereby said cam ball is transferred from cam slot to said transfer notch as said driver assembly is moved from first position to said second position.
13. A clip tool comprising in combination a housing and frame assembly, a stationary clinching anvil having a jaw secured to said housing, a clip magazine, a power-actuated clinching blade for driving a clip into said anvil to clinch said clip around a pair of members to be clinched, means for ejecting clips from a nested stack of clips from said magazine into said housing and frame assembly, and means in said housing and frame assembly for preforming a clip into a substantially non-nestable condition at a position remote from the jaw of said clinching anvil.
# l I I t

Claims (13)

1. A method of forming a clinched assembly of a clip and at least a pair of wires, the steps comprising providing a stack of closely nested clips having a central web and a pair of leg sections divergingly projecting from said central web, stripping a clip from said nested stack and moving it to a first position, moving it from said first position to a second adjacent position while decreasing the divergence of said leg sections, then moving it from said second position to a third closely adjacent position while wrapping said leg sections about said wires to form a clinched assembly.
2. In the method of claim 1 in which the steps of moving from said first to said third positions are continuous.
3. In the method of claim 1 in which said movement to said first position is in a direction normal to the direction of movement from said first and second positions.
4. In the method of claim 1 in which one clip is moved from said first to said second position and another clip is moved from said second to said third positions simultaneously.
5. In a power-operated clip tool for preforming closely nested clips each having a pair of diverging leg sections prior to clinching the clips about at least a pair of wires, means for stripping and feeding a nested clip into said clip tool, preforming means for reducing the divergence of said pair of leg sections by pushing the ends of said leg sections towards each other, a clinching anvil having a stationary jaw, driving means for driving a clip past said preformer toward and into said jaw, and means for moving said driving means between a first position remote from, and a second position in said jaw.
6. In the clip tool of claim 5 in which said preformer is oscillatably mounted to gradually push said leg section ends towards each other.
7. In the clip tool of claim 6 in which said driving means comprises a driver assembly defining a cam slot in which a cam ball is positioned, said driver assembly being movable between said first and second positions.
8. In the clip tool of claim 7 in which said preforming means confronts said cam ball and said cam ball oscillates said preforming means.
9. In the clip tool of claim 8 in which said preforming means defines a ball notch to which said cam ball is transferred by said driver assembly when said driver assembly is moved from said first position toward said second position and from which said cam ball is transferred as driver assembly returns to said first position.
10. In the clip tool of claim 5 in which said driving means comprises a driver assembly having a clinching blade for clinching a clip in said anvil.
11. In the clip tool of claim 10 in which said driver assembly further comprises a driver blade for moving a clip from said first position past said preforming means to an intermediate position remote from said second positiOn, said clinching blade being adapted to move a preformed clip from said intermediate position to said second position.
12. In the clip tool of claim 10 in which said preforming means is oscillatably mounted and said driver assembly defines a cam slot seating a cam ball, and said preforming means defines a ball transfer notch, whereby said cam ball is transferred from cam slot to said transfer notch as said driver assembly is moved from first position to said second position.
13. A clip tool comprising in combination a housing and frame assembly, a stationary clinching anvil having a jaw secured to said housing, a clip magazine, a power-actuated clinching blade for driving a clip into said anvil to clinch said clip around a pair of members to be clinched, means for ejecting clips from a nested stack of clips from said magazine into said housing and frame assembly, and means in said housing and frame assembly for preforming a clip into a substantially non-nestable condition at a position remote from the jaw of said clinching anvil.
US68725A 1970-09-01 1970-09-01 Clip tool and method of clinching Expired - Lifetime US3653117A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6872570A 1970-09-01 1970-09-01

Publications (1)

Publication Number Publication Date
US3653117A true US3653117A (en) 1972-04-04

Family

ID=22084325

Family Applications (1)

Application Number Title Priority Date Filing Date
US68725A Expired - Lifetime US3653117A (en) 1970-09-01 1970-09-01 Clip tool and method of clinching

Country Status (1)

Country Link
US (1) US3653117A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331277A (en) * 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US4349028A (en) * 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
US4489589A (en) * 1982-06-28 1984-12-25 Panduit Corp. Automatic wire joint installation tool
US4492232A (en) * 1982-09-30 1985-01-08 United States Surgical Corporation Surgical clip applying apparatus having fixed jaws
US4586502A (en) * 1982-02-03 1986-05-06 Ethicon, Inc. Surgical instrument actuator with non-collinear hydraulic pistons
US4621639A (en) * 1982-02-03 1986-11-11 Ethicon, Inc Surgical instrument with hydraulic actuator
US4815465A (en) * 1986-08-18 1989-03-28 Alfredo Alvarado Dissector device
US5687613A (en) * 1996-02-13 1997-11-18 Ideal Industries, Inc. Crimp connector applicator
US6317970B1 (en) * 2000-02-04 2001-11-20 Sigma Tool & Machine Clip crimping tool
US20040031839A1 (en) * 2002-08-16 2004-02-19 Stanley Fastening Systems, L.P. Clip applicator tool
US20050139375A1 (en) * 2003-11-04 2005-06-30 Sushil Keswani Twist-on wire connector applicator and interlocking wire connectors for use therewith
US20150151865A1 (en) * 2012-05-10 2015-06-04 Shijiazhuang Success Machinery Electrical Co., Ltd. Continuous disc type card-punching device
US20170136613A1 (en) * 2015-11-16 2017-05-18 Ann-Chain Enterprise Co., Ltd. Air supply structure of pneumatic tool
EP3617079A4 (en) * 2017-04-27 2020-12-30 Max Co., Ltd. Binder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2574811A (en) * 1948-02-07 1951-11-13 Universal Wire Spring Co Portable clipping tool
US3068485A (en) * 1960-07-12 1962-12-18 Signode Steel Strapping Co Crimping tool
US3133288A (en) * 1962-08-20 1964-05-19 Signode Steel Strapping Co Clip tool
US3526944A (en) * 1967-06-21 1970-09-08 Michael A Cherup Clip supplying and clinching tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2574811A (en) * 1948-02-07 1951-11-13 Universal Wire Spring Co Portable clipping tool
US3068485A (en) * 1960-07-12 1962-12-18 Signode Steel Strapping Co Crimping tool
US3133288A (en) * 1962-08-20 1964-05-19 Signode Steel Strapping Co Clip tool
US3526944A (en) * 1967-06-21 1970-09-08 Michael A Cherup Clip supplying and clinching tool

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331277A (en) * 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US4349028A (en) * 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
US4586502A (en) * 1982-02-03 1986-05-06 Ethicon, Inc. Surgical instrument actuator with non-collinear hydraulic pistons
US4621639A (en) * 1982-02-03 1986-11-11 Ethicon, Inc Surgical instrument with hydraulic actuator
US4489589A (en) * 1982-06-28 1984-12-25 Panduit Corp. Automatic wire joint installation tool
US4492232A (en) * 1982-09-30 1985-01-08 United States Surgical Corporation Surgical clip applying apparatus having fixed jaws
US4934364A (en) * 1982-09-30 1990-06-19 United States Surgical Corporation Surgical clip applying apparatus having fixed jams
US4815465A (en) * 1986-08-18 1989-03-28 Alfredo Alvarado Dissector device
US5687613A (en) * 1996-02-13 1997-11-18 Ideal Industries, Inc. Crimp connector applicator
US6317970B1 (en) * 2000-02-04 2001-11-20 Sigma Tool & Machine Clip crimping tool
US20040031839A1 (en) * 2002-08-16 2004-02-19 Stanley Fastening Systems, L.P. Clip applicator tool
US20050139375A1 (en) * 2003-11-04 2005-06-30 Sushil Keswani Twist-on wire connector applicator and interlocking wire connectors for use therewith
US7356914B2 (en) 2003-11-04 2008-04-15 Ideal Industries, Inc. Twist-on wire connector applicator
US20150151865A1 (en) * 2012-05-10 2015-06-04 Shijiazhuang Success Machinery Electrical Co., Ltd. Continuous disc type card-punching device
US20170136613A1 (en) * 2015-11-16 2017-05-18 Ann-Chain Enterprise Co., Ltd. Air supply structure of pneumatic tool
US10239196B2 (en) * 2015-11-16 2019-03-26 Ann-Chain Enterprise Co., Ltd. Air supply structure of pneumatic tool
EP3617079A4 (en) * 2017-04-27 2020-12-30 Max Co., Ltd. Binder

Similar Documents

Publication Publication Date Title
US3653117A (en) Clip tool and method of clinching
US3905535A (en) Fastener driving tool
US3278104A (en) Fastener applying device
US3563438A (en) Fastener driving tool
US4131009A (en) Apparatus for continuously fixing a plurality of tubular fasteners one by one to a plurality of apertures provided in a support panel
US6886226B1 (en) Riveting apparatus
US4024794A (en) Pneumatically operated cable-slitting tool
US2969545A (en) Fastener-applying implement
US2205690A (en) Hog ring clinching tool
GB1022174A (en) Improvements relating to fastener driving tools
US3068485A (en) Crimping tool
US3133288A (en) Clip tool
US2941430A (en) Hydraulically operated connector crimping tool
US3796270A (en) Release stop means for pneumatic nail driving or stapling device
US3851371A (en) Pneumatically operated tool
GB805923A (en) Pneumatically operated compressing tool
US3524242A (en) Fastener forming and applying machine
JPH032001A (en) Stapler device
US3864804A (en) Clip fastening device
US3580458A (en) Compressed air stapling machine for metallic staples with control of the anvil for bending the staple ends
JPH0712495B2 (en) Transfer device for relatively flat objects
US3550647A (en) Sealing mechanism for strapping machines
US4597518A (en) Stapler with improved magazine cover construction
US4329897A (en) Control system for pneumatic punch press feeders
JPS6210786B2 (en)