[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3585983A - Cardiac assisting pump - Google Patents

Cardiac assisting pump Download PDF

Info

Publication number
US3585983A
US3585983A US710596A US3585983DA US3585983A US 3585983 A US3585983 A US 3585983A US 710596 A US710596 A US 710596A US 3585983D A US3585983D A US 3585983DA US 3585983 A US3585983 A US 3585983A
Authority
US
United States
Prior art keywords
catheter
balloon
pump
reenforcing element
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US710596A
Inventor
Adrian Kantrowitz
Paul S Freed
Wladimir Schilt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L'VAD TECHNOLOGY Inc A CORP OF MI
Maimonides Medical Center
WLADIMIR SCHILT
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3585983A publication Critical patent/US3585983A/en
Assigned to L'VAD TECHNOLOGY, INC., A CORP. OF MI reassignment L'VAD TECHNOLOGY, INC., A CORP. OF MI ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SINAI HOSPITAL OF DETROIT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/531Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • A61M60/139Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/295Balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/497Details relating to driving for balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/841Constructional details other than related to driving of balloon pumps for circulatory assistance
    • A61M60/843Balloon aspects, e.g. shapes or materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0001Catheters; Hollow probes for pressure measurement
    • A61M2025/0002Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • A61M60/274Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders the inlet and outlet being the same, e.g. para-aortic counter-pulsation blood pumps

Definitions

  • An intra-arterial cardiac assisting device having a nonelastic polyurethane balloon which is inflated periodically for diastolic augmentation by utilization of helium.
  • the leading end of the device which is passed into the aorta as a catheter, has a pressure transducer therein.
  • the present invention relates to a cardiac assisting pump, and, more particularly, to an autosynchronous intra-arterial balloon pumping system for temporary cardiac assistance.
  • It another object of the present invention to provide an autosynchronous balloon pumping system for temporary cardiac assistance. It is another object of the present invention to provide a novel intra-arterial cardiac assisting device providing a practical means of rapid, effective assistance to the patient in profound, refractory cardiogenic shock.
  • FIG. 1 is a partly broken away, partly schematic diagram of one embodiment of an intra-arterial cardiac assisting pump in i accordance with the present invention
  • FIG. 2 is a view like FIG. 1, showing another embodiment of the present invention.
  • FIG. 3 is a schematic illustration of an autosynchronous intra-arterial cardiac assisting balloon pump, showing ex- .into an artery, and which subsequently takes on the shape of tracorporeal components.
  • An intra-arterial assisting device in accordance with the present invention comprises, in general, two major components, namely an extracorporeal unit 10 (FIG. 3) and an intracorporeal unit 12.
  • FIG. I A first embodiment of an intracorporeal unit 12 is shown in FIG. I, while a second embodiment, similar in many respects to the embodiment in FIG. 1, is shown in FIG. 2.
  • the intracorporeal unit 12 includes a hollow elongated arterial catheter portion 14, an inflatable, nonelastic balloon portion 16, and a perforated reenforcing portion 18.
  • the extracorporeal unit 10 includes, very generally, a source 50 of gas under pressure (preferably helium), a solenoid valve unit 52 for periodically feeding the helium into the intracorporeal unit 12 and suitable electronic means for receiving a signal from the body in which the intra-arterial cardiac assisting device has been placed (such as ECG signals through leads 58 and $6) and using such signal for the opening and closing periodically of the solenoid valve 52.
  • a source 50 of gas under pressure preferably helium
  • a solenoid valve unit 52 for periodically feeding the helium into the intracorporeal unit 12
  • suitable electronic means for receiving a signal from the body in which the intra-arterial cardiac assisting device has been placed (such as ECG signals through leads 58 and $6) and using such signal for the opening and closing periodically of the solenoid valve 52.
  • the intra-arterialcardiac assisting device of the present invention works in the following manner. Normally, the heart pumps blood into the aorta, the bodys main artery leaving the heart, during a period of time termed cardiac systole. The following period of time, during which the heart is not pumping, but is filling with blood, in termed cardiac diastole.
  • the intracorporeal unit When the heart is in need of assistance, the intracorporeal unit is passed through the bodys skin into a suitable artery (such as the femoral artery) and passed toward the heart so that the balloon 16 is in the thoracic aorta just below the location where the subclavian artery branches from the aorta.
  • a suitable artery such as the femoral artery
  • the solenoid valve When the electronic means embodied in the extracorporeal components receives an appropriate signal from the body, the solenoid valve is actuated so as to admit helium through the catheter I4, through the perforations in the reenforcing por-,
  • Deflation of the balloon 16 at the end of cardiac diastole aids the heart by reducing the pressure in the aorta which the heart must normally pump against during cardiac systole. This permits the heart to pump a large volume of blood with each contraction and also reduces the pressure in the left ventricle, or main pumping chamber of the heart, at the end of cardiac diastole.
  • the combined effects of inflation and deflation of the balloon in this manner provide significant aid to the heart in need of assistance.
  • the leading end 20 of the device comprises a stainless steel housing 22 in which is incorporated .
  • a pressure transducer 24 having suitable insulated electrical ,leads 26, which pass backwardly through the perforated reenforcing element 18 and along the catheter portion 14, as illustrated, to a junction 28 and then to an electrical lead carrying .portion 30 terminating in an electrical outlet 32.
  • the housing 22 is preferably formed of stainless steel, it will be understood that any rigid, biologically inert material may be used for such housing. In addition, other rigid materials can be used and can be coated with a biologically compatible material such as polyurethane.
  • the housing 22 is connected to the end of the hollow, elongated, perforated reenforcing element 18, such as by being inserted therein.
  • reenforcing element 18 preferably comprises a flexible braided tube of metal wires, such as copper braid, conventionally used as electrical shielding.
  • copper braid has been found to be highly advantageous since it is flexible and conforms to the shape of the artery during operation of the intracorporeal unit, and also permits the flow therethrough of the inflating gas into the balloon 16.
  • the reenforcing element 18 comprises the copper braid
  • the lead 26 from the pressure sensor transducer is woven into the copper braid l8.
  • the copper braid l8 and the catheter 14 are coextensive, the copper braid being soldered or otherwise adhered tight over the preferably etched end of the catheter l4.
  • the very thin walled, flexible, generally nonelastic, inflatable balloon 16 desirably formed of polyurethane.
  • Polyurethane is the preferred material since it is not only biologically compatible, but it has the best combination of desirable physical properties such as abrasion resistance, ease of handling, tensile strength, and resistance to elastic inflation.
  • the catheter portion 14 is, as described above, a hollow elongated tube adapted, along with the housing 22, the reenforcing element 18 and the balloon 16, to be inserted into the artery. It is, accordingly, essential that the outer diameter of the catheter 14 be sufficiently small to permit its insertion into the artery.
  • the catheter 14 may be formed of any suitable material which is sufiiciently flexible to permit it to be bent, or coiled, it is necessary that its outer surface be provided with a biologically compatible material.
  • the catheter 14 may be formed of vinyl plastic material coated with polyurethane; however, it is preferably formed of polytetrafluoroethylene which is, itself, biologically compatible and which has other desirable properties. Particular advantages of polytetrafluorethylene include its inertness and its very smooth surface.
  • the catheter 14 be formed of two concentric polytetrafluoroethylene tubes, the outer of which has been heat shrunk about the inner, the sensor leads 26 being retained between the two concentric tubes.
  • the catheter portion 14 is sufficiently long so that the balloon 16 may be deposited in the aorta while the junction 28 remains outside the body.
  • the catheter l4 continues beyond the junction 28, as an extracorporeal tube 36, terminating in a connector 38 for attachment to the solenoid valve unit 52.
  • the intracorporeal unit 12 of FIG. 2 is, in many respects,
  • an extracorporeal housing 40 is provided of suitable semiflexible plastic, such as molded polyurethane, into which the gas connection 3% and the electrical connection 32 are embedded for improved ease of connection with the solenoid valve unit 52.
  • polyurethane is extruded over the copper braid 18. Since all external surfaces of the entire assembly except for the connectors to the solenoid valve 52 and the electrical outlet are made of polyurethane, very highly reliable junctions between these surfaces can be achieved.
  • the extracorporeal unit includes, besides the source 50 of helium under pressure and suitable passageways and pressure regulating valves and metering devices therealong passing to the solenoid valve unit 52, as part of the control means, a modified double beam oscilloscope 60 and a recorder 62.
  • the patient's ECG is recorded through leads 58 and passed through to the oscilloscope 60 through the leads 56.
  • Central aortic pressure is measured by the pressure transducer elements 24 and 24' and passed through the leads 26 to the oscilloscope 60 and from these through leads 66 to the recorder 62.
  • the oscilloscope 60 passes a signal through a lead 64, based on information received through the leads 58 and 26 from the body, to control the opening and closing of the solenoid valve 52.
  • a preselected point of the ECG or of the central aortic pressure controls the solenoid valve 52. Phase and duration of inflation cycle can be adjusted independently.
  • the function of the electronic control is to recognize the occurrence of an R-wave on the ECG initiate a time delay up to the end of cardiac systole.
  • the electronic control energizes the solenoid valve and maintains it energized until the end of cardiac diastole.
  • the commercial oscilloscope is modified by the addition of a relay, controlled by the 13+ gate, which connects power to the solenoid valve.
  • An extracorporeal unit 10 such as shown in FIG. 3, is provided with a source of helium 50 under pressure and an electronically controlled solenoid valve 52.
  • the intracorporeal unit comprises a flexible polyurethane balloon 16 with a Teflon" (polytetrafluorethylene) catheter 14 attached to one end, the entire intracorporeal unit being capable of being sterilized.
  • the balloon 16 is made by coating a glass mold with a l0- l5 percent polyurethane tetrahydrofuran solution.
  • the resulting balloon has a wall thickness of only 0.100-0125 mm., but the material is so tough that it can withstand pressure of 250 mm. Hg. without undergoing elastic deformation, and it will withstand considerably greater pressure before bursting.
  • the resultant balloon 16 thereby provides for a wide margin of safety during actual use.
  • the so-formed balloon may be l0- l7 cm. long and 1-2 cm. in diameter, depending upon the size of the aorta for which it is intended and the pumping volume required.
  • the balloon 16 tapers at each end to a cylindrical sleeve which is about 3 centimeters long and about 0.4 to 0.5 centimeter in diameter.
  • a section of woven flexible copper tubing (electrical shield- 7 ing), approximately 3-5 mm. in diameter, is introduced into the balloon 16, spanning its length, to serve as the elongated, perforated reenforcing element 18.
  • a pressure transducer 24 of the semiconductors straingauge type is then tightly fitted into the end of the device proximal to the heart. The junction is then sealed with a coating of the polyurethane solution. Thus positioned, the pressure transducer is insensitive to pressure changes within the balloon 16, but records blood pressure changes at the site where the device is positioned, such as within the aorta.
  • the catheter portion 14 is then interfitted with the end of the balloon 16 and the end of the copper braid 18 along the portion 34.
  • the catheter 14 may fit inside the copper braid 18, or it may fit over the end of the balloon 16.
  • the catheter consists of two concentric, heat-shrinkable Teflon tubes.
  • the catheter 14 is 60-70 cm. long and has a 5 mm. outside diameter.
  • the leads 26 from the transducer 24 are interwoven with the braid 18 along its length and, where the braid 18 ends, the leads may either be carried within the catheter 14, or where the catheter comprises two concentric tubes, between such tubes. As is seen, the catheter connects the intra-arterial balloon 16 and the extracorporeal unit 10.
  • the intracorporeal unit is stiffened by the insertion of a long catheter guide which reaches to the leading end of the braided tube 18 which elongates the tube 18 thereby reducing its diameter to aid insertion.
  • the guide is withdrawn and the woven copper tube, acting as a reenforcing means, allows the balloon 16 to regain its flexibility.
  • the assembled unit is driven by a low density gas, preferably helium. lt is necessary to use a low density gas to assure its rapid passage through the narrow catheter and into the balloon 16 through the mesh of the copper tubing.
  • An intra-arterial cardiac assisting pump comprising:
  • a hollow elongated arterial catheter portion having an outer diameter sufficiently small to permit the insertion thereof into an artery, at least the outer surface thereof being provided with a biologically compatible material;
  • a hollow elongated, perforated reenforcing element having a leading end and extending along at least a portion of said catheter and extending beyond the end of said catheter portion, said perforated reenforcing element having approximately the same diameter as said catheter portion and forming an extension thereof;
  • internal pressure measuring means including a pressure transducer located at and connected to the leading end of said reenforcing element, electrical leads passing from said transducer through said reenforcing element and catheter, and means to translate the electrical signal from said transducer.
  • a pump in accordance with claim 2 wherein said reenforcing element comprises a flexible braided tube.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Geometry (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • External Artificial Organs (AREA)

Abstract

An intra-arterial cardiac assisting device is provided having a nonelastic polyurethane balloon which is inflated periodically for diastolic augmentation by utilization of helium. The leading end of the device, which is passed into the aorta as a catheter, has a pressure transducer therein.

Description

United States Patent [7 2] Inventors Adrian Kautrowltz;
Wladlmir Schilt; Paul S. Freed, all 01 c/o Malmonides Medical Center 4802 Tenth St., Brooklyn, N.Y. 11219 [21 Appl. No. 710,596
[22] Filed Mar. 5, 1968 [45] Patented June 22, 1971 [54] CARDIAC ASSISTING PUMP 6 Claims, 3 Drawing Figs.
[52] U.S.Cl. 128/1, 1281214, 128/344 [51] lnt.Cl A6lb 19/00 [50] FleldoiSeareh l28/1,2l4, 344, DIG. 3, 348
[56] References Cited UNITED STATES PATENTS 3,504,662 4/1970 Jones 128/ 1 3,266,487 8/1966 Watkins et a1. 128/1 3,467,101 9/1969 Fogarty et al 128/348 OTHER REFERENCES Moulopoulos et a1. TRANS. AMER. SOC ARTlFlC. INTER. ORGANS, V01. VIII ap. 1962 pp. 85- 87 (copy in Op 335) Khalil et al. TRANS. AMER. SOC. ARTlFlC. lNTER.
ORGANS, Vol. June 1967 pp Primary ExaminerDa1ton L. Truluck Attorney-Browdy, Neimark and Norman J. Latker ABSTRACT: An intra-arterial cardiac assisting device is provided having a nonelastic polyurethane balloon which is inflated periodically for diastolic augmentation by utilization of helium. The leading end of the device, which is passed into the aorta as a catheter, has a pressure transducer therein.
CARDIAC ASSIS'I'ING PUMP The present invention relates to a cardiac assisting pump, and, more particularly, to an autosynchronous intra-arterial balloon pumping system for temporary cardiac assistance.
Fourteen of every I patients with acute myocardial infarction suffer profound cardiogenic shock. Of these patients, from 9to l3 are unresponsive to medical therapy and need some form of effective circulatory assistance. Accordingly, a vital need has existed for quickly combating profound cardiogenic shock in a relatively simple mechanical manner. While the treatment of cardiogenic shock has undergone numerous developments in recent years, primarily in the field of drug therapy, the mechanical devices which have been suggested (e.g. for elevating diastolic pressure while reducing systolic pressure) have involved extensive surgical procedures. Accordingly, the need has existed for speedy initiation of mechanical diastolic augmentation, and the best mechanical approach heretofore contemplated has involved intra-arterial balloon pumping.
In 1962 Moulopoulos et al. used an intra-arterial latex rubber balloon as a device for diastolic augmentation. In' 1962 Clauss et al. also experimented with intra-arterial balloon pumping. However. the devices contemplated were ,not generally satisfactory. Problems in prior art devices included providing a satisfactory catheter diameter, obtaining sufficiently biologically compatible materials from which the devices could be formed. providing a sufficiently great bore within the catheter to permit satisfactory inflation. the safety factor of the balloon itself. correct timing of the pumping and proper insertion of the intra-arterial pump into the aorta.
' Moulopoulos. Topaz and Kolff Diastolic Balloon Pumping in the Aorta-A Mechanical Assistance to the Failing Circulation. American Heart Journal (I962) Vol. 63. p. 669.
2 Clauss, Missier, Reed and Tice "Assisted Circulation by Counterpulsation with an lntraaortic Balloon. .\lethods and Effects." Dig. th Annual Conf. on Engineering in Medicine and Biology. I962. p.44.
It is therefore an object of the present invention to overcome the deficiencies of the prior art, such as indicated above.
It is another object of the present invention to provide for intra-arterial cardiac assistance in a new, improved and unobvious manner and to provide a novel intra-arterial cardiac assisting pump.
' It another object of the present invention to provide an autosynchronous balloon pumping system for temporary cardiac assistance. It is another object of the present invention to provide a novel intra-arterial cardiac assisting device providing a practical means of rapid, effective assistance to the patient in profound, refractory cardiogenic shock.
It is another object of the present invention to provide an intra-arterial cardiac assisting pump having a relatively small diameter catheter, utilizing materials which are biologicallyv compatible and utilizing a low density driving gas, which pump is effective in its intended purpose.
It is another object of the present invention to provide an autosynchronous balloon pumping system for temporary cardiac assistance having an intra-arterial portion which senses,
pressures in the aorta and assists in the correct timing of thei 60 pumping.
It is another object of the present invention to provide intraarterial cardiac assisting pump which can be simply inserted the aorta during use.
These and other objects of the nature and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the drawings wherein:
FIG. 1 is a partly broken away, partly schematic diagram of one embodiment of an intra-arterial cardiac assisting pump in i accordance with the present invention;
FIG. 2 is a view like FIG. 1, showing another embodiment of the present invention; and
FIG. 3 is a schematic illustration of an autosynchronous intra-arterial cardiac assisting balloon pump, showing ex- .into an artery, and which subsequently takes on the shape of tracorporeal components.
An intra-arterial assisting device in accordance with the present invention comprises, in general, two major components, namely an extracorporeal unit 10 (FIG. 3) and an intracorporeal unit 12. A first embodiment of an intracorporeal unit 12 is shown in FIG. I, while a second embodiment, similar in many respects to the embodiment in FIG. 1, is shown in FIG. 2.
Briefly, the intracorporeal unit 12 includes a hollow elongated arterial catheter portion 14, an inflatable, nonelastic balloon portion 16, and a perforated reenforcing portion 18. The extracorporeal unit 10 includes, very generally, a source 50 of gas under pressure (preferably helium), a solenoid valve unit 52 for periodically feeding the helium into the intracorporeal unit 12 and suitable electronic means for receiving a signal from the body in which the intra-arterial cardiac assisting device has been placed (such as ECG signals through leads 58 and $6) and using such signal for the opening and closing periodically of the solenoid valve 52.
The intra-arterialcardiac assisting device of the present invention works in the following manner. Normally, the heart pumps blood into the aorta, the bodys main artery leaving the heart, during a period of time termed cardiac systole. The following period of time, during which the heart is not pumping, but is filling with blood, in termed cardiac diastole.
When the heart is in need of assistance, the intracorporeal unit is passed through the bodys skin into a suitable artery (such as the femoral artery) and passed toward the heart so that the balloon 16 is in the thoracic aorta just below the location where the subclavian artery branches from the aorta.
When the electronic means embodied in the extracorporeal components receives an appropriate signal from the body, the solenoid valve is actuated so as to admit helium through the catheter I4, through the perforations in the reenforcing por-,
tion 18, and finally into the balloon 16 at the beginning of cardiac diastole, thus inflating the balloon. During cardiac diastole the resistance to flow in the vessels of the heart, i.e. the coronary arteries, is at a minimum. Inflation of the balloon 16 at this time increases the flow through the coronary arteries and pumps blood along the aorta toward the neck and head and toward the kidneys, liver, stomach and other organs.
Deflation of the balloon 16 at the end of cardiac diastole aids the heart by reducing the pressure in the aorta which the heart must normally pump against during cardiac systole. This permits the heart to pump a large volume of blood with each contraction and also reduces the pressure in the left ventricle, or main pumping chamber of the heart, at the end of cardiac diastole. The combined effects of inflation and deflation of the balloon in this manner provide significant aid to the heart in need of assistance.
Describing the intracorporeal unit 12 of FIG. 1 in greater detail, it will be seen that the leading end 20 of the device comprises a stainless steel housing 22 in which is incorporated .a pressure transducer 24 having suitable insulated electrical ,leads 26, which pass backwardly through the perforated reenforcing element 18 and along the catheter portion 14, as illustrated, to a junction 28 and then to an electrical lead carrying .portion 30 terminating in an electrical outlet 32. While the housing 22 is preferably formed of stainless steel, it will be understood that any rigid, biologically inert material may be used for such housing. In addition, other rigid materials can be used and can be coated with a biologically compatible material such as polyurethane. f The housing 22is connected to the end of the hollow, elongated, perforated reenforcing element 18, such as by being inserted therein. Such reenforcing element 18 preferably comprises a flexible braided tube of metal wires, such as copper braid, conventionally used as electrical shielding. Such copper braid has been found to be highly advantageous since it is flexible and conforms to the shape of the artery during operation of the intracorporeal unit, and also permits the flow therethrough of the inflating gas into the balloon 16. Where the reenforcing element 18 comprises the copper braid, the lead 26 from the pressure sensor transducer is woven into the copper braid l8.
Along a portion 34 of the device 12 of FIG. 1, the copper braid l8 and the catheter 14 are coextensive, the copper braid being soldered or otherwise adhered tight over the preferably etched end of the catheter l4. Overlying the entire copper braid 18, at least a portion of the housing 22 (preferably the entire housing 22) and the entire length of the junction portion 34 is the very thin walled, flexible, generally nonelastic, inflatable balloon 16, desirably formed of polyurethane. Polyurethane is the preferred material since it is not only biologically compatible, but it has the best combination of desirable physical properties such as abrasion resistance, ease of handling, tensile strength, and resistance to elastic inflation.
The catheter portion 14 is, as described above, a hollow elongated tube adapted, along with the housing 22, the reenforcing element 18 and the balloon 16, to be inserted into the artery. It is, accordingly, essential that the outer diameter of the catheter 14 be sufficiently small to permit its insertion into the artery. While the catheter 14 may be formed of any suitable material which is sufiiciently flexible to permit it to be bent, or coiled, it is necessary that its outer surface be provided with a biologically compatible material. Thus, the catheter 14 may be formed of vinyl plastic material coated with polyurethane; however, it is preferably formed of polytetrafluoroethylene which is, itself, biologically compatible and which has other desirable properties. Particular advantages of polytetrafluorethylene include its inertness and its very smooth surface.
It is preferred in the FIG. 1 embodiment that the catheter 14 be formed of two concentric polytetrafluoroethylene tubes, the outer of which has been heat shrunk about the inner, the sensor leads 26 being retained between the two concentric tubes. it will be understood, of course, that the catheter portion 14 is sufficiently long so that the balloon 16 may be deposited in the aorta while the junction 28 remains outside the body. The catheter l4 continues beyond the junction 28, as an extracorporeal tube 36, terminating in a connector 38 for attachment to the solenoid valve unit 52.
. The intracorporeal unit 12 of FIG. 2 is, in many respects,
similar to that described above in relation to FIG. 1. The primary distinctions include the use of a temperature-compensated pressure sensor having two transducer elements 24 and 24', and the use of a copper braid 18 which extends not only the length of the balloon 16 and along only a small portion of the catheter 14, but which spans the catheter 14 along its entire length, the leads 26 from the pressure transducer elements 24 and 24' being woven into the copper braid 18 along its entire length. In addition, an extracorporeal housing 40 is provided of suitable semiflexible plastic, such as molded polyurethane, into which the gas connection 3% and the electrical connection 32 are embedded for improved ease of connection with the solenoid valve unit 52. Also, instead of the polytetrafluorethylene catheter, polyurethane is extruded over the copper braid 18. Since all external surfaces of the entire assembly except for the connectors to the solenoid valve 52 and the electrical outlet are made of polyurethane, very highly reliable junctions between these surfaces can be achieved.
The extracorporeal unit includes, besides the source 50 of helium under pressure and suitable passageways and pressure regulating valves and metering devices therealong passing to the solenoid valve unit 52, as part of the control means, a modified double beam oscilloscope 60 and a recorder 62. The patient's ECG is recorded through leads 58 and passed through to the oscilloscope 60 through the leads 56. Central aortic pressure is measured by the pressure transducer elements 24 and 24' and passed through the leads 26 to the oscilloscope 60 and from these through leads 66 to the recorder 62. In turn, the oscilloscope 60 passes a signal through a lead 64, based on information received through the leads 58 and 26 from the body, to control the opening and closing of the solenoid valve 52. By means of the modified double beam oscilloscope 60, a preselected point of the ECG or of the central aortic pressure controls the solenoid valve 52. Phase and duration of inflation cycle can be adjusted independently.
The function of the electronic control (e.g. modified dual beam Tektronix 565 oscilloscope) is to recognize the occurrence of an R-wave on the ECG initiate a time delay up to the end of cardiac systole. At the beginning of cardiac diastole, the electronic control energizes the solenoid valve and maintains it energized until the end of cardiac diastole. For example, the commercial oscilloscope is modified by the addition of a relay, controlled by the 13+ gate, which connects power to the solenoid valve.
The following specific example of the manufacture and use of an intra-arterial cardiac assisting pump is presented by way of illustration and not by way of limitation, so that those skilled in the art may better understand how the present invention may be practiced.
An extracorporeal unit 10, such as shown in FIG. 3, is provided with a source of helium 50 under pressure and an electronically controlled solenoid valve 52. The intracorporeal unit comprises a flexible polyurethane balloon 16 with a Teflon" (polytetrafluorethylene) catheter 14 attached to one end, the entire intracorporeal unit being capable of being sterilized.
The balloon 16 is made by coating a glass mold with a l0- l5 percent polyurethane tetrahydrofuran solution. The resulting balloon has a wall thickness of only 0.100-0125 mm., but the material is so tough that it can withstand pressure of 250 mm. Hg. without undergoing elastic deformation, and it will withstand considerably greater pressure before bursting. The resultant balloon 16 thereby provides for a wide margin of safety during actual use. The so-formed balloon may be l0- l7 cm. long and 1-2 cm. in diameter, depending upon the size of the aorta for which it is intended and the pumping volume required. As illustrated in FIGS. 1 and 2, the balloon 16 tapers at each end to a cylindrical sleeve which is about 3 centimeters long and about 0.4 to 0.5 centimeter in diameter.
A section of woven flexible copper tubing (electrical shield- 7 ing), approximately 3-5 mm. in diameter, is introduced into the balloon 16, spanning its length, to serve as the elongated, perforated reenforcing element 18.
A pressure transducer 24 of the semiconductors straingauge type, provided with a stainless steel housing 22, is then tightly fitted into the end of the device proximal to the heart. The junction is then sealed with a coating of the polyurethane solution. Thus positioned, the pressure transducer is insensitive to pressure changes within the balloon 16, but records blood pressure changes at the site where the device is positioned, such as within the aorta.
The catheter portion 14 is then interfitted with the end of the balloon 16 and the end of the copper braid 18 along the portion 34. The catheter 14 may fit inside the copper braid 18, or it may fit over the end of the balloon 16. In the latter case, the catheter consists of two concentric, heat-shrinkable Teflon tubes. The catheter 14 is 60-70 cm. long and has a 5 mm. outside diameter. The leads 26 from the transducer 24 are interwoven with the braid 18 along its length and, where the braid 18 ends, the leads may either be carried within the catheter 14, or where the catheter comprises two concentric tubes, between such tubes. As is seen, the catheter connects the intra-arterial balloon 16 and the extracorporeal unit 10.
For catheterization, the intracorporeal unit is stiffened by the insertion of a long catheter guide which reaches to the leading end of the braided tube 18 which elongates the tube 18 thereby reducing its diameter to aid insertion. When the balloon 16 has been placed within the aorta, the guide is withdrawn and the woven copper tube, acting as a reenforcing means, allows the balloon 16 to regain its flexibility.
In operation, the assembled unit is driven by a low density gas, preferably helium. lt is necessary to use a low density gas to assure its rapid passage through the narrow catheter and into the balloon 16 through the mesh of the copper tubing.
By means of the modified dual-beam oscilloscope 60, a preselected point either of the central aortic pressure, as obtained from the transducer 24, or of the ECG, controls the solenoid valve of the pumping unit causing the helium to flow into the balloon 16 very quickly to inflate such balloon 16 to its preselected nonelastic maximum diameter.
It will be obvious to those skilled in the art that various changes may be made without departing from the scope of the invention and that the invention is not to be considered limited to what is shown in the drawings and described in the specification.
What we claim is:
1. An intra-arterial cardiac assisting pump comprising:
a hollow elongated arterial catheter portion having an outer diameter sufficiently small to permit the insertion thereof into an artery, at least the outer surface thereof being provided with a biologically compatible material;
a hollow elongated, perforated reenforcing element having a leading end and extending along at least a portion of said catheter and extending beyond the end of said catheter portion, said perforated reenforcing element having approximately the same diameter as said catheter portion and forming an extension thereof;
a very thin-walled, generally inelastic, cylindrical polyurethane balloon portion surrounding said perforated reenforcing element and in gas sealing relationship with said catheter portion, said balloon portion having an area in cross section when inflated of approximately 20-80 times as great as that of the said reenforcing element;
means for periodically feeding low density gas to said balloon through said catheter and reenforcing element to periodically inflate said balloon to its maximum inelastic diameter; and
internal pressure measuring means including a pressure transducer located at and connected to the leading end of said reenforcing element, electrical leads passing from said transducer through said reenforcing element and catheter, and means to translate the electrical signal from said transducer.
2. A pump in accordance with claim 1 wherein said transducer is provided with a rigid housing, said housing comprising said connection to the end of said reenforcing element.
3. A pump in accordance with claim 2, wherein said catheter is formed of polytetrafluoroethylene.
4. A pump in accordance with claim 2 wherein said reenforcing element comprises a flexible braided tube.
5. A pump in accordance with claim 4 wherein said braided tube is metallic.
6. A pump in accordance with claim 5, wherein said polyurethane balloon has an inflated diameter on the order of l2 cm., wall thickness on the order of 0.l000.l25 mm., and a length of about l0l7 cm., and wherein said catheter and braided tube have outer diameters of about 5 and 3-5 mm., respectively.

Claims (6)

1. An intra-arterial cardiac assisting pump comprising: a hollow elongated arterial catheter portion having an outer diameter sufficiently small to permit the insertion thereof into an artery, at least the outer surface thereof being provided with a biologically compatible material; a hollow elongated, perforated reenforcing element having a leading end and extending along at least a portion of said catheter and extending beyond the end of said catheter portion, said perforated reenforcing element having approximately the same diameter as said catheter portion and forming an extension thereof; a very thin-walled, generally inelastic, cylindrical polyurethane balloon portion surrounding said perforated reenforcing element and in gas sealing relationship with said catheter portion, said balloon portion having an area in cross section when inflated of approximately 20-80 times as great as that of the said reenforcing element; means for periodically feeding low density Gas to said balloon through said catheter and reenforcing element to periodically inflate said balloon to its maximum inelastic diameter; and internal pressure measuring means including a pressure transducer located at and connected to the leading end of said reenforcing element, electrical leads passing from said transducer through said reenforcing element and catheter, and means to translate the electrical signal from said transducer.
2. A pump in accordance with claim 1 wherein said transducer is provided with a rigid housing, said housing comprising said connection to the end of said reenforcing element.
3. A pump in accordance with claim 2, wherein said catheter is formed of polytetrafluoroethylene.
4. A pump in accordance with claim 2 wherein said reenforcing element comprises a flexible braided tube.
5. A pump in accordance with claim 4 wherein said braided tube is metallic.
6. A pump in accordance with claim 5, wherein said polyurethane balloon has an inflated diameter on the order of 1-2 cm., wall thickness on the order of 0.100-0.125 mm., and a length of about 10-17 cm., and wherein said catheter and braided tube have outer diameters of about 5 and 3-5 mm., respectively.
US710596A 1968-03-05 1968-03-05 Cardiac assisting pump Expired - Lifetime US3585983A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71059668A 1968-03-05 1968-03-05

Publications (1)

Publication Number Publication Date
US3585983A true US3585983A (en) 1971-06-22

Family

ID=24854701

Family Applications (1)

Application Number Title Priority Date Filing Date
US710596A Expired - Lifetime US3585983A (en) 1968-03-05 1968-03-05 Cardiac assisting pump

Country Status (1)

Country Link
US (1) US3585983A (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707960A (en) * 1970-09-03 1973-01-02 Us Health Balloon cardiac assisting pump having intraaortic electrocardiographic electrodes
US3720199A (en) * 1971-05-14 1973-03-13 Avco Corp Safety connector for balloon pump
US3900033A (en) * 1973-03-07 1975-08-19 Ortho Pharma Corp Dilator for cervical canal
US4051840A (en) * 1976-01-05 1977-10-04 Sinai Hospital Of Detroit Dynamic aortic patch
US4077394A (en) * 1976-08-25 1978-03-07 Mccurdy Martin D Integral pressure sensor probe for a cardiac assistance device
FR2407001A1 (en) * 1977-10-28 1979-05-25 Kendall & Co IMPROVEMENTS TO INFLATABLE BALLOON CATHETERS
DE2915089A1 (en) * 1978-03-06 1980-10-30 Datascope Corp BALLOON CATHEDRAL
US4259960A (en) * 1979-10-15 1981-04-07 The Kendall Company Catheter with non-adhering balloon
US4276874A (en) * 1978-11-15 1981-07-07 Datascope Corp. Elongatable balloon catheter
WO1981002110A1 (en) * 1980-01-30 1981-08-06 T Fogarty Dilatation catheter apparatus and method
WO1983003204A1 (en) * 1982-03-12 1983-09-29 Webster, Wilton, W., Jr. Autoinflatable catheter
US4448195A (en) * 1981-05-08 1984-05-15 Leveen Harry H Reinforced balloon catheter
EP0119296A1 (en) * 1983-02-18 1984-09-26 Baylor College of Medicine An apparatus for intra-aortic balloon monitoring and leak detection
FR2577423A1 (en) * 1985-02-20 1986-08-22 Gilles Karcher CIRCULATORY AND CORONARY ASSISTANCE PUMP WITH INTRA-AORTIC BALLOONS
FR2577424A1 (en) * 1985-02-20 1986-08-22 Gilles Karcher CORONARY PERFUSION PUMP
US4646719A (en) * 1984-06-11 1987-03-03 Aries Medical Incorporated Intra-aortic balloon catheter having flexible torque transmitting tube
US4655748A (en) * 1984-09-04 1987-04-07 Aisin Seiki Kabushikikaisha Cannula for infusion of fluid
EP0234046A1 (en) * 1985-12-31 1987-09-02 Aisin Seiki Kabushiki Kaisha Intra-aortic balloon apparatus
US4692148A (en) * 1986-03-28 1987-09-08 Aisin Seiki Kabushiki Kaisha Intra-aortic balloon pump apparatus and method of using same
EP0249338A2 (en) * 1986-06-12 1987-12-16 C.R. Bard, Inc. Retroperfusion catheter
US4733652A (en) * 1985-12-31 1988-03-29 Aisin Seiki Kabushiki Kaisha Intra-aortic balloon
US4809681A (en) * 1986-03-28 1989-03-07 Aisin Seiki Kabushiki Kaisha Electrocardiographic measurement method for controlling an intra-aortic balloon pump
FR2653342A1 (en) * 1989-10-23 1991-04-26 Ovi CATHETER FOR INTRA-PULMONARY ARTIFICIAL VENTILATION OF A PATIENT.
FR2696098A1 (en) * 1992-09-30 1994-04-01 Nippon Zeon Co Catheter for gas-pressure pulse heart pacemaker prosthesis - has inflatable balloon inserted in aorta, with tubular catheter delivering gas pressure pulses, including haemostatic valve and junction
WO1995028974A1 (en) * 1994-04-22 1995-11-02 Bruno Maugeri Counterpulsation device with intra-aortic balloon for continuous measurement of the left ventricular stroke volume
US5484385A (en) * 1994-04-21 1996-01-16 C. R. Bard, Inc. Intra-aortic balloon catheter
US5556382A (en) * 1995-08-29 1996-09-17 Scimed Life Systems, Inc. Balloon perfusion catheter
WO1996034531A1 (en) 1995-05-05 1996-11-07 G. Van Wijnsberghe En Co. N.V. Method of delivering animals to a processing area and an apparatus therefor
US5591129A (en) * 1994-03-02 1997-01-07 Scimed Life Systems, Inc. Perfusion balloon angioplasty catheter
US5817001A (en) * 1997-05-27 1998-10-06 Datascope Investment Corp. Method and apparatus for driving an intra-aortic balloon pump
US5904666A (en) * 1997-08-18 1999-05-18 L.Vad Technology, Inc. Method and apparatus for measuring flow rate and controlling delivered volume of fluid through a valve aperture
US5968013A (en) * 1997-08-21 1999-10-19 Scimed Life Systems, Inc. Multi-function dilatation catheter
US6042532A (en) * 1998-03-09 2000-03-28 L. Vad Technology, Inc. Pressure control system for cardiac assist device
US6132363A (en) * 1997-09-30 2000-10-17 L.Vad Technology, Inc. Cardiovascular support control system
US6231498B1 (en) * 1999-06-23 2001-05-15 Pulsion Medical Systems Ag Combined catheter system for IABP and determination of thermodilution cardiac output
EP1207934A2 (en) * 1999-09-03 2002-05-29 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
WO2002047751A2 (en) 2000-12-12 2002-06-20 Datascope Investment Corp. Intra-aortic balloon catheter having a fiberoptic sensor
WO2002047743A2 (en) 2000-12-12 2002-06-20 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
US6511412B1 (en) 1998-09-30 2003-01-28 L. Vad Technology, Inc. Cardivascular support control system
US20030088208A1 (en) * 1999-12-02 2003-05-08 Embol-X, Inc. Buoyant tip aspiration catheter and methods of use
US6735532B2 (en) 1998-09-30 2004-05-11 L. Vad Technology, Inc. Cardiovascular support control system
US20040097813A1 (en) * 2002-11-19 2004-05-20 Jonathan Williams Method and device for correcting in -vivo sensor drift
US20050148810A1 (en) * 2004-01-06 2005-07-07 Riebman Jerome B. Devices and methods for blood flow assistance
US7087039B1 (en) 1994-03-02 2006-08-08 Scimed Life Systems, Inc. Perfusion balloon angioplasty catheter
US20060217588A1 (en) * 2003-02-24 2006-09-28 Yossi Gross Fully-implantable cardiac recovery system
US20080234537A1 (en) * 2004-02-10 2008-09-25 Yossi Gross Extracardiac Blood Flow Amplification Device
EP1982742A2 (en) 2000-12-12 2008-10-22 Datascope Investment Corp. Intra-aortic balloon catheter having a fiberoptic sensor
US7468050B1 (en) 2002-12-27 2008-12-23 L. Vad Technology, Inc. Long term ambulatory intra-aortic balloon pump
US7731675B2 (en) 1999-09-03 2010-06-08 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US20120149970A1 (en) * 2010-10-22 2012-06-14 Nupulse, Inc. Intra-aortic balloon pump assembly for ventricular assist device
US8540618B2 (en) 2003-01-31 2013-09-24 L-Vad Technology, Inc. Stable aortic blood pump implant
US9694122B2 (en) * 2003-01-31 2017-07-04 L-Vad Technology, Inc. Rigid body aortic blood pump implant
US9913967B2 (en) 2012-07-06 2018-03-13 Michael Zhadkevich Occluding catheter and dynamic method for prevention of stroke
US10219807B2 (en) 2012-07-06 2019-03-05 Michael Zhadkevich Occluding catheter for prevention of stroke
WO2019222161A1 (en) * 2018-05-15 2019-11-21 Cardiovascular Systems, Inc. Intravascular blood pump system with integrated conductor(s) in housing and methods thereof
US11013515B2 (en) 2012-07-06 2021-05-25 Michael Zhadkevich Occluding catheter with an optional common inflation and guideware channel and method of use
US11857737B2 (en) 2015-03-19 2024-01-02 Prytime Medical Devices, Inc. System and method for low-profile occlusion balloon catheter
US12076511B2 (en) 2019-06-14 2024-09-03 Datascope Corp. Intra-aortic balloon pump catheter and sheath seal assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266487A (en) * 1963-06-04 1966-08-16 Sundstrand Corp Heart pump augmentation system and apparatus
US3467101A (en) * 1965-09-30 1969-09-16 Edwards Lab Inc Balloon catheter
US3504662A (en) * 1967-05-16 1970-04-07 Avco Corp Intra-arterial blood pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266487A (en) * 1963-06-04 1966-08-16 Sundstrand Corp Heart pump augmentation system and apparatus
US3467101A (en) * 1965-09-30 1969-09-16 Edwards Lab Inc Balloon catheter
US3504662A (en) * 1967-05-16 1970-04-07 Avco Corp Intra-arterial blood pump

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Khalil et al. - TRANS. AMER. SOC. ARTIFIC. INTER. ORGANS, - Vol. June 1967 - pp *
Moulopoulos et al. - TRANS. AMER. SOC ARTIFIC. INTER. ORGANS, Vol. VIII ap. 1962 pp. 85 87 (copy in Gp 335) *

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707960A (en) * 1970-09-03 1973-01-02 Us Health Balloon cardiac assisting pump having intraaortic electrocardiographic electrodes
US3720199A (en) * 1971-05-14 1973-03-13 Avco Corp Safety connector for balloon pump
US3900033A (en) * 1973-03-07 1975-08-19 Ortho Pharma Corp Dilator for cervical canal
US4051840A (en) * 1976-01-05 1977-10-04 Sinai Hospital Of Detroit Dynamic aortic patch
US4077394A (en) * 1976-08-25 1978-03-07 Mccurdy Martin D Integral pressure sensor probe for a cardiac assistance device
FR2407001A1 (en) * 1977-10-28 1979-05-25 Kendall & Co IMPROVEMENTS TO INFLATABLE BALLOON CATHETERS
DE2915089A1 (en) * 1978-03-06 1980-10-30 Datascope Corp BALLOON CATHEDRAL
US4276874A (en) * 1978-11-15 1981-07-07 Datascope Corp. Elongatable balloon catheter
US4259960A (en) * 1979-10-15 1981-04-07 The Kendall Company Catheter with non-adhering balloon
WO1981002110A1 (en) * 1980-01-30 1981-08-06 T Fogarty Dilatation catheter apparatus and method
US4292974A (en) * 1980-01-30 1981-10-06 Thomas J. Fogarty Dilatation catheter apparatus and method
US4448195A (en) * 1981-05-08 1984-05-15 Leveen Harry H Reinforced balloon catheter
WO1983003204A1 (en) * 1982-03-12 1983-09-29 Webster, Wilton, W., Jr. Autoinflatable catheter
US4535757A (en) * 1982-03-12 1985-08-20 Webster Wilton W Jr Autoinflatable catheter
EP0119296A1 (en) * 1983-02-18 1984-09-26 Baylor College of Medicine An apparatus for intra-aortic balloon monitoring and leak detection
US4646719A (en) * 1984-06-11 1987-03-03 Aries Medical Incorporated Intra-aortic balloon catheter having flexible torque transmitting tube
US4655748A (en) * 1984-09-04 1987-04-07 Aisin Seiki Kabushikikaisha Cannula for infusion of fluid
FR2577424A1 (en) * 1985-02-20 1986-08-22 Gilles Karcher CORONARY PERFUSION PUMP
EP0192574A1 (en) * 1985-02-20 1986-08-27 Medicorp Research Laboratories Corporation Circulatory and coronary intra-aortic balloon assistance pump
FR2577423A1 (en) * 1985-02-20 1986-08-22 Gilles Karcher CIRCULATORY AND CORONARY ASSISTANCE PUMP WITH INTRA-AORTIC BALLOONS
EP0192575A1 (en) * 1985-02-20 1986-08-27 Medicorp Research Laboratories Corporation Coronary perfusion pump
US4733652A (en) * 1985-12-31 1988-03-29 Aisin Seiki Kabushiki Kaisha Intra-aortic balloon
EP0234046A1 (en) * 1985-12-31 1987-09-02 Aisin Seiki Kabushiki Kaisha Intra-aortic balloon apparatus
US4809681A (en) * 1986-03-28 1989-03-07 Aisin Seiki Kabushiki Kaisha Electrocardiographic measurement method for controlling an intra-aortic balloon pump
US4692148A (en) * 1986-03-28 1987-09-08 Aisin Seiki Kabushiki Kaisha Intra-aortic balloon pump apparatus and method of using same
EP0249338A2 (en) * 1986-06-12 1987-12-16 C.R. Bard, Inc. Retroperfusion catheter
EP0249338A3 (en) * 1986-06-12 1988-12-14 C.R. Bard, Inc. Retroperfusion catheter
FR2653342A1 (en) * 1989-10-23 1991-04-26 Ovi CATHETER FOR INTRA-PULMONARY ARTIFICIAL VENTILATION OF A PATIENT.
EP0425361A1 (en) * 1989-10-23 1991-05-02 Ovi Catheter for artificial pulmonary ventilation of a patient
FR2696098A1 (en) * 1992-09-30 1994-04-01 Nippon Zeon Co Catheter for gas-pressure pulse heart pacemaker prosthesis - has inflatable balloon inserted in aorta, with tubular catheter delivering gas pressure pulses, including haemostatic valve and junction
US7087039B1 (en) 1994-03-02 2006-08-08 Scimed Life Systems, Inc. Perfusion balloon angioplasty catheter
US5591129A (en) * 1994-03-02 1997-01-07 Scimed Life Systems, Inc. Perfusion balloon angioplasty catheter
US5484385A (en) * 1994-04-21 1996-01-16 C. R. Bard, Inc. Intra-aortic balloon catheter
WO1995028974A1 (en) * 1994-04-22 1995-11-02 Bruno Maugeri Counterpulsation device with intra-aortic balloon for continuous measurement of the left ventricular stroke volume
WO1996034531A1 (en) 1995-05-05 1996-11-07 G. Van Wijnsberghe En Co. N.V. Method of delivering animals to a processing area and an apparatus therefor
US5961490A (en) * 1995-08-29 1999-10-05 Scimed Life Systems, Inc. Balloon perfusion catheter
US5720723A (en) * 1995-08-29 1998-02-24 Scimed Life Systems, Inc. Balloon perfusion catheter
US5556382A (en) * 1995-08-29 1996-09-17 Scimed Life Systems, Inc. Balloon perfusion catheter
US5817001A (en) * 1997-05-27 1998-10-06 Datascope Investment Corp. Method and apparatus for driving an intra-aortic balloon pump
US5904666A (en) * 1997-08-18 1999-05-18 L.Vad Technology, Inc. Method and apparatus for measuring flow rate and controlling delivered volume of fluid through a valve aperture
US5968013A (en) * 1997-08-21 1999-10-19 Scimed Life Systems, Inc. Multi-function dilatation catheter
US6132363A (en) * 1997-09-30 2000-10-17 L.Vad Technology, Inc. Cardiovascular support control system
US6042532A (en) * 1998-03-09 2000-03-28 L. Vad Technology, Inc. Pressure control system for cardiac assist device
US6511412B1 (en) 1998-09-30 2003-01-28 L. Vad Technology, Inc. Cardivascular support control system
US6735532B2 (en) 1998-09-30 2004-05-11 L. Vad Technology, Inc. Cardiovascular support control system
US6231498B1 (en) * 1999-06-23 2001-05-15 Pulsion Medical Systems Ag Combined catheter system for IABP and determination of thermodilution cardiac output
US6746431B2 (en) 1999-06-23 2004-06-08 Pulsion Medical Systems Ag Combined catheter system for IABP and determination of thermodilution cardiac output
US10238783B2 (en) 1999-09-03 2019-03-26 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
EP1207934A4 (en) * 1999-09-03 2009-09-02 A Med Systems Inc Guidable intravascular blood pump and related methods
US9789238B2 (en) 1999-09-03 2017-10-17 Maquet Cardiovascular, Llc Guidable intravascular blood pump and related methods
US10300186B2 (en) 1999-09-03 2019-05-28 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US9597437B2 (en) 1999-09-03 2017-03-21 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US10300185B2 (en) 1999-09-03 2019-05-28 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US10279095B2 (en) 1999-09-03 2019-05-07 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US9561314B2 (en) 1999-09-03 2017-02-07 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US10357598B2 (en) 1999-09-03 2019-07-23 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US10322218B2 (en) 1999-09-03 2019-06-18 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US10328191B2 (en) 1999-09-03 2019-06-25 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
EP1207934A2 (en) * 1999-09-03 2002-05-29 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
US9545468B2 (en) 1999-09-03 2017-01-17 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US9327068B2 (en) 1999-09-03 2016-05-03 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US8888728B2 (en) 1999-09-03 2014-11-18 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US20100210895A1 (en) * 1999-09-03 2010-08-19 Aboul-Hosn Walid N Guidable Intravascular Blood Pump and Related Methods
US7731675B2 (en) 1999-09-03 2010-06-08 Maquet Cardiovascular Llc Guidable intravascular blood pump and related methods
US20030088208A1 (en) * 1999-12-02 2003-05-08 Embol-X, Inc. Buoyant tip aspiration catheter and methods of use
US20060287569A1 (en) * 2000-12-12 2006-12-21 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
EP1982742A2 (en) 2000-12-12 2008-10-22 Datascope Investment Corp. Intra-aortic balloon catheter having a fiberoptic sensor
WO2002047751A2 (en) 2000-12-12 2002-06-20 Datascope Investment Corp. Intra-aortic balloon catheter having a fiberoptic sensor
WO2002047743A2 (en) 2000-12-12 2002-06-20 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
US7229403B2 (en) 2000-12-12 2007-06-12 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
US6616597B2 (en) * 2000-12-12 2003-09-09 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
EP2275162A2 (en) 2000-12-12 2011-01-19 Datascope Investment Corporation Intra-aortic balloon catheter having a fiberoptic sensor
US20050049451A1 (en) * 2000-12-12 2005-03-03 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
US6935999B2 (en) 2000-12-12 2005-08-30 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
EP1652471A1 (en) 2000-12-12 2006-05-03 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
US7112170B2 (en) 2000-12-12 2006-09-26 Datascope Investment Corp. Intra-aortic balloon catheter having a dual sensor pressure sensing system
US20040097813A1 (en) * 2002-11-19 2004-05-20 Jonathan Williams Method and device for correcting in -vivo sensor drift
US7025718B2 (en) 2002-11-19 2006-04-11 Jonathan Williams Method and device for correcting in-vivo sensor drift
US7468050B1 (en) 2002-12-27 2008-12-23 L. Vad Technology, Inc. Long term ambulatory intra-aortic balloon pump
US9694122B2 (en) * 2003-01-31 2017-07-04 L-Vad Technology, Inc. Rigid body aortic blood pump implant
US9433715B2 (en) 2003-01-31 2016-09-06 L-Vad Technology, Inc. Stable aortic blood pump implant
US8540618B2 (en) 2003-01-31 2013-09-24 L-Vad Technology, Inc. Stable aortic blood pump implant
US7614998B2 (en) 2003-02-24 2009-11-10 Yossi Gross Fully-implantable cardiac recovery system
US20060217588A1 (en) * 2003-02-24 2006-09-28 Yossi Gross Fully-implantable cardiac recovery system
US7066874B2 (en) 2004-01-06 2006-06-27 Bay Innovation Group, Llc Devices and methods for blood flow assistance
US20050148810A1 (en) * 2004-01-06 2005-07-07 Riebman Jerome B. Devices and methods for blood flow assistance
US20080234537A1 (en) * 2004-02-10 2008-09-25 Yossi Gross Extracardiac Blood Flow Amplification Device
US7811221B2 (en) 2004-02-10 2010-10-12 Yossi Gross Extracardiac blood flow amplification device
US20120149970A1 (en) * 2010-10-22 2012-06-14 Nupulse, Inc. Intra-aortic balloon pump assembly for ventricular assist device
US8684905B2 (en) * 2010-10-22 2014-04-01 Nupulse, Inc. Intra-aortic balloon pump assembly for ventricular assist device
US8608637B2 (en) 2010-10-22 2013-12-17 Nupulse, Inc. Internal drive line for ventricular assist device
US10219807B2 (en) 2012-07-06 2019-03-05 Michael Zhadkevich Occluding catheter for prevention of stroke
US9913967B2 (en) 2012-07-06 2018-03-13 Michael Zhadkevich Occluding catheter and dynamic method for prevention of stroke
US10765841B2 (en) 2012-07-06 2020-09-08 Michael Zhadkevich Occluding catheter and dynamic method for prevention of stroke
US11013515B2 (en) 2012-07-06 2021-05-25 Michael Zhadkevich Occluding catheter with an optional common inflation and guideware channel and method of use
US11857737B2 (en) 2015-03-19 2024-01-02 Prytime Medical Devices, Inc. System and method for low-profile occlusion balloon catheter
WO2019222161A1 (en) * 2018-05-15 2019-11-21 Cardiovascular Systems, Inc. Intravascular blood pump system with integrated conductor(s) in housing and methods thereof
US11141580B2 (en) 2018-05-15 2021-10-12 Cardiovascular Systems, Inc. Intravascular blood pump system with integrated conductor(s) in housing and methods thereof
US12076511B2 (en) 2019-06-14 2024-09-03 Datascope Corp. Intra-aortic balloon pump catheter and sheath seal assembly

Similar Documents

Publication Publication Date Title
US3585983A (en) Cardiac assisting pump
US4902272A (en) Intra-arterial cardiac support system
US3692018A (en) Cardiac assistance device
US3504662A (en) Intra-arterial blood pump
AU625556B2 (en) High-frequency transvalvular axisymmetric blood pump
US3426744A (en) Heart pump cannula
US4527549A (en) Method of and means for intraaortic assist
US3939820A (en) Single-chamber, multi-section balloon for cardiac assistance
US4456000A (en) Expandable occlusion apparatus
US4077394A (en) Integral pressure sensor probe for a cardiac assistance device
US4290428A (en) Catheter with bulb
JPS5867266A (en) Expansion device
US6830559B2 (en) Intra-aortic balloon catheter having a collapsible variable diameter inner tube
US4592340A (en) Artificial catheter means
EP0471029B1 (en) Heart-assist balloon pump
US3791374A (en) Programmer for segmented balloon pump
JP3820270B2 (en) Intra-aortic balloon catheter
US3791767A (en) Dialysis pumping system
US5861010A (en) Device for temporarily closing a canal in a body, in particular for assisting the function of the heart by application of counter-pressure
WO2023134639A1 (en) Blood circulation assisting device and control system
JP2012511364A (en) Beatable medical device designed for use in extracorporeal surgery
CN208573789U (en) Total aortic arch replacement and bracket elephant trunk technique aorta clamping device
US20060178604A1 (en) Blood pumping system
Grädel et al. Successful hemodynamic results with a new, U-shaped auxiliary ventricle
US3409913A (en) Connector for implantable prosthetic devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: L'VAD TECHNOLOGY, INC., 70 GALLOGLY RD., PONTIAC,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO CONDITIONS RECITED;ASSIGNOR:SINAI HOSPITAL OF DETROIT;REEL/FRAME:004699/0248

Effective date: 19850919

Owner name: L'VAD TECHNOLOGY, INC., A CORP. OF MI,MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SINAI HOSPITAL OF DETROIT;REEL/FRAME:004699/0248

Effective date: 19850919