US3490955A - Aluminum base alloys and process for obtaining same - Google Patents
Aluminum base alloys and process for obtaining same Download PDFInfo
- Publication number
- US3490955A US3490955A US610973A US3490955DA US3490955A US 3490955 A US3490955 A US 3490955A US 610973 A US610973 A US 610973A US 3490955D A US3490955D A US 3490955DA US 3490955 A US3490955 A US 3490955A
- Authority
- US
- United States
- Prior art keywords
- alloy
- less
- aluminum
- temperature
- aluminum base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
Definitions
- the present invention relates to aluminum base alloys having high strength prepared by working at a temperature below 450 F., holding at from 250 to 650 F. and working again at a temperature below 450 F.
- the present invention relates to a process for the preparation of high strength aluminum base alloys.
- the present invention resides in a process, an an alloy produced thereby, for the preparation of alumlnum base alloys having strengths considerably higher than conventionally, even with the introduction of severe amounts of cold work.
- alloying is invariably associated with decrease in conductivity; cold working decreases the ductility or elongation; and precipitation hardening will decrease toughness and increase notch sensitivity and decrease corrosion resistance. Also, each of these generally has other deleterious effects.
- the process of the present invention comprises:
- (A) Providing an aluminum base alloy containing from 0.05 to 1.0% iron, from 0.05 to 1.0% silicon, at least one material selected from the group consisting of less than 10.0% magnesium, less than 3.0% manganese, less than 1.0% copper, less than 0.5% chromium, less than 0.5 zinc, less than 0.5 zirconium, less than 0.5 titanium, less than 0.1% boron, others less than 0.5 each, total less than 1.5%, balance essentially aluminum;
- step (D) Repeating step (B), preferably repeating steps (B) and (C), preferably a plurality of times.
- the present invention is broadly applicable to a wide range of aluminum base alloys as stated above, including high purity aluminum, and significant improvement is obtained with all these materials. It is preferred, however, that the aluminum base alloy contain less than 99.5% aluminum and naturally that certain additional elements be present in the alloy. This is reflected in the following which shows the permissible and preferred amounts of additional elements wherein all percentages are percentages by weight: Silicon from 0.05 to 1.0%, preferably from 0.3 to 0.7%; iron from 0.05 to 1.0%, preferably from 0.4 to 0.8%.
- the alloy In addition to iron and silicon, the alloy must contain at least one of the following materials: copper from 0 to 1.0%, preferably from 0.1 to 0.3%; manganese from 0 to 3.0%, preferably from 0 to 1.6%; magnesium from 0 to 10.0%, preferably from 0 to 5.0%; chromium from 0 to 0.5 preferably from 0 to 0.2%; zinc from 0 to 0.5 preferably from 0 to 0.3%; zirconium from 0 to 0.5 preferably 0 to 0.3%; boron from 0 to 0.1%, preferably from 0 to 0.05%; titanium from 0 to 0.5 preferably from 0 to 0.2%, others each less than 0.5%, total less than 1.5%, preferably each less than 0.05%, total less than 0.15%.
- Particularly preferred alloys include aluminum alloy 5005, 3003, 1100, EC grade aluminum, superpurity aluminum, etc. In general, the preferred alloys are those of the 1000 series, 3000 series and 5000 series.
- the aluminum base alloys may be cast in any desired manner.
- the particular method of casting is not critical and any commercial method may be employed, such as Direct Chill or Tilt Mold casting.
- the alloys may also be hot rolled to plate form in a conventional manner.
- This solutionizing treatment should be performed at a temperature above 850 F. and preferably above 950 'F. and the ingot should be held at temperature for a minimum of 4 hours. After the solutionizing step, the ingot should be rapidly cooled to below 450 F. and preferably rapidly cooled to below 250 F. at a rate of above 400 F. per hour.
- the solutionizing step may be combined with the casting operation, i.e., in the casting operation the material may be held at the requisite temperature for the requisite period of time followed by rapidly cooling.
- the solutionizing step is as follows.
- the solutionizing step followed by rapid cooling puts as much of these ma terials into solution as possible.
- the solute elements or alloying additions are in solid solution, preferably to the maximum degree, in the aluminum or solvent matrix. This is, as stated hereinabove, a preferred operation.
- the next step is the critical working operation.
- the preferred type of working is naturally rolling and the present specification will be particularly directed to this form of initial working. It should be understood, however, that other types of working are contemplated, especially in later steps, such as drawing, swaging, etc.
- the material is worked or rolled at a temperature below 450 F. with a total reduction in excess of 20%. It is preferred to roll at a temperature below 200 F.
- the material may be rolled in one or more passes with the amount of reduction per pass not being critical. In general, it is preferred to take a plurality of smaller reductions rather than one large reduction. In general, each pass should take at least a 15% reduction. Large reductions may be taken, if desired, for example, reductions in excess of 99% may be taken, e.g., in wire form.
- the term reduction means total reduction in area.
- the material is critically held at from 250 to 650 F. for a period of time no greater than defined in the following formula:
- T is any given temperature within the foregoing temperature range in degrees Kelvin and t is the maximum time in minutes at temperature T.
- the minimum time at temperature is not particularly critical, but should be at least one second. Naturally, the higher the temperature within the foregoing temperature range, the shorter the maximum holding time and the lower the temperature the longer the maximum holding time. It is preferred to operate in the temperature range of from 250 to 450 F. Examples of maximum allowable times determined in accordance with the foregoing formula are: approximately 400 hours at 300 F.; approximately 16 hours at 400 F.; and 2 minutes at 650 F.
- This second rolling or working step may be the final step, or may, and preferably is,
- the final step in the process may be either the rolling or working step or the thermal treatment step upon particular requirements.
- a modification of the present invention includes the following.
- the rolling step may be performed within the thermal treatment range.
- the thermal treatment range may be from 250 to 450 F. and holds the material at temperature one may efi'etcively combine the working or rolling step with the thermal treatment step and thereby avoid a separate thermal treatment step.
- the final step may optionally be the holding step of the present invention at from 250 to 650 F. but for a longer period of time than permitted by the foregoing formula, so that there is no recrystallization throughout the matrix but there is less than 25% loss in yield and tensile strength. This would result in yield and tensile strengths still greatly superior than normally obtained, but the ductility would be increased.
- the first rolling operation or the first deformation forms a cellular sub-grain structure. That is, the microstructure of the alloy is characterized by grains within grains.
- the thermal treatment step tends to stabilize the sub-grain walls by migrating solute atoms towards the sub-grain walls.
- the second deformation forms more sub-grain walls within the sub-grain structure, thereby incrementally refining the sub-grain size finer and finer as deformation and thermal treatment steps are repeated.
- the improved alloys of the present invention are characterized by greatly improved strength characteristics and ultra fine sub-grain structure with the sub-grain.
- EXAMPLE I In the following examples the following alloys were used. Aluminum alloy 1100; aluminum alloy 3003; aluminum alloy 5005; and super-purity aluminum. All of the alloys were Direct Chill cast and scalped into ingots 1% x 4 x 6".
- EXAMPLE 11 In this example Alloy 3003 as cast was cold rolled incrementally from 1.750 to 1.5 to 1.25" to 1.0" to 0.8" to 0.65" to 0.5" to 0.35 to 0.25 to 0.175" to 0.122" to 0.083" to 0.07" to 0.05" to 0.036" to 0.025 to 0.018 to 0.014. After each reduction except the last there was a minute holding step at 400 F. The resulting mate rial had an average yield strength at 0.2% offset of 58,- 200 p.s.i. and an ultimate tensile strength of 63,400 p.s.i. with 2% elongation.
- Alloy 3003 was cold rolled to 0.014" gage and had the following properties: yield strength 0.2% offset of 27,000 p.s.i.; ultimate tensile I strength of 31,000 p.s.i. with 2% elongation.
- FIGURE 1 is a photomicrograph of aluminum alloy 3003 obtained in accordance with the foregoing example at 0.036 gage.
- FIGURE 2 is a photomicrograph of aluminum alloy 3003 at 0.036" gage, with the alloy prepared in the following manner; the alloy was homogenized at 1100 F., hot rolled starting 950 F. and cold rolled to gage. Both photomicrographs are at a magnification of 30,000 The photomicrographs were prepared by a transmission electron micrograph taken from thin foils prepared by electro-chemical milling of a cold rolled material to a thickness of approximately 2,000 Angstroms.
- FIGURE 2 has gross areas of dislocation tangles interspaced with large areas of apparently unworked materials.
- FIGURE 1 the alloy of the present invention has a series of recognizable, discrete grains of approximately 0.0001 mm. No regions of apparent unworked material are visible. The discrete subgrains are separated by recognizable grain boundary walls.
- EXAMPLE III Aluminum alloy 3003 prepared in Example I was heated to 1100 F. and held for 16 hours. It was then water quenched to room temperature in 5 seconds followed by cold rolling incrementally from 1.75" to 1.5" to 1.25" to 0.8 to 0.65" to 0.5" to 0.35" to 0.25" to 0.175" to 0.122 to 0.088". Following this, the material was further cold rolled incrementally, except that after each reduction except the last the material was heated to 400 F. and held for 10 minutes at temperature and water quenched to room temperature. The reductions were as follows: from 0.088" to 0.072 to 0.05" to 0.036" to 0.029" to 0.024" to 0.020" to 0.017" to 0.013".
- the resultant material had an average yield strength of 48,000 p.s.i. at 0.2% offset and an ultimate tensile strength of 55,400 p.s.i. with 2% elongation.
- the microstructure was similar to that shown in FIGURE 1. Identical material processed in the same manner without the interanneals had a yield strength of only 38,000 p.s.i. at 2% offset and an ultimate tensile strength of 43,300 p.s.i. with 4% elongation.
- Example IV Aluminum alloy 5005 prepared in Example I was cold rolled incrementally from 1.75" to 1.5" to 1.25" to 1.0 to 0.8" to 0.65" to 0.5" to 0.35 to 0.25" to 0.175" to 0.122" to 0.085" to 0.06" to 0.042" to 0.03 to 0.022". After the last cold reduction the material was held for 10 minutes at 300 F. followed by an additional cold reduction to 0.018". The resultant material had an average yield strength of 48,900 p.s.i. at 0.02% offset and an ulti mate tensile strength of 49,800 p.s.i. with an elongation of 1%.
- aluminum alloy 5005 was cold rolled to 0.018" gage and had the following properties: yield strength 28,000 p.s.i. at 0.2% offset; ultimate tensile strength 29,000 p.s.i.; with an elongation of 1%.
- a process for preparing high strength wrought aluminum base alloys which comprises:
- (A) providing an aluminum base alloy consisting essentially of from 0.05 to 1.0% iron, from 0.5 to 1.0% silicon, at least one material selected from the group consisting of less than 10.0% magnesium, less than 3.0 manganese, less than 1.0% copper, less than 0.5% chromium, less than 0.5% zinc, less than 0.5% zirconium, less than 0.5% titanium, less than 0.1% boron, balance essentially aluminum;
- step (D) repeating step (B).
- steps (B) and (C) are repeated in a plurality of times.
- step (A) A process according to claim 1 wherein the materials in step (A) are present in the following amounts: silicon from 0.3 to 0.7%, iron from 0.4 to 0.8%, at least one material selected from the group consisting of copper from 0.1 to 0.3%, manganese up to 1.6%, magnesium up to 5.0%, chromium up to 0.2%, zinc up to 0.3%, titanium up to 0.2%, zirconium up to 0.3% and boron up to 0.05%.
- step (B) is rolling at a temperature below 200 F.
- a high strength wrought aluminum base alloy consisting essentially of from 0.05 to 1.0% iron, from 0.05 to 1.0% silicon, at least one material selected from the group consisting of less than 10.0% magnesium, less than 3.0% manganese, less than 1.0% copper, less than 0.5% chromium, less than 0.5% zinc, less than 0.5% zirconium, less than 0.5% titanium, less than 0.1% boron, balance essentially aluminum, said alloy having ultra fine subgrain structure with the sub-grain size being less than 0.0001 mm., with the sub-grains having boundary walls of pinned dislocation tangles.
- An alloy according to claim 9 containing from 0.3 to 0.7% silicon, 0.4 to 0.8% iron, at least one material selected from the group consisting of 0.1 to 0.3% copper, up to 1.6% manganese, up to 5.0 magnesium, up to 0.2% chromium, up to 0.3% zinc, up to 0.2% titanium, up to 0.3 zirconium, up to 0.05% boron.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Metal Rolling (AREA)
- Materials For Medical Uses (AREA)
- Continuous Casting (AREA)
- Forging (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61097367A | 1967-01-23 | 1967-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3490955A true US3490955A (en) | 1970-01-20 |
Family
ID=24447148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US610973A Expired - Lifetime US3490955A (en) | 1967-01-23 | 1967-01-23 | Aluminum base alloys and process for obtaining same |
Country Status (9)
Country | Link |
---|---|
US (1) | US3490955A (ja) |
JP (1) | JPS512049B1 (ja) |
CH (1) | CH509412A (ja) |
DE (1) | DE1608766C3 (ja) |
FR (1) | FR1562063A (ja) |
GB (1) | GB1192281A (ja) |
NL (1) | NL6800952A (ja) |
NO (1) | NO122456B (ja) |
SE (1) | SE407947B (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4839690B1 (ja) * | 1970-07-24 | 1973-11-26 | ||
JPS4839689B1 (ja) * | 1970-07-24 | 1973-11-26 | ||
US3821843A (en) * | 1971-05-24 | 1974-07-02 | Anaconda Co | Method of making aluminum alloy conductor |
JPS4970810A (ja) * | 1972-09-25 | 1974-07-09 | ||
DE2402351A1 (de) * | 1973-01-19 | 1974-07-25 | British Aluminium Co Ltd | Aluminiumlegierung und verfahren zur herstellung von halbzeug daraus |
US3879194A (en) * | 1971-05-25 | 1975-04-22 | Alcan Res & Dev | Aluminum alloys |
JPS5021286B1 (ja) * | 1970-08-21 | 1975-07-22 | ||
DE2511831A1 (de) * | 1974-03-18 | 1975-09-25 | Alusuisse | Aluminiumlegierung und verfahren zu ihrer behandlung |
US3930895A (en) * | 1974-04-24 | 1976-01-06 | Amax Aluminum Company, Inc. | Special magnesium-manganese aluminum alloy |
US3960607A (en) * | 1974-03-08 | 1976-06-01 | National Steel Corporation | Novel aluminum alloy, continuously cast aluminum alloy shapes, method of preparing semirigid container stock therefrom, and container stock thus prepared |
US3966506A (en) * | 1975-05-21 | 1976-06-29 | Swiss Aluminium Ltd. | Aluminum alloy sheet and process therefor |
DE2629838A1 (de) * | 1975-07-02 | 1977-01-27 | Kobe Steel Ltd | Al-legierungsblech fuer finnen eines waermeaustauschers und verfahren zu seiner herstellung |
JPS5328843B1 (ja) * | 1971-03-22 | 1978-08-17 | ||
US4407679A (en) * | 1980-11-19 | 1983-10-04 | National Steel Corporation | Method of producing high tensile aluminum-magnesium alloy sheet and the products so obtained |
US4517034A (en) * | 1982-07-15 | 1985-05-14 | Continental Can Company | Strip cast aluminum alloy suitable for can making |
US4526625A (en) * | 1982-07-15 | 1985-07-02 | Continental Can Company | Process for the manufacture of continuous strip cast aluminum alloy suitable for can making |
DE3827794A1 (de) * | 1987-08-31 | 1989-03-16 | Toyoda Gosei Kk | Lenkradkern |
US5571348A (en) * | 1993-02-16 | 1996-11-05 | National Tsing Hua University | Method and apparatus for improving alloy property and product produced thereby |
CN1040670C (zh) * | 1995-07-13 | 1998-11-11 | 叶均蔚 | 改善合金材料性质的方法、装置及其产品 |
US20070113936A1 (en) * | 2004-02-03 | 2007-05-24 | Nippon Light Metal Company,Ltd | High strength aluminum alloy fin material for heat exchanger and method for production thereof |
WO2008078399A1 (en) * | 2006-12-22 | 2008-07-03 | Nippon Light Metal Company, Ltd. | Method of producing aluminum alloy sheet |
US20080251230A1 (en) * | 2007-04-11 | 2008-10-16 | Alcoa Inc. | Strip Casting of Immiscible Metals |
US20100119407A1 (en) * | 2008-11-07 | 2010-05-13 | Alcoa Inc. | Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same |
US20110036464A1 (en) * | 2007-04-11 | 2011-02-17 | Aloca Inc. | Functionally graded metal matrix composite sheet |
CN104451284A (zh) * | 2014-11-28 | 2015-03-25 | 河南万达铝业有限公司 | 易拉罐罐盖5182-h48铝合金带材及其生产方法 |
WO2020214750A1 (en) * | 2019-04-19 | 2020-10-22 | Magna International Inc. | Non-heat-treated casting alloys for automotive structural applications |
US20210348254A1 (en) * | 2018-09-07 | 2021-11-11 | Tubex Holding Gmbh | Aluminium alloy, semi-finished product, can, method of producing a slug, method of producing a can, and use of an aluminium alloy |
CN116200631A (zh) * | 2023-03-09 | 2023-06-02 | 魏桥轻量化(苏州)科技有限公司 | 一种6xxx铝合金及其制备方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT991054B (it) * | 1973-07-09 | 1975-07-30 | Montedison Spa | Conduttore elettrico in lega di alluminio e procedimento per la sua produzione |
US4010046A (en) * | 1976-03-04 | 1977-03-01 | Swiss Aluminium Ltd. | Method of extruding aluminum base alloys |
US4039298A (en) * | 1976-07-29 | 1977-08-02 | Swiss Aluminium Ltd. | Aluminum brazed composite |
CH622031A5 (en) * | 1976-09-02 | 1981-03-13 | Alusuisse | Use of pure aluminium for aluminium cans |
NO141372C (no) | 1978-06-27 | 1980-02-27 | Norsk Hydro As | Fremgangsmaate for fremstilling av baandstoept aluminium platemateriale med forbedrede mekaniske og termomekaniske egenskaper |
NZ194640A (en) * | 1979-08-30 | 1983-05-10 | Alcan Res & Dev | Aluminium alloy sheet product |
ATE56482T1 (de) * | 1986-08-04 | 1990-09-15 | Alusuisse Lonza Services Ag | Verfahren zur herstellung warmfester aluminiumlegierungs - erzeugnisse. |
FR2803602B1 (fr) * | 2000-01-11 | 2002-09-06 | Seb Sa | Utilisation d'un seul alliage d'aluminium pour realiser des ustensiles culinaires de finition exterieure emaillee ou anti-adherente |
JP4633993B2 (ja) * | 2002-03-20 | 2011-02-16 | 住友軽金属工業株式会社 | 曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板および製造方法 |
KR100870164B1 (ko) * | 2001-03-28 | 2008-11-25 | 스미토모 게이 긴조쿠 고교 가부시키가이샤 | 성형성과 도장 베이킹 경화성이 우수한 알루미늄 합금판 |
JP4248796B2 (ja) * | 2001-09-27 | 2009-04-02 | 住友軽金属工業株式会社 | 曲げ加工性および耐食性に優れたアルミニウム合金板およびその製造方法 |
JP4633994B2 (ja) * | 2002-03-20 | 2011-02-16 | 住友軽金属工業株式会社 | 曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板および製造方法 |
JP4175818B2 (ja) * | 2001-03-28 | 2008-11-05 | 住友軽金属工業株式会社 | 成形性および塗装焼付硬化性に優れたアルミニウム合金板およびその製造方法 |
DE102006039684B4 (de) * | 2006-08-24 | 2008-08-07 | Audi Ag | Aluminium-Sicherheitsbauteil |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2168134A (en) * | 1936-07-01 | 1939-08-01 | Radiowerk E Schrack A G | Aluminum body and method of making same |
US3232796A (en) * | 1962-03-21 | 1966-02-01 | Aluminum Co Of America | Treatment of aluminum-magnesium alloy |
US3366476A (en) * | 1965-05-20 | 1968-01-30 | Olin Mathieson | Aluminum base alloy |
-
1967
- 1967-01-23 US US610973A patent/US3490955A/en not_active Expired - Lifetime
-
1968
- 1968-01-11 GB GB0630/68A patent/GB1192281A/en not_active Expired
- 1968-01-22 SE SE6800821A patent/SE407947B/xx unknown
- 1968-01-22 DE DE1608766A patent/DE1608766C3/de not_active Expired
- 1968-01-22 NL NL6800952A patent/NL6800952A/xx unknown
- 1968-01-22 NO NO0262/68A patent/NO122456B/no unknown
- 1968-01-23 JP JP43003549A patent/JPS512049B1/ja active Pending
- 1968-01-23 FR FR1562063D patent/FR1562063A/fr not_active Expired
- 1968-01-23 CH CH99868A patent/CH509412A/de not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2168134A (en) * | 1936-07-01 | 1939-08-01 | Radiowerk E Schrack A G | Aluminum body and method of making same |
US3232796A (en) * | 1962-03-21 | 1966-02-01 | Aluminum Co Of America | Treatment of aluminum-magnesium alloy |
US3366476A (en) * | 1965-05-20 | 1968-01-30 | Olin Mathieson | Aluminum base alloy |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4839689B1 (ja) * | 1970-07-24 | 1973-11-26 | ||
JPS4839690B1 (ja) * | 1970-07-24 | 1973-11-26 | ||
JPS5021286B1 (ja) * | 1970-08-21 | 1975-07-22 | ||
JPS5328843B1 (ja) * | 1971-03-22 | 1978-08-17 | ||
US3821843A (en) * | 1971-05-24 | 1974-07-02 | Anaconda Co | Method of making aluminum alloy conductor |
US3879194A (en) * | 1971-05-25 | 1975-04-22 | Alcan Res & Dev | Aluminum alloys |
JPS4970810A (ja) * | 1972-09-25 | 1974-07-09 | ||
JPS5615462B2 (ja) * | 1972-09-25 | 1981-04-10 | ||
DE2402351A1 (de) * | 1973-01-19 | 1974-07-25 | British Aluminium Co Ltd | Aluminiumlegierung und verfahren zur herstellung von halbzeug daraus |
US3960607A (en) * | 1974-03-08 | 1976-06-01 | National Steel Corporation | Novel aluminum alloy, continuously cast aluminum alloy shapes, method of preparing semirigid container stock therefrom, and container stock thus prepared |
DE2511831A1 (de) * | 1974-03-18 | 1975-09-25 | Alusuisse | Aluminiumlegierung und verfahren zu ihrer behandlung |
US3930895A (en) * | 1974-04-24 | 1976-01-06 | Amax Aluminum Company, Inc. | Special magnesium-manganese aluminum alloy |
US3966506A (en) * | 1975-05-21 | 1976-06-29 | Swiss Aluminium Ltd. | Aluminum alloy sheet and process therefor |
DE2629838A1 (de) * | 1975-07-02 | 1977-01-27 | Kobe Steel Ltd | Al-legierungsblech fuer finnen eines waermeaustauschers und verfahren zu seiner herstellung |
US4407679A (en) * | 1980-11-19 | 1983-10-04 | National Steel Corporation | Method of producing high tensile aluminum-magnesium alloy sheet and the products so obtained |
US4526625A (en) * | 1982-07-15 | 1985-07-02 | Continental Can Company | Process for the manufacture of continuous strip cast aluminum alloy suitable for can making |
US4517034A (en) * | 1982-07-15 | 1985-05-14 | Continental Can Company | Strip cast aluminum alloy suitable for can making |
DE3827794A1 (de) * | 1987-08-31 | 1989-03-16 | Toyoda Gosei Kk | Lenkradkern |
US5571348A (en) * | 1993-02-16 | 1996-11-05 | National Tsing Hua University | Method and apparatus for improving alloy property and product produced thereby |
CN1040670C (zh) * | 1995-07-13 | 1998-11-11 | 叶均蔚 | 改善合金材料性质的方法、装置及其产品 |
US20070113936A1 (en) * | 2004-02-03 | 2007-05-24 | Nippon Light Metal Company,Ltd | High strength aluminum alloy fin material for heat exchanger and method for production thereof |
US8142575B2 (en) * | 2004-02-03 | 2012-03-27 | Nippon Light Metal Company, Ltd. | High strength aluminum alloy fin material for heat exchanger and method for production thereof |
WO2008078399A1 (en) * | 2006-12-22 | 2008-07-03 | Nippon Light Metal Company, Ltd. | Method of producing aluminum alloy sheet |
US20110036464A1 (en) * | 2007-04-11 | 2011-02-17 | Aloca Inc. | Functionally graded metal matrix composite sheet |
US20080251230A1 (en) * | 2007-04-11 | 2008-10-16 | Alcoa Inc. | Strip Casting of Immiscible Metals |
US8381796B2 (en) | 2007-04-11 | 2013-02-26 | Alcoa Inc. | Functionally graded metal matrix composite sheet |
US8403027B2 (en) | 2007-04-11 | 2013-03-26 | Alcoa Inc. | Strip casting of immiscible metals |
US8697248B2 (en) | 2007-04-11 | 2014-04-15 | Alcoa Inc. | Functionally graded metal matrix composite sheet |
US20100119407A1 (en) * | 2008-11-07 | 2010-05-13 | Alcoa Inc. | Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same |
US8956472B2 (en) | 2008-11-07 | 2015-02-17 | Alcoa Inc. | Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same |
CN104451284A (zh) * | 2014-11-28 | 2015-03-25 | 河南万达铝业有限公司 | 易拉罐罐盖5182-h48铝合金带材及其生产方法 |
CN104451284B (zh) * | 2014-11-28 | 2017-08-18 | 河南万达铝业有限公司 | 易拉罐罐盖5182‑h48铝合金带材及其生产方法 |
US20210348254A1 (en) * | 2018-09-07 | 2021-11-11 | Tubex Holding Gmbh | Aluminium alloy, semi-finished product, can, method of producing a slug, method of producing a can, and use of an aluminium alloy |
WO2020214750A1 (en) * | 2019-04-19 | 2020-10-22 | Magna International Inc. | Non-heat-treated casting alloys for automotive structural applications |
CN116200631A (zh) * | 2023-03-09 | 2023-06-02 | 魏桥轻量化(苏州)科技有限公司 | 一种6xxx铝合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
SE407947B (sv) | 1979-04-30 |
DE1608766C3 (de) | 1973-10-11 |
GB1192281A (en) | 1970-05-20 |
JPS512049B1 (ja) | 1976-01-22 |
CH509412A (de) | 1971-06-30 |
FR1562063A (ja) | 1969-04-04 |
NL6800952A (ja) | 1968-07-24 |
DE1608766B2 (de) | 1973-03-22 |
NO122456B (ja) | 1971-06-28 |
DE1608766A1 (de) | 1972-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3490955A (en) | Aluminum base alloys and process for obtaining same | |
US3945860A (en) | Process for obtaining high ductility high strength aluminum base alloys | |
EP0610006B1 (en) | Superplastic aluminum alloy and process for producing same | |
US4073667A (en) | Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition | |
JP3194742B2 (ja) | 改良リチウムアルミニウム合金系 | |
US4526630A (en) | Heat treatment of aluminium alloys | |
US3997369A (en) | Production of metallic articles | |
US4618382A (en) | Superplastic aluminium alloy sheets | |
US3938991A (en) | Refining recrystallized grain size in aluminum alloys | |
US4055445A (en) | Method for fabrication of brass alloy | |
JPS621467B2 (ja) | ||
US4929285A (en) | Aluminum sheet product having reduced earing and method of making | |
US4284437A (en) | Process for preparing hard tempered aluminum alloy sheet | |
US4699673A (en) | Method of manufacturing aluminum alloy sheets excellent in hot formability | |
EP0646655B1 (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability | |
US3836405A (en) | Aluminum alloy product and method of making | |
US4047980A (en) | Processing chromium-containing precipitation hardenable copper base alloys | |
WO2020182506A1 (en) | Method of manufacturing a 5xxx-series sheet product | |
US5634991A (en) | Alloy and method for making continuously cast aluminum alloy can stock | |
JP3022922B2 (ja) | 冷間圧延特性を改良した板またはストリップ材の製造方法 | |
AU2019284797B2 (en) | Method of manufacturing an Al-Mg-Mn alloy plate product having an improved corrosion resistance | |
US5116428A (en) | Rolled thin sheets of aluminum alloy | |
US3346371A (en) | Aluminum base alloy | |
CA1093437A (en) | Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decompositon | |
US5338510A (en) | Cast aluminum alloy and tooling fixture therefrom |