[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3595136A - Method and apparatus for reducing torque changes in rock shafts - Google Patents

Method and apparatus for reducing torque changes in rock shafts Download PDF

Info

Publication number
US3595136A
US3595136A US821259A US3595136DA US3595136A US 3595136 A US3595136 A US 3595136A US 821259 A US821259 A US 821259A US 3595136D A US3595136D A US 3595136DA US 3595136 A US3595136 A US 3595136A
Authority
US
United States
Prior art keywords
cylinder
piston
inlet port
port
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US821259A
Inventor
Richard E Pitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Application granted granted Critical
Publication of US3595136A publication Critical patent/US3595136A/en
Assigned to WILMINGTON TRUST COMPANY, WADE, WILLIAM, J. reassignment WILMINGTON TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OWENS-CORNING FIBERGLAS CORPORATION
Assigned to OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE. reassignment OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE. TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420 Assignors: WADE, WILLIAM J. (TRUSTEES), WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H39/00Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
    • F16H39/01Pneumatic gearing; Gearing working with subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/04Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads with elastic intermediate part of fluid cushion

Definitions

  • the pneumatic cylinder is preferably a doubleacting one with a center port to accomplish the energy absorption and redelivery to the rock shaft, at both ends of the shaft rocking movement.
  • the rate of energy absorption and subsequent reapplication may be controlled by supplying superatmospheric pressure to the center port, and/or by starting the compressive cycle prior to the midpoint of the oscillating cycle. The later is accomplished by using a pistonside port valving arrangement wherein the piston has a length that is a' sizable proportion of its stroke.
  • the cylinder may be cooled by utilizing a center exhaust port opposite the inlet port, and causing a continual flow through the low pressure end of the cylinder after the piston has proceeded past the inlet port. Bleeds may be provided at opposite ends of the cylinder to reduce the reapplication force of the cylinder, and adjustable chamber means may also be provided on one or both ends of the cylinder for adjusting the absorption rate.
  • the high velocity gases containing the fibers are called “veils” which have a diameter that is considerably less than the width of the product conveyor, and these veils" are oscillated across the width of the conveyor by deflection tubes or devices that are in turn oscillated by a rock shaft.
  • a plurality of veil producing devices usually between 6 and i2 are positioned lengthwise of the product conveyor.
  • the rock shaft extends longitudinally of these devices, and has longitudinally spaced crank arms connected to the deflection devices by connecting rods.
  • the rock shaft in turn is driven by a con necting rod and crank arm mounted on the discharge of a gear reduction unit: and in the most refined units, the gear units have camming included thereinto provide nonuniform rotation of the output crank of the gear reduction unit for the purpose of modifying the oscillation of the rock shaft from one giving standard harmonic motion to one giving uniform distribution, of the fibers across the width of the product conveyor.
  • The'veil deflection means is decelerated by the rock shaft at the end of each stroke and is accelerated during the beginning of the next stroke, This occurs at opposite ends of each stroke, so that there is two accelerations and two decelerations for each cycle of the rock shaft.
  • an object of the present invention is the provision of new and improved means for offsetting the stress reversal that is produced in a rock shaft that is used to drive reciprocating structure having considerable inertia.
  • a further object of the invention is the provision of means for reducing the torsion in long rock shafts having a plurality of power takeoffs.
  • a still further object of the invention is the provision of a new and improved pneumatic cylinder having a resultant pressure versus stroke curve tailored to achieve the above-mentioned objects.
  • the stress buildup in a rock shaft is reduced by attaching a device to the rock shaft which absorbs the kinetic energy of the driven device during its deceleration portion of a stroke, and delivers it back to the rock shaft during the acceleration portion of its stroke.
  • a pneumatic cylinder connected between the rock shaft and a stationary object which cylinder is arranged so that its piston builds up pressure in the cylinder as it approaches one end of its stroke, and which pressure exerts a return force during the next half stroke.
  • a double-acting cylinder is provided with a center port which is valved off by the piston as it moves thereby, and a supply of superatmospheric gas is supplied to the center port, to steepen the energy absorption curve, and correspondingly change its energy reapplication curve.
  • a coolingof the cylinder may be had by providing a center outlet port opposite the inlet port, and causing some of the superatmospheric gases to sweep the ends of the cylinder after the piston has moved past the inlet port.
  • the rate of pressure buildup may be further increased by increasing the width of the piston relative to the length of its stroke.
  • a reduction in pressure buildup may be achieved by varying the clearance volume, as for example by an adjustable chamber connected to one or both ends of the cylinder.
  • pressure bleeds may be provided so that less energy is reapplied to the driven structure that is absorbed.
  • FIG. 1 is a schematic plan view of the fiber deflection apparatus and drive mechanism therefor, that is used to make glass fiber mat insulation materials;
  • FIG. 2 is a schematic sectional view through one veil producing and distributing station, and is taken approximately on the line 2-2 of Figure 1;
  • FIG. 3 is a side elevational view of a pneumatic cylinder used to absorb energy from, and redistribute energy to, the rock shaft shown in Figures 1 and 2, and which is taken approximately on the line 3-3 of Figure 1; and
  • FIG. 4 is a typical stroke pressure curve of the device shown in figure 3.
  • l2 longitudinally spaced loads, or driven devices 10 which in the present instance are glass fiberdistributors, and which will later be described in detail.
  • the loads 10 are arranged in line, and each is oscillated laterally be means of an eccentric l2, connecting rod 14, and crank arm 16 that is fixed to a longitudinally extending rock shaft 18.
  • the rock'shaft 18 is suitably journaled and supported from stationary structure, not shown.
  • the rock shaft 18 is in turn oscillated by an adjustable crank arm 20.
  • the crank arm 20 has a sleeve 22 thereon which can be adjustably positioned lengthwise of the crank arm 20, and which carries a pivotal connection for one end of a connecting rod 24.
  • the connecting rod 24 is reciprocated by means of a short crank arm 26 on the output shaft of a gear reducer 28, which is in turn driven by another gear reducer 30, that in turn is driven by a constant speed electric motor 32.
  • the gear reducers 28 and, 30 are of a special design that incorporate camming means which provide rotational acceleration and deceleration at fixed frequencies to the output rotation for the purpose of changing the oscillatory movement of the driven structures 10 from the usual harmonic motion to give uniform fiber distribution across the fiber collection surface.
  • camming means which provide rotational acceleration and deceleration at fixed frequencies to the output rotation for the purpose of changing the oscillatory movement of the driven structures 10 from the usual harmonic motion to give uniform fiber distribution across the fiber collection surface.
  • the load structure 10 is part of the glass fiber mat producing apparatus shown in Figure 2 of the drawings.
  • the fiber forming apparatus comprises a forehearth 34 having an opening 36 in a bushing plate 38 through which a small stream of glass flows continually, The molten stream'of glass falls into a centrifuge basket 40 having a plurality of small openings in its periphery, and from which fine stream of glass issue in what are called primary fibers.
  • the primary fibers are attenuated by high velocity products of combustion which discharge from the burner 42 over the periphery of the centrifuge basket 40.
  • the fibers are further accelerated by the steam blower 44 which draws secondary air over the top of the blower 44, and this secondary air is heated by a secondary burner 46 as is necessary to control the attenuation of the fibers.
  • the beil" of gases and fibers so produced are collected on a conveyor 48 in the form of a mat, and prior thereto are wetted out by a binder solution by means of the nozzles 50.
  • Laterally adjustable sidewalls 52 are provided on opposite sides of the conveyor 48 to adjust the width of the mat produced from between approximately 6 feet and 8 feet, while the veil" of fibers which issues from the fiber forming apparatus is approximately 14 inches in diameter, in order that the fibers will be distributed uniformly across the conveyor, they are caused to be deflected from side to side of the conveyor by the fiber distributors of load devices 10.
  • the fiber deflection or load devices 10 are quite heavy and have a considerable amount of inertial
  • the load devices 10 are pivoted about a longitudinally extending axis 54 about which they must be oscillated. As is true of straight harmonic motion, the load devices l must be accelerated at the start of each sweep across the conveyor, and must be decelerated dur ing the second or last half of a sweep across the conveyor, so that it can be reaccelerated back and again decelerated into the starting position.
  • This acceleration and deceleration is, of course, accomplished through the rock shaft 18, which accomplishes the acceleration and deceleration by means of a reversal of stress in the shaft.
  • each energy redistribution means 60 comprises a double-acting cylinder having a barrel 62 with a piston 64 therein whose piston rod 66 extends externally of both ends of the cylinder barrel 62.
  • One end of the piston rod 66 is pivotally connected to a crank arm 68 secured to the rock shaft 18, while the cylinder barrel 62 is pivotally connected to the fixed structure 70 which supports the entire fiber forming apparatus.
  • the cylinder barrel 62 is provided with a center pressure inlet connection 72 located at the midpoint of the cylinder, and which is supplied with high pressure air through a filter 74, pressure regulator 76, and oilcr 78.
  • the cylinder 62 is also provided with a centrally located outlet 80, that is connected with a bleeder valve 82, which in some instances may be a back pressure valve set at a pressure slightly lower than the regulator 76.
  • each end of the cylinder barrel may be provided with a bleeder valve 84 designed to reduce the energy which is put back into the system from that which is absorbed out of the system, by relieving some of the pressure produced by the piston 64.
  • each end of the cylinder may be provided with an auxiliary reservoir 86, whose volume can be adjusted to vary the slope of the pressure-stroke curve as will later be explained.
  • the sleeve 22 is adjusted to a position close to the rock shaft 18, so that the rock shaft will be oscillated through as much as 60, and so that the piston 64 of the energy redistribution means 60 will be moved through approximately a 7 inch stroke.
  • the pressure regulator 76 will be adjusted to provide atmospheric pressure, or psi. absolute, and so that the resultant pressure-stroke curve which is provided by the device will be that indicated by the numeral 88.
  • the sleeve 22 When a narrow mat is to be made, the sleeve 22 will be moved outwardly on the crank arm 20 as much as 10 inches to provide an angle of oscillation for the rock shaft 18 of 23.
  • the 23 oscillation of the rock shaft 18 produces a piston movement of 4 inches, and with this piston movement, it can be seen that the same ultimate pressure as occurs with the resultant pressure-stroke curve 88, can be achieved by supplying 74.5 p.s.i. absolute pressure to the inlet port 72, as by the regulator 76. This arrangement produces the resultant pressure-stroke curve shown in Figure 4.
  • the curve 88 is produced by subtracting the pressure on the left side of the piston as given by the curve 92, from the pressure on the right side of the piston, as given by the curve 94; and the curve 90 is obtained by substracting the values of the pressure on the left side of the piston, as given by the curve 96, from the pressure on the right side of the piston, as given by the curve 98.
  • the knee of each of the curves 92, 94, 96, and 98 are offset 1 inch from the center stroke position, by reason of the fact that the piston has such a width that it valves off the inlet port 72 1 inch before the center of the piston reaches the zero position.
  • Opening of the bleeders valves 84 causes the means 60 to vent some of the energy which is absorbed during a deceleration portion of a stroke, and prevent its reapplication to the system during the accelerating portion of the next stroke.
  • Mechanism for controlling movement of reciprocating structure comprising: cylinder and piston means having external connections on the cylinder and piston, one of said connections being reciprocably fastened to said reciprocating structure and the other of said connections being secured to fixed structure, said cylinder having a centrally located constantly open pressure inlet port with the piston being reciprocated to opposite sides of said port, and said cylinder confining gas when the piston is moved to at least one side of said inlet port.
  • the apparatus of claim 1 including: means supplying superatmospheric gas pressure to said inlet port.
  • the apparatus of claim 2 including: means for regulating the gas pressure in the side of said cylinder that is communicated to said inlet port.
  • the apparatus of claim 3 including: a pressure outlet port in said cylinder positioned generally opposite said inlet port.
  • the apparatus of claim 41 including: back pressure regulating means connected to said outlet port.
  • the apparatus of claim 2 including: adjustable volumetric confining means communicating with one side of said piston.
  • the apparatus of claim 1 including: power transmission shaft means, drive means for rotating said shaft means alternately in opposite directions, and power takeoff means for driving said reciprocating structure from said shaft means, said cylinder and piston means being positioned intermediate said drive means and said power takeoff means.
  • the apparatus of claim 7 including: a plurality of power takeoff means spaced longitudinally from said drive means, and a plurality of said cylinder and piston means individual ones of which are spaced intermediate said spaced power takeoff means and operatively connected to said shaft means to smoothen out the torque in said shaft means.
  • Mechanism for controlling movement of reciprocating structure comprising: cylinder and piston means having external connections on the cylinder and piston, one of said connections being reciprocably fastened to said reciprocating structure and the other of said connections being secured to fixed structure, said cylinder having a pressure inlet port with the piston being reciprocated to opposite sides of said port, said cylinder confining gas when the piston is moved to opposite sides ofsaid inlet port, and means regulating flow in and out of said inlet port, and means regulating flow in and out of said inlet port to maintain a generally constant pressure at said inlet port.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Actuator (AREA)

Abstract

A pneumatic cylinder connected between an eccentric on a rock shaft and a structural support, for absorbing energy during one quarter of the cycle of the rock shaft during which it is decelerated, and for putting the absorbed energy back into the rock shaft during the next quarter cycle when it is accelerated. The pneumatic cylinder is preferably a double-acting one with a center port to accomplish the energy absorption and redelivery to the rock shaft, at both ends of the shaft rocking movement. The rate of energy absorption and subsequent reapplication may be controlled by supplying superatmospheric pressure to the center port, and/or by starting the compressive cycle prior to the midpoint of the oscillating cycle. The later is accomplished by using a piston-side port valving arrangement wherein the piston has a length that is a sizable proportion of its stroke. The cylinder may be cooled by utilizing a center exhaust port opposite the inlet port, and causing a continual flow through the low pressure end of the cylinder after the piston has proceeded past the inlet port. Bleeds may be provided at opposite ends of the cylinder to reduce the reapplication force of the cylinder, and adjustable chamber means may also be provided on one or both ends of the cylinder for adjusting the absorption rate.

Description

United States Patent [72] Inventor Richard E. Pitt Newark, Ohio [21] Appl. No. 821,259 [22} Filed May 2, 1969 [45] Patented July 27, 1971 [73) Assignee Owens-Corning Fiberglas Corporation [54] METHOD AND APPARATUS FOR REDUCING TORQUE CHANGES IN ROCK SHAFTS 9 Claims, 4 Drawing Figs.
[52] US. Cl 92/143 [51] lnt.Cl ....F01b3l/04 [50] Field otSearch 188/8851, 97, 94, 87; 92/163, 146, 85, 7, 8, 134, 143,67,12O
[56] References Cited UNITED STATES PATENTS 2,163,982 6/1939 Mercier 92/134 X 3,138,066 6/1964 Walker 91/25 Primary Examiner-Martin Pv Schwadron Assistant Examiner-Allen M. Ostrager AllorneysStaelin & Overman and William P. Hickey ABSTRACT: A pneumatic cylinder connected between an eccentric on a rock shaft and a structural support, for absorbing energy during one quarter of the cycle of the rock shaft during which it is decelerated, and for putting the absorbed energy back into the rock shaft during the next quarter cycle when it is accelerated. The pneumatic cylinder is preferably a doubleacting one with a center port to accomplish the energy absorption and redelivery to the rock shaft, at both ends of the shaft rocking movement. The rate of energy absorption and subsequent reapplication may be controlled by supplying superatmospheric pressure to the center port, and/or by starting the compressive cycle prior to the midpoint of the oscillating cycle. The later is accomplished by using a pistonside port valving arrangement wherein the piston has a length that is a' sizable proportion of its stroke. The cylinder may be cooled by utilizing a center exhaust port opposite the inlet port, and causing a continual flow through the low pressure end of the cylinder after the piston has proceeded past the inlet port. Bleeds may be provided at opposite ends of the cylinder to reduce the reapplication force of the cylinder, and adjustable chamber means may also be provided on one or both ends of the cylinder for adjusting the absorption rate.
PATENTEDJuL21|en SHEU 1 OF 2 3,595,136
INVIL'N'IUR.
Haw/e0 P/ff METHOD AND APPARATUS FOR REDUCING TORQUE CHANGES IN ROCK SHAFTS BACKGROUND OF THE INVENTION Mats of randomly oriented glass fibers bonded together at their crossover points are commercially produced by attenuating molten streams of glass with high velocity gases, and collecting the fibers on a continuously moving product conveyor.
The high velocity gases containing the fibers are called "veils" which have a diameter that is considerably less than the width of the product conveyor, and these veils" are oscillated across the width of the conveyor by deflection tubes or devices that are in turn oscillated by a rock shaft. A plurality of veil producing devices usually between 6 and i2 are positioned lengthwise of the product conveyor. The rock shaft extends longitudinally of these devices, and has longitudinally spaced crank arms connected to the deflection devices by connecting rods. The rock shaft in turn is driven by a con necting rod and crank arm mounted on the discharge of a gear reduction unit: and in the most refined units, the gear units have camming included thereinto provide nonuniform rotation of the output crank of the gear reduction unit for the purpose of modifying the oscillation of the rock shaft from one giving standard harmonic motion to one giving uniform distribution, of the fibers across the width of the product conveyor. The'veil deflection means is decelerated by the rock shaft at the end of each stroke and is accelerated during the beginning of the next stroke, This occurs at opposite ends of each stroke, so that there is two accelerations and two decelerations for each cycle of the rock shaft. The acceleration and deceleration of the deflection means by the rock shaft, produces stress reversals in the rock shaft of considerable magnitude, and this situation is aggravated by the extreme length of the rock shaft and large number of power takeoffs that are spaced longitudinally of the rock shaft. The stress reversals are transmitted back to the driving gear reduction units, where the stackup of tolerances between gear teeth and in bearings still further magnify the stress reversal problem; and where the gear box also incorporates camming devices, a further stack up of tolerances occurs to further increase the magnitude of the stress reversal problem.
Accordingly, an object of the present invention is the provision of new and improved means for offsetting the stress reversal that is produced in a rock shaft that is used to drive reciprocating structure having considerable inertia.
A further object of the invention is the provision of means for reducing the torsion in long rock shafts having a plurality of power takeoffs.
A still further object of the invention is the provision of a new and improved pneumatic cylinder having a resultant pressure versus stroke curve tailored to achieve the above-mentioned objects.
Further objects and advantages of the invention will become apparent to those skilled in the art to which it relates from the following description of the invention.
SUMMARY OF THE INVENTION According to the invention, the stress buildup in a rock shaft is reduced by attaching a device to the rock shaft which absorbs the kinetic energy of the driven device during its deceleration portion of a stroke, and delivers it back to the rock shaft during the acceleration portion of its stroke. According to further principals of the invention, this is accomplished by a pneumatic cylinder connected between the rock shaft and a stationary object which cylinder is arranged so that its piston builds up pressure in the cylinder as it approaches one end of its stroke, and which pressure exerts a return force during the next half stroke. In the preferred construction, a double-acting cylinder is provided with a center port which is valved off by the piston as it moves thereby, and a supply of superatmospheric gas is supplied to the center port, to steepen the energy absorption curve, and correspondingly change its energy reapplication curve. In instances where the amount of energy absorbed by the cylinder is large and high temperatures are produced, a coolingof the cylinder may be had by providing a center outlet port opposite the inlet port, and causing some of the superatmospheric gases to sweep the ends of the cylinder after the piston has moved past the inlet port. The rate of pressure buildup may be further increased by increasing the width of the piston relative to the length of its stroke. In some instances, a reduction in pressure buildup may be achieved by varying the clearance volume, as for example by an adjustable chamber connected to one or both ends of the cylinder. In addition, pressure bleeds may be provided so that less energy is reapplied to the driven structure that is absorbed.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view of the fiber deflection apparatus and drive mechanism therefor, that is used to make glass fiber mat insulation materials;
FIG. 2 is a schematic sectional view through one veil producing and distributing station, and is taken approximately on the line 2-2 of Figure 1;
FIG. 3 is a side elevational view of a pneumatic cylinder used to absorb energy from, and redistribute energy to, the rock shaft shown in Figures 1 and 2, and which is taken approximately on the line 3-3 of Figure 1; and
FIG. 4 is a typical stroke pressure curve of the device shown in figure 3.
DESCRIPTION OF THE FREE ERRED EMBODIMENTS While the invention may be otherwise embodied, it is herein shown and described as embodied in the drive mechanism for the fiber distribution system of glass fiber mat producing apparatus.
Referring to Figure 1, there is shown therein, l2 longitudinally spaced loads, or driven devices 10 which in the present instance are glass fiberdistributors, and which will later be described in detail. The loads 10 are arranged in line, and each is oscillated laterally be means of an eccentric l2, connecting rod 14, and crank arm 16 that is fixed to a longitudinally extending rock shaft 18. The rock'shaft 18 is suitably journaled and supported from stationary structure, not shown. The rock shaft 18 is in turn oscillated by an adjustable crank arm 20. The crank arm 20 has a sleeve 22 thereon which can be adjustably positioned lengthwise of the crank arm 20, and which carries a pivotal connection for one end of a connecting rod 24. The connecting rod 24 is reciprocated by means of a short crank arm 26 on the output shaft of a gear reducer 28, which is in turn driven by another gear reducer 30, that in turn is driven by a constant speed electric motor 32. The gear reducers 28 and, 30 are of a special design that incorporate camming means which provide rotational acceleration and deceleration at fixed frequencies to the output rotation for the purpose of changing the oscillatory movement of the driven structures 10 from the usual harmonic motion to give uniform fiber distribution across the fiber collection surface. For further details of the construction of the gear reducing units 28 and 30, reference may be had to the Langlois and Pitt application, Ser. No. 694,325, having a filing date of Dec. 26, I967, and assigned to the assignee of the present invention.
The load structure 10 is part of the glass fiber mat producing apparatus shown in Figure 2 of the drawings. The fiber forming apparatus comprises a forehearth 34 having an opening 36 in a bushing plate 38 through which a small stream of glass flows continually, The molten stream'of glass falls into a centrifuge basket 40 having a plurality of small openings in its periphery, and from which fine stream of glass issue in what are called primary fibers. The primary fibers are attenuated by high velocity products of combustion which discharge from the burner 42 over the periphery of the centrifuge basket 40. Thereafter the fibers are further accelerated by the steam blower 44 which draws secondary air over the top of the blower 44, and this secondary air is heated by a secondary burner 46 as is necessary to control the attenuation of the fibers. The beil" of gases and fibers so produced are collected on a conveyor 48 in the form of a mat, and prior thereto are wetted out by a binder solution by means of the nozzles 50. Laterally adjustable sidewalls 52 are provided on opposite sides of the conveyor 48 to adjust the width of the mat produced from between approximately 6 feet and 8 feet, while the veil" of fibers which issues from the fiber forming apparatus is approximately 14 inches in diameter, in order that the fibers will be distributed uniformly across the conveyor, they are caused to be deflected from side to side of the conveyor by the fiber distributors of load devices 10.
The fiber deflection or load devices 10 are quite heavy and have a considerable amount of inertial The load devices 10 are pivoted about a longitudinally extending axis 54 about which they must be oscillated. As is true of straight harmonic motion, the load devices l must be accelerated at the start of each sweep across the conveyor, and must be decelerated dur ing the second or last half of a sweep across the conveyor, so that it can be reaccelerated back and again decelerated into the starting position. This acceleration and deceleration is, of course, accomplished through the rock shaft 18, which accomplishes the acceleration and deceleration by means of a reversal of stress in the shaft. Because of the rock shafts great length, these reversal of stresses may be in tune with the natural torsional frequency of the shaft, and which, if this occurs, produces deflections and movements which interfere with the uniform deposition of the fibers on the collection conveyor. in addition, the reversal of stresses in the rock shaft 18 are transmitted back to the gear reducers 28 and 30, where the stackup of tolerances between gear teeth, bearings, etc. produces a pounding" action. This "pounding action" may be further increased when the gear reducers include camming arrangements.
According to the invention, means 60 are provided for absorbing energy from one or more loads during the deceleration portions of each stroke, and for reapplying at least a portion of the absorbed energy, back into the system during the portions of each stroke during which the loads 10 must be accelerated. Each energy redistribution means 60 comprises a double-acting cylinder having a barrel 62 with a piston 64 therein whose piston rod 66 extends externally of both ends of the cylinder barrel 62. One end of the piston rod 66 is pivotally connected to a crank arm 68 secured to the rock shaft 18, while the cylinder barrel 62 is pivotally connected to the fixed structure 70 which supports the entire fiber forming apparatus. The cylinder barrel 62 is provided with a center pressure inlet connection 72 located at the midpoint of the cylinder, and which is supplied with high pressure air through a filter 74, pressure regulator 76, and oilcr 78. The cylinder 62 is also provided with a centrally located outlet 80, that is connected with a bleeder valve 82, which in some instances may be a back pressure valve set at a pressure slightly lower than the regulator 76. in some instances, each end of the cylinder barrel may be provided with a bleeder valve 84 designed to reduce the energy which is put back into the system from that which is absorbed out of the system, by relieving some of the pressure produced by the piston 64. Also in some instances, each end of the cylinder may be provided with an auxiliary reservoir 86, whose volume can be adjusted to vary the slope of the pressure-stroke curve as will later be explained.
The operation of the energy redistribution means 60 will now be explained with reference to Figure 4 of the drawings. in those instances where a wide mat is to be made, the sleeve 22 is adjusted to a position close to the rock shaft 18, so that the rock shaft will be oscillated through as much as 60, and so that the piston 64 of the energy redistribution means 60 will be moved through approximately a 7 inch stroke. When this occurs, the pressure regulator 76 will be adjusted to provide atmospheric pressure, or psi. absolute, and so that the resultant pressure-stroke curve which is provided by the device will be that indicated by the numeral 88. When a narrow mat is to be made, the sleeve 22 will be moved outwardly on the crank arm 20 as much as 10 inches to provide an angle of oscillation for the rock shaft 18 of 23. The 23 oscillation of the rock shaft 18 produces a piston movement of 4 inches, and with this piston movement, it can be seen that the same ultimate pressure as occurs with the resultant pressure-stroke curve 88, can be achieved by supplying 74.5 p.s.i. absolute pressure to the inlet port 72, as by the regulator 76. This arrangement produces the resultant pressure-stroke curve shown in Figure 4. The curve 88 is produced by subtracting the pressure on the left side of the piston as given by the curve 92, from the pressure on the right side of the piston, as given by the curve 94; and the curve 90 is obtained by substracting the values of the pressure on the left side of the piston, as given by the curve 96, from the pressure on the right side of the piston, as given by the curve 98. The knee of each of the curves 92, 94, 96, and 98 are offset 1 inch from the center stroke position, by reason of the fact that the piston has such a width that it valves off the inlet port 72 1 inch before the center of the piston reaches the zero position. By means of this valving arrangement, wherein the piston is caused to have a valving width that is an appreciable percentage of the stroke, the rate of pressure buildup on either side of the center position, is increased, so that the center portion of the resultant pressure-stroke curve more nearly approaches a straight line. By causing the bleeder valve 82 to vent air from the cylinder, a flow of cooling air is provided through opposite ends of the cylinder during the portion of the stoke where is is not absorbing energy, and this cooling flow may be necessary in some instances to protect the seals in the cylinder, and further to provide a continual flow of lubricant through the system.
increasing of the volume of the chambers 86, reduces the slope of the resultant pressure-stroke curves, and at the same time reduces the amount of energy absorbed by the means, and this may be necessary to accommodate a change in load condition, as for example, when one of the loads 10 is removed from the system. Opening of the bleeders valves 84 causes the means 60 to vent some of the energy which is absorbed during a deceleration portion of a stroke, and prevent its reapplication to the system during the accelerating portion of the next stroke. This has the advantage, particularly when used at the location closest to the gear reducing structures 28 and 30, of changing the load on the gear reducing units 23 and 30, to prevent torque reversal to therein prevent the pounding action" which these units would otherwise be subjected to It will further be seen that an advantage is had in providing a number of small energy redistribution means 60 spaced longitudinally of the rock shaft 18, as opposed to the utilization of a single large means, capable of absorbing the same total amount of energy.
While the invention has been described in considerable detail, I do not wish to be limited to the particular embodiments shown and described, and it is my intention to cover hereby all novel adaptations, modifications, and arrangements thereof which come within the practice of those skilled in the art to which the invention relates.
lclaim:
l. Mechanism for controlling movement of reciprocating structure comprising: cylinder and piston means having external connections on the cylinder and piston, one of said connections being reciprocably fastened to said reciprocating structure and the other of said connections being secured to fixed structure, said cylinder having a centrally located constantly open pressure inlet port with the piston being reciprocated to opposite sides of said port, and said cylinder confining gas when the piston is moved to at least one side of said inlet port.
2. The apparatus of claim 1 including: means supplying superatmospheric gas pressure to said inlet port.
3. The apparatus of claim 2 including: means for regulating the gas pressure in the side of said cylinder that is communicated to said inlet port.
, 4. The apparatus of claim 3 including: a pressure outlet port in said cylinder positioned generally opposite said inlet port.
5. The apparatus of claim 41 including: back pressure regulating means connected to said outlet port.
6. The apparatus of claim 2 including: adjustable volumetric confining means communicating with one side of said piston.
7. The apparatus of claim 1 including: power transmission shaft means, drive means for rotating said shaft means alternately in opposite directions, and power takeoff means for driving said reciprocating structure from said shaft means, said cylinder and piston means being positioned intermediate said drive means and said power takeoff means.
8. The apparatus of claim 7 including: a plurality of power takeoff means spaced longitudinally from said drive means, and a plurality of said cylinder and piston means individual ones of which are spaced intermediate said spaced power takeoff means and operatively connected to said shaft means to smoothen out the torque in said shaft means.
9. Mechanism for controlling movement of reciprocating structure comprising: cylinder and piston means having external connections on the cylinder and piston, one of said connections being reciprocably fastened to said reciprocating structure and the other of said connections being secured to fixed structure, said cylinder having a pressure inlet port with the piston being reciprocated to opposite sides of said port, said cylinder confining gas when the piston is moved to opposite sides ofsaid inlet port, and means regulating flow in and out of said inlet port, and means regulating flow in and out of said inlet port to maintain a generally constant pressure at said inlet port.

Claims (9)

1. Mechanism for controlling movement of reciprocating structure comprising: cylinder and piston means having external connections on the cylinder and piston, one of said connections being reciprocably fastened to said reciprocating structure and the other of said connections being secured to fixed structure, said cylinder having a centrally located constantly open pressure inlet port with the piston being reciprocated to opposite sides of said port, and said cylinder confining gas when the piston is moved to at least one side of said inlet port.
2. The apparatus of claim 1 including: means supplying superatmospheric gas pressure to said inlet port.
3. The apparatus of claim 2 including: means for regulating the gas pressure in the side of said cylinder that is communicated to said inlet port.
4. The apparatus of claim 3 including: a pressure outlet port in said cylinder positioned generally opposite said inlet port.
5. The apparatus of claim 4 including: back pressure regulating means connected to said outlet port.
6. The apparatus of claim 2 including: adjustable volumetric confining means communicating with one side of said piston.
7. The apparatus of claim 1 including: power transmission shaft means, drive means for rotating said shaft means alternately in opposite directions, and power takeoff means for driving said reciprocating structure from said shaft means, said cylinder and piston means being positioned intermediate said drive means and said power takeoff means.
8. The apparatus of claim 7 including: a plurality of power takeoff means spaced longitudinally from said drive means, and a plurality of said cylinder and piston means individual ones of which are spaced intermediate said spaced power takeoff means and operatively connected to said shaft means to smoothen out the torque in said shaft means.
9. Mechanism for controlling movement of reciprocating structure comprising: cylinder and piston means having external connections on the cylinder and piston, one of said connections being reciprocably fastened to said reciprocating structure and the other of said connections being secured to fixed structure, said cylinder having a pressure inlet port with the piston being reciprocated to opposite sides of Said port, said cylinder confining gas when the piston is moved to opposite sides of said inlet port, and means regulating flow in and out of said inlet port, and means regulating flow in and out of said inlet port to maintain a generally constant pressure at said inlet port.
US821259A 1969-05-02 1969-05-02 Method and apparatus for reducing torque changes in rock shafts Expired - Lifetime US3595136A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82125969A 1969-05-02 1969-05-02

Publications (1)

Publication Number Publication Date
US3595136A true US3595136A (en) 1971-07-27

Family

ID=25232941

Family Applications (1)

Application Number Title Priority Date Filing Date
US821259A Expired - Lifetime US3595136A (en) 1969-05-02 1969-05-02 Method and apparatus for reducing torque changes in rock shafts

Country Status (1)

Country Link
US (1) US3595136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070002A (en) * 1975-03-17 1978-01-24 Applications Mecaniques Et Robinetterie Industrielle A.M.R.I. Valve actuators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163982A (en) * 1935-03-11 1939-06-27 Mereier Jean Fluid-operated jack
US3138066A (en) * 1961-10-27 1964-06-23 Phil Wood Ind Ltd Cushioned-stroke reciprocatory hydraulic motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163982A (en) * 1935-03-11 1939-06-27 Mereier Jean Fluid-operated jack
US3138066A (en) * 1961-10-27 1964-06-23 Phil Wood Ind Ltd Cushioned-stroke reciprocatory hydraulic motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070002A (en) * 1975-03-17 1978-01-24 Applications Mecaniques Et Robinetterie Industrielle A.M.R.I. Valve actuators

Similar Documents

Publication Publication Date Title
US4014392A (en) Stabilized piston-cylinder impact device
US5544577A (en) Mechanical pressing machine with means for cancelling load fluctuation torque
US3546898A (en) Nonuniform motion producing structure for producing fibrous mats
CN107314089A (en) A kind of reciprocal swing-bar mechanism of clearance-type
US3595136A (en) Method and apparatus for reducing torque changes in rock shafts
US2924106A (en) Compensating motion transmitting arrangement for roll housing means
US2653416A (en) Apparatus for forming glass fiber mats
US6029541A (en) Reciprocating machine with neutralization of free inertial forces
US5100044A (en) Friction welding
US3704878A (en) Method and apparatus for reducing torque changes in rock shafts
CN109047689A (en) Single servo motor two-side synchronous drives mould non-sinusoidal vibration device
US3118195A (en) Continuous casting apparatus and method
WO1996006273A1 (en) Synchronous piston stirling engine
CN109939917B (en) Double-shaft inertia vibration exciter
CN204234339U (en) A kind of linear electric motors drive self-balancing type vibrating transportation screening machine
CN102797713A (en) Rotating disc type variable flywheel
US4099580A (en) Impact device with linear air spring
CN201776392U (en) Casting used sand regenerator with double barrels and double vibration sources
CN214025250U (en) Jet machining device
US3292215A (en) Apparatus for longitudinal reciprocation of a mold for continuous casting
US4463838A (en) Vibration jacks
CN103243424B (en) Wavy chemical fiber bundle forming machine
US3834827A (en) Vehicle mounted vibratory compactor
CN113864401A (en) Ball screw type semi-active inerter device based on lever
CN111617952B (en) Novel intelligent vibration device of full-automatic block forming machine for bulk solid wastes

Legal Events

Date Code Title Description
AS Assignment

Owner name: WADE, WILLIAM, J., DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WADE, WILLIAM, J., ONE RODNEY SQUARE NORTH, WILMIN

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WILMINGTON TRUST COMPANY, ONE RODNEY SQUARE NORTH,

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

AS Assignment

Owner name: OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE

Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:004903/0501

Effective date: 19870730

Owner name: OWENS-CORNING FIBERGLAS CORPORATION, FIBERGLAS TOW

Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:004903/0501

Effective date: 19870730