US3528501A - Recovery of oil from oil shale - Google Patents
Recovery of oil from oil shale Download PDFInfo
- Publication number
- US3528501A US3528501A US658474A US3528501DA US3528501A US 3528501 A US3528501 A US 3528501A US 658474 A US658474 A US 658474A US 3528501D A US3528501D A US 3528501DA US 3528501 A US3528501 A US 3528501A
- Authority
- US
- United States
- Prior art keywords
- oil
- shale
- thru
- line
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004058 oil shale Substances 0.000 title description 26
- 238000011084 recovery Methods 0.000 title description 2
- 239000003921 oil Substances 0.000 description 77
- 238000000034 method Methods 0.000 description 24
- 239000003079 shale oil Substances 0.000 description 24
- 238000004519 manufacturing process Methods 0.000 description 17
- 229910052500 inorganic mineral Inorganic materials 0.000 description 14
- 239000011707 mineral Substances 0.000 description 14
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 239000000725 suspension Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 238000004821 distillation Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 239000010426 asphalt Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
- E21B43/40—Separation associated with re-injection of separated materials
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
Definitions
- This invention relates to a process for producing oil and oil shale from a subterranean deposit of oil shale.
- an object of the invention to provide an improved method or process for producing shale oil from a subterranean oil shale deposit. Another object is to provide a process for producing shale oil from a subterranean oil shale deposit which avoids the necessity of mining and crushing the shale.
- a broad aspect of the invention comprises providing an injection well and a production well penetrating a fractured section of a subterranean oil shale deposit, passing thru the fractured shale section from the injection well to the production well a hot hydrocarbon oil containing a major portion boiling above about 500 F. heated to a temperature in the range of about 550 to 800 F.
- an oil shale 10 is penetrated by an injection well 12 and a production well 14.
- a lower section of the oil shale is fractured as at 16 and 18, providing communication between wells 12 and 14 thru the oil stratum.
- well 12 may represent a line of wells parallel with a line of wells 14, each of wells 12 being used as an injection well while each of wells 14 serves as a production well.
- Another arrangement comprises a ring of wells around a central well, injection being effected thru the central well and production thru the ring wells or vice versa.
- One or more fractures are produced by conventional means as by hydraulic fracturing, by an explosion downhole, or by an underground nuclear explosion within the shale formation.
- Well 12 is provided with an injection tubing string 20 while well 14 is provided with a production tubing string 22.
- a production line 24 connects with tubing 22 and leads into a centrifuge 26 or other separation means for separating most of the produced oil from the particulate solids flowing to the surface.
- Line 28 connects the centrifuge with a fluid bed coker 30 for delivery of separated solids thereto. Oil produced in the coker is recovered thru line 32 while residual coke and mineral matter are recovered thru line 34 and may be used as fuel for any desired purpose.
- Distillation column 44 is a conventional distillation column from which various fractions are recovered in conventional manner such as normal gaseous hydrocarbons thru line 46, gasoline thru line 48, gas oil thru line 50, cycle oil thru line 52, leaving a residuum or topped crude which is recovered thru line 54.
- gas oil is passed thru line 56 and line 39 into oil heater 40 for heating to the required temperature of 550 to 800 F. for passing thru line 58 into tubing string 20 and injecting into the oil shale.
- heater 40 Any type of oil heater may be utilized as heater 40 such as a gas-fired indirect heat exchange heater. While a centrifuge is shown as equipment 26, a filter or any other type of solids-liquid separator may be utilized. Likewise, a fluid bed coker is shown for the separation of oil from the mineral matter recovered from the centrifuge in line 28, however, the oil may be produced from this material by retorting or any other suitable method.
- a gas-fired indirect heat exchange heater While a centrifuge is shown as equipment 26, a filter or any other type of solids-liquid separator may be utilized. Likewise, a fluid bed coker is shown for the separation of oil from the mineral matter recovered from the centrifuge in line 28, however, the oil may be produced from this material by retorting or any other suitable method.
- hot oil heated to a temperature in the range of 550 to 800 F., and preferably to at least 750 F. is injected from a line 58 thru tubing string 20 into fractures 16 and 18 from which the oil flows into well 14 and is produced thru tubing string 22.
- Suitable pressure is maintained on the injected oil to provide liquid phase operation and to force the oil thru the system into centrifuge 26.
- the oil shale surface within the fractures is brought to disintegrating temperatures with kerogen going into solution in the injected oil and disintegration of the mineral matter associated with kerogen.
- the particulate mineral matter forms a dispersion in the injected and produced oil and the dispersion is flowed thru tubing string 22 and line 24 into the centrifuge 26 for separation into a stream of oil recovered thru line 36 and a thick slurry of mineral matter in oil thru line 28 from which it is passed to fluid bed coker 30.
- the coker is operated in conventional manner to produce shale oil thru line 32 and coke and mineral matter thru line 34.
- the oil recovered in line 36 is passed in part to distillation column 44 from which a gas oil is recovered in line 50.
- the required amount of heating oil is passed from line 50 thru line 36 and line 39 into heater 40 where it is heated to 775 F. under a pressure of about 300 p.s.i.g. before being injected as the heating oil into the oil shale.
- Another oil that functions efficiently as a heating oil comprises a cycle oil produced from catalytic cracking of heavy oils. Cycle oils have excellent solvent capacity for asphaltic materials which aids in the disintegration of the oil shale.
- a process for producing shale oil from an oil shale assaying at least 20 gallons of oil per ton of shale which comprises the steps of:
- step (b) continuing the injection of hot oil in accordance with step (b) so as to disintegrate the shale contacted by said oil, form a suspension of the mineral matter of said shale in the resulting mixture of oils, and produce said suspension thru said production well;
- step (f) passing a slurry of mineral matter in shale oil recovered in step (d) to a coking step to recover additional shale oil.
- step (d) comprises centrifuging said suspension.
- step (f) heating a portion of the oil recovered in step (d) to a temperature in the range of 750 to 800 F.
- step (g) injecting the resulting hot oil as said oil in step 5.
- said oil injected in step (b) is shale oil.
- step (b) is a gas oil.
- step (b) is a gas oil distilled from the produced shale oil.
- step (b) is a cycle oil obtained from catalytic cracking of a crude oil.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
p 15, 1970 H. w. PARKER 3,528,501
RECOVERY OF OIL FROM OIL SHALE Filed Aug. 4, 1967 50 DISTILLATION 9 HEATER 5 I 38 32 PRODUCT 5aon.
36 {CENTRIFUGE 24 2 2 g9 34 FUEL coKER INVENTOR. H. W. PARKER 47 WEN-5 5 United States Patent Oflice 3,528,501 Patented Sept. 15, 1970 U.S. Cl. 166266 8 Claims ABSTRACT OF THE DISCLOSURE Shale oil is produced from oil shale in situ by 'injecting hot hydrocarbon oil, such as gas oil from crude or from oil shale, or shale oil per se, at a temperature in the range of about 550 to 800 F. thru a fractured section of the shale between wells penetrating said section to heat the shale, cause disintegration thereof, produce shale oil and a resulting suspension of mineral matter from the shale in the resulting oils, and produce the suspension thru one of the wells. Kerogen and bitumen of the shale are dissolved in the hot injected oil, forming a mixed oil from which the solids are separated and coked to produce additional shale oil.
This invention relates to a process for producing oil and oil shale from a subterranean deposit of oil shale.
There are vast deposits of oil shale in the Rocky Mountain region of the United States and elsewhere, much of which contain more than twenty gallons of shale oil per ton of shale. Because of the solid nature of the kerogen in the shale and the impervious nature of the oil shale, production by conventional oil-producing methods is not feasible. Mining of the shale and transportation of the mined and crushed shale to above-ground retorting plants comprises one method of recovering shale oil from the shale but is too expensive to compete with petroleum oils produced in conventional manner. Various methods for producing shale oil from oil shale in situ have been devised but such methods have not been competitive with methods of producing liquid oil from ordinary oil reservoirs.
The present invention is concerned with a method or process for producing shale oil, both in situ and aboveground, from a subterranean shale deposit which avoids mining and crushing of the oil shale.
Accordingly, it is an object of the invention to provide an improved method or process for producing shale oil from a subterranean oil shale deposit. Another object is to provide a process for producing shale oil from a subterranean oil shale deposit which avoids the necessity of mining and crushing the shale. Other objects of the invention will become apparent to one skilled in the art upon consideration of the accompanying disclosure.
A broad aspect of the invention comprises providing an injection well and a production well penetrating a fractured section of a subterranean oil shale deposit, passing thru the fractured shale section from the injection well to the production well a hot hydrocarbon oil containing a major portion boiling above about 500 F. heated to a temperature in the range of about 550 to 800 F. at a suflicient pressure to maintain the oil in liquid phase, continuing the injection of the hot oil thru the injection well and producing the oil thru the production well so as to disintegrate the contacted shale, extract shale oil from the disintegrated shale, form a suspension of the mineral matter of the shale in the resulting mixture of oils, and flow the resulting suspension thru the production well to aboveground level where most of the oil is separated from the suspension as recovered shale oil product. The remaining solids are subjected to fluid bed coking in conventional manner to recover additional shale oil therefrom. The remaining coke and mineral matter provides a solid fuel for any desired use.
The process of the invention is applicable to any oil shale which contains or assays at least twenty gallons of shale oil per ton of shale. It has been found that kerogen and soluble bitumen, the first product of kerogen pyrolysis, are soluble in heavy oils, particularly oils boiling above about 500 F. and up to 800 or 900 R, such as gas oil. It is preferred to utilize the shale oil produced in the process or a gas oil fraction thereof, however, crude oil or the gas oil fraction thereof obtained from a liquid oil deposit is operable in the process.
By flowing the hot oil thru the fractured section of oil shale from the injection well to the production well at the required elevated temperature, the oil shale is heated substantially to the temperature of the injected oil so that after a couple of hours of heating at this temperature the shale disintegrates, the kerogen and soluble bitumen therein going into solution in the injected oil and leaving a suspension of the mineral matter of the oil shale dispersed in the oil mixture. In this manner, the disintegrated and dispersed mineral matter containing additional shale oil is transported to ground level in the produced oil. In the operation, the heated oil-soaked particles are swept away, exposing new oil shale to the heating and contacting, contacting, and soaking process with continuous wearing away of the oil shale, production of shale oil therefrom, and transporting of the oil-soaked mineral matter to ground level for further production.
A more complete understanding of the invention may be had by reference to the accompanying schematic drawing which is a flow scheme thru a pair of wells penetrating a fractured oil stratum and thru an arrangement of the equipment aboveground for separating and producing oil.
Referring to the drawing, an oil shale 10 is penetrated by an injection well 12 and a production well 14. A lower section of the oil shale is fractured as at 16 and 18, providing communication between wells 12 and 14 thru the oil stratum. While only two wells are shown, well 12 may represent a line of wells parallel with a line of wells 14, each of wells 12 being used as an injection well while each of wells 14 serves as a production well. Another arrangement comprises a ring of wells around a central well, injection being effected thru the central well and production thru the ring wells or vice versa. One or more fractures are produced by conventional means as by hydraulic fracturing, by an explosion downhole, or by an underground nuclear explosion within the shale formation.
Separated oil from centrifuge 26 is passed thru line 36 under the impetus of pump 38 partially to oil heater 40 and partially to production line 42 or to distillation column 44. Distillation column 44 is a conventional distillation column from which various fractions are recovered in conventional manner such as normal gaseous hydrocarbons thru line 46, gasoline thru line 48, gas oil thru line 50, cycle oil thru line 52, leaving a residuum or topped crude which is recovered thru line 54. In a preferred mode of operation, gas oil is passed thru line 56 and line 39 into oil heater 40 for heating to the required temperature of 550 to 800 F. for passing thru line 58 into tubing string 20 and injecting into the oil shale.
Any type of oil heater may be utilized as heater 40 such as a gas-fired indirect heat exchange heater. While a centrifuge is shown as equipment 26, a filter or any other type of solids-liquid separator may be utilized. Likewise, a fluid bed coker is shown for the separation of oil from the mineral matter recovered from the centrifuge in line 28, however, the oil may be produced from this material by retorting or any other suitable method.
In operation, hot oil heated to a temperature in the range of 550 to 800 F., and preferably to at least 750 F., is injected from a line 58 thru tubing string 20 into fractures 16 and 18 from which the oil flows into well 14 and is produced thru tubing string 22. Suitable pressure is maintained on the injected oil to provide liquid phase operation and to force the oil thru the system into centrifuge 26. After sufficient heating period with oil flowing thru the system, the oil shale surface within the fractures is brought to disintegrating temperatures with kerogen going into solution in the injected oil and disintegration of the mineral matter associated with kerogen. The particulate mineral matter forms a dispersion in the injected and produced oil and the dispersion is flowed thru tubing string 22 and line 24 into the centrifuge 26 for separation into a stream of oil recovered thru line 36 and a thick slurry of mineral matter in oil thru line 28 from which it is passed to fluid bed coker 30. The coker is operated in conventional manner to produce shale oil thru line 32 and coke and mineral matter thru line 34.
In preferred operation, the oil recovered in line 36 is passed in part to distillation column 44 from which a gas oil is recovered in line 50. The required amount of heating oil is passed from line 50 thru line 36 and line 39 into heater 40 where it is heated to 775 F. under a pressure of about 300 p.s.i.g. before being injected as the heating oil into the oil shale.
Another oil that functions efficiently as a heating oil comprises a cycle oil produced from catalytic cracking of heavy oils. Cycle oils have excellent solvent capacity for asphaltic materials which aids in the disintegration of the oil shale.
Certain modifications of the invention will become apparent to those skilled in the art and the illustrative details disclosed are not to be construed as imposing unnecessary limitations on the invention.
I claim:
1. A process for producing shale oil from an oil shale assaying at least 20 gallons of oil per ton of shale which comprises the steps of:
(a) providing an injection well and a production well penetrating a fractured section of said oil shale with communication between the wells thru said fractured section;
(b) injecting hot hydrocarbon oil a major portion of which boils above about 500 F. thru said injection well into said fractured section at a temperature in the range of about 550 to 800 F. and sufiicient pressure to maintain said oil in liquid phase and producing said oil thru said production well;
(0) continuing the injection of hot oil in accordance With step (b) so as to disintegrate the shale contacted by said oil, form a suspension of the mineral matter of said shale in the resulting mixture of oils, and produce said suspension thru said production well;
((1) separating most of the oil from said suspension;
and
(e) recovering shale oil from the recovered oil as product.
2. The process of claim 1 including the step of:
(f) passing a slurry of mineral matter in shale oil recovered in step (d) to a coking step to recover additional shale oil.
3. The process of claim 1 wherein step (d) comprises centrifuging said suspension.
4. The process of claim 1 including the steps of:
(f) heating a portion of the oil recovered in step (d) to a temperature in the range of 750 to 800 F.; and
(g) injecting the resulting hot oil as said oil in step 5. The process of claim 1 wherein said oil injected in step (b) is shale oil.
6. The process of claim 1 wherein said oil injected in step (b) is a gas oil.
7. The process of claim 1 wherein said oil injected in step (b) is a gas oil distilled from the produced shale oil.
8. The process of claim 1 wherein said oil injected in step (b) is a cycle oil obtained from catalytic cracking of a crude oil.
References Cited UNITED STATES PATENTS 2,813,583 11/1957 Marx et al 166-272 X 3,061,009 10/1962 Shirley 166-603 3,284,281 11/1966 Thomas 166-272 X 3,322,194 5/1967 Strubhar 166272 X 3,349,850 10/1967 Schlicht et a1. 166-303 3,352,355 11/1967 Putman 166272 X 3,358,756 12/1967 Vogel 166272 X STEPHEN J. NOVOSAD, Primary Examiner US. Cl. X.R. 166-247, 271, 272
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65847467A | 1967-08-04 | 1967-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3528501A true US3528501A (en) | 1970-09-15 |
Family
ID=24641382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US658474A Expired - Lifetime US3528501A (en) | 1967-08-04 | 1967-08-04 | Recovery of oil from oil shale |
Country Status (1)
Country | Link |
---|---|
US (1) | US3528501A (en) |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3685581A (en) * | 1971-03-24 | 1972-08-22 | Texaco Inc | Secondary recovery of oil |
US3695354A (en) * | 1970-03-30 | 1972-10-03 | Shell Oil Co | Halogenating extraction of oil from oil shale |
US3730270A (en) * | 1971-03-23 | 1973-05-01 | Marathon Oil Co | Shale oil recovery from fractured oil shale |
US3881551A (en) * | 1973-10-12 | 1975-05-06 | Ruel C Terry | Method of extracting immobile hydrocarbons |
US3881550A (en) * | 1973-05-24 | 1975-05-06 | Parsons Co Ralph M | In situ recovery of hydrocarbons from tar sands |
US4438816A (en) * | 1982-05-13 | 1984-03-27 | Uop Inc. | Process for recovery of hydrocarbons from oil shale |
US4449586A (en) * | 1982-05-13 | 1984-05-22 | Uop Inc. | Process for the recovery of hydrocarbons from oil shale |
US4461350A (en) * | 1981-12-16 | 1984-07-24 | Mobil Oil Corporation | Thermal solvent recovery method utilizing visbroken produced crude oil |
US4501445A (en) * | 1983-08-01 | 1985-02-26 | Cities Service Company | Method of in-situ hydrogenation of carbonaceous material |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US20070023186A1 (en) * | 2003-11-03 | 2007-02-01 | Kaminsky Robert D | Hydrocarbon recovery from impermeable oil shales |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7980312B1 (en) * | 2005-06-20 | 2011-07-19 | Hill Gilman A | Integrated in situ retorting and refining of oil shale |
US8082995B2 (en) | 2007-12-10 | 2011-12-27 | Exxonmobil Upstream Research Company | Optimization of untreated oil shale geometry to control subsidence |
US8087460B2 (en) | 2007-03-22 | 2012-01-03 | Exxonmobil Upstream Research Company | Granular electrical connections for in situ formation heating |
US8104537B2 (en) | 2006-10-13 | 2012-01-31 | Exxonmobil Upstream Research Company | Method of developing subsurface freeze zone |
US8122955B2 (en) | 2007-05-15 | 2012-02-28 | Exxonmobil Upstream Research Company | Downhole burners for in situ conversion of organic-rich rock formations |
US8146664B2 (en) | 2007-05-25 | 2012-04-03 | Exxonmobil Upstream Research Company | Utilization of low BTU gas generated during in situ heating of organic-rich rock |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8151877B2 (en) | 2007-05-15 | 2012-04-10 | Exxonmobil Upstream Research Company | Downhole burner wells for in situ conversion of organic-rich rock formations |
US8151884B2 (en) | 2006-10-13 | 2012-04-10 | Exxonmobil Upstream Research Company | Combined development of oil shale by in situ heating with a deeper hydrocarbon resource |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8230929B2 (en) | 2008-05-23 | 2012-07-31 | Exxonmobil Upstream Research Company | Methods of producing hydrocarbons for substantially constant composition gas generation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
CN102928320A (en) * | 2011-08-09 | 2013-02-13 | 中国石油化工股份有限公司 | Method and apparatus for testing viscous oil viscosity on well boring coring site |
US20130240210A1 (en) * | 2010-12-17 | 2013-09-19 | David P. Yale | Systems and Methods For Injecting A Particulate Mixture |
US8540020B2 (en) | 2009-05-05 | 2013-09-24 | Exxonmobil Upstream Research Company | Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources |
US8596355B2 (en) | 2003-06-24 | 2013-12-03 | Exxonmobil Upstream Research Company | Optimized well spacing for in situ shale oil development |
US8616279B2 (en) | 2009-02-23 | 2013-12-31 | Exxonmobil Upstream Research Company | Water treatment following shale oil production by in situ heating |
US8616280B2 (en) | 2010-08-30 | 2013-12-31 | Exxonmobil Upstream Research Company | Wellbore mechanical integrity for in situ pyrolysis |
US8622127B2 (en) | 2010-08-30 | 2014-01-07 | Exxonmobil Upstream Research Company | Olefin reduction for in situ pyrolysis oil generation |
US8622133B2 (en) | 2007-03-22 | 2014-01-07 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8641150B2 (en) | 2006-04-21 | 2014-02-04 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8770284B2 (en) | 2012-05-04 | 2014-07-08 | Exxonmobil Upstream Research Company | Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8863839B2 (en) | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
US8875789B2 (en) | 2007-05-25 | 2014-11-04 | Exxonmobil Upstream Research Company | Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
US9512699B2 (en) | 2013-10-22 | 2016-12-06 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
US9644466B2 (en) | 2014-11-21 | 2017-05-09 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation using electric current |
US10012064B2 (en) | 2015-04-09 | 2018-07-03 | Highlands Natural Resources, Plc | Gas diverter for well and reservoir stimulation |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US10344204B2 (en) | 2015-04-09 | 2019-07-09 | Diversion Technologies, LLC | Gas diverter for well and reservoir stimulation |
US10982520B2 (en) | 2016-04-27 | 2021-04-20 | Highland Natural Resources, PLC | Gas diverter for well and reservoir stimulation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2813583A (en) * | 1954-12-06 | 1957-11-19 | Phillips Petroleum Co | Process for recovery of petroleum from sands and shale |
US3061009A (en) * | 1958-01-17 | 1962-10-30 | Svenska Skifferolje Ab | Method of recovery from fossil fuel bearing strata |
US3284281A (en) * | 1964-08-31 | 1966-11-08 | Phillips Petroleum Co | Production of oil from oil shale through fractures |
US3322194A (en) * | 1965-03-25 | 1967-05-30 | Mobil Oil Corp | In-place retorting of oil shale |
US3349850A (en) * | 1962-08-06 | 1967-10-31 | Deutsche Erdoel Ag | Method for the extraction of underground bituminous deposits |
US3352355A (en) * | 1965-06-23 | 1967-11-14 | Dow Chemical Co | Method of recovery of hydrocarbons from solid hydrocarbonaceous formations |
US3358756A (en) * | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
-
1967
- 1967-08-04 US US658474A patent/US3528501A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2813583A (en) * | 1954-12-06 | 1957-11-19 | Phillips Petroleum Co | Process for recovery of petroleum from sands and shale |
US3061009A (en) * | 1958-01-17 | 1962-10-30 | Svenska Skifferolje Ab | Method of recovery from fossil fuel bearing strata |
US3349850A (en) * | 1962-08-06 | 1967-10-31 | Deutsche Erdoel Ag | Method for the extraction of underground bituminous deposits |
US3284281A (en) * | 1964-08-31 | 1966-11-08 | Phillips Petroleum Co | Production of oil from oil shale through fractures |
US3358756A (en) * | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3322194A (en) * | 1965-03-25 | 1967-05-30 | Mobil Oil Corp | In-place retorting of oil shale |
US3352355A (en) * | 1965-06-23 | 1967-11-14 | Dow Chemical Co | Method of recovery of hydrocarbons from solid hydrocarbonaceous formations |
Cited By (210)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3695354A (en) * | 1970-03-30 | 1972-10-03 | Shell Oil Co | Halogenating extraction of oil from oil shale |
US3730270A (en) * | 1971-03-23 | 1973-05-01 | Marathon Oil Co | Shale oil recovery from fractured oil shale |
US3685581A (en) * | 1971-03-24 | 1972-08-22 | Texaco Inc | Secondary recovery of oil |
US3881550A (en) * | 1973-05-24 | 1975-05-06 | Parsons Co Ralph M | In situ recovery of hydrocarbons from tar sands |
US3881551A (en) * | 1973-10-12 | 1975-05-06 | Ruel C Terry | Method of extracting immobile hydrocarbons |
US4461350A (en) * | 1981-12-16 | 1984-07-24 | Mobil Oil Corporation | Thermal solvent recovery method utilizing visbroken produced crude oil |
US4438816A (en) * | 1982-05-13 | 1984-03-27 | Uop Inc. | Process for recovery of hydrocarbons from oil shale |
US4449586A (en) * | 1982-05-13 | 1984-05-22 | Uop Inc. | Process for the recovery of hydrocarbons from oil shale |
US4501445A (en) * | 1983-08-01 | 1985-02-26 | Cities Service Company | Method of in-situ hydrogenation of carbonaceous material |
US6729395B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US6591906B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US6591907B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US6607033B2 (en) | 2000-04-24 | 2003-08-19 | Shell Oil Company | In Situ thermal processing of a coal formation to produce a condensate |
US6609570B2 (en) | 2000-04-24 | 2003-08-26 | Shell Oil Company | In situ thermal processing of a coal formation and ammonia production |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6702016B2 (en) | 2000-04-24 | 2004-03-09 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6725928B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6732794B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8596355B2 (en) | 2003-06-24 | 2013-12-03 | Exxonmobil Upstream Research Company | Optimized well spacing for in situ shale oil development |
US7441603B2 (en) | 2003-11-03 | 2008-10-28 | Exxonmobil Upstream Research Company | Hydrocarbon recovery from impermeable oil shales |
US20070023186A1 (en) * | 2003-11-03 | 2007-02-01 | Kaminsky Robert D | Hydrocarbon recovery from impermeable oil shales |
US20090038795A1 (en) * | 2003-11-03 | 2009-02-12 | Kaminsky Robert D | Hydrocarbon Recovery From Impermeable Oil Shales Using Sets of Fluid-Heated Fractures |
US7857056B2 (en) | 2003-11-03 | 2010-12-28 | Exxonmobil Upstream Research Company | Hydrocarbon recovery from impermeable oil shales using sets of fluid-heated fractures |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US7986869B2 (en) * | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US9085972B1 (en) | 2005-06-20 | 2015-07-21 | Gilman A. Hill | Integrated in situ retorting and refining of heavy-oil and tar sand deposits |
US7980312B1 (en) * | 2005-06-20 | 2011-07-19 | Hill Gilman A | Integrated in situ retorting and refining of oil shale |
US8261823B1 (en) | 2005-06-20 | 2012-09-11 | Hill Gilman A | Integrated in situ retorting and refining of oil shale |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US8641150B2 (en) | 2006-04-21 | 2014-02-04 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US8151884B2 (en) | 2006-10-13 | 2012-04-10 | Exxonmobil Upstream Research Company | Combined development of oil shale by in situ heating with a deeper hydrocarbon resource |
US8104537B2 (en) | 2006-10-13 | 2012-01-31 | Exxonmobil Upstream Research Company | Method of developing subsurface freeze zone |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US9347302B2 (en) | 2007-03-22 | 2016-05-24 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
US8087460B2 (en) | 2007-03-22 | 2012-01-03 | Exxonmobil Upstream Research Company | Granular electrical connections for in situ formation heating |
US8622133B2 (en) | 2007-03-22 | 2014-01-07 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US8151877B2 (en) | 2007-05-15 | 2012-04-10 | Exxonmobil Upstream Research Company | Downhole burner wells for in situ conversion of organic-rich rock formations |
US8122955B2 (en) | 2007-05-15 | 2012-02-28 | Exxonmobil Upstream Research Company | Downhole burners for in situ conversion of organic-rich rock formations |
US8875789B2 (en) | 2007-05-25 | 2014-11-04 | Exxonmobil Upstream Research Company | Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
US8146664B2 (en) | 2007-05-25 | 2012-04-03 | Exxonmobil Upstream Research Company | Utilization of low BTU gas generated during in situ heating of organic-rich rock |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8082995B2 (en) | 2007-12-10 | 2011-12-27 | Exxonmobil Upstream Research Company | Optimization of untreated oil shale geometry to control subsidence |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8230929B2 (en) | 2008-05-23 | 2012-07-31 | Exxonmobil Upstream Research Company | Methods of producing hydrocarbons for substantially constant composition gas generation |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US8616279B2 (en) | 2009-02-23 | 2013-12-31 | Exxonmobil Upstream Research Company | Water treatment following shale oil production by in situ heating |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8540020B2 (en) | 2009-05-05 | 2013-09-24 | Exxonmobil Upstream Research Company | Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources |
US8863839B2 (en) | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8616280B2 (en) | 2010-08-30 | 2013-12-31 | Exxonmobil Upstream Research Company | Wellbore mechanical integrity for in situ pyrolysis |
US8622127B2 (en) | 2010-08-30 | 2014-01-07 | Exxonmobil Upstream Research Company | Olefin reduction for in situ pyrolysis oil generation |
US20130240210A1 (en) * | 2010-12-17 | 2013-09-19 | David P. Yale | Systems and Methods For Injecting A Particulate Mixture |
US9441474B2 (en) * | 2010-12-17 | 2016-09-13 | Exxonmobil Upstream Research Company | Systems and methods for injecting a particulate mixture |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
CN102928320A (en) * | 2011-08-09 | 2013-02-13 | 中国石油化工股份有限公司 | Method and apparatus for testing viscous oil viscosity on well boring coring site |
CN102928320B (en) * | 2011-08-09 | 2014-11-26 | 中国石油化工股份有限公司 | Method and apparatus for testing viscous oil viscosity on well boring coring site |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US8770284B2 (en) | 2012-05-04 | 2014-07-08 | Exxonmobil Upstream Research Company | Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material |
US9512699B2 (en) | 2013-10-22 | 2016-12-06 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
US9644466B2 (en) | 2014-11-21 | 2017-05-09 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation using electric current |
US9739122B2 (en) | 2014-11-21 | 2017-08-22 | Exxonmobil Upstream Research Company | Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation |
US10012064B2 (en) | 2015-04-09 | 2018-07-03 | Highlands Natural Resources, Plc | Gas diverter for well and reservoir stimulation |
US10344204B2 (en) | 2015-04-09 | 2019-07-09 | Diversion Technologies, LLC | Gas diverter for well and reservoir stimulation |
US10385258B2 (en) | 2015-04-09 | 2019-08-20 | Highlands Natural Resources, Plc | Gas diverter for well and reservoir stimulation |
US10385257B2 (en) | 2015-04-09 | 2019-08-20 | Highands Natural Resources, PLC | Gas diverter for well and reservoir stimulation |
US10982520B2 (en) | 2016-04-27 | 2021-04-20 | Highland Natural Resources, PLC | Gas diverter for well and reservoir stimulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3528501A (en) | Recovery of oil from oil shale | |
US3358756A (en) | Method for in situ recovery of solid or semi-solid petroleum deposits | |
US4280559A (en) | Method for producing heavy crude | |
US3513914A (en) | Method for producing shale oil from an oil shale formation | |
US3881550A (en) | In situ recovery of hydrocarbons from tar sands | |
US3057404A (en) | Method and system for producing oil tenaciously held in porous formations | |
US3945435A (en) | In situ recovery of hydrocarbons from tar sands | |
US4046668A (en) | Double solvent extraction of organic constituents from tar sands | |
US3352355A (en) | Method of recovery of hydrocarbons from solid hydrocarbonaceous formations | |
US3342257A (en) | In situ retorting of oil shale using nuclear energy | |
US4437519A (en) | Reduction of shale oil pour point | |
US2862558A (en) | Recovering oils from formations | |
US3946810A (en) | In situ recovery of hydrocarbons from tar sands | |
US3941679A (en) | Separation of hydrocarbonaceous substances from mineral solids | |
US4466485A (en) | Viscous oil recovery method | |
US4022277A (en) | In situ solvent fractionation of bitumens contained in tar sands | |
US8920637B2 (en) | Process for the recovery of oils from a solid matrix | |
US4048078A (en) | Oil recovery process utilizing air and superheated steam | |
US3327782A (en) | Underground hydrogenation of oil | |
US3228468A (en) | In-situ recovery of hydrocarbons from underground formations of oil shale | |
US3913671A (en) | Recovery of petroleum from viscous petroleum containing formations including tar sand deposits | |
US4503910A (en) | Viscous oil recovery method | |
US4027731A (en) | Methods of and apparatus for hydrocarbon recovery | |
RU2014140839A (en) | IN SITU PERFORMANCE INCREASE BY PRESSURE OF A HOT FLUID | |
US3040809A (en) | Process for recovering viscous crude oil from unconsolidated formations |