US3585983A - Cardiac assisting pump - Google Patents
Cardiac assisting pump Download PDFInfo
- Publication number
- US3585983A US3585983A US710596A US3585983DA US3585983A US 3585983 A US3585983 A US 3585983A US 710596 A US710596 A US 710596A US 3585983D A US3585983D A US 3585983DA US 3585983 A US3585983 A US 3585983A
- Authority
- US
- United States
- Prior art keywords
- catheter
- balloon
- pump
- reenforcing element
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/515—Regulation using real-time patient data
- A61M60/531—Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/135—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
- A61M60/139—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/295—Balloon pumps for circulatory assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/497—Details relating to driving for balloon pumps for circulatory assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/841—Constructional details other than related to driving of balloon pumps for circulatory assistance
- A61M60/843—Balloon aspects, e.g. shapes or materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M2025/0001—Catheters; Hollow probes for pressure measurement
- A61M2025/0002—Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/247—Positive displacement blood pumps
- A61M60/253—Positive displacement blood pumps including a displacement member directly acting on the blood
- A61M60/268—Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
- A61M60/274—Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders the inlet and outlet being the same, e.g. para-aortic counter-pulsation blood pumps
Definitions
- An intra-arterial cardiac assisting device having a nonelastic polyurethane balloon which is inflated periodically for diastolic augmentation by utilization of helium.
- the leading end of the device which is passed into the aorta as a catheter, has a pressure transducer therein.
- the present invention relates to a cardiac assisting pump, and, more particularly, to an autosynchronous intra-arterial balloon pumping system for temporary cardiac assistance.
- It another object of the present invention to provide an autosynchronous balloon pumping system for temporary cardiac assistance. It is another object of the present invention to provide a novel intra-arterial cardiac assisting device providing a practical means of rapid, effective assistance to the patient in profound, refractory cardiogenic shock.
- FIG. 1 is a partly broken away, partly schematic diagram of one embodiment of an intra-arterial cardiac assisting pump in i accordance with the present invention
- FIG. 2 is a view like FIG. 1, showing another embodiment of the present invention.
- FIG. 3 is a schematic illustration of an autosynchronous intra-arterial cardiac assisting balloon pump, showing ex- .into an artery, and which subsequently takes on the shape of tracorporeal components.
- An intra-arterial assisting device in accordance with the present invention comprises, in general, two major components, namely an extracorporeal unit 10 (FIG. 3) and an intracorporeal unit 12.
- FIG. I A first embodiment of an intracorporeal unit 12 is shown in FIG. I, while a second embodiment, similar in many respects to the embodiment in FIG. 1, is shown in FIG. 2.
- the intracorporeal unit 12 includes a hollow elongated arterial catheter portion 14, an inflatable, nonelastic balloon portion 16, and a perforated reenforcing portion 18.
- the extracorporeal unit 10 includes, very generally, a source 50 of gas under pressure (preferably helium), a solenoid valve unit 52 for periodically feeding the helium into the intracorporeal unit 12 and suitable electronic means for receiving a signal from the body in which the intra-arterial cardiac assisting device has been placed (such as ECG signals through leads 58 and $6) and using such signal for the opening and closing periodically of the solenoid valve 52.
- a source 50 of gas under pressure preferably helium
- a solenoid valve unit 52 for periodically feeding the helium into the intracorporeal unit 12
- suitable electronic means for receiving a signal from the body in which the intra-arterial cardiac assisting device has been placed (such as ECG signals through leads 58 and $6) and using such signal for the opening and closing periodically of the solenoid valve 52.
- the intra-arterialcardiac assisting device of the present invention works in the following manner. Normally, the heart pumps blood into the aorta, the bodys main artery leaving the heart, during a period of time termed cardiac systole. The following period of time, during which the heart is not pumping, but is filling with blood, in termed cardiac diastole.
- the intracorporeal unit When the heart is in need of assistance, the intracorporeal unit is passed through the bodys skin into a suitable artery (such as the femoral artery) and passed toward the heart so that the balloon 16 is in the thoracic aorta just below the location where the subclavian artery branches from the aorta.
- a suitable artery such as the femoral artery
- the solenoid valve When the electronic means embodied in the extracorporeal components receives an appropriate signal from the body, the solenoid valve is actuated so as to admit helium through the catheter I4, through the perforations in the reenforcing por-,
- Deflation of the balloon 16 at the end of cardiac diastole aids the heart by reducing the pressure in the aorta which the heart must normally pump against during cardiac systole. This permits the heart to pump a large volume of blood with each contraction and also reduces the pressure in the left ventricle, or main pumping chamber of the heart, at the end of cardiac diastole.
- the combined effects of inflation and deflation of the balloon in this manner provide significant aid to the heart in need of assistance.
- the leading end 20 of the device comprises a stainless steel housing 22 in which is incorporated .
- a pressure transducer 24 having suitable insulated electrical ,leads 26, which pass backwardly through the perforated reenforcing element 18 and along the catheter portion 14, as illustrated, to a junction 28 and then to an electrical lead carrying .portion 30 terminating in an electrical outlet 32.
- the housing 22 is preferably formed of stainless steel, it will be understood that any rigid, biologically inert material may be used for such housing. In addition, other rigid materials can be used and can be coated with a biologically compatible material such as polyurethane.
- the housing 22 is connected to the end of the hollow, elongated, perforated reenforcing element 18, such as by being inserted therein.
- reenforcing element 18 preferably comprises a flexible braided tube of metal wires, such as copper braid, conventionally used as electrical shielding.
- copper braid has been found to be highly advantageous since it is flexible and conforms to the shape of the artery during operation of the intracorporeal unit, and also permits the flow therethrough of the inflating gas into the balloon 16.
- the reenforcing element 18 comprises the copper braid
- the lead 26 from the pressure sensor transducer is woven into the copper braid l8.
- the copper braid l8 and the catheter 14 are coextensive, the copper braid being soldered or otherwise adhered tight over the preferably etched end of the catheter l4.
- the very thin walled, flexible, generally nonelastic, inflatable balloon 16 desirably formed of polyurethane.
- Polyurethane is the preferred material since it is not only biologically compatible, but it has the best combination of desirable physical properties such as abrasion resistance, ease of handling, tensile strength, and resistance to elastic inflation.
- the catheter portion 14 is, as described above, a hollow elongated tube adapted, along with the housing 22, the reenforcing element 18 and the balloon 16, to be inserted into the artery. It is, accordingly, essential that the outer diameter of the catheter 14 be sufficiently small to permit its insertion into the artery.
- the catheter 14 may be formed of any suitable material which is sufiiciently flexible to permit it to be bent, or coiled, it is necessary that its outer surface be provided with a biologically compatible material.
- the catheter 14 may be formed of vinyl plastic material coated with polyurethane; however, it is preferably formed of polytetrafluoroethylene which is, itself, biologically compatible and which has other desirable properties. Particular advantages of polytetrafluorethylene include its inertness and its very smooth surface.
- the catheter 14 be formed of two concentric polytetrafluoroethylene tubes, the outer of which has been heat shrunk about the inner, the sensor leads 26 being retained between the two concentric tubes.
- the catheter portion 14 is sufficiently long so that the balloon 16 may be deposited in the aorta while the junction 28 remains outside the body.
- the catheter l4 continues beyond the junction 28, as an extracorporeal tube 36, terminating in a connector 38 for attachment to the solenoid valve unit 52.
- the intracorporeal unit 12 of FIG. 2 is, in many respects,
- an extracorporeal housing 40 is provided of suitable semiflexible plastic, such as molded polyurethane, into which the gas connection 3% and the electrical connection 32 are embedded for improved ease of connection with the solenoid valve unit 52.
- polyurethane is extruded over the copper braid 18. Since all external surfaces of the entire assembly except for the connectors to the solenoid valve 52 and the electrical outlet are made of polyurethane, very highly reliable junctions between these surfaces can be achieved.
- the extracorporeal unit includes, besides the source 50 of helium under pressure and suitable passageways and pressure regulating valves and metering devices therealong passing to the solenoid valve unit 52, as part of the control means, a modified double beam oscilloscope 60 and a recorder 62.
- the patient's ECG is recorded through leads 58 and passed through to the oscilloscope 60 through the leads 56.
- Central aortic pressure is measured by the pressure transducer elements 24 and 24' and passed through the leads 26 to the oscilloscope 60 and from these through leads 66 to the recorder 62.
- the oscilloscope 60 passes a signal through a lead 64, based on information received through the leads 58 and 26 from the body, to control the opening and closing of the solenoid valve 52.
- a preselected point of the ECG or of the central aortic pressure controls the solenoid valve 52. Phase and duration of inflation cycle can be adjusted independently.
- the function of the electronic control is to recognize the occurrence of an R-wave on the ECG initiate a time delay up to the end of cardiac systole.
- the electronic control energizes the solenoid valve and maintains it energized until the end of cardiac diastole.
- the commercial oscilloscope is modified by the addition of a relay, controlled by the 13+ gate, which connects power to the solenoid valve.
- An extracorporeal unit 10 such as shown in FIG. 3, is provided with a source of helium 50 under pressure and an electronically controlled solenoid valve 52.
- the intracorporeal unit comprises a flexible polyurethane balloon 16 with a Teflon" (polytetrafluorethylene) catheter 14 attached to one end, the entire intracorporeal unit being capable of being sterilized.
- the balloon 16 is made by coating a glass mold with a l0- l5 percent polyurethane tetrahydrofuran solution.
- the resulting balloon has a wall thickness of only 0.100-0125 mm., but the material is so tough that it can withstand pressure of 250 mm. Hg. without undergoing elastic deformation, and it will withstand considerably greater pressure before bursting.
- the resultant balloon 16 thereby provides for a wide margin of safety during actual use.
- the so-formed balloon may be l0- l7 cm. long and 1-2 cm. in diameter, depending upon the size of the aorta for which it is intended and the pumping volume required.
- the balloon 16 tapers at each end to a cylindrical sleeve which is about 3 centimeters long and about 0.4 to 0.5 centimeter in diameter.
- a section of woven flexible copper tubing (electrical shield- 7 ing), approximately 3-5 mm. in diameter, is introduced into the balloon 16, spanning its length, to serve as the elongated, perforated reenforcing element 18.
- a pressure transducer 24 of the semiconductors straingauge type is then tightly fitted into the end of the device proximal to the heart. The junction is then sealed with a coating of the polyurethane solution. Thus positioned, the pressure transducer is insensitive to pressure changes within the balloon 16, but records blood pressure changes at the site where the device is positioned, such as within the aorta.
- the catheter portion 14 is then interfitted with the end of the balloon 16 and the end of the copper braid 18 along the portion 34.
- the catheter 14 may fit inside the copper braid 18, or it may fit over the end of the balloon 16.
- the catheter consists of two concentric, heat-shrinkable Teflon tubes.
- the catheter 14 is 60-70 cm. long and has a 5 mm. outside diameter.
- the leads 26 from the transducer 24 are interwoven with the braid 18 along its length and, where the braid 18 ends, the leads may either be carried within the catheter 14, or where the catheter comprises two concentric tubes, between such tubes. As is seen, the catheter connects the intra-arterial balloon 16 and the extracorporeal unit 10.
- the intracorporeal unit is stiffened by the insertion of a long catheter guide which reaches to the leading end of the braided tube 18 which elongates the tube 18 thereby reducing its diameter to aid insertion.
- the guide is withdrawn and the woven copper tube, acting as a reenforcing means, allows the balloon 16 to regain its flexibility.
- the assembled unit is driven by a low density gas, preferably helium. lt is necessary to use a low density gas to assure its rapid passage through the narrow catheter and into the balloon 16 through the mesh of the copper tubing.
- An intra-arterial cardiac assisting pump comprising:
- a hollow elongated arterial catheter portion having an outer diameter sufficiently small to permit the insertion thereof into an artery, at least the outer surface thereof being provided with a biologically compatible material;
- a hollow elongated, perforated reenforcing element having a leading end and extending along at least a portion of said catheter and extending beyond the end of said catheter portion, said perforated reenforcing element having approximately the same diameter as said catheter portion and forming an extension thereof;
- internal pressure measuring means including a pressure transducer located at and connected to the leading end of said reenforcing element, electrical leads passing from said transducer through said reenforcing element and catheter, and means to translate the electrical signal from said transducer.
- a pump in accordance with claim 2 wherein said reenforcing element comprises a flexible braided tube.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Medical Informatics (AREA)
- Geometry (AREA)
- Transplantation (AREA)
- Physics & Mathematics (AREA)
- External Artificial Organs (AREA)
Abstract
An intra-arterial cardiac assisting device is provided having a nonelastic polyurethane balloon which is inflated periodically for diastolic augmentation by utilization of helium. The leading end of the device, which is passed into the aorta as a catheter, has a pressure transducer therein.
Description
United States Patent [7 2] Inventors Adrian Kautrowltz;
Wladlmir Schilt; Paul S. Freed, all 01 c/o Malmonides Medical Center 4802 Tenth St., Brooklyn, N.Y. 11219 [21 Appl. No. 710,596
[22] Filed Mar. 5, 1968 [45] Patented June 22, 1971 [54] CARDIAC ASSISTING PUMP 6 Claims, 3 Drawing Figs.
[52] U.S.Cl. 128/1, 1281214, 128/344 [51] lnt.Cl A6lb 19/00 [50] FleldoiSeareh l28/1,2l4, 344, DIG. 3, 348
[56] References Cited UNITED STATES PATENTS 3,504,662 4/1970 Jones 128/ 1 3,266,487 8/1966 Watkins et a1. 128/1 3,467,101 9/1969 Fogarty et al 128/348 OTHER REFERENCES Moulopoulos et a1. TRANS. AMER. SOC ARTlFlC. INTER. ORGANS, V01. VIII ap. 1962 pp. 85- 87 (copy in Op 335) Khalil et al. TRANS. AMER. SOC. ARTlFlC. lNTER.
ORGANS, Vol. June 1967 pp Primary ExaminerDa1ton L. Truluck Attorney-Browdy, Neimark and Norman J. Latker ABSTRACT: An intra-arterial cardiac assisting device is provided having a nonelastic polyurethane balloon which is inflated periodically for diastolic augmentation by utilization of helium. The leading end of the device, which is passed into the aorta as a catheter, has a pressure transducer therein.
CARDIAC ASSIS'I'ING PUMP The present invention relates to a cardiac assisting pump, and, more particularly, to an autosynchronous intra-arterial balloon pumping system for temporary cardiac assistance.
Fourteen of every I patients with acute myocardial infarction suffer profound cardiogenic shock. Of these patients, from 9to l3 are unresponsive to medical therapy and need some form of effective circulatory assistance. Accordingly, a vital need has existed for quickly combating profound cardiogenic shock in a relatively simple mechanical manner. While the treatment of cardiogenic shock has undergone numerous developments in recent years, primarily in the field of drug therapy, the mechanical devices which have been suggested (e.g. for elevating diastolic pressure while reducing systolic pressure) have involved extensive surgical procedures. Accordingly, the need has existed for speedy initiation of mechanical diastolic augmentation, and the best mechanical approach heretofore contemplated has involved intra-arterial balloon pumping.
In 1962 Moulopoulos et al. used an intra-arterial latex rubber balloon as a device for diastolic augmentation. In' 1962 Clauss et al. also experimented with intra-arterial balloon pumping. However. the devices contemplated were ,not generally satisfactory. Problems in prior art devices included providing a satisfactory catheter diameter, obtaining sufficiently biologically compatible materials from which the devices could be formed. providing a sufficiently great bore within the catheter to permit satisfactory inflation. the safety factor of the balloon itself. correct timing of the pumping and proper insertion of the intra-arterial pump into the aorta.
' Moulopoulos. Topaz and Kolff Diastolic Balloon Pumping in the Aorta-A Mechanical Assistance to the Failing Circulation. American Heart Journal (I962) Vol. 63. p. 669.
2 Clauss, Missier, Reed and Tice "Assisted Circulation by Counterpulsation with an lntraaortic Balloon. .\lethods and Effects." Dig. th Annual Conf. on Engineering in Medicine and Biology. I962. p.44.
It is therefore an object of the present invention to overcome the deficiencies of the prior art, such as indicated above.
It is another object of the present invention to provide for intra-arterial cardiac assistance in a new, improved and unobvious manner and to provide a novel intra-arterial cardiac assisting pump.
' It another object of the present invention to provide an autosynchronous balloon pumping system for temporary cardiac assistance. It is another object of the present invention to provide a novel intra-arterial cardiac assisting device providing a practical means of rapid, effective assistance to the patient in profound, refractory cardiogenic shock.
It is another object of the present invention to provide an intra-arterial cardiac assisting pump having a relatively small diameter catheter, utilizing materials which are biologicallyv compatible and utilizing a low density driving gas, which pump is effective in its intended purpose.
It is another object of the present invention to provide an autosynchronous balloon pumping system for temporary cardiac assistance having an intra-arterial portion which senses,
pressures in the aorta and assists in the correct timing of thei 60 pumping.
It is another object of the present invention to provide intraarterial cardiac assisting pump which can be simply inserted the aorta during use.
These and other objects of the nature and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the drawings wherein:
FIG. 1 is a partly broken away, partly schematic diagram of one embodiment of an intra-arterial cardiac assisting pump in i accordance with the present invention;
FIG. 2 is a view like FIG. 1, showing another embodiment of the present invention; and
FIG. 3 is a schematic illustration of an autosynchronous intra-arterial cardiac assisting balloon pump, showing ex- .into an artery, and which subsequently takes on the shape of tracorporeal components.
An intra-arterial assisting device in accordance with the present invention comprises, in general, two major components, namely an extracorporeal unit 10 (FIG. 3) and an intracorporeal unit 12. A first embodiment of an intracorporeal unit 12 is shown in FIG. I, while a second embodiment, similar in many respects to the embodiment in FIG. 1, is shown in FIG. 2.
Briefly, the intracorporeal unit 12 includes a hollow elongated arterial catheter portion 14, an inflatable, nonelastic balloon portion 16, and a perforated reenforcing portion 18. The extracorporeal unit 10 includes, very generally, a source 50 of gas under pressure (preferably helium), a solenoid valve unit 52 for periodically feeding the helium into the intracorporeal unit 12 and suitable electronic means for receiving a signal from the body in which the intra-arterial cardiac assisting device has been placed (such as ECG signals through leads 58 and $6) and using such signal for the opening and closing periodically of the solenoid valve 52.
The intra-arterialcardiac assisting device of the present invention works in the following manner. Normally, the heart pumps blood into the aorta, the bodys main artery leaving the heart, during a period of time termed cardiac systole. The following period of time, during which the heart is not pumping, but is filling with blood, in termed cardiac diastole.
When the heart is in need of assistance, the intracorporeal unit is passed through the bodys skin into a suitable artery (such as the femoral artery) and passed toward the heart so that the balloon 16 is in the thoracic aorta just below the location where the subclavian artery branches from the aorta.
When the electronic means embodied in the extracorporeal components receives an appropriate signal from the body, the solenoid valve is actuated so as to admit helium through the catheter I4, through the perforations in the reenforcing por-,
Deflation of the balloon 16 at the end of cardiac diastole aids the heart by reducing the pressure in the aorta which the heart must normally pump against during cardiac systole. This permits the heart to pump a large volume of blood with each contraction and also reduces the pressure in the left ventricle, or main pumping chamber of the heart, at the end of cardiac diastole. The combined effects of inflation and deflation of the balloon in this manner provide significant aid to the heart in need of assistance.
Describing the intracorporeal unit 12 of FIG. 1 in greater detail, it will be seen that the leading end 20 of the device comprises a stainless steel housing 22 in which is incorporated .a pressure transducer 24 having suitable insulated electrical ,leads 26, which pass backwardly through the perforated reenforcing element 18 and along the catheter portion 14, as illustrated, to a junction 28 and then to an electrical lead carrying .portion 30 terminating in an electrical outlet 32. While the housing 22 is preferably formed of stainless steel, it will be understood that any rigid, biologically inert material may be used for such housing. In addition, other rigid materials can be used and can be coated with a biologically compatible material such as polyurethane. f The housing 22is connected to the end of the hollow, elongated, perforated reenforcing element 18, such as by being inserted therein. Such reenforcing element 18 preferably comprises a flexible braided tube of metal wires, such as copper braid, conventionally used as electrical shielding. Such copper braid has been found to be highly advantageous since it is flexible and conforms to the shape of the artery during operation of the intracorporeal unit, and also permits the flow therethrough of the inflating gas into the balloon 16. Where the reenforcing element 18 comprises the copper braid, the lead 26 from the pressure sensor transducer is woven into the copper braid l8.
Along a portion 34 of the device 12 of FIG. 1, the copper braid l8 and the catheter 14 are coextensive, the copper braid being soldered or otherwise adhered tight over the preferably etched end of the catheter l4. Overlying the entire copper braid 18, at least a portion of the housing 22 (preferably the entire housing 22) and the entire length of the junction portion 34 is the very thin walled, flexible, generally nonelastic, inflatable balloon 16, desirably formed of polyurethane. Polyurethane is the preferred material since it is not only biologically compatible, but it has the best combination of desirable physical properties such as abrasion resistance, ease of handling, tensile strength, and resistance to elastic inflation.
The catheter portion 14 is, as described above, a hollow elongated tube adapted, along with the housing 22, the reenforcing element 18 and the balloon 16, to be inserted into the artery. It is, accordingly, essential that the outer diameter of the catheter 14 be sufficiently small to permit its insertion into the artery. While the catheter 14 may be formed of any suitable material which is sufiiciently flexible to permit it to be bent, or coiled, it is necessary that its outer surface be provided with a biologically compatible material. Thus, the catheter 14 may be formed of vinyl plastic material coated with polyurethane; however, it is preferably formed of polytetrafluoroethylene which is, itself, biologically compatible and which has other desirable properties. Particular advantages of polytetrafluorethylene include its inertness and its very smooth surface.
It is preferred in the FIG. 1 embodiment that the catheter 14 be formed of two concentric polytetrafluoroethylene tubes, the outer of which has been heat shrunk about the inner, the sensor leads 26 being retained between the two concentric tubes. it will be understood, of course, that the catheter portion 14 is sufficiently long so that the balloon 16 may be deposited in the aorta while the junction 28 remains outside the body. The catheter l4 continues beyond the junction 28, as an extracorporeal tube 36, terminating in a connector 38 for attachment to the solenoid valve unit 52.
. The intracorporeal unit 12 of FIG. 2 is, in many respects,
similar to that described above in relation to FIG. 1. The primary distinctions include the use of a temperature-compensated pressure sensor having two transducer elements 24 and 24', and the use of a copper braid 18 which extends not only the length of the balloon 16 and along only a small portion of the catheter 14, but which spans the catheter 14 along its entire length, the leads 26 from the pressure transducer elements 24 and 24' being woven into the copper braid 18 along its entire length. In addition, an extracorporeal housing 40 is provided of suitable semiflexible plastic, such as molded polyurethane, into which the gas connection 3% and the electrical connection 32 are embedded for improved ease of connection with the solenoid valve unit 52. Also, instead of the polytetrafluorethylene catheter, polyurethane is extruded over the copper braid 18. Since all external surfaces of the entire assembly except for the connectors to the solenoid valve 52 and the electrical outlet are made of polyurethane, very highly reliable junctions between these surfaces can be achieved.
The extracorporeal unit includes, besides the source 50 of helium under pressure and suitable passageways and pressure regulating valves and metering devices therealong passing to the solenoid valve unit 52, as part of the control means, a modified double beam oscilloscope 60 and a recorder 62. The patient's ECG is recorded through leads 58 and passed through to the oscilloscope 60 through the leads 56. Central aortic pressure is measured by the pressure transducer elements 24 and 24' and passed through the leads 26 to the oscilloscope 60 and from these through leads 66 to the recorder 62. In turn, the oscilloscope 60 passes a signal through a lead 64, based on information received through the leads 58 and 26 from the body, to control the opening and closing of the solenoid valve 52. By means of the modified double beam oscilloscope 60, a preselected point of the ECG or of the central aortic pressure controls the solenoid valve 52. Phase and duration of inflation cycle can be adjusted independently.
The function of the electronic control (e.g. modified dual beam Tektronix 565 oscilloscope) is to recognize the occurrence of an R-wave on the ECG initiate a time delay up to the end of cardiac systole. At the beginning of cardiac diastole, the electronic control energizes the solenoid valve and maintains it energized until the end of cardiac diastole. For example, the commercial oscilloscope is modified by the addition of a relay, controlled by the 13+ gate, which connects power to the solenoid valve.
The following specific example of the manufacture and use of an intra-arterial cardiac assisting pump is presented by way of illustration and not by way of limitation, so that those skilled in the art may better understand how the present invention may be practiced.
An extracorporeal unit 10, such as shown in FIG. 3, is provided with a source of helium 50 under pressure and an electronically controlled solenoid valve 52. The intracorporeal unit comprises a flexible polyurethane balloon 16 with a Teflon" (polytetrafluorethylene) catheter 14 attached to one end, the entire intracorporeal unit being capable of being sterilized.
The balloon 16 is made by coating a glass mold with a l0- l5 percent polyurethane tetrahydrofuran solution. The resulting balloon has a wall thickness of only 0.100-0125 mm., but the material is so tough that it can withstand pressure of 250 mm. Hg. without undergoing elastic deformation, and it will withstand considerably greater pressure before bursting. The resultant balloon 16 thereby provides for a wide margin of safety during actual use. The so-formed balloon may be l0- l7 cm. long and 1-2 cm. in diameter, depending upon the size of the aorta for which it is intended and the pumping volume required. As illustrated in FIGS. 1 and 2, the balloon 16 tapers at each end to a cylindrical sleeve which is about 3 centimeters long and about 0.4 to 0.5 centimeter in diameter.
A section of woven flexible copper tubing (electrical shield- 7 ing), approximately 3-5 mm. in diameter, is introduced into the balloon 16, spanning its length, to serve as the elongated, perforated reenforcing element 18.
A pressure transducer 24 of the semiconductors straingauge type, provided with a stainless steel housing 22, is then tightly fitted into the end of the device proximal to the heart. The junction is then sealed with a coating of the polyurethane solution. Thus positioned, the pressure transducer is insensitive to pressure changes within the balloon 16, but records blood pressure changes at the site where the device is positioned, such as within the aorta.
The catheter portion 14 is then interfitted with the end of the balloon 16 and the end of the copper braid 18 along the portion 34. The catheter 14 may fit inside the copper braid 18, or it may fit over the end of the balloon 16. In the latter case, the catheter consists of two concentric, heat-shrinkable Teflon tubes. The catheter 14 is 60-70 cm. long and has a 5 mm. outside diameter. The leads 26 from the transducer 24 are interwoven with the braid 18 along its length and, where the braid 18 ends, the leads may either be carried within the catheter 14, or where the catheter comprises two concentric tubes, between such tubes. As is seen, the catheter connects the intra-arterial balloon 16 and the extracorporeal unit 10.
For catheterization, the intracorporeal unit is stiffened by the insertion of a long catheter guide which reaches to the leading end of the braided tube 18 which elongates the tube 18 thereby reducing its diameter to aid insertion. When the balloon 16 has been placed within the aorta, the guide is withdrawn and the woven copper tube, acting as a reenforcing means, allows the balloon 16 to regain its flexibility.
In operation, the assembled unit is driven by a low density gas, preferably helium. lt is necessary to use a low density gas to assure its rapid passage through the narrow catheter and into the balloon 16 through the mesh of the copper tubing.
By means of the modified dual-beam oscilloscope 60, a preselected point either of the central aortic pressure, as obtained from the transducer 24, or of the ECG, controls the solenoid valve of the pumping unit causing the helium to flow into the balloon 16 very quickly to inflate such balloon 16 to its preselected nonelastic maximum diameter.
It will be obvious to those skilled in the art that various changes may be made without departing from the scope of the invention and that the invention is not to be considered limited to what is shown in the drawings and described in the specification.
What we claim is:
1. An intra-arterial cardiac assisting pump comprising:
a hollow elongated arterial catheter portion having an outer diameter sufficiently small to permit the insertion thereof into an artery, at least the outer surface thereof being provided with a biologically compatible material;
a hollow elongated, perforated reenforcing element having a leading end and extending along at least a portion of said catheter and extending beyond the end of said catheter portion, said perforated reenforcing element having approximately the same diameter as said catheter portion and forming an extension thereof;
a very thin-walled, generally inelastic, cylindrical polyurethane balloon portion surrounding said perforated reenforcing element and in gas sealing relationship with said catheter portion, said balloon portion having an area in cross section when inflated of approximately 20-80 times as great as that of the said reenforcing element;
means for periodically feeding low density gas to said balloon through said catheter and reenforcing element to periodically inflate said balloon to its maximum inelastic diameter; and
internal pressure measuring means including a pressure transducer located at and connected to the leading end of said reenforcing element, electrical leads passing from said transducer through said reenforcing element and catheter, and means to translate the electrical signal from said transducer.
2. A pump in accordance with claim 1 wherein said transducer is provided with a rigid housing, said housing comprising said connection to the end of said reenforcing element.
3. A pump in accordance with claim 2, wherein said catheter is formed of polytetrafluoroethylene.
4. A pump in accordance with claim 2 wherein said reenforcing element comprises a flexible braided tube.
5. A pump in accordance with claim 4 wherein said braided tube is metallic.
6. A pump in accordance with claim 5, wherein said polyurethane balloon has an inflated diameter on the order of l2 cm., wall thickness on the order of 0.l000.l25 mm., and a length of about l0l7 cm., and wherein said catheter and braided tube have outer diameters of about 5 and 3-5 mm., respectively.
Claims (6)
1. An intra-arterial cardiac assisting pump comprising: a hollow elongated arterial catheter portion having an outer diameter sufficiently small to permit the insertion thereof into an artery, at least the outer surface thereof being provided with a biologically compatible material; a hollow elongated, perforated reenforcing element having a leading end and extending along at least a portion of said catheter and extending beyond the end of said catheter portion, said perforated reenforcing element having approximately the same diameter as said catheter portion and forming an extension thereof; a very thin-walled, generally inelastic, cylindrical polyurethane balloon portion surrounding said perforated reenforcing element and in gas sealing relationship with said catheter portion, said balloon portion having an area in cross section when inflated of approximately 20-80 times as great as that of the said reenforcing element; means for periodically feeding low density Gas to said balloon through said catheter and reenforcing element to periodically inflate said balloon to its maximum inelastic diameter; and internal pressure measuring means including a pressure transducer located at and connected to the leading end of said reenforcing element, electrical leads passing from said transducer through said reenforcing element and catheter, and means to translate the electrical signal from said transducer.
2. A pump in accordance with claim 1 wherein said transducer is provided with a rigid housing, said housing comprising said connection to the end of said reenforcing element.
3. A pump in accordance with claim 2, wherein said catheter is formed of polytetrafluoroethylene.
4. A pump in accordance with claim 2 wherein said reenforcing element comprises a flexible braided tube.
5. A pump in accordance with claim 4 wherein said braided tube is metallic.
6. A pump in accordance with claim 5, wherein said polyurethane balloon has an inflated diameter on the order of 1-2 cm., wall thickness on the order of 0.100-0.125 mm., and a length of about 10-17 cm., and wherein said catheter and braided tube have outer diameters of about 5 and 3-5 mm., respectively.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71059668A | 1968-03-05 | 1968-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3585983A true US3585983A (en) | 1971-06-22 |
Family
ID=24854701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US710596A Expired - Lifetime US3585983A (en) | 1968-03-05 | 1968-03-05 | Cardiac assisting pump |
Country Status (1)
Country | Link |
---|---|
US (1) | US3585983A (en) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3707960A (en) * | 1970-09-03 | 1973-01-02 | Us Health | Balloon cardiac assisting pump having intraaortic electrocardiographic electrodes |
US3720199A (en) * | 1971-05-14 | 1973-03-13 | Avco Corp | Safety connector for balloon pump |
US3900033A (en) * | 1973-03-07 | 1975-08-19 | Ortho Pharma Corp | Dilator for cervical canal |
US4051840A (en) * | 1976-01-05 | 1977-10-04 | Sinai Hospital Of Detroit | Dynamic aortic patch |
US4077394A (en) * | 1976-08-25 | 1978-03-07 | Mccurdy Martin D | Integral pressure sensor probe for a cardiac assistance device |
FR2407001A1 (en) * | 1977-10-28 | 1979-05-25 | Kendall & Co | IMPROVEMENTS TO INFLATABLE BALLOON CATHETERS |
DE2915089A1 (en) * | 1978-03-06 | 1980-10-30 | Datascope Corp | BALLOON CATHEDRAL |
US4259960A (en) * | 1979-10-15 | 1981-04-07 | The Kendall Company | Catheter with non-adhering balloon |
US4276874A (en) * | 1978-11-15 | 1981-07-07 | Datascope Corp. | Elongatable balloon catheter |
WO1981002110A1 (en) * | 1980-01-30 | 1981-08-06 | T Fogarty | Dilatation catheter apparatus and method |
WO1983003204A1 (en) * | 1982-03-12 | 1983-09-29 | Webster, Wilton, W., Jr. | Autoinflatable catheter |
US4448195A (en) * | 1981-05-08 | 1984-05-15 | Leveen Harry H | Reinforced balloon catheter |
EP0119296A1 (en) * | 1983-02-18 | 1984-09-26 | Baylor College of Medicine | An apparatus for intra-aortic balloon monitoring and leak detection |
FR2577423A1 (en) * | 1985-02-20 | 1986-08-22 | Gilles Karcher | CIRCULATORY AND CORONARY ASSISTANCE PUMP WITH INTRA-AORTIC BALLOONS |
FR2577424A1 (en) * | 1985-02-20 | 1986-08-22 | Gilles Karcher | CORONARY PERFUSION PUMP |
US4646719A (en) * | 1984-06-11 | 1987-03-03 | Aries Medical Incorporated | Intra-aortic balloon catheter having flexible torque transmitting tube |
US4655748A (en) * | 1984-09-04 | 1987-04-07 | Aisin Seiki Kabushikikaisha | Cannula for infusion of fluid |
EP0234046A1 (en) * | 1985-12-31 | 1987-09-02 | Aisin Seiki Kabushiki Kaisha | Intra-aortic balloon apparatus |
US4692148A (en) * | 1986-03-28 | 1987-09-08 | Aisin Seiki Kabushiki Kaisha | Intra-aortic balloon pump apparatus and method of using same |
EP0249338A2 (en) * | 1986-06-12 | 1987-12-16 | C.R. Bard, Inc. | Retroperfusion catheter |
US4733652A (en) * | 1985-12-31 | 1988-03-29 | Aisin Seiki Kabushiki Kaisha | Intra-aortic balloon |
US4809681A (en) * | 1986-03-28 | 1989-03-07 | Aisin Seiki Kabushiki Kaisha | Electrocardiographic measurement method for controlling an intra-aortic balloon pump |
FR2653342A1 (en) * | 1989-10-23 | 1991-04-26 | Ovi | CATHETER FOR INTRA-PULMONARY ARTIFICIAL VENTILATION OF A PATIENT. |
FR2696098A1 (en) * | 1992-09-30 | 1994-04-01 | Nippon Zeon Co | Catheter for gas-pressure pulse heart pacemaker prosthesis - has inflatable balloon inserted in aorta, with tubular catheter delivering gas pressure pulses, including haemostatic valve and junction |
WO1995028974A1 (en) * | 1994-04-22 | 1995-11-02 | Bruno Maugeri | Counterpulsation device with intra-aortic balloon for continuous measurement of the left ventricular stroke volume |
US5484385A (en) * | 1994-04-21 | 1996-01-16 | C. R. Bard, Inc. | Intra-aortic balloon catheter |
US5556382A (en) * | 1995-08-29 | 1996-09-17 | Scimed Life Systems, Inc. | Balloon perfusion catheter |
WO1996034531A1 (en) | 1995-05-05 | 1996-11-07 | G. Van Wijnsberghe En Co. N.V. | Method of delivering animals to a processing area and an apparatus therefor |
US5591129A (en) * | 1994-03-02 | 1997-01-07 | Scimed Life Systems, Inc. | Perfusion balloon angioplasty catheter |
US5817001A (en) * | 1997-05-27 | 1998-10-06 | Datascope Investment Corp. | Method and apparatus for driving an intra-aortic balloon pump |
US5904666A (en) * | 1997-08-18 | 1999-05-18 | L.Vad Technology, Inc. | Method and apparatus for measuring flow rate and controlling delivered volume of fluid through a valve aperture |
US5968013A (en) * | 1997-08-21 | 1999-10-19 | Scimed Life Systems, Inc. | Multi-function dilatation catheter |
US6042532A (en) * | 1998-03-09 | 2000-03-28 | L. Vad Technology, Inc. | Pressure control system for cardiac assist device |
US6132363A (en) * | 1997-09-30 | 2000-10-17 | L.Vad Technology, Inc. | Cardiovascular support control system |
US6231498B1 (en) * | 1999-06-23 | 2001-05-15 | Pulsion Medical Systems Ag | Combined catheter system for IABP and determination of thermodilution cardiac output |
EP1207934A2 (en) * | 1999-09-03 | 2002-05-29 | A-Med Systems, Inc. | Guidable intravascular blood pump and related methods |
WO2002047751A2 (en) | 2000-12-12 | 2002-06-20 | Datascope Investment Corp. | Intra-aortic balloon catheter having a fiberoptic sensor |
WO2002047743A2 (en) | 2000-12-12 | 2002-06-20 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
US6511412B1 (en) | 1998-09-30 | 2003-01-28 | L. Vad Technology, Inc. | Cardivascular support control system |
US20030088208A1 (en) * | 1999-12-02 | 2003-05-08 | Embol-X, Inc. | Buoyant tip aspiration catheter and methods of use |
US6735532B2 (en) | 1998-09-30 | 2004-05-11 | L. Vad Technology, Inc. | Cardiovascular support control system |
US20040097813A1 (en) * | 2002-11-19 | 2004-05-20 | Jonathan Williams | Method and device for correcting in -vivo sensor drift |
US20050148810A1 (en) * | 2004-01-06 | 2005-07-07 | Riebman Jerome B. | Devices and methods for blood flow assistance |
US7087039B1 (en) | 1994-03-02 | 2006-08-08 | Scimed Life Systems, Inc. | Perfusion balloon angioplasty catheter |
US20060217588A1 (en) * | 2003-02-24 | 2006-09-28 | Yossi Gross | Fully-implantable cardiac recovery system |
US20080234537A1 (en) * | 2004-02-10 | 2008-09-25 | Yossi Gross | Extracardiac Blood Flow Amplification Device |
EP1982742A2 (en) | 2000-12-12 | 2008-10-22 | Datascope Investment Corp. | Intra-aortic balloon catheter having a fiberoptic sensor |
US7468050B1 (en) | 2002-12-27 | 2008-12-23 | L. Vad Technology, Inc. | Long term ambulatory intra-aortic balloon pump |
US7731675B2 (en) | 1999-09-03 | 2010-06-08 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US20120149970A1 (en) * | 2010-10-22 | 2012-06-14 | Nupulse, Inc. | Intra-aortic balloon pump assembly for ventricular assist device |
US8540618B2 (en) | 2003-01-31 | 2013-09-24 | L-Vad Technology, Inc. | Stable aortic blood pump implant |
US9694122B2 (en) * | 2003-01-31 | 2017-07-04 | L-Vad Technology, Inc. | Rigid body aortic blood pump implant |
US9913967B2 (en) | 2012-07-06 | 2018-03-13 | Michael Zhadkevich | Occluding catheter and dynamic method for prevention of stroke |
US10219807B2 (en) | 2012-07-06 | 2019-03-05 | Michael Zhadkevich | Occluding catheter for prevention of stroke |
WO2019222161A1 (en) * | 2018-05-15 | 2019-11-21 | Cardiovascular Systems, Inc. | Intravascular blood pump system with integrated conductor(s) in housing and methods thereof |
US11013515B2 (en) | 2012-07-06 | 2021-05-25 | Michael Zhadkevich | Occluding catheter with an optional common inflation and guideware channel and method of use |
US11857737B2 (en) | 2015-03-19 | 2024-01-02 | Prytime Medical Devices, Inc. | System and method for low-profile occlusion balloon catheter |
US12076511B2 (en) | 2019-06-14 | 2024-09-03 | Datascope Corp. | Intra-aortic balloon pump catheter and sheath seal assembly |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3266487A (en) * | 1963-06-04 | 1966-08-16 | Sundstrand Corp | Heart pump augmentation system and apparatus |
US3467101A (en) * | 1965-09-30 | 1969-09-16 | Edwards Lab Inc | Balloon catheter |
US3504662A (en) * | 1967-05-16 | 1970-04-07 | Avco Corp | Intra-arterial blood pump |
-
1968
- 1968-03-05 US US710596A patent/US3585983A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3266487A (en) * | 1963-06-04 | 1966-08-16 | Sundstrand Corp | Heart pump augmentation system and apparatus |
US3467101A (en) * | 1965-09-30 | 1969-09-16 | Edwards Lab Inc | Balloon catheter |
US3504662A (en) * | 1967-05-16 | 1970-04-07 | Avco Corp | Intra-arterial blood pump |
Non-Patent Citations (2)
Title |
---|
Khalil et al. - TRANS. AMER. SOC. ARTIFIC. INTER. ORGANS, - Vol. June 1967 - pp * |
Moulopoulos et al. - TRANS. AMER. SOC ARTIFIC. INTER. ORGANS, Vol. VIII ap. 1962 pp. 85 87 (copy in Gp 335) * |
Cited By (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3707960A (en) * | 1970-09-03 | 1973-01-02 | Us Health | Balloon cardiac assisting pump having intraaortic electrocardiographic electrodes |
US3720199A (en) * | 1971-05-14 | 1973-03-13 | Avco Corp | Safety connector for balloon pump |
US3900033A (en) * | 1973-03-07 | 1975-08-19 | Ortho Pharma Corp | Dilator for cervical canal |
US4051840A (en) * | 1976-01-05 | 1977-10-04 | Sinai Hospital Of Detroit | Dynamic aortic patch |
US4077394A (en) * | 1976-08-25 | 1978-03-07 | Mccurdy Martin D | Integral pressure sensor probe for a cardiac assistance device |
FR2407001A1 (en) * | 1977-10-28 | 1979-05-25 | Kendall & Co | IMPROVEMENTS TO INFLATABLE BALLOON CATHETERS |
DE2915089A1 (en) * | 1978-03-06 | 1980-10-30 | Datascope Corp | BALLOON CATHEDRAL |
US4276874A (en) * | 1978-11-15 | 1981-07-07 | Datascope Corp. | Elongatable balloon catheter |
US4259960A (en) * | 1979-10-15 | 1981-04-07 | The Kendall Company | Catheter with non-adhering balloon |
WO1981002110A1 (en) * | 1980-01-30 | 1981-08-06 | T Fogarty | Dilatation catheter apparatus and method |
US4292974A (en) * | 1980-01-30 | 1981-10-06 | Thomas J. Fogarty | Dilatation catheter apparatus and method |
US4448195A (en) * | 1981-05-08 | 1984-05-15 | Leveen Harry H | Reinforced balloon catheter |
WO1983003204A1 (en) * | 1982-03-12 | 1983-09-29 | Webster, Wilton, W., Jr. | Autoinflatable catheter |
US4535757A (en) * | 1982-03-12 | 1985-08-20 | Webster Wilton W Jr | Autoinflatable catheter |
EP0119296A1 (en) * | 1983-02-18 | 1984-09-26 | Baylor College of Medicine | An apparatus for intra-aortic balloon monitoring and leak detection |
US4646719A (en) * | 1984-06-11 | 1987-03-03 | Aries Medical Incorporated | Intra-aortic balloon catheter having flexible torque transmitting tube |
US4655748A (en) * | 1984-09-04 | 1987-04-07 | Aisin Seiki Kabushikikaisha | Cannula for infusion of fluid |
FR2577424A1 (en) * | 1985-02-20 | 1986-08-22 | Gilles Karcher | CORONARY PERFUSION PUMP |
EP0192574A1 (en) * | 1985-02-20 | 1986-08-27 | Medicorp Research Laboratories Corporation | Circulatory and coronary intra-aortic balloon assistance pump |
FR2577423A1 (en) * | 1985-02-20 | 1986-08-22 | Gilles Karcher | CIRCULATORY AND CORONARY ASSISTANCE PUMP WITH INTRA-AORTIC BALLOONS |
EP0192575A1 (en) * | 1985-02-20 | 1986-08-27 | Medicorp Research Laboratories Corporation | Coronary perfusion pump |
US4733652A (en) * | 1985-12-31 | 1988-03-29 | Aisin Seiki Kabushiki Kaisha | Intra-aortic balloon |
EP0234046A1 (en) * | 1985-12-31 | 1987-09-02 | Aisin Seiki Kabushiki Kaisha | Intra-aortic balloon apparatus |
US4809681A (en) * | 1986-03-28 | 1989-03-07 | Aisin Seiki Kabushiki Kaisha | Electrocardiographic measurement method for controlling an intra-aortic balloon pump |
US4692148A (en) * | 1986-03-28 | 1987-09-08 | Aisin Seiki Kabushiki Kaisha | Intra-aortic balloon pump apparatus and method of using same |
EP0249338A2 (en) * | 1986-06-12 | 1987-12-16 | C.R. Bard, Inc. | Retroperfusion catheter |
EP0249338A3 (en) * | 1986-06-12 | 1988-12-14 | C.R. Bard, Inc. | Retroperfusion catheter |
FR2653342A1 (en) * | 1989-10-23 | 1991-04-26 | Ovi | CATHETER FOR INTRA-PULMONARY ARTIFICIAL VENTILATION OF A PATIENT. |
EP0425361A1 (en) * | 1989-10-23 | 1991-05-02 | Ovi | Catheter for artificial pulmonary ventilation of a patient |
FR2696098A1 (en) * | 1992-09-30 | 1994-04-01 | Nippon Zeon Co | Catheter for gas-pressure pulse heart pacemaker prosthesis - has inflatable balloon inserted in aorta, with tubular catheter delivering gas pressure pulses, including haemostatic valve and junction |
US7087039B1 (en) | 1994-03-02 | 2006-08-08 | Scimed Life Systems, Inc. | Perfusion balloon angioplasty catheter |
US5591129A (en) * | 1994-03-02 | 1997-01-07 | Scimed Life Systems, Inc. | Perfusion balloon angioplasty catheter |
US5484385A (en) * | 1994-04-21 | 1996-01-16 | C. R. Bard, Inc. | Intra-aortic balloon catheter |
WO1995028974A1 (en) * | 1994-04-22 | 1995-11-02 | Bruno Maugeri | Counterpulsation device with intra-aortic balloon for continuous measurement of the left ventricular stroke volume |
WO1996034531A1 (en) | 1995-05-05 | 1996-11-07 | G. Van Wijnsberghe En Co. N.V. | Method of delivering animals to a processing area and an apparatus therefor |
US5961490A (en) * | 1995-08-29 | 1999-10-05 | Scimed Life Systems, Inc. | Balloon perfusion catheter |
US5720723A (en) * | 1995-08-29 | 1998-02-24 | Scimed Life Systems, Inc. | Balloon perfusion catheter |
US5556382A (en) * | 1995-08-29 | 1996-09-17 | Scimed Life Systems, Inc. | Balloon perfusion catheter |
US5817001A (en) * | 1997-05-27 | 1998-10-06 | Datascope Investment Corp. | Method and apparatus for driving an intra-aortic balloon pump |
US5904666A (en) * | 1997-08-18 | 1999-05-18 | L.Vad Technology, Inc. | Method and apparatus for measuring flow rate and controlling delivered volume of fluid through a valve aperture |
US5968013A (en) * | 1997-08-21 | 1999-10-19 | Scimed Life Systems, Inc. | Multi-function dilatation catheter |
US6132363A (en) * | 1997-09-30 | 2000-10-17 | L.Vad Technology, Inc. | Cardiovascular support control system |
US6042532A (en) * | 1998-03-09 | 2000-03-28 | L. Vad Technology, Inc. | Pressure control system for cardiac assist device |
US6511412B1 (en) | 1998-09-30 | 2003-01-28 | L. Vad Technology, Inc. | Cardivascular support control system |
US6735532B2 (en) | 1998-09-30 | 2004-05-11 | L. Vad Technology, Inc. | Cardiovascular support control system |
US6231498B1 (en) * | 1999-06-23 | 2001-05-15 | Pulsion Medical Systems Ag | Combined catheter system for IABP and determination of thermodilution cardiac output |
US6746431B2 (en) | 1999-06-23 | 2004-06-08 | Pulsion Medical Systems Ag | Combined catheter system for IABP and determination of thermodilution cardiac output |
US10238783B2 (en) | 1999-09-03 | 2019-03-26 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
EP1207934A4 (en) * | 1999-09-03 | 2009-09-02 | A Med Systems Inc | Guidable intravascular blood pump and related methods |
US9789238B2 (en) | 1999-09-03 | 2017-10-17 | Maquet Cardiovascular, Llc | Guidable intravascular blood pump and related methods |
US10300186B2 (en) | 1999-09-03 | 2019-05-28 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US9597437B2 (en) | 1999-09-03 | 2017-03-21 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US10300185B2 (en) | 1999-09-03 | 2019-05-28 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US10279095B2 (en) | 1999-09-03 | 2019-05-07 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US9561314B2 (en) | 1999-09-03 | 2017-02-07 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US10357598B2 (en) | 1999-09-03 | 2019-07-23 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US10322218B2 (en) | 1999-09-03 | 2019-06-18 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US10328191B2 (en) | 1999-09-03 | 2019-06-25 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
EP1207934A2 (en) * | 1999-09-03 | 2002-05-29 | A-Med Systems, Inc. | Guidable intravascular blood pump and related methods |
US9545468B2 (en) | 1999-09-03 | 2017-01-17 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US9327068B2 (en) | 1999-09-03 | 2016-05-03 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US8888728B2 (en) | 1999-09-03 | 2014-11-18 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US20100210895A1 (en) * | 1999-09-03 | 2010-08-19 | Aboul-Hosn Walid N | Guidable Intravascular Blood Pump and Related Methods |
US7731675B2 (en) | 1999-09-03 | 2010-06-08 | Maquet Cardiovascular Llc | Guidable intravascular blood pump and related methods |
US20030088208A1 (en) * | 1999-12-02 | 2003-05-08 | Embol-X, Inc. | Buoyant tip aspiration catheter and methods of use |
US20060287569A1 (en) * | 2000-12-12 | 2006-12-21 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
EP1982742A2 (en) | 2000-12-12 | 2008-10-22 | Datascope Investment Corp. | Intra-aortic balloon catheter having a fiberoptic sensor |
WO2002047751A2 (en) | 2000-12-12 | 2002-06-20 | Datascope Investment Corp. | Intra-aortic balloon catheter having a fiberoptic sensor |
WO2002047743A2 (en) | 2000-12-12 | 2002-06-20 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
US7229403B2 (en) | 2000-12-12 | 2007-06-12 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
US6616597B2 (en) * | 2000-12-12 | 2003-09-09 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
EP2275162A2 (en) | 2000-12-12 | 2011-01-19 | Datascope Investment Corporation | Intra-aortic balloon catheter having a fiberoptic sensor |
US20050049451A1 (en) * | 2000-12-12 | 2005-03-03 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
US6935999B2 (en) | 2000-12-12 | 2005-08-30 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
EP1652471A1 (en) | 2000-12-12 | 2006-05-03 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
US7112170B2 (en) | 2000-12-12 | 2006-09-26 | Datascope Investment Corp. | Intra-aortic balloon catheter having a dual sensor pressure sensing system |
US20040097813A1 (en) * | 2002-11-19 | 2004-05-20 | Jonathan Williams | Method and device for correcting in -vivo sensor drift |
US7025718B2 (en) | 2002-11-19 | 2006-04-11 | Jonathan Williams | Method and device for correcting in-vivo sensor drift |
US7468050B1 (en) | 2002-12-27 | 2008-12-23 | L. Vad Technology, Inc. | Long term ambulatory intra-aortic balloon pump |
US9694122B2 (en) * | 2003-01-31 | 2017-07-04 | L-Vad Technology, Inc. | Rigid body aortic blood pump implant |
US9433715B2 (en) | 2003-01-31 | 2016-09-06 | L-Vad Technology, Inc. | Stable aortic blood pump implant |
US8540618B2 (en) | 2003-01-31 | 2013-09-24 | L-Vad Technology, Inc. | Stable aortic blood pump implant |
US7614998B2 (en) | 2003-02-24 | 2009-11-10 | Yossi Gross | Fully-implantable cardiac recovery system |
US20060217588A1 (en) * | 2003-02-24 | 2006-09-28 | Yossi Gross | Fully-implantable cardiac recovery system |
US7066874B2 (en) | 2004-01-06 | 2006-06-27 | Bay Innovation Group, Llc | Devices and methods for blood flow assistance |
US20050148810A1 (en) * | 2004-01-06 | 2005-07-07 | Riebman Jerome B. | Devices and methods for blood flow assistance |
US20080234537A1 (en) * | 2004-02-10 | 2008-09-25 | Yossi Gross | Extracardiac Blood Flow Amplification Device |
US7811221B2 (en) | 2004-02-10 | 2010-10-12 | Yossi Gross | Extracardiac blood flow amplification device |
US20120149970A1 (en) * | 2010-10-22 | 2012-06-14 | Nupulse, Inc. | Intra-aortic balloon pump assembly for ventricular assist device |
US8684905B2 (en) * | 2010-10-22 | 2014-04-01 | Nupulse, Inc. | Intra-aortic balloon pump assembly for ventricular assist device |
US8608637B2 (en) | 2010-10-22 | 2013-12-17 | Nupulse, Inc. | Internal drive line for ventricular assist device |
US10219807B2 (en) | 2012-07-06 | 2019-03-05 | Michael Zhadkevich | Occluding catheter for prevention of stroke |
US9913967B2 (en) | 2012-07-06 | 2018-03-13 | Michael Zhadkevich | Occluding catheter and dynamic method for prevention of stroke |
US10765841B2 (en) | 2012-07-06 | 2020-09-08 | Michael Zhadkevich | Occluding catheter and dynamic method for prevention of stroke |
US11013515B2 (en) | 2012-07-06 | 2021-05-25 | Michael Zhadkevich | Occluding catheter with an optional common inflation and guideware channel and method of use |
US11857737B2 (en) | 2015-03-19 | 2024-01-02 | Prytime Medical Devices, Inc. | System and method for low-profile occlusion balloon catheter |
WO2019222161A1 (en) * | 2018-05-15 | 2019-11-21 | Cardiovascular Systems, Inc. | Intravascular blood pump system with integrated conductor(s) in housing and methods thereof |
US11141580B2 (en) | 2018-05-15 | 2021-10-12 | Cardiovascular Systems, Inc. | Intravascular blood pump system with integrated conductor(s) in housing and methods thereof |
US12076511B2 (en) | 2019-06-14 | 2024-09-03 | Datascope Corp. | Intra-aortic balloon pump catheter and sheath seal assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3585983A (en) | Cardiac assisting pump | |
US4902272A (en) | Intra-arterial cardiac support system | |
US3692018A (en) | Cardiac assistance device | |
US3504662A (en) | Intra-arterial blood pump | |
AU625556B2 (en) | High-frequency transvalvular axisymmetric blood pump | |
US3426744A (en) | Heart pump cannula | |
US4527549A (en) | Method of and means for intraaortic assist | |
US3939820A (en) | Single-chamber, multi-section balloon for cardiac assistance | |
US4456000A (en) | Expandable occlusion apparatus | |
US4077394A (en) | Integral pressure sensor probe for a cardiac assistance device | |
US4290428A (en) | Catheter with bulb | |
JPS5867266A (en) | Expansion device | |
US6830559B2 (en) | Intra-aortic balloon catheter having a collapsible variable diameter inner tube | |
US4592340A (en) | Artificial catheter means | |
EP0471029B1 (en) | Heart-assist balloon pump | |
US3791374A (en) | Programmer for segmented balloon pump | |
JP3820270B2 (en) | Intra-aortic balloon catheter | |
US3791767A (en) | Dialysis pumping system | |
US5861010A (en) | Device for temporarily closing a canal in a body, in particular for assisting the function of the heart by application of counter-pressure | |
WO2023134639A1 (en) | Blood circulation assisting device and control system | |
JP2012511364A (en) | Beatable medical device designed for use in extracorporeal surgery | |
CN208573789U (en) | Total aortic arch replacement and bracket elephant trunk technique aorta clamping device | |
US20060178604A1 (en) | Blood pumping system | |
Grädel et al. | Successful hemodynamic results with a new, U-shaped auxiliary ventricle | |
US3409913A (en) | Connector for implantable prosthetic devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: L'VAD TECHNOLOGY, INC., 70 GALLOGLY RD., PONTIAC, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO CONDITIONS RECITED;ASSIGNOR:SINAI HOSPITAL OF DETROIT;REEL/FRAME:004699/0248 Effective date: 19850919 Owner name: L'VAD TECHNOLOGY, INC., A CORP. OF MI,MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SINAI HOSPITAL OF DETROIT;REEL/FRAME:004699/0248 Effective date: 19850919 |