[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US3426738A - Method of operation and lubricant for closed emission internal combustion engines - Google Patents

Method of operation and lubricant for closed emission internal combustion engines Download PDF

Info

Publication number
US3426738A
US3426738A US681041A US3426738DA US3426738A US 3426738 A US3426738 A US 3426738A US 681041 A US681041 A US 681041A US 3426738D A US3426738D A US 3426738DA US 3426738 A US3426738 A US 3426738A
Authority
US
United States
Prior art keywords
lubricating oil
crankcase
engine
oil
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US681041A
Inventor
James K Goodwine Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Application granted granted Critical
Publication of US3426738A publication Critical patent/US3426738A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • F01M13/022Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure using engine inlet suction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/02Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00 having means for introducing additives to lubricant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/045Siloxanes with specific structure containing silicon-to-hydroxyl bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/046Siloxanes with specific structure containing silicon-oxygen-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/048Siloxanes with specific structure containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol-fuelled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines

Definitions

  • crankcase ventilation (PCV) system to reduce the fumes normally produced by the operation of such engines.
  • This system commonly comprises a tube or other conduit connecting the crankcase to the air-fuel intake system such as the carburetor or intake manifold of the engine. Since the pressure conditions in both the carburetor and the crankcase may vary widely, it is the usual practice to connect the crankcase and intake system through a control valve orifice or other pressure control means. This control prevents abnormally high vacuums which occur from time to time during normal engine operation from imposing a vacuum on the crankcase which might pull oil along with the fumes from the crankcase.
  • a superior new ashless detergent lubricating oil composition which comprises a major proportion of mineral lubricating oil, a minor proportion sutficient to improve the detergent characteristics thereof of a nitrogenous ashless detergent obtained by the acylation of alkylene polyamines having from 2 to 20 carbon atoms and from 2 to 10 nitrogen atoms with alkenyl succinic acid or alkenyl succinic anhydride having from about 30 to about 400 carbon atoms in the alkenyl group and from about 2 to about 10% by weight of ethyleneglycol monoalkyl ether having 1 to 3 ethyleneglycol units and from 1 to 8 carbon atoms in the alkyl group.
  • the engine operation is greatly improved. Proper fuel-air ratios are maintained thus resulting in easier starting, better warm up without stalling and improving idling. Furthermore, good crankcase ventilation is maintained resulting in less carbonaceous or sludge type deposits on oil screens, piston rings and other engine parts. The more efiicient re moval of fumes from the crankcase also reduces the presence of corrosive materials and thereby decreases ring and cylinder wear.
  • the ashless detergent lubricating oil compositions of the present invention provide particularly improved opration. There is also a remarkable improvement in prevention of carbonaceous or sludge-type deposits on oil screens, piston rings and other engine parts, as well as decreases in ring and cylinder Wear.
  • the lubricating oil composition of the present invention is composed of a lubricating oil base and from about 2 to about 10% by weight of ethylene glycol ether, more particularly diethylene glycol monobutyl ether.
  • Lubricating oils which can be used as base oils are preferably the class of oils known as mineral lubricating oils.
  • the preferred crankcase lubricating oil base compositions from the standpoint of improved engine operation comprise a major proportion of mineral lubricating oil and a minor proportion sufficient to improve the detergent characteristics thereof of a lubricating oil detergent, more particularly a polymeric detergent. Usually such detergents are employed in amounts of from 0.1 to 10% by weight of the total composition.
  • Other additives may also be present such as pour point depressants, oiliness and extreme pressure agents, anti-oxidants, corrosion inhibiting agents, blooming agents, thickening agents, foam inhibitors and/ or other compounds for enhancing the physical and chemical characteristics of the oil.
  • Illustrative lubricant compositions of the above type containing the glycol additives of the invention in combination with other agents may include, for example, from about 0.1 to 10% by weight of alkaline earth metal higher alkylphenate detergent and wear reducing agents, such as calcium alkylphenates having an average of approximately 14 carbon atoms in the alkyl group. Also included are organic thiophosphate corrosion and high temperature oxidation inhibitors such as the reaction product of pinene and P 8 and the bivalent metal dihydrocarbyl dithiophosphates, Zinc butyl hexyl dithiophosphate and zinc tetradecylphenyl dithiophosphate in amounts of from about 0.1 to 10% by weight of the composition.
  • Temperature-viscosity improving agents which may be employed in the compositions, usually in amounts of from about 1 to 10% by weight, include by way of example the homopolymers of alkyl methacrylates such as the dodecyl methacrylate polymers known to the trade as Acryloid 710 and Acryloid 763, products of Rohm & Haas Company, and high molecular weight butene polymers such as Paratone ENJ P, a product of the Enjay Company.
  • Illustrative lubricating oil detergents for use in the preferred composition in accordance with the present invention include the nitrogenous, ashless detergents obtained by acylation of ethylene polyamines with alkenyl succinic acid or alkenyl succinic anhydride.
  • An example of this type of detergent is the polyisobutenyl succinic acid reaction product of tetraethylene pentamine in which the polyisobutenyl group contains from 30 to 300 carbon atoms and preferably from about 40 to 200 carbon atoms.
  • Other suitable ashless detergents include the macromolecular polyester detergents such as the copolymer of alkyl methacrylates and vinyl pyrrolidone.
  • the nitrogenous ashless detergents are prepared by heating the alkylene polyamine and alkenylsuccinic acid or alkenylsuccinic anhydride with the removal of water.
  • the temperature of the reaction will generally be from about 200 to about 500 F more particularly from about 225 F. to about 400 F.
  • the mol ratio of the polyamine to the succinic acid or anhydride will generally be in the range of from about 0.5:1 to about 1.5:1, more particularly from about 0.8:1 to about 12:1.
  • the time for the reaction will generally be from about 10 minutes to about 12 hours or more, usually in the range of about minutes to about 6 hours.
  • the reactants may be employed with an inert reaction medium, such as a hydrocarbon, for example, mineral lubricating oil.
  • the concentration of the reactants may range from about 1 to 90% by weight, but will usually be from about to 75% by weight of the total reaction mixture.
  • it may be desirable to remove water formed from the reaction, as for example by distillation. Subatmospheric pressures may be used for this purpose with advantage.
  • the amine with which the alkenylsuccinic acid or alkenylsuccinic anhydride reacted preferably has at least one primary amino group.
  • the nitrogen atoms are joined by alkylene groups of from 2 to 6 carbon atoms, preferably of from 2 to 3 carbon atoms, except the primary amino groups will be substituted with hydrogen or lower alkyl groups of from 1 to 6 carbon atoms, more usually from.1 to 3 carbon atoms. Nitrogen atoms may be present as a heterocyclic ring.
  • the polyalkyl polyamine reactant is illustrated by the following general formula:
  • ANR is an alkylene radical containing from about 2 to 6 carbon atoms
  • R is a member of the group consisting of hydrogen and alkyl radicals containing from about 1 to 6 carbon atoms
  • x is a number from 0 to 10
  • y is a number from 0 to 2
  • z is a number from 0 to l, the total of x+y+z being a number from 1 to 10.
  • Illustrative alkylene polyamines of the foregoing types are ethylenediamine, diethylenetriamine, triethylenetetramine, dipropylenetriamine, dimethylaminopropylamine, tetraethylenepentamine, N-aminoethyl piperazine, pentaethylenehexamine, nonaethy-lenedecamine, etc.
  • alkenylsuccinic acid or alkenylsuccinic anhydride reactant is illustrated by the following structural formula for the anhydride:
  • R is a hydrocarbon radical having from to 400 carbon atoms, preferably from about 50 to about 200 carbon atoms.
  • the R radical of the above formula is readily obtained by polymerizing olefins of from 2 to 5 carbon atoms, such as propylene, ethylene, isobutylene, pentene, etc., and mixtures thereof. Methods of polymerization are well known in the art, e.g., US. Patents Nos. 3,024,237, 3,024,195, and 3,018,291.
  • acylated alkylene polyamines are the monoalkenyl succinimides of tetraethylenepentamine of the formula:
  • R is a polyolefin radical of from 30 to 200 carbon atoms and is derived from an olefin of 2 to 5 carbon atoms.
  • the nitrogenous ashless detergents of the lubricating oil compositions of the invention are employed in amounts sufficient to improve the detergent characteristics. Ordinarily, amounts of from about 0.1 to about 15% by weight are satisfactory for this purpose.
  • the ethyleneglycol monoalkyl ether is preferably the diethylene monobutyl ether.
  • glycol ethers or mixtures thereof within the aforementioned general class may be employed.
  • Such glycol ethers include diethyleneglycol monoethyl ether (Carbitol), diethyleneglycol monomethyl ether (Methyl Carbitol), diethyleneglycol monobutyl ether (Butyl Carbitol), ethyleneglycol monoethyl ether (Cellosolve), ethyleneglycol monomethyl ether (Methyl Cellosolve), and ethyleneglycol monobutyl ether (Butyl Cellosolve).
  • the base oil in the lubricant composition of the invention is preferably mineral lubricating oil, it may be any oil of lubricating viscosity.
  • the base oil can be a refined paraflin-type base oil, a refined naphthenictype base oil, or a synthetic hydrocarbon or synthetic nonhydrocarbon oil of lubricating viscosity.
  • synthetic oils suitable examples include oils obtained by polymerization of lower molecular weight alkylene oxides, such as propylene oxide and/or ethylene oxide employing alcohol or acid initiators, such as lauryl alcohol or acetic acid.
  • esters e.g., di 2-ethylhexyl)-sebacate, tricresylphosphate and silicate esters, such as tetra 2 ethylhexyl) orthosilicate and hexa 2- ethylbutoxy)-disiloxane.
  • the mineral lubricating oils are preferred, since they show the greatest improvement.
  • FIG. 1 represents a schematic diagram of a system for withdrawing fumes from the crankcase to the air-fuel intake system.
  • the figure shows the body of an automobile engine with the corresponding locations of the crankcase and the lubricating oil. Also shown are the air breather 1, air cleaner 2, and dip stick tube 3. The travel of blowby, past piston 4 and piston rings 5 of one of the cylinders 6 to the crankcase, is indicated by arrows 7. Draft tube 8, in the instant illustration, is removed from the body of the crankcase as shown by dotted lines, and, in lieu thereof, adaptor 9 with check valve 10 is fitted onto the crankcase.
  • Pipe 11 connects valve 10 with the intake system which comprises the carburetor, throttle body 12, heat riser 14, the manifold and its several branches 15. Arrows 13 indicate the path of the ventilation air arriving through breather 1 into the crankcase and thence, on becoming mixed together with the blowby, passing through valve 10 and piping 11 into the intake system at throttle body 12.
  • the exact location of adaptor 9 and the valve 10 on the crankcase is not critical, and it may be placed closer or farther away from the location of the draft tube in which case this tube will be either non-existent as in many new engines or plugged tight, in the case of conversion of older model engines.
  • crankcase lubricating oil composition removes and/or prevents the formation of deposits in the system, particularly in the pressure control portion.
  • Crankcase lubricants without the glycol ether, especially in older engines where excessive blowby gases occur, are unable to prevent the deposits in conventional engine operation.
  • the glycol ether mixes with the lubricating oil composition with no harmful eiTect on its lubricant function, and at the same time provides a continuing source of vaporized or entrained glycol ether which minimizes the tendency of the fumes to form deposits in the ventilation system. Also, previously formed deposits are eifectively removed.
  • the glycol ether over a lengthy period of time may be used up, the desired concentration in the crankcase lubricating oil composition may be maintained by the addition of more glycol ether at any time during engine operation.
  • operation of the engine with the crankcase lubricant containing glycol ether need not be employed all of the time since trouble-free service of the crankcase ventilation system is obtained through periodic operation with the glycol ether on an intermittent basis.
  • a suitable period on a mileage basis is found to be on the order of 1,000 to 3,000 miles which is, incidentally, consistent with recommended lubricating oil drain periods.
  • Oil C was a typical MIL-L-2104B SAE 30 lubricating oil containing polyisobutenyl succinimide of tetraethylenepentamine ashless detergent, calcium petroleum sulfonate, calcium tetradecylphenate, zinc di-(tetradecylphenyl) dithiophosphate and zinc butyl hexyl dithiophosphate.
  • Oil D was similar to Oil A except that it contained in addition about 3% of the polyisobutenyl succinimide of tetraethylenepentamine, having about 65 carbon atoms in the polyisobutenyl group.
  • Oil E was a solvent-refined mineral lubricating oil base containing calcium petroleum sulfonate, calcium tetradecylphenate and zinc butyl hexyl dithiophosphate as detergent and oxidation-corrosion inhibitor.
  • Oils F and G were used, conventional spark ignition, internal combustion engine lubricating oils of undetermined constitution.
  • the tests were carried out in general on the basis of 10 miles city-type service.
  • a test was made with the car operating on so-called Aunt Minnie service with short trips of /2 to 2 miles with intermittent cold soaking, during which the engine was allowed to cool to ambient temperatures.
  • the performance was evaluated on a chassis dynamometer where the car had been cold soaked at F. for 12 hours prior to adding the glycol ether.
  • the clean-up eifect of one hour of idling of the engine was determined.
  • the glycol ether was diethyleneglycol monobutyl ether, and was employed in an amount of about 3% by weight based on the total crankcase lubricating oil composition.
  • oil was a typical multi-grade SAE l0W-30 oil, the same as Oil A in the preceding test.
  • the mixture of oil and solvent was placed in a two-liter round bottom flask equipped with a glass mantle heating cover and a ther mometer well.
  • a two-hole rubber stopper was placed in the neck of the flask.
  • One hole of the rubber stopper was fitted with the PCV valve, while the other hole was fitted with a sintered glass sparger element to diffuse and moderate the air flow.
  • a vacuum was applied to the PCV valve causing air to enter the sintered glass diffuser and pass down over the oil and solvent mixture after which it was withdrawn through the PCV valve.
  • the oil was maintained at a temperature in the range of about 190 to about 200 F.
  • the vacuum was maintained at about 3 of mercury for about 2 hours and then at about 14" of mercury as in the preceding tests for about 1 hour. Each test was carried out over a period of about three hours.
  • the initial flow rates of the fouled valves were determined by placing them in a test system containing a rotameter by which the flow rates in cubic feet per minute at the 14" of mercury differential pressure were determined.
  • the valves were From the above tests it is seen that the glycol ether solvent as illustrated by the diethylene glycol monobutyl ether is outstanding in removing and reducing the formation of PCV plugging deposits when employed in crankcase lubricating oil in the operation of typical PCV systems.
  • Other well known solvents including the usually effective chlorinated hydrocarbons are found to give little or no clean up.
  • ethyleneglycol monoalkyl ether in combination with nitrogenous ashless detergent as the sole detergent in lubricating oil compositions was determined.
  • the lubricating oil composition is mixed with pyruvic acid at a concentration of grams of acid per kilogram of oil. The mixture is heated at 284 F. for /2 hour. After standing about 20 hours, the weight of sedimented insoluble resin formed is measured. Low values indicate good detergency, and the procedure is found to correlate with actual spark ignition internal combustion engine operation.
  • the nitrogenous ashless detergent additive mentioned above was polyiso-butenyl succinimide of tetraethylenepentamine having about 65 carbon atoms in the polyisobutenyl group.
  • the compound lubricating oil composition contained 1.2% by weight alkenyl succinimide, 6 mm./ kg. zinc butyl hexyl dithiophosphate oxidation-corrosion inhibitor and 1 mm./kg. zinc di-(tetradecylphenyl) dithiophosphate oxidation-corrosion inhibitor.
  • the similarly compounded mineral oil omitting detergent was solvent-refined mineral base oil containing 12 mm./kg. zinc butylhexyl dithiophosphate.
  • the ethyleneglycol monoalkyl ether was the diethylene monobutyl ether and was used in an amount to provide a concentration of 3.2% by weight in the lubricating oil composition.
  • a particular embodiment of the present invention lies in the combination of nitrogenous ashless detergent and ethyleneglycol monoalkyl ether as a new additive combination for lubricating oil compositions for spark ignition, internal combustion engines.
  • the weight ratio of nitrogenous ashless detergent t-o ethyleneglycol monoalkyl ether is generally from about 0.01:1 up to about 15:1 and preferably from about 0.3:1 up to about :1 for most effective engine cleanliness and PCV system operation.
  • crankcase lubricating oil composition contains polymeric ashless detergent in addition to the diethylene glycol monobutyl ether.
  • crankcase lubricating oil composition contains about 3% by weight of diethylene glycol monobutyl ether.
  • a lubricating oil composition which is comprised of a major proportion of mineral lubricating oil, a minor proportion sufficient to improve the detergent characteristics thereof of a nitrogenous ashless detergent obtained by the acylation of alkylene polyamines having from 2 to 20 carbon atoms and from 2 to 10 nitrogen atoms with alkenylsuccinic acid or alkenylsuccinic anhydride having from about 30 to about 400 carbon atoms in the alkenyl group and from about 2 to about 10% by weight of ethyleneglycol monoalkyl ether having 1 to 3 ethyleneglycol units and from 1 to 8 carbon atoms in the alkyl group, and withdrawing from the crankcase continuously a portion of said ethyleneglycol monoalkyl ether in vapor form and introducing it intothe positive crankcase ventilation system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

Feb. 11, 969 J. K. GOODWINE, JR 3,426,733
METHOD OF OPERATION AND LUBRICANT FOR CLOSED EMISSIQN INTERNAL COMBUSTION ENGINES Filed Oct. 16, 1967 LUBRICATING OIL cRANKCASt INVENTOR JAMES K. GOODWINQJ United States Patent 3,426,738 METHOD OF OPERATION AND LUBRICANT FOR CLOSED EMISSION INTERNAL COMBUSTION ENGINES James K. Goodwine, In, San Rafael, Califi, assignor to Chevron Research Company, San Francisco, Calif., a Corporation of Delaware Continuation-impart of application Ser. No. 580,892, Sept. 21, 1966, which is a continuation-in-part of application Ser. No. 468,517, June 30, 1965, now abandoned. This application Oct. 16, 1967, Ser. No. 681,041 U.S. Cl. 123-119 4 Claims Int. Cl. F02m 7/10; F02!) 29/02; C10m 1/32 ABSTRACT OF THE DISCLOSURE Spark ignition internal combustion engine equipped with valve-controlled positive crankcase ventilation system is operated with crankcase lubricating oil composition containing diethylene glycol monobutyl ether whereby said diethylene glycol monobutyl ether is withdrawn continuously in vapor form and introduced into the positive crankcase ventilation system. Mineral lubricating oil composition contains the combination of nitrogenous ashless detergent and ethylene glycol monoalkyl ether.
CROSS REFERENCES TO RELATED APPLICATIONS This application is a continuation-in-part of application Ser. No. 580,892, now abandoned, filed Sept. 21, 1966 which in turn is a continuation-in-part of application Ser. No. 468,517, now abandoned, filed June 30, 1965.
BACKGROUND OF THE INVENTION In recent years spark ignition, internal combustion engines have been equipped with a positive crankcase ventilation (PCV) system to reduce the fumes normally produced by the operation of such engines. This system commonly comprises a tube or other conduit connecting the crankcase to the air-fuel intake system such as the carburetor or intake manifold of the engine. Since the pressure conditions in both the carburetor and the crankcase may vary widely, it is the usual practice to connect the crankcase and intake system through a control valve orifice or other pressure control means. This control prevents abnormally high vacuums which occur from time to time during normal engine operation from imposing a vacuum on the crankcase which might pull oil along with the fumes from the crankcase.
In the normal operation of PCV systems, particularly those including control valves, the systems become plugged with carbon deposits and sludges due to the condensation of oil vapors and other materials found in crankcase fumes. This plug results in improper carburetor mixtures, causing poor idling and stalling. Also, crankcase ventilation is reduced, leading to increased engine sludge.
In the past, maintenance of PCV systems has required that the motorist either replace the valve periodically or remove it and clean it in a suitable solvent. In practice this was not often done due to the expense and inconvenience usually associated with any sort of engine overhaul, as well as lack of understanding for the need for periodic servicing.
SUMMARY OF THE INVENTION In accordance with the present invention, it has now been found that the operation of a spark ignition internal combustion engine equipped with valve-controlled positive crankcase ventilation system whereby fumes are withdrawn from the crankcase and introduced into the airfuel intake system may be surprisingly improved by the method which comprises operating said engine with a crankcase lubricating oil composition containing from about 2 to about 10% by weight of diethylene glycol monobutyl ether.
Also in accordance with the present invention, a superior new ashless detergent lubricating oil composition has been discovered which comprises a major proportion of mineral lubricating oil, a minor proportion sutficient to improve the detergent characteristics thereof of a nitrogenous ashless detergent obtained by the acylation of alkylene polyamines having from 2 to 20 carbon atoms and from 2 to 10 nitrogen atoms with alkenyl succinic acid or alkenyl succinic anhydride having from about 30 to about 400 carbon atoms in the alkenyl group and from about 2 to about 10% by weight of ethyleneglycol monoalkyl ether having 1 to 3 ethyleneglycol units and from 1 to 8 carbon atoms in the alkyl group.
By the practice of the present invention, the engine operation is greatly improved. Proper fuel-air ratios are maintained thus resulting in easier starting, better warm up without stalling and improving idling. Furthermore, good crankcase ventilation is maintained resulting in less carbonaceous or sludge type deposits on oil screens, piston rings and other engine parts. The more efiicient re moval of fumes from the crankcase also reduces the presence of corrosive materials and thereby decreases ring and cylinder wear.
The ashless detergent lubricating oil compositions of the present invention provide particularly improved opration. There is also a remarkable improvement in prevention of carbonaceous or sludge-type deposits on oil screens, piston rings and other engine parts, as well as decreases in ring and cylinder Wear.
The lubricating oil composition of the present invention is composed of a lubricating oil base and from about 2 to about 10% by weight of ethylene glycol ether, more particularly diethylene glycol monobutyl ether. Lubricating oils which can be used as base oils are preferably the class of oils known as mineral lubricating oils. The preferred crankcase lubricating oil base compositions from the standpoint of improved engine operation comprise a major proportion of mineral lubricating oil and a minor proportion sufficient to improve the detergent characteristics thereof of a lubricating oil detergent, more particularly a polymeric detergent. Usually such detergents are employed in amounts of from 0.1 to 10% by weight of the total composition. Other additives may also be present such as pour point depressants, oiliness and extreme pressure agents, anti-oxidants, corrosion inhibiting agents, blooming agents, thickening agents, foam inhibitors and/ or other compounds for enhancing the physical and chemical characteristics of the oil.
Illustrative lubricant compositions of the above type containing the glycol additives of the invention in combination with other agents may include, for example, from about 0.1 to 10% by weight of alkaline earth metal higher alkylphenate detergent and wear reducing agents, such as calcium alkylphenates having an average of approximately 14 carbon atoms in the alkyl group. Also included are organic thiophosphate corrosion and high temperature oxidation inhibitors such as the reaction product of pinene and P 8 and the bivalent metal dihydrocarbyl dithiophosphates, Zinc butyl hexyl dithiophosphate and zinc tetradecylphenyl dithiophosphate in amounts of from about 0.1 to 10% by weight of the composition. Temperature-viscosity improving agents which may be employed in the compositions, usually in amounts of from about 1 to 10% by weight, include by way of example the homopolymers of alkyl methacrylates such as the dodecyl methacrylate polymers known to the trade as Acryloid 710 and Acryloid 763, products of Rohm & Haas Company, and high molecular weight butene polymers such as Paratone ENJ P, a product of the Enjay Company.
Illustrative lubricating oil detergents for use in the preferred composition in accordance with the present invention include the nitrogenous, ashless detergents obtained by acylation of ethylene polyamines with alkenyl succinic acid or alkenyl succinic anhydride. An example of this type of detergent is the polyisobutenyl succinic acid reaction product of tetraethylene pentamine in which the polyisobutenyl group contains from 30 to 300 carbon atoms and preferably from about 40 to 200 carbon atoms. Other suitable ashless detergents include the macromolecular polyester detergents such as the copolymer of alkyl methacrylates and vinyl pyrrolidone.
The nitrogenous ashless detergents are prepared by heating the alkylene polyamine and alkenylsuccinic acid or alkenylsuccinic anhydride with the removal of water. The temperature of the reaction will generally be from about 200 to about 500 F more particularly from about 225 F. to about 400 F. The mol ratio of the polyamine to the succinic acid or anhydride will generally be in the range of from about 0.5:1 to about 1.5:1, more particularly from about 0.8:1 to about 12:1. The time for the reaction will generally be from about 10 minutes to about 12 hours or more, usually in the range of about minutes to about 6 hours. If desired, the reactants may be employed with an inert reaction medium, such as a hydrocarbon, for example, mineral lubricating oil. In such case, the concentration of the reactants may range from about 1 to 90% by weight, but will usually be from about to 75% by weight of the total reaction mixture. During the reaction, it may be desirable to remove water formed from the reaction, as for example by distillation. Subatmospheric pressures may be used for this purpose with advantage.
The amine with which the alkenylsuccinic acid or alkenylsuccinic anhydride reacted preferably has at least one primary amino group. The nitrogen atoms are joined by alkylene groups of from 2 to 6 carbon atoms, preferably of from 2 to 3 carbon atoms, except the primary amino groups will be substituted with hydrogen or lower alkyl groups of from 1 to 6 carbon atoms, more usually from.1 to 3 carbon atoms. Nitrogen atoms may be present as a heterocyclic ring.
The polyalkyl polyamine reactant is illustrated by the following general formula:
H N(ANR) [AN(CH CH N] (ANR) R wherein A is an alkylene radical containing from about 2 to 6 carbon atoms, R is a member of the group consisting of hydrogen and alkyl radicals containing from about 1 to 6 carbon atoms, x is a number from 0 to 10, y is a number from 0 to 2, and z is a number from 0 to l, the total of x+y+z being a number from 1 to 10.
Illustrative alkylene polyamines of the foregoing types are ethylenediamine, diethylenetriamine, triethylenetetramine, dipropylenetriamine, dimethylaminopropylamine, tetraethylenepentamine, N-aminoethyl piperazine, pentaethylenehexamine, nonaethy-lenedecamine, etc.
The alkenylsuccinic acid or alkenylsuccinic anhydride reactant is illustrated by the following structural formula for the anhydride:
CHrfi 0 wherein R is a hydrocarbon radical having from to 400 carbon atoms, preferably from about 50 to about 200 carbon atoms.
The R radical of the above formula, that is, the alkenyl radical, is readily obtained by polymerizing olefins of from 2 to 5 carbon atoms, such as propylene, ethylene, isobutylene, pentene, etc., and mixtures thereof. Methods of polymerization are well known in the art, e.g., US. Patents Nos. 3,024,237, 3,024,195, and 3,018,291.
The preferred acylated alkylene polyamines are the monoalkenyl succinimides of tetraethylenepentamine of the formula:
H n-orr-o wherein R is a polyolefin radical of from 30 to 200 carbon atoms and is derived from an olefin of 2 to 5 carbon atoms.
The nitrogenous ashless detergents of the lubricating oil compositions of the invention are employed in amounts sufficient to improve the detergent characteristics. Ordinarily, amounts of from about 0.1 to about 15% by weight are satisfactory for this purpose.
The ethyleneglycol monoalkyl ether is preferably the diethylene monobutyl ether. However, other glycol ethers or mixtures thereof within the aforementioned general class may be employed. Such glycol ethers include diethyleneglycol monoethyl ether (Carbitol), diethyleneglycol monomethyl ether (Methyl Carbitol), diethyleneglycol monobutyl ether (Butyl Carbitol), ethyleneglycol monoethyl ether (Cellosolve), ethyleneglycol monomethyl ether (Methyl Cellosolve), and ethyleneglycol monobutyl ether (Butyl Cellosolve).
Although the base oil in the lubricant composition of the invention is preferably mineral lubricating oil, it may be any oil of lubricating viscosity. Thus, the base oil can be a refined paraflin-type base oil, a refined naphthenictype base oil, or a synthetic hydrocarbon or synthetic nonhydrocarbon oil of lubricating viscosity. As synthetic oils, suitable examples include oils obtained by polymerization of lower molecular weight alkylene oxides, such as propylene oxide and/or ethylene oxide employing alcohol or acid initiators, such as lauryl alcohol or acetic acid. Still other synthetic oils include esters, e.g., di 2-ethylhexyl)-sebacate, tricresylphosphate and silicate esters, such as tetra 2 ethylhexyl) orthosilicate and hexa 2- ethylbutoxy)-disiloxane. For present purposes the mineral lubricating oils are preferred, since they show the greatest improvement.
BRIEF DESCRIPTION OF THE DRAWING In further illustration of the present invention, reference is invited to the accompanied drawing. This drawing represents a schematic diagram of a system for withdrawing fumes from the crankcase to the air-fuel intake system. The figure shows the body of an automobile engine with the corresponding locations of the crankcase and the lubricating oil. Also shown are the air breather 1, air cleaner 2, and dip stick tube 3. The travel of blowby, past piston 4 and piston rings 5 of one of the cylinders 6 to the crankcase, is indicated by arrows 7. Draft tube 8, in the instant illustration, is removed from the body of the crankcase as shown by dotted lines, and, in lieu thereof, adaptor 9 with check valve 10 is fitted onto the crankcase. Pipe 11 connects valve 10 with the intake system which comprises the carburetor, throttle body 12, heat riser 14, the manifold and its several branches 15. Arrows 13 indicate the path of the ventilation air arriving through breather 1 into the crankcase and thence, on becoming mixed together with the blowby, passing through valve 10 and piping 11 into the intake system at throttle body 12. The exact location of adaptor 9 and the valve 10 on the crankcase is not critical, and it may be placed closer or farther away from the location of the draft tube in which case this tube will be either non-existent as in many new engines or plugged tight, in the case of conversion of older model engines.
In the operation of the valve-controlled positive crankcase ventilation system as described above, the presence of the glycol ether in the crankcase lubricating oil composition removes and/or prevents the formation of deposits in the system, particularly in the pressure control portion. Crankcase lubricants without the glycol ether, especially in older engines where excessive blowby gases occur, are unable to prevent the deposits in conventional engine operation.
The glycol ether mixes with the lubricating oil composition with no harmful eiTect on its lubricant function, and at the same time provides a continuing source of vaporized or entrained glycol ether which minimizes the tendency of the fumes to form deposits in the ventilation system. Also, previously formed deposits are eifectively removed. Although the glycol ether over a lengthy period of time may be used up, the desired concentration in the crankcase lubricating oil composition may be maintained by the addition of more glycol ether at any time during engine operation. However, for practical purposes, operation of the engine with the crankcase lubricant containing glycol ether need not be employed all of the time since trouble-free service of the crankcase ventilation system is obtained through periodic operation with the glycol ether on an intermittent basis. A suitable period on a mileage basis is found to be on the order of 1,000 to 3,000 miles which is, incidentally, consistent with recommended lubricating oil drain periods.
DESCRIPTION OF THE PREFERRED The operation of a spark ignition, internal combustion engine with positive crankcase ventilation (PCV) em ploying a crankcase lubricating oil containing glycol ether is also illustrated in a series of tests. In the tests, a 1964 Ford car with a 6-cylinder engine was employed. A variety of lubricating oil compositions were evaluated, including acrylate, polyethyleneglycol (1800 molecular weight) methacrylate and N-aminoethyl piperazine-glycidylmethacrylate copolymer as ashless detergent in combination with zinc butyl hexyl dithiophosphate oxidation-corrosion inhibitor. Oil C was a typical MIL-L-2104B SAE 30 lubricating oil containing polyisobutenyl succinimide of tetraethylenepentamine ashless detergent, calcium petroleum sulfonate, calcium tetradecylphenate, zinc di-(tetradecylphenyl) dithiophosphate and zinc butyl hexyl dithiophosphate. Oil D was similar to Oil A except that it contained in addition about 3% of the polyisobutenyl succinimide of tetraethylenepentamine, having about 65 carbon atoms in the polyisobutenyl group. Oil E was a solvent-refined mineral lubricating oil base containing calcium petroleum sulfonate, calcium tetradecylphenate and zinc butyl hexyl dithiophosphate as detergent and oxidation-corrosion inhibitor. Oils F and G were used, conventional spark ignition, internal combustion engine lubricating oils of undetermined constitution.
The tests were carried out in general on the basis of 10 miles city-type service. In addition, a test was made with the car operating on so-called Aunt Minnie service with short trips of /2 to 2 miles with intermittent cold soaking, during which the engine was allowed to cool to ambient temperatures. In still another test the performance was evaluated on a chassis dynamometer where the car had been cold soaked at F. for 12 hours prior to adding the glycol ether. Also, the clean-up eifect of one hour of idling of the engine was determined. In each case the glycol ether was diethyleneglycol monobutyl ether, and was employed in an amount of about 3% by weight based on the total crankcase lubricating oil composition.
Briefly summarized, the essential procedure of the tests involved measuring the initial flow rate of the PCV control valve and the final flow rate, each in cubic feet per minute at 14 inches of mercury differential pressure, the latter being approximately the pressure differential (vacuum) obtained in normal engine operation with the valve closed. The test results are shown in Table I below.
TABLE I Flow rate at 14 in. Oil Net miles Type service Hg Ap, c.i.m.
Initial Final (A) Multigrade SAE 1OW-30. 10 1.80 2. 63 10 1. 35 2. 60 (B) Single grade SAE 30 l0 1. 60 2. 60 10 0. 2. 60 (C) MIL-L-2104B SAE 30---- 10 1.70 2. 65 10 1. 00 2. 60 (D) MS quality SAE 10W-30... 10 1. 70 2. 60 10 1. 20 2. 65 (E) ML single grade SAE 30-. 10 1.82 2. 65 10 1. 2.62 (E) MS single grade SAE 30.- 10 0.30 2. 50 (11)) MS multigrade SAE 10 0. 30 2. (F) Used test oil N o. 1 from 10 1. 72 2. 60
Lab Eng. (G) Used test oil No. 2 from 10 1. 40 2. 60
Lab Eng. (A) Muitigrade SAE low-30-- 7 Aunt Minnie (short 1. 55 2. 60
trips of 0.5 to 2.0 mi. in length). (A) Multigrade SAE low-30.- 7. 6 Chassis Dyna. at 1. 80 2. 60
40 F. after 12-hr. soak at 40 F. (A) Multigrade SAE 10W30 0 1 hr. of idling 1. 25 2.30
1 Clean Flow Rate at 14 In. Hg. Ap=2.60 c.f.m.
The above test results show that the PCV systems of spark ignition, internal combustion engines are markedly improved by the operation of the engine with crankcase lubricating oil compositions containing diethyleneglycol monobutyl ether. A satisfactory clean-up which returns the PCV system to practically new performance is obtained within 10 miles of operation under normal types of service. Thus, it was not necessary for the system to be removed for cleaning or replacement.
Additional tests were carried out to determine other effects of the engine operation in accordance with the lubricating oil containing copolymer of dodecylmethpresent invention employing crankcase lubricating oil compositions containing glycol ether. In these tests 4 ounces of diethylene glycol monobutyl ether were added to approximately 4 quarts of conventional detergent mineral lubricating oil, namely Oil B as described above. The gasoline was a premium grade fuel containing tetralkyl lead antidetonant. Metropolitan taxi fleet cabs were used in the tests. Five cabs without the glycol ether were evalu- Solvent ated as were cabs using the glycol ether. The cabs using Initial Final the glycol ftlger each relceived 14, 4-o1ilnce doses to the g gg glycolmonobutylether Zg i3 s in o a e on a m1 a e 1 crailkca e u neat g Sp ced qua y e g Tetrachlorethylen 1.83 1.88 basis over the test period. The vanous engine parts were Bpomobenzene 1. 1. 0 examined and deposits rated on a numerical basis of O methylene to 10, with 10 being clean. The test results are shown in 1 Clean flow rate at 14 in. Hg. Ap=2.60 c.f.m. Table H below 2 Dimethyl sulfoxide.
TABLE II Miles Rocker Rocker Cab No Glycol Cab on arm arm Valve Side Push rod Doses her mileage test cover 1 assembly 1 deck 1 cover 1 chamber 1 The above test results show that operation of actual taxi cab engines results in a substantial reduction in the formation of engine deposits. This reduction in engine deposits in turn provides reduced corrosion and decreases in ring and cylinder .wear.
In still other tests the effectiveness of various solvents in crankcase lubricating oil in removing and reducing the formation of PCV plugging deposits was evaluated in a series of simulated engine tests. These tests were carried out by maintaining a typical mixture of lubricating oil and solvent at approximately the temperature range encountered in actual engine operation during which vapors or fumes from the crankcase lubricating oil were withdrawn through an actual PCV valve of the General Motors AC type. The valves had been previously fouled and plugged in actual engine service. The results of these simulated engine tests were found to correlate well with actual engine tests.
In the tests, approximately 1,200 milliliters of oil were mixed with 80 milliliters of the solvent to be evaluated. The oil was a typical multi-grade SAE l0W-30 oil, the same as Oil A in the preceding test. The mixture of oil and solvent was placed in a two-liter round bottom flask equipped with a glass mantle heating cover and a ther mometer well. A two-hole rubber stopper was placed in the neck of the flask. One hole of the rubber stopper was fitted with the PCV valve, while the other hole was fitted with a sintered glass sparger element to diffuse and moderate the air flow. A vacuum was applied to the PCV valve causing air to enter the sintered glass diffuser and pass down over the oil and solvent mixture after which it was withdrawn through the PCV valve. The oil was maintained at a temperature in the range of about 190 to about 200 F. During the test, the vacuum was maintained at about 3 of mercury for about 2 hours and then at about 14" of mercury as in the preceding tests for about 1 hour. Each test was carried out over a period of about three hours.
Before the tests, the initial flow rates of the fouled valves were determined by placing them in a test system containing a rotameter by which the flow rates in cubic feet per minute at the 14" of mercury differential pressure were determined. After the tests, the valves were From the above tests it is seen that the glycol ether solvent as illustrated by the diethylene glycol monobutyl ether is outstanding in removing and reducing the formation of PCV plugging deposits when employed in crankcase lubricating oil in the operation of typical PCV systems. Other well known solvents including the usually effective chlorinated hydrocarbons are found to give little or no clean up.
In addition to the foregoing tests, the effect of ethyleneglycol monoalkyl ether in combination with nitrogenous ashless detergent as the sole detergent in lubricating oil compositions was determined. The lubricating oil composition is mixed with pyruvic acid at a concentration of grams of acid per kilogram of oil. The mixture is heated at 284 F. for /2 hour. After standing about 20 hours, the weight of sedimented insoluble resin formed is measured. Low values indicate good detergency, and the procedure is found to correlate with actual spark ignition internal combustion engine operation.
Using the aforementioned procedure, the addition of a typical nitrogenous ashless detergent additive package to a solvent-refined SAE 30 mineral base oil was found to give 13.4 grams per kilogram of insoluble resin, whereas the addition of nitrogenous ashless detergent in combination with ethyleneglycol monoalkyl ether actually lowered the insoluble resin formation to 8.8 grams per kilogram. This is surprising, since the presence of polyglycol ethers usually detracts from the effectiveness of detergents in lubricating oil compositions. The polyglycol ether in similarly compounded mineral oil omitting the detergent gave 67.7 grams per kilogram resin.
The nitrogenous ashless detergent additive mentioned above was polyiso-butenyl succinimide of tetraethylenepentamine having about 65 carbon atoms in the polyisobutenyl group. The compound lubricating oil composition contained 1.2% by weight alkenyl succinimide, 6 mm./ kg. zinc butyl hexyl dithiophosphate oxidation-corrosion inhibitor and 1 mm./kg. zinc di-(tetradecylphenyl) dithiophosphate oxidation-corrosion inhibitor. The similarly compounded mineral oil omitting detergent was solvent-refined mineral base oil containing 12 mm./kg. zinc butylhexyl dithiophosphate. The ethyleneglycol monoalkyl ether was the diethylene monobutyl ether and was used in an amount to provide a concentration of 3.2% by weight in the lubricating oil composition.
As illustrated above, a particular embodiment of the present invention lies in the combination of nitrogenous ashless detergent and ethyleneglycol monoalkyl ether as a new additive combination for lubricating oil compositions for spark ignition, internal combustion engines. In this new combination the weight ratio of nitrogenous ashless detergent t-o ethyleneglycol monoalkyl ether is generally from about 0.01:1 up to about 15:1 and preferably from about 0.3:1 up to about :1 for most effective engine cleanliness and PCV system operation.
While the character of this invention has been described in detail with numerous examples, this has been done by way of illustration only and without limitation of the invention. It will be apparent to those skilled in the art that numerous modifications and variations of the illustrative examples may be made in the practice of the invention within the scope of the following claims.
I claim:
1. In the operation of a spark ignition internal combustion engine equipped with a valve-controlled positive crankcase ventilation system whereby fumes are with-. drawn from the crankcase and introduced into the airfuel intake system, the improvement which comprises adding to said engine crankcase lubricating oil composition from about 2 to about percent by weight of diethylene glycol monobutyl ether, withdrawing from the crankcase continuously a portion of said diethylene glycol monobutyl ether in vapor form, introducing it into the positive crankcase ventilation system and thereby contacting said valve.
2. The operation in accordance with claim 1 wherein the crankcase lubricating oil composition contains polymeric ashless detergent in addition to the diethylene glycol monobutyl ether.
3. The operation in accordance with claim 1 wherein the crankcase lubricating oil composition contains about 3% by weight of diethylene glycol monobutyl ether.
4. In the operation of a spark ignition internal combustion engine equipped with a valve-controlled positive crankcase ventilation system whereby fumes are withdrawn from the crankcase and introduced into the airfuel intake system, the improvement which comprises operating said engine with a lubricating oil composition which is comprised of a major proportion of mineral lubricating oil, a minor proportion sufficient to improve the detergent characteristics thereof of a nitrogenous ashless detergent obtained by the acylation of alkylene polyamines having from 2 to 20 carbon atoms and from 2 to 10 nitrogen atoms with alkenylsuccinic acid or alkenylsuccinic anhydride having from about 30 to about 400 carbon atoms in the alkenyl group and from about 2 to about 10% by weight of ethyleneglycol monoalkyl ether having 1 to 3 ethyleneglycol units and from 1 to 8 carbon atoms in the alkyl group, and withdrawing from the crankcase continuously a portion of said ethyleneglycol monoalkyl ether in vapor form and introducing it intothe positive crankcase ventilation system and thereby contacting said valve.
References Cited UNITED STATES PATENTS 2,260,341 10/1944 Schott 252-52 X 2,334,158 11/1943 Von Fuchs et al 44-70 2,355,591 8/1944 Flaxman. 2,383,915 8/ 1945 Morgan. 2,489,300 11/1949 Leyda 252-52 X 2,602,048 7/1952 Michaels et al. 252-427 2,914,479 11/1959 Tom et al. 252-52 X 3,024,195 3/1962 Drummond et al. 3,173,408 3/1965 Brenneman. 3,192,910 7/1965 Coffield et a1. 123-1 3,202,678 8/1965 Stuart et al.
OTHER REFERENCES Georgie: Motor Oils and Engine Lubrication, Reinhold Publishing Corporation, New York, N.Y., copyright 1950, pp. 337-340.
AL LAWRENCE SMITH, Primary Examiner.
US. Cl. X.R.
US681041A 1967-10-16 1967-10-16 Method of operation and lubricant for closed emission internal combustion engines Expired - Lifetime US3426738A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68104167A 1967-10-16 1967-10-16

Publications (1)

Publication Number Publication Date
US3426738A true US3426738A (en) 1969-02-11

Family

ID=24733562

Family Applications (1)

Application Number Title Priority Date Filing Date
US681041A Expired - Lifetime US3426738A (en) 1967-10-16 1967-10-16 Method of operation and lubricant for closed emission internal combustion engines

Country Status (1)

Country Link
US (1) US3426738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511218A (en) * 1967-02-14 1970-05-12 Anthony M Lazaros Fuel combustion system
US5641729A (en) * 1995-09-05 1997-06-24 Hilton Oil Corporation Internal combustion engine preparation composition
US5858931A (en) * 1995-08-09 1999-01-12 Asahi Denka Kogyo K.K Lubricating composition
WO2000052117A1 (en) * 1999-03-04 2000-09-08 Rohmax Additives Gmbh Engine oil composition with reduced deposit-formation tendency
US20150020524A1 (en) * 2013-07-17 2015-01-22 Dayco Ip Holdings, Llc Aspirator and ejector system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2260341A (en) * 1938-04-05 1941-10-28 Tide Water Associated Oil Comp Lubricating oil composition
US2334158A (en) * 1941-09-29 1943-11-09 Shell Dev Rust-preventive composition
US2355591A (en) * 1941-01-14 1944-08-08 Union Oil Co Flushing oils
US2383915A (en) * 1942-07-03 1945-08-28 Cities Service Oil Co Lubricants
US2489300A (en) * 1946-10-25 1949-11-29 California Research Corp Lubricants and the like
US2602048A (en) * 1949-01-24 1952-07-01 Standard Oil Dev Co Lubricating oil additives
US2914479A (en) * 1955-04-26 1959-11-24 Standard Oil Co Upper cylinder lubricant and tune-up solvent composition
US3024195A (en) * 1959-08-24 1962-03-06 California Research Corp Lubricating oil compositions of alkylpiperazine alkenyl succinimides
US3173408A (en) * 1963-03-19 1965-03-16 Exxon Research Engineering Co Method and apparatus for injecting auxiliary liquids into intake system of internal combustion engine
US3192910A (en) * 1961-11-15 1965-07-06 Ethyl Corp Two-cycle internal combustion engine fuel
US3202678A (en) * 1959-08-24 1965-08-24 California Research Corp Alkenyl succinimides of tetraethylene pentamine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2260341A (en) * 1938-04-05 1941-10-28 Tide Water Associated Oil Comp Lubricating oil composition
US2355591A (en) * 1941-01-14 1944-08-08 Union Oil Co Flushing oils
US2334158A (en) * 1941-09-29 1943-11-09 Shell Dev Rust-preventive composition
US2383915A (en) * 1942-07-03 1945-08-28 Cities Service Oil Co Lubricants
US2489300A (en) * 1946-10-25 1949-11-29 California Research Corp Lubricants and the like
US2602048A (en) * 1949-01-24 1952-07-01 Standard Oil Dev Co Lubricating oil additives
US2914479A (en) * 1955-04-26 1959-11-24 Standard Oil Co Upper cylinder lubricant and tune-up solvent composition
US3024195A (en) * 1959-08-24 1962-03-06 California Research Corp Lubricating oil compositions of alkylpiperazine alkenyl succinimides
US3202678A (en) * 1959-08-24 1965-08-24 California Research Corp Alkenyl succinimides of tetraethylene pentamine
US3192910A (en) * 1961-11-15 1965-07-06 Ethyl Corp Two-cycle internal combustion engine fuel
US3173408A (en) * 1963-03-19 1965-03-16 Exxon Research Engineering Co Method and apparatus for injecting auxiliary liquids into intake system of internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511218A (en) * 1967-02-14 1970-05-12 Anthony M Lazaros Fuel combustion system
US5858931A (en) * 1995-08-09 1999-01-12 Asahi Denka Kogyo K.K Lubricating composition
US5641729A (en) * 1995-09-05 1997-06-24 Hilton Oil Corporation Internal combustion engine preparation composition
WO2000052117A1 (en) * 1999-03-04 2000-09-08 Rohmax Additives Gmbh Engine oil composition with reduced deposit-formation tendency
US6458750B1 (en) 1999-03-04 2002-10-01 Rohmax Additives Gmbh Engine oil composition with reduced deposit-formation tendency
JP2002538266A (en) * 1999-03-04 2002-11-12 ローマックス アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツング Engine oil compositions having a low tendency to form deposits
US20150020524A1 (en) * 2013-07-17 2015-01-22 Dayco Ip Holdings, Llc Aspirator and ejector system
US9845773B2 (en) * 2013-07-17 2017-12-19 Dayco Ip Holdings, Llc Aspirator and ejector system

Similar Documents

Publication Publication Date Title
US3163603A (en) Amide and imide derivatives of metal salts of substituted succinic acids
US3254025A (en) Boron-containing acylated amine and lubricating compositions containing the same
US3756793A (en) Fuel composition
CA1048507A (en) Additive useful in oleaginous compositions
AU689847B2 (en) Ashless, low phosphorus lubricant
RU2029778C1 (en) Lubricating oil for internal combustion engines
US3704308A (en) Boron-containing high molecular weight mannich condensation
EP0020037B1 (en) Oil-soluble friction-reducing additive, process for the preparation thereof, and lubricating oil or fuel composition containing the additive
US4158633A (en) Lubricating oil
US3385791A (en) Lubricant oil composition
US3326801A (en) Lubricating oil compositions
US3795495A (en) Gasoline anti-icing additives
US3525693A (en) Alkenyl succinic polyglycol ether
US3426738A (en) Method of operation and lubricant for closed emission internal combustion engines
US3723460A (en) Polymeric succinimides and their derivatives as fuel and motor oil additives
US3821302A (en) Olefinic ketone imines and oil compositions containing them
US3850822A (en) Ashless oil additive combination composed of a nitrogen-containing ashless dispersant phosphosulfurized olefin and phosphorothionyl disulfide
US4285824A (en) Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US3676483A (en) Dispersants prepared from polyamines and alkaryl carboxylic acids
US4356097A (en) Alkylphosphonate lubricating oil
US3405065A (en) Detergent lubricant compositions for closed emission internal combustion engines
GB1117643A (en) Imides and related compounds
US4243538A (en) Fuel and lubricating compositions containing N-hydroxymethyl aliphatic hydrocarbylamide friction reducers
US3306856A (en) Aryl keto acid pour-point depressants and dispersants for oleaginous compositions
US3050043A (en) Operation of spark-ignition engines