US3301319A - Thermal shroud - Google Patents
Thermal shroud Download PDFInfo
- Publication number
- US3301319A US3301319A US453859A US45385965A US3301319A US 3301319 A US3301319 A US 3301319A US 453859 A US453859 A US 453859A US 45385965 A US45385965 A US 45385965A US 3301319 A US3301319 A US 3301319A
- Authority
- US
- United States
- Prior art keywords
- ribs
- panels
- body portion
- shroud
- panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims description 9
- 230000002745 absorbent Effects 0.000 claims description 3
- 239000002250 absorbent Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/20—Arrangements of heat reflectors, e.g. separately-insertible reflecting walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D8/00—Cold traps; Cold baffles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0041—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
Definitions
- the invention relates in general to heat transfer devices, and pertains more particularly to devices referred to as thermal shrouds for use in vacuum chambers to absorb heat and produce conditions of extreme cold, or, alternatively, to transmit heat to an object mounted in the chamber.
- This application is a continuation in part of my previous application Serial No. 190,686, filed April 27, 1962, now abandoned.
- Vacuum chambers are frequently used to simulate conditions of outer space for the purpose of testing articles and materials for use in space. It is customary to surround the work area, in which the objects are to be tested, by an enclosure or shroud having a highly emissive and absorbent inner surface. The shroud may be cooled by cryogenic fluid to carry away heat radiated by objects under test, or heated to act as a radiator, to test the object under controlled low or high temperature conditions in vacuum.
- the principal object of this invention is to provide a shroud material which has very high heat absorption and emission properties over the entire range of visible and infra red bands of the electro-magnetic energy spectrum so as to produce efficient and rapid heating and cooling under high vacuum conditions or in gaseous atmospheres with low circulation.
- Another object is to provide a shroud construction which may be easily varied in shape or size by using different arrangements of a basic structural element.
- the shroud assembly here disclosed is made up of a number of like panels having interlocking beads and grooves along their edges, so that any number of panels may be assembled together to vary the size of the assembly.
- the panels are made of material such as extruded aluminum and are polished on the outside to reduce radiant heat transfer to a minimum.
- the panels On the inside, the panels have a number of inwardly projecting ribs of steep isosceles triangular configuration, spaced apart by troughs.
- the ribs have a number of furrows along their sides providing multiple reflecting surfaces which tend to reflect any radiation which strikes the sides of the ribs, and is not immediately absorbed, back toward the troughs.
- the inner surfaces of the panels are also treated to provide for maximum absorption so that practically all heat or light radiation coming from an object in the work area is absorbed by the panels.
- the panels have conduits through which cold liquid is circulated when the shroud is used :as a heat sink, and hot liquid is circulated when the shroud is used as a radiator.
- FIG. 1 is a side elevation of a thermal shroud constructed according to the invention
- FIG. 2 is an enlarged cross-section taken along line 2-2 of FIG. 1;
- dFIG. 3 is an enlarged cross-section of one of the panels
- FIG. 4 is a fragmentary cross-section, further enlarged, of a panel in the region of a pair of ribs.
- a typical shroud is a cylinder made up of a number of panels 10, having their conduits 11 connected to a header 12 and a return pipe 13.
- a table 14, on which the object to be treated or tested may be placed, is mounted within the shroud.
- the header 12 and return pipe 13 are connected in a suitable circulating system (not shown) for circulating liquid, for example brine, through conduits 11. The liquid may be heated or cooled to the desired temperature.
- the shroud assembly is mounted in a vacuum chamber which is evacuated to the degree required for the particular test or other operation, or may contain an inert gas.
- the panels are made of a suitable heat conductive material such as aluminum, -and may conveniently be manufactured "by extruding long sections and cutting them to the length required for the particular installation.
- Each panel 10 has a bead 15 along one longitudinal edge, and an undercut groove 16, in which the bead of the adjoining panel is received, along its opposite edge.
- the panels are assembled together by sliding the bead of one longitudinally into the groove of the next.
- the head is connected to the panel :by a reduced neck 15a, and the groove has an entrance 1 6a slightly wider than the neck.
- the panel has a body portion 10a which may be slightly curved, or may be straight as a large enough number of panels are ordinarily used in a shroud assembly so that the overall shape approximates a cylinder even when the shroud is composed of straight panels.
- the outer surface 10b of the panels is smooth and highly polished to minimize heat radiation from the shroud toward the outside.
- Extending inward from the body portion 10a are a number of ribs 17 separated by troughs 18.
- the ribs are of steep isosceles triangular configuration and have a number of furrows 19 along their oblique sides.
- the under surfaces 19a of the furrows are substantially parallel to the body portion.
- the troughs 18 have curved bases 18a, giving the troughs, as a whole, a generally parabolic configuration.
- the ends of the ribs are brought practically to a point, but may be formed with a small radius to facilitate fabrication. All the surfaces of the ribs and troughs are finished dull or blackened for maximum absorption.
- FIG. 4 The action of the panels, when subject to radiation from the work area, is illustrated in FIG. 4.
- a ray strikes any of the inner surfaces, a considerable portion of its energy is absorbed, but a certain percentage is reflected.
- Rays impinging on the panel at other points, such as rays C and D are reflected on to the multiple surfaces provided by the furrows 19, usually several times as indicated by the path of ray C.
- the panel is made of a good heat conductor, so that the absorbed heat is quickly transmitted through body portion a to the liquid in conduits 11.
- the panel is very effective in absorbing and carrying off heat radiated from the Work area and thus lowering the temperature of an object placed within that area.
- Shrouds of the construction there disclosed are relatively simple and inexpensive to manufacture.
- the panel material can be formed as a continuous extrusion and cut into panels of the desired length. No tools, fastenings, or special machinery are required for assembling the panels together.
- the same basic panels may be used to construct shoruds of various shapes, for example, a
- the shroud panels may be assembled with the ribs running vertically, horizontally, or obliquely. In a high vacuum the disposition of the ribs is immaterial from the standpoint of heat transfer. In a gaseous atmosphere, vertical disposition of the ribs is generally preferable as it assists the flow of whatever convection currents may be present. In any case, the panels provide effective transfer of radiant heat to or from an object spaced from the shroud on the ribbed side.
- a heat absorbent and radiant panel for use in making a thermal shroud embodying a plurality of said panels 4 wherein each panel comprises a :body portion having an outer side and an inner side and a number of spaced parallel inwardly extending ribs on said inner side, each of said ribs being of generally triangular cross-section and having side walls diverging toward said body portion,-
- said body portion having curved surfaces on said inner side between adjacent ribs said surfaces defining, with the side Walls of the adjacent ribs generally parabolic troughs parallel to the ribs, said side walls being provided with longitudinal furrows, each of said furrows having an inner surface disposed at such an angle as to deflect radiation impinging thereon toward the confronting adjacent side wall and an under surface facing toward said parabolic trough.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Particle Accelerators (AREA)
Description
Jan. 31, 1967 J. B. MERRILL 3,301,319
THERMAL SHROUD Filed March 23, 1965 2 Sheets-Sheet 1 E A? I J 1 a a 15295:
Josqvk/B.Me3 a1iZZ, by 3,11% 7W United States Patent Gill-ice 3,361,319 Patented Jan. 31, 1967 3,301,319 THERMAL SHROUD Joseph B. Merrill, Cohasset, Mass., assignor to High Vacuum Equipment Corporation, Hingham, Mass., a corporation of Massachusetts Filed Mar. 23, 1965, Ser. No. 453,859 4 Claims. (Cl. 165-133) The invention relates in general to heat transfer devices, and pertains more particularly to devices referred to as thermal shrouds for use in vacuum chambers to absorb heat and produce conditions of extreme cold, or, alternatively, to transmit heat to an object mounted in the chamber. This application is a continuation in part of my previous application Serial No. 190,686, filed April 27, 1962, now abandoned.
Under high vacuum conditions heat transfer between bodies spaced from one another takes place by radiation only, because there is no atmosphere to transmit heat by conduction or convection. Vacuum chambers are frequently used to simulate conditions of outer space for the purpose of testing articles and materials for use in space. It is customary to surround the work area, in which the objects are to be tested, by an enclosure or shroud having a highly emissive and absorbent inner surface. The shroud may be cooled by cryogenic fluid to carry away heat radiated by objects under test, or heated to act as a radiator, to test the object under controlled low or high temperature conditions in vacuum.
Althought the improvement of radiant heat transfer between a shroud and an object spaced from it is particularly applicable to vacuum conditions, the same problem also exists to a considerable degree in gaseous atmospheres under conditions where there is very little circulation of the atmosphere. Under such conditions, heat transfer .by convection is low, and as gases are poor condoctors, most of the heat transfer must take place by radiation.
The principal object of this invention is to provide a shroud material which has very high heat absorption and emission properties over the entire range of visible and infra red bands of the electro-magnetic energy spectrum so as to produce efficient and rapid heating and cooling under high vacuum conditions or in gaseous atmospheres with low circulation. Another object is to provide a shroud construction which may be easily varied in shape or size by using different arrangements of a basic structural element.
The shroud assembly here disclosed is made up of a number of like panels having interlocking beads and grooves along their edges, so that any number of panels may be assembled together to vary the size of the assembly. The panels are made of material such as extruded aluminum and are polished on the outside to reduce radiant heat transfer to a minimum. On the inside, the panels have a number of inwardly projecting ribs of steep isosceles triangular configuration, spaced apart by troughs. The ribs have a number of furrows along their sides providing multiple reflecting surfaces which tend to reflect any radiation which strikes the sides of the ribs, and is not immediately absorbed, back toward the troughs. The inner surfaces of the panels are also treated to provide for maximum absorption so that practically all heat or light radiation coming from an object in the work area is absorbed by the panels. The panels have conduits through which cold liquid is circulated when the shroud is used :as a heat sink, and hot liquid is circulated when the shroud is used as a radiator. Other objects, advantages, and novel features will be apparent from the following detailed description.
In the drawing illustrating the invention:
FIG. 1 is a side elevation of a thermal shroud constructed according to the invention;
FIG. 2 is an enlarged cross-section taken along line 2-2 of FIG. 1;
dFIG. 3 is an enlarged cross-section of one of the panels; an
FIG. 4 is a fragmentary cross-section, further enlarged, of a panel in the region of a pair of ribs.
A typical shroud, as shown in FIGS. 1 and 2, is a cylinder made up of a number of panels 10, having their conduits 11 connected to a header 12 and a return pipe 13. A table 14, on which the object to be treated or tested may be placed, is mounted within the shroud. The header 12 and return pipe 13 are connected in a suitable circulating system (not shown) for circulating liquid, for example brine, through conduits 11. The liquid may be heated or cooled to the desired temperature. When in operation the shroud assembly is mounted in a vacuum chamber which is evacuated to the degree required for the particular test or other operation, or may contain an inert gas. The panels are made of a suitable heat conductive material such as aluminum, -and may conveniently be manufactured "by extruding long sections and cutting them to the length required for the particular installation.
Each panel 10 has a bead 15 along one longitudinal edge, and an undercut groove 16, in which the bead of the adjoining panel is received, along its opposite edge. The panels are assembled together by sliding the bead of one longitudinally into the groove of the next. As best shown in FIG. 3, the head is connected to the panel :by a reduced neck 15a, and the groove has an entrance 1 6a slightly wider than the neck. There is suflicient clearance between the groove and the bead of the adjoining panel (shown in broken line) to permit hinging action so that the relative angles of the panels can be adjusted to make shroud assemblies of different circumferences by varying the number of panels used.
The panel has a body portion 10a which may be slightly curved, or may be straight as a large enough number of panels are ordinarily used in a shroud assembly so that the overall shape approximates a cylinder even when the shroud is composed of straight panels.
The outer surface 10b of the panels is smooth and highly polished to minimize heat radiation from the shroud toward the outside. Extending inward from the body portion 10a are a number of ribs 17 separated by troughs 18. The ribs are of steep isosceles triangular configuration and have a number of furrows 19 along their oblique sides. The under surfaces 19a of the furrows are substantially parallel to the body portion. The troughs 18 have curved bases 18a, giving the troughs, as a whole, a generally parabolic configuration. The ends of the ribs are brought practically to a point, but may be formed with a small radius to facilitate fabrication. All the surfaces of the ribs and troughs are finished dull or blackened for maximum absorption.
The action of the panels, when subject to radiation from the work area, is illustrated in FIG. 4. When a ray strikes any of the inner surfaces, a considerable portion of its energy is absorbed, but a certain percentage is reflected. However, only rays impinging directly on the negligible areas represented by the center lines of the ends of the ribs and of bases 18a, such as rays A and B, are reflected back toward the work area. Rays impinging on the panel at other points, such as rays C and D, are reflected on to the multiple surfaces provided by the furrows 19, usually several times as indicated by the path of ray C. As a large percentage of the energy is absorbed each time the reflected ray strikes one of these surfaces, practically all of its energy is absorbed before the ray can be deflected in a direction to return toward the work area. The panel is made of a good heat conductor, so that the absorbed heat is quickly transmitted through body portion a to the liquid in conduits 11. The panel is very effective in absorbing and carrying off heat radiated from the Work area and thus lowering the temperature of an object placed within that area.
When the panel is used as a radiator, heat from the liquid in conduit 11 is transmitted to ribs 17. The multiple surfaces of furrows 19 provide a large surface area for radiation, and the parabolic shape of the troughs results in focussing of the radiated heat toward the center of the Work area. The panel is thus very effective in raising the temperature of an object Within that area.
Shrouds of the construction there disclosed are relatively simple and inexpensive to manufacture. The panel material can be formed as a continuous extrusion and cut into panels of the desired length. No tools, fastenings, or special machinery are required for assembling the panels together. The same basic panels may be used to construct shoruds of various shapes, for example, a
straight wall, or an oval, as Well as a cylinder, and the size of the assembly may be varied simply by varying the number of panels used.
The shroud panels may be assembled with the ribs running vertically, horizontally, or obliquely. In a high vacuum the disposition of the ribs is immaterial from the standpoint of heat transfer. In a gaseous atmosphere, vertical disposition of the ribs is generally preferable as it assists the flow of whatever convection currents may be present. In any case, the panels provide effective transfer of radiant heat to or from an object spaced from the shroud on the ribbed side.
hat is claimed is:
1. A heat absorbent and radiant panel for use in making a thermal shroud embodying a plurality of said panels 4 wherein each panel comprises a :body portion having an outer side and an inner side and a number of spaced parallel inwardly extending ribs on said inner side, each of said ribs being of generally triangular cross-section and having side walls diverging toward said body portion,-
said body portion having curved surfaces on said inner side between adjacent ribs said surfaces defining, with the side Walls of the adjacent ribs generally parabolic troughs parallel to the ribs, said side walls being provided with longitudinal furrows, each of said furrows having an inner surface disposed at such an angle as to deflect radiation impinging thereon toward the confronting adjacent side wall and an under surface facing toward said parabolic trough.
2. A panel as described in claim 1, having a fluid conduit in said body portion.
3. A panel as described in claim 1, said ribs having substantially pointed inner edges.
4. A panel as described in claim 1, said body portion having a highly reflective outer surface.
References Cited by the Examiner UNITED STATES PATENTS 2,077,927 4/1937 Glenn -169 X 2,372,155 3/1945 Bosch 165133 X 3,081,824 3/1963 Macall 165185 3,149,666 9/1964 Coe. 3,163,207 12/ 1964 Schultz 165-68 FOREIGN PATENTS 304,779 3/ 1930 Great Britain.
82,550 10/ 1953 Norway.
ROBERT A. OLEARY, Primary Examiner.
T. W. STREULE, ]R., Assistant Examiner.
Claims (1)
1. A HEAT ABSORBENT AND RADIANT PANEL FOR USE IN MAKING A THERMAL SHROUD EMBODYING A PLURALITY OF SAID PANELS WHEREIN EACH PANEL COMPRISES A BODY PORTION HAVING AN OUTER SIDE AND AN INNER SIDE AND A NUMBER OF SPACED PARALLEL INWARDLY EXTENDING RIBS ON SAID INNER SIDE, EACH OF SAID RIBS BEING OF GENERALLY TRIANGULAR CROSS-SECTION AND HAVING SIDE WALLS DIVERGING TOWARD SAID BODY PORTION, SAID BODY PORTION HAVING CURVED SURFACES ON SAID INNER SIDE BETWEEN ADJACENT RIBS SAID SURFACES DEFINING, WITH THE SIDE WALLS OF THE ADJACENT RIBS GENERALLY PARABOLIC TROUGHS PARALLEL TO THE RIBS, SAID SIDE WALLS BEING PROVIDED WITH LONGITUDINAL FURROWS, EACH OF SAID FURROWS HAVING AN INNER SURFACE DISPOSED AT SUCH AN ANGLE AS TO DEFLECT RADIATION IMPINGING THEREON TOWARD THE CONFRONTING ADJACENT SIDE WALL AND AN UNDER SURFACE FACING TOWARD SAID PARABOLIC TROUGH.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US453859A US3301319A (en) | 1965-03-23 | 1965-03-23 | Thermal shroud |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US453859A US3301319A (en) | 1965-03-23 | 1965-03-23 | Thermal shroud |
Publications (1)
Publication Number | Publication Date |
---|---|
US3301319A true US3301319A (en) | 1967-01-31 |
Family
ID=23802365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US453859A Expired - Lifetime US3301319A (en) | 1965-03-23 | 1965-03-23 | Thermal shroud |
Country Status (1)
Country | Link |
---|---|
US (1) | US3301319A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742729A (en) * | 1971-04-23 | 1973-07-03 | United Scient Corp | Assembly shock mounting and heat coupling system |
US3797569A (en) * | 1973-03-29 | 1974-03-19 | American Schack Co | Cage type radiation recuperator |
US4296539A (en) * | 1978-01-27 | 1981-10-27 | Kobe Steel, Limited | Heat transfer tubing for natural gas evaporator |
US4703597A (en) * | 1985-06-28 | 1987-11-03 | Eggemar Bengt V | Arena floor and flooring element |
EP0254778A1 (en) * | 1986-07-15 | 1988-02-03 | Pittsburgh-Des Moines Corporation | Liquid nitrogen distribution system |
FR2629874A1 (en) * | 1988-04-07 | 1989-10-13 | Messerschmitt Boelkow Blohm | SURFACE STRUCTURE OF THIN-WALL CONSTRUCTION ELEMENTS |
US5174371A (en) * | 1992-01-27 | 1992-12-29 | Cryoquip, Inc. | Atmospheric vaporizer heat exchanger |
US5857515A (en) * | 1995-04-12 | 1999-01-12 | David M. Skupien | Heat exchanging device |
ES2189634A1 (en) * | 1995-05-31 | 2003-07-01 | Jesus Roberto Clavijo | Defrosting or deicing device |
US20090294112A1 (en) * | 2008-06-03 | 2009-12-03 | Nordyne, Inc. | Internally finned tube having enhanced nucleation centers, heat exchangers, and methods of manufacture |
US20110030920A1 (en) * | 2009-08-04 | 2011-02-10 | Asia Vital Components (Shen Zhen) Co., Ltd. | Heat Sink Structure |
US20110226458A1 (en) * | 2008-04-28 | 2011-09-22 | Eran Plonski | Modular heat sink and method for fabricating same |
US20130056190A1 (en) * | 2011-09-02 | 2013-03-07 | Hamilton Sundstrand Corporation | Cooling structure |
US20130056188A1 (en) * | 2011-09-02 | 2013-03-07 | Hamilton Sundstrand Space Systems International Inc. | Cooling structure |
US11391523B2 (en) * | 2018-03-23 | 2022-07-19 | Raytheon Technologies Corporation | Asymmetric application of cooling features for a cast plate heat exchanger |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB304779A (en) * | 1928-01-27 | 1930-03-27 | Gaz Et D Electricite Du Sud Es | Improvements in the distribution of heat from radiators |
US2077927A (en) * | 1935-07-27 | 1937-04-20 | American Car & Foundry Co | Cooling mold |
US2372155A (en) * | 1942-03-31 | 1945-03-20 | R E Kramig & Company Inc | Dissipation of heat from bus bars |
US3081824A (en) * | 1960-09-19 | 1963-03-19 | Behlman Engineering Company | Mounting unit for electrical components |
US3149666A (en) * | 1961-06-15 | 1964-09-22 | Wakefield Eng Inc | Cooler |
US3163207A (en) * | 1961-07-26 | 1964-12-29 | Robert T Schultz | Heat dissipating mount for electric components |
-
1965
- 1965-03-23 US US453859A patent/US3301319A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB304779A (en) * | 1928-01-27 | 1930-03-27 | Gaz Et D Electricite Du Sud Es | Improvements in the distribution of heat from radiators |
US2077927A (en) * | 1935-07-27 | 1937-04-20 | American Car & Foundry Co | Cooling mold |
US2372155A (en) * | 1942-03-31 | 1945-03-20 | R E Kramig & Company Inc | Dissipation of heat from bus bars |
US3081824A (en) * | 1960-09-19 | 1963-03-19 | Behlman Engineering Company | Mounting unit for electrical components |
US3149666A (en) * | 1961-06-15 | 1964-09-22 | Wakefield Eng Inc | Cooler |
US3163207A (en) * | 1961-07-26 | 1964-12-29 | Robert T Schultz | Heat dissipating mount for electric components |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742729A (en) * | 1971-04-23 | 1973-07-03 | United Scient Corp | Assembly shock mounting and heat coupling system |
US3797569A (en) * | 1973-03-29 | 1974-03-19 | American Schack Co | Cage type radiation recuperator |
US4296539A (en) * | 1978-01-27 | 1981-10-27 | Kobe Steel, Limited | Heat transfer tubing for natural gas evaporator |
US4703597A (en) * | 1985-06-28 | 1987-11-03 | Eggemar Bengt V | Arena floor and flooring element |
EP0254778A1 (en) * | 1986-07-15 | 1988-02-03 | Pittsburgh-Des Moines Corporation | Liquid nitrogen distribution system |
FR2629874A1 (en) * | 1988-04-07 | 1989-10-13 | Messerschmitt Boelkow Blohm | SURFACE STRUCTURE OF THIN-WALL CONSTRUCTION ELEMENTS |
US4890454A (en) * | 1988-04-07 | 1990-01-02 | Messerschmitt-Boelkow-Blohm Gmbh | Wall surface structure having an improved radiant heat discharge capability |
US5174371A (en) * | 1992-01-27 | 1992-12-29 | Cryoquip, Inc. | Atmospheric vaporizer heat exchanger |
US5857515A (en) * | 1995-04-12 | 1999-01-12 | David M. Skupien | Heat exchanging device |
ES2189634A1 (en) * | 1995-05-31 | 2003-07-01 | Jesus Roberto Clavijo | Defrosting or deicing device |
US20110226458A1 (en) * | 2008-04-28 | 2011-09-22 | Eran Plonski | Modular heat sink and method for fabricating same |
US20090294112A1 (en) * | 2008-06-03 | 2009-12-03 | Nordyne, Inc. | Internally finned tube having enhanced nucleation centers, heat exchangers, and methods of manufacture |
US20110030920A1 (en) * | 2009-08-04 | 2011-02-10 | Asia Vital Components (Shen Zhen) Co., Ltd. | Heat Sink Structure |
US20130056190A1 (en) * | 2011-09-02 | 2013-03-07 | Hamilton Sundstrand Corporation | Cooling structure |
US20130056188A1 (en) * | 2011-09-02 | 2013-03-07 | Hamilton Sundstrand Space Systems International Inc. | Cooling structure |
US11391523B2 (en) * | 2018-03-23 | 2022-07-19 | Raytheon Technologies Corporation | Asymmetric application of cooling features for a cast plate heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3301319A (en) | Thermal shroud | |
US4048983A (en) | Solar energy collector apparatus | |
CA1043206A (en) | Solar heat collector module | |
US4069811A (en) | Solar collectors | |
US4015583A (en) | Device for receiving or emitting radiation energy | |
US4117830A (en) | Gangable radiant energy collector | |
US1814897A (en) | Apparatus for utilizing solar heat | |
CA1082543A (en) | Radiant energy collector panel and system | |
KR20000057379A (en) | Fluid temperature control device | |
US4084576A (en) | Bulb-type solar energy collector | |
US4120286A (en) | Ridged surface solar heater | |
US4290419A (en) | Multi systems solar collector | |
US20040125593A1 (en) | Heater module of rapid thermal processing apparatus | |
US3285333A (en) | Geometrically-spectrally selective radiator | |
EP0333032B1 (en) | Temperature control for building spaces | |
US4337756A (en) | Panel for collecting solar energy with reduced losses | |
US4716882A (en) | Solar heat collector | |
US4142511A (en) | Solar radiation collector devices and systems | |
USRE30407E (en) | Solar heat collector module | |
EP0587034B1 (en) | Radiation collector | |
US5060472A (en) | Insulated cooling liner | |
US3316405A (en) | Means of increasing the emissivity of a source with a reflecting emitter element | |
US4237870A (en) | Solar collector for gaseous heat exchange media | |
US4090495A (en) | Solar energy collector | |
US2520830A (en) | Space heater |