US3451479A - Insulating a casing and tubing string in an oil well for a hot fluid drive - Google Patents
Insulating a casing and tubing string in an oil well for a hot fluid drive Download PDFInfo
- Publication number
- US3451479A US3451479A US645442A US3451479DA US3451479A US 3451479 A US3451479 A US 3451479A US 645442 A US645442 A US 645442A US 3451479D A US3451479D A US 3451479DA US 3451479 A US3451479 A US 3451479A
- Authority
- US
- United States
- Prior art keywords
- casing
- annulus
- tubing string
- salt
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title description 13
- 239000003129 oil well Substances 0.000 title description 3
- 150000003839 salts Chemical class 0.000 description 23
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 14
- 239000000243 solution Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 229910017053 inorganic salt Inorganic materials 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 239000012266 salt solution Substances 0.000 description 5
- 238000013022 venting Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 238000010795 Steam Flooding Methods 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- 239000004328 sodium tetraborate Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/003—Insulating arrangements
Definitions
- Tubing and casing strings in a well penetrating an oil stratum to be produced by hot fluid drive, such as with steam, are coated on the walls thereof forming the annulus by packing off the annulus adjacent or near the stratum, filling the annulus with an aqueous solution of a water-soluble inorganic salt, such as borax, sodium carbonate, sodium sulfate, and mixtures thereof, preferably containing a binder, and injecting a hot fluid thru the tubing string into the stratum to evaporate water from the solution in the annulus while venting steam therefrom at the wellhead and deposit a substantial coat of the salt in solid form on the walls of the annulus.
- a water-soluble inorganic salt such as borax, sodium carbonate, sodium sulfate, and mixtures thereof
- This invention relates to a method for insulating the walls of a casing and tubing string forming the annulus of a well penetrating an oil stratum to be used in a hot fluid drive process and to the resulting insulated tubing and casing strings.
- This invention is concerned with a method of insulating the walls of the casing and tubing strings forming the annulus of a well which is simple, practical, and economically feasible and with the resulting insulated tubing and casing strings.
- a broad aspect of the invention comprises setting a packer downhole on a tubing string in a well leading to a stratum containing oil to seal off the annulus between the tubing string and the surrounding casing, substantially filling the annulus above the packer with a concentrated aqueous solution of a water-soluble inorganic salt, injecting a hot fluid thru the tubing string into the stratum so as to heat and boil said solution while venting steam from the annulus at the wellhead, and continuing the injection of hot fluid thru the tubing string so as to deposit 3,451,479 Patented June 24, 1969 said salt in solid form on the outside wall of the tubing string and the inside wall of the casing string substantially to the packer.
- the salt solution can be saturated and contain undissolved salt.
- the salt solution may also contain a suitable binder for binding the particles of salt together and for binding the salt to the walls of the tubing and casing strings.
- a suitable binder for binding the particles of salt together and for binding the salt to the walls of the tubing and casing strings.
- One or more salts of the group borax, sodium carbonate, and sodium sulfate are generally utilized. Concentrated solutions of these salts are effective in forming porous insulating coatings on the strings.
- Sodium silicate and metal stearate soaps provide suitable binders for the salt particles and for binding the salt particles to the metal in the well.
- the concentration of binder or filler is generated in the range of about 5 to 20 weight percent of the salt in the solution.
- a method of insulating a tubing string and a casing string in a well comprising the steps of: setting a packer downhole on said tubing string to seal off the annulus between the strings above a stratum penetrated by said well, substantially filling said annulus above said packer with a concentrated aqueous solution of a water-soluble inorganic salt; passing a hot fluid thru said tubing string so as to heat and boil said solution while venting resulting steam from said annulus at the wellhead; and continuing the third step so as to evaporate said solution and deposit said salt in solid form on the outside wall of said tubing string and the inside wall of said casing string.
- FIGURE 1 is an elevation in partial section thru an oil-bearing stratum penetrated by a well and
- FIG- URE 2 is an enlarged partial section of the insulated tubing and casing of FIGURE 1.
- a stratum 10 containing oil is penetrated by a well 12 which is provided with a casing string 14 and a tubing string 16.
- Casing 14 is cemented at 18 and is perforated at 20.
- Valved conduit 22 connects with the annulus 24 between the casing and tubing strings at the wellhead.
- a packer 26 seals off annulus 24 just above stratum 10.
- the inner wall of the casing string is provided with a layer 28 of insulating material formed of solid inorganic salt including a binder and/or a filler.
- a similar insulating layer 30 is provided on the outer wall of tubing string 16.
- the selected solution or slurry of salt with or without a binder and/ or filler is injected thru conduit 22 into annulus 24 so as to substantially fill the annulus from packer 26 to the wellhead.
- Steam or other hot fluid is injected thru tubing string 16 and thru perforations 20 into stratum 10 at such a rate as to raise the temperature of the aqueous solution in the annulus to its boiling temperature and evaporate water therefrom, the same being vented thru conduit 22.
- solid salt is deposited on the outer wall of tubing string 16 and the inner wall of casing 14 to form substantial layers of insulating material on these strings.
- Even a inch or a /8 inch layer of porous salt on the walls of the strings substantially reduces heat losses from the injected steam during steam flooding of stratum 10 or, in the event that well 12 is a production well of a reverse in situ combustion operation, during venting of hot produced gases and vapors thru tubing string 16.
- packer 26 may be released or unsealed so that flushing water may be injected down the tubing string and up the annulus to remove the insulating salt layer. It is also feasible to lower a water line or hose down the annulus substantially to packer 26 and flush water up the annulus and out thru conduit 22 to dissolve and remove the salt layer.
- a substantially heavier layer of insulating salt can be coated onto the pipe strings in the well by filling the annulus with a concentrated aqueous solution of the salt and evaporating the water therefrom. Layers up to /8 inch in thickness and even thicker layers can be produced by the method of the invention.
- the injected steam utilized in evaporating the water from the annulus can be a part of the steam injection operation, the steam and condensate from the injection operation passing from the Well below packer 26 directly into the stratum thru perforations 20.
- a method of insulating a tubing string and a casing string in a well comprising the steps of:
- step (d) continuing step (c) so as to evaporate said solution and deposit said salt in solid form on the outside wall of said tubing string and the inside wall of said casing string.
- said inorganic salt is selected from the group consisting of borax, sodium carbonate, sodium sulfate, and mixtures thereof.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Description
H. W. PARKER INSULATING A CASING AND TUBING STRING IN AN OIL WELL FOR 'A HOT FLUID DRIVE Filed June 12, 1967 A TTORNEVS United States Patent 3,451,479 INSULATING A CASING AND TUBING STRING IN AN OIL WELL FOR A HOT FLUID DRIVE Harry W. Parker, Bartlesville, Okla., assignor to Phillips Petroleum Company, a corporation of Delaware Filed June 12, 1967, Ser. No. 645,442 Int. Cl. E21b 21/00, 43/24, 33/03 US. Cl. 166303 4 Claims ABSTRACT OF THE DISCLOSURE Tubing and casing strings in a well penetrating an oil stratum to be produced by hot fluid drive, such as with steam, are coated on the walls thereof forming the annulus by packing off the annulus adjacent or near the stratum, filling the annulus with an aqueous solution of a water-soluble inorganic salt, such as borax, sodium carbonate, sodium sulfate, and mixtures thereof, preferably containing a binder, and injecting a hot fluid thru the tubing string into the stratum to evaporate water from the solution in the annulus while venting steam therefrom at the wellhead and deposit a substantial coat of the salt in solid form on the walls of the annulus.
This invention relates to a method for insulating the walls of a casing and tubing string forming the annulus of a well penetrating an oil stratum to be used in a hot fluid drive process and to the resulting insulated tubing and casing strings.
The production of oil from underground oil-bearing strata by hot fluid drive such as steam, hot water, and in situ combustion is conventional in the petroleum industry. In hot steam drive at temperatures above 400 F. and as high as 750 F., the casing is subjected to these extreme temperatures, resulting in casing buckling and severe damage to the cement around the casing. Similar deterioration and damage to the casing often results from reverse burning in situ combustion wherein the hot gases from the combustion zone pass thru hot sand or rock in passing to the production well and are at temperatures up to 1000 F. and higher. In addition to the damage to the downhole casing, there is also a substantial and expensive heat loss to the strata surrounding the casing generally termed the overburden. Slip-on and wrap-on insulation of various types have been proposed and it is estimated that such insulation will reduce thermal losses by more than eighty percent and provide adequate protection for the downhole casing.
This invention is concerned with a method of insulating the walls of the casing and tubing strings forming the annulus of a well which is simple, practical, and economically feasible and with the resulting insulated tubing and casing strings.
Accordingly, it is an object of the invention to provide a simple and effective method for insulating the inner wall of a casing string and the outer wall of a tubing string forming the annulus of a well, while the strings are in place in the well. Other objects of the invention will become apparent to one skilled in the art upon consideration of the accompanying disclosure.
A broad aspect of the invention comprises setting a packer downhole on a tubing string in a well leading to a stratum containing oil to seal off the annulus between the tubing string and the surrounding casing, substantially filling the annulus above the packer with a concentrated aqueous solution of a water-soluble inorganic salt, injecting a hot fluid thru the tubing string into the stratum so as to heat and boil said solution while venting steam from the annulus at the wellhead, and continuing the injection of hot fluid thru the tubing string so as to deposit 3,451,479 Patented June 24, 1969 said salt in solid form on the outside wall of the tubing string and the inside wall of the casing string substantially to the packer. The salt solution can be saturated and contain undissolved salt. The salt solution may also contain a suitable binder for binding the particles of salt together and for binding the salt to the walls of the tubing and casing strings. One or more salts of the group borax, sodium carbonate, and sodium sulfate are generally utilized. Concentrated solutions of these salts are effective in forming porous insulating coatings on the strings. Sodium silicate and metal stearate soaps provide suitable binders for the salt particles and for binding the salt particles to the metal in the well. It is also feasible to incorporate in the salt solution solid polymers in particulate form, such as in short fiber form, as well as fibers of other materials which deposit on the walls of the casing and tubing strings in admixture with the solid salt with or without a binder. The concentration of binder or filler is generated in the range of about 5 to 20 weight percent of the salt in the solution.
Thus, according to the invention, there is provided a method of insulating a tubing string and a casing string in a well comprising the steps of: setting a packer downhole on said tubing string to seal off the annulus between the strings above a stratum penetrated by said well, substantially filling said annulus above said packer with a concentrated aqueous solution of a water-soluble inorganic salt; passing a hot fluid thru said tubing string so as to heat and boil said solution while venting resulting steam from said annulus at the wellhead; and continuing the third step so as to evaporate said solution and deposit said salt in solid form on the outside wall of said tubing string and the inside wall of said casing string.
A more complete understanding of the invention may be had by reference to the accompanying schematic drawing of which FIGURE 1 is an elevation in partial section thru an oil-bearing stratum penetrated by a well and FIG- URE 2 is an enlarged partial section of the insulated tubing and casing of FIGURE 1.
Referring to the drawing, and particularly to FIGURE 1, a stratum 10 containing oil is penetrated by a well 12 which is provided with a casing string 14 and a tubing string 16. Casing 14 is cemented at 18 and is perforated at 20. Valved conduit 22 connects with the annulus 24 between the casing and tubing strings at the wellhead. A packer 26 seals off annulus 24 just above stratum 10. The inner wall of the casing string is provided with a layer 28 of insulating material formed of solid inorganic salt including a binder and/or a filler. A similar insulating layer 30 is provided on the outer wall of tubing string 16.
In applying the insulation to the tubing and. casing strings, the selected solution or slurry of salt with or without a binder and/ or filler is injected thru conduit 22 into annulus 24 so as to substantially fill the annulus from packer 26 to the wellhead. Steam or other hot fluid is injected thru tubing string 16 and thru perforations 20 into stratum 10 at such a rate as to raise the temperature of the aqueous solution in the annulus to its boiling temperature and evaporate water therefrom, the same being vented thru conduit 22. As the level of the solution in annulus 24 is progressively lowered due to evaporation, solid salt is deposited on the outer wall of tubing string 16 and the inner wall of casing 14 to form substantial layers of insulating material on these strings. Even a inch or a /8 inch layer of porous salt on the walls of the strings substantially reduces heat losses from the injected steam during steam flooding of stratum 10 or, in the event that well 12 is a production well of a reverse in situ combustion operation, during venting of hot produced gases and vapors thru tubing string 16. However, it is feasible to deposit substantially thicker layers of insulating material on the walls of the annulus by the methd of the invention. It is also feasible to substantially fill the annulus with water-soluble insulating salt. The watersoluble nature of the insulating material facilitates the removal of the insulating material by passing water thru the annulus at any time that it is desired to remove the insulation. In order to do this, packer 26 may be released or unsealed so that flushing water may be injected down the tubing string and up the annulus to remove the insulating salt layer. It is also feasible to lower a water line or hose down the annulus substantially to packer 26 and flush water up the annulus and out thru conduit 22 to dissolve and remove the salt layer.
To illustrate the invention, 400 grams of sodium carbonate were mixed with 250 cc. of water, using an Osterizer on high speed for about ten minutes. This produced a viscous slurry of sodium carbonate in water. A steel pipe nipple 4 inches long and inch ID. was cleaned by grinding off dirt and rust and one end thereof was plugged and the pipe was dipped into the sodium carbonate slurry. The plug was removed from the end of the pipe and the pipe was clamped at a 45-degree angle on a ringstand. The pipe was then heated by directing a flame of an oxygen-natural gas torch thru the pipe for about five minutes. A substantial layer of sodium carbonate insulation was produced on the outer surface of the pipe. It is quite obvious that a substantially heavier layer of insulating salt can be coated onto the pipe strings in the well by filling the annulus with a concentrated aqueous solution of the salt and evaporating the water therefrom. Layers up to /8 inch in thickness and even thicker layers can be produced by the method of the invention.
It is is desirable to clean the walls of the annulus to be coated with insulating material by flushing with water or cleaning solution prior to the filling of the annulus with the concentrated salt solution. This enhances the adherence of the salt to the wall of the iron pipe.
When producing the stratum with hot steam, the injected steam utilized in evaporating the water from the annulus can be a part of the steam injection operation, the steam and condensate from the injection operation passing from the Well below packer 26 directly into the stratum thru perforations 20.
It is also feasible to start a reverse burning in situ combustion process around well 12 with the annulus filled with salt solution and effect the evaporation and deposition of salt with resulting hot produced gases passing up the tubing string as the combustion is continued.
Certain modifications of the invention will become apparent to those skilled in the art and the illustrative details disclosed are not to be construed as imposing unnecessary limitations on the invention.
I claim:
1. A method of insulating a tubing string and a casing string in a well comprising the steps of:
(a) setting a packer downhole on said tubing string to seal off the annulus between the strings above a stratum penetrated by said well;
(b) substantially filling said annulus above said packer with a concentrated aqueous solution of a water-soluble inorganic salt;
(c) passing a hot fluid thru said tubing string so as to heat and boil said solution while venting resulting steam from said annulus at the wellhead; and
(d) continuing step (c) so as to evaporate said solution and deposit said salt in solid form on the outside wall of said tubing string and the inside wall of said casing string.
2. The method of claim 1 wherein said inorganic salt is selected from the group consisting of borax, sodium carbonate, sodium sulfate, and mixtures thereof.
3. The method of claim 1 wherein a binder is incorporated in said solution.
4. The process of claim 1 wherein said hot fluid is steam being injected into said stratum in a steam drive oil production process.
References Cited UNITED STATES PATENTS 1,700,995 2/1929 Burns et al. 138145 X 3,012,606 12/1961 Brooke l661 3,142,336 7/1964 Doscher 16657 X 3,358,756 12/1967 Vogel 166-40 X 3,385,363 5/1968 Hamby et al 166-1 X OTHER REFERENCES Owens, W. D., et al.: Steam Stimulation for Secondary Recovery. In Producers Monthly 29(4), April 1965, pp. 8 and 10-13.
CHARLES E. OCONNELL, Primary Examiner. I. A. CALVERT, Assistant Examiner.
U.S. Cl. X.R. 117-97; 16657
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64544267A | 1967-06-12 | 1967-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3451479A true US3451479A (en) | 1969-06-24 |
Family
ID=24589043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US645442A Expired - Lifetime US3451479A (en) | 1967-06-12 | 1967-06-12 | Insulating a casing and tubing string in an oil well for a hot fluid drive |
Country Status (1)
Country | Link |
---|---|
US (1) | US3451479A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3525399A (en) * | 1968-08-23 | 1970-08-25 | Exxon Production Research Co | Technique for insulating a wellbore with silicate foam |
US3650327A (en) * | 1970-07-14 | 1972-03-21 | Shell Oil Co | Thermal insulation of wells |
US3664424A (en) * | 1970-12-21 | 1972-05-23 | Exxon Production Research Co | Method for insulating a well |
US3664425A (en) * | 1970-12-21 | 1972-05-23 | Exxon Production Research Co | Well insulation method |
US3796265A (en) * | 1972-06-07 | 1974-03-12 | J Eickmeier | Method for producing high hydrogen sulfide content gas wells |
US3861469A (en) * | 1973-10-24 | 1975-01-21 | Exxon Production Research Co | Technique for insulating a wellbore with silicate foam |
US4276936A (en) * | 1979-10-01 | 1981-07-07 | Getty Oil Company, Inc. | Method of thermally insulating a wellbore |
US4496001A (en) * | 1982-09-30 | 1985-01-29 | Chevron Research Company | Vacuum system for reducing heat loss |
US4516520A (en) * | 1982-08-31 | 1985-05-14 | The Babcock & Wilcox Company | Method and apparatus of thermal detection using bonded coupon |
US4595057A (en) * | 1984-05-18 | 1986-06-17 | Chevron Research Company | Parallel string method for multiple string, thermal fluid injection |
US4667739A (en) * | 1986-03-10 | 1987-05-26 | Shell Oil Company | Thermal drainage process for recovering hot water-swollen oil from a thick tar sand |
US20050038199A1 (en) * | 2003-08-13 | 2005-02-17 | Xiaolan Wang | Crosslinkable thermal insulating compositions and methods of using the same |
US20070134063A1 (en) * | 2005-12-14 | 2007-06-14 | Shaw And Sons, Inc. | Dowel device with closed end speed cover |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1700995A (en) * | 1926-07-13 | 1929-02-05 | Freeport Sulphur Co | Process of protecting pipe from corrosion |
US3012606A (en) * | 1958-10-17 | 1961-12-12 | Phillips Petroleum Co | Method of protecting a well casing and tubing against leakage, collapse, and corrosion |
US3142336A (en) * | 1960-07-18 | 1964-07-28 | Shell Oil Co | Method and apparatus for injecting steam into subsurface formations |
US3358756A (en) * | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3385363A (en) * | 1966-09-14 | 1968-05-28 | Shell Oil Co | Method for metal coating a tubing string in situ in a well |
-
1967
- 1967-06-12 US US645442A patent/US3451479A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1700995A (en) * | 1926-07-13 | 1929-02-05 | Freeport Sulphur Co | Process of protecting pipe from corrosion |
US3012606A (en) * | 1958-10-17 | 1961-12-12 | Phillips Petroleum Co | Method of protecting a well casing and tubing against leakage, collapse, and corrosion |
US3142336A (en) * | 1960-07-18 | 1964-07-28 | Shell Oil Co | Method and apparatus for injecting steam into subsurface formations |
US3358756A (en) * | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3385363A (en) * | 1966-09-14 | 1968-05-28 | Shell Oil Co | Method for metal coating a tubing string in situ in a well |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3525399A (en) * | 1968-08-23 | 1970-08-25 | Exxon Production Research Co | Technique for insulating a wellbore with silicate foam |
US3650327A (en) * | 1970-07-14 | 1972-03-21 | Shell Oil Co | Thermal insulation of wells |
US3664424A (en) * | 1970-12-21 | 1972-05-23 | Exxon Production Research Co | Method for insulating a well |
US3664425A (en) * | 1970-12-21 | 1972-05-23 | Exxon Production Research Co | Well insulation method |
US3796265A (en) * | 1972-06-07 | 1974-03-12 | J Eickmeier | Method for producing high hydrogen sulfide content gas wells |
DE2440429A1 (en) * | 1973-10-24 | 1975-04-30 | Exxon Production Research Co | METHOD OF THERMAL INSULATION OF A DRILL HOLE |
US3861469A (en) * | 1973-10-24 | 1975-01-21 | Exxon Production Research Co | Technique for insulating a wellbore with silicate foam |
US4276936A (en) * | 1979-10-01 | 1981-07-07 | Getty Oil Company, Inc. | Method of thermally insulating a wellbore |
US4516520A (en) * | 1982-08-31 | 1985-05-14 | The Babcock & Wilcox Company | Method and apparatus of thermal detection using bonded coupon |
US4496001A (en) * | 1982-09-30 | 1985-01-29 | Chevron Research Company | Vacuum system for reducing heat loss |
US4595057A (en) * | 1984-05-18 | 1986-06-17 | Chevron Research Company | Parallel string method for multiple string, thermal fluid injection |
US4667739A (en) * | 1986-03-10 | 1987-05-26 | Shell Oil Company | Thermal drainage process for recovering hot water-swollen oil from a thick tar sand |
US20050038199A1 (en) * | 2003-08-13 | 2005-02-17 | Xiaolan Wang | Crosslinkable thermal insulating compositions and methods of using the same |
US7306039B2 (en) * | 2003-08-13 | 2007-12-11 | Bj Services Company | Methods of using crosslinkable compositions |
US20070134063A1 (en) * | 2005-12-14 | 2007-06-14 | Shaw And Sons, Inc. | Dowel device with closed end speed cover |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3451479A (en) | Insulating a casing and tubing string in an oil well for a hot fluid drive | |
US4068717A (en) | Producing heavy oil from tar sands | |
CA2462087C (en) | Method for the recovery of hydrocarbons from hydrates | |
Chu | State-of-the-art review of steamflood field projects | |
US2897894A (en) | Recovery of oil from subterranean reservoirs | |
US3003555A (en) | Oil production from unconsolidated formations | |
US9097094B1 (en) | Method for chemically treating hydrocarbon fluid in a downhole wellbore | |
US2265923A (en) | Process of treating oil and gas wells to increase production | |
US4454917A (en) | Thermal acidization and recovery process for recovering viscous petroleum | |
US3180414A (en) | Production of hydrocarbons by fracturing and fluid drive | |
US3861469A (en) | Technique for insulating a wellbore with silicate foam | |
USRE27252E (en) | Thermal method for producing heavy oil | |
US3121462A (en) | Method of formation consolidation | |
US3366177A (en) | Production of petroleum from unconsolidated formations | |
US3525399A (en) | Technique for insulating a wellbore with silicate foam | |
US9097093B1 (en) | Downhole chemical treatment assembly for use in a downhole wellbore | |
US3163218A (en) | Method of consolidating a formation using a heater within a liner which is thereafter destroyed | |
US3070159A (en) | Consolidating incompetent rock formations | |
US3858654A (en) | Hydraulic mining technique for recovering bitumen from subsurface tar sand deposits | |
US11441396B1 (en) | Sand consolidation for subterranean sand formations | |
Parrish et al. | Evaluation of COFCAW as a tertiary recovery method, Sloss field, Nebraska | |
US3557871A (en) | Insulated casing and tubing string in an oil well for a hot fluid drive | |
US3566967A (en) | Thermal plugging with silicate solutions | |
US2803432A (en) | Method of forming underground cavity | |
US2324254A (en) | Method of removing mud barriers from oil wells |